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§1. Introduction.

The problem of the distribution of almost-primes in arithmetic progressions
has been investigated by various authors. The hitherto most successful study
can be found in Jurkat-Richert and Richert [5] To state a special
case of their beautiful works we first introduce some notations and conventions.

Let z=2 be arbitrary and

— _ 1
Pz)=T1Ip, Fk(z)_H 1“7):
p< 2z

p<z
Dtk Dtk

where p denotes generally a prime number. We put

Alx; kb 1;2)= X 1, (kD=1

nEr
n={(mod k)
(n, Pp(2))=1

Further let the functions F(u) and f(u#) be defined by
Fuy=2er/u, flu)=0, 0<u=2,
(wFw) =f(u—-1), (ufw))y=Fu-1), 2=u,

(1.1

where 7 is the Euler constant. Then according to [1] we have, for any z<x/k,

Pl o) ).

log z

Alx; k1 z)i%rk(z)[f< log % ) O<<10g“*> M)]

log z

ACxs By 1 2) S - Til2)

uniformly for all [, (k, [)=1. This has been obtained by the completion of the
combinatorial strengthening due to Buchstab of the sieve procedure. To get
the result on almost-primes, the idea of Kuhn of attaching certain weights to
sieve has played vital role in many works. Also this has been considerably
sophisticated in [6], from which we excerpt here the following result: Let,
denoting by ¢ a prime number,
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(1.3) Wxi b Lz w)= 3 {1-{ 2 P ( %}853,,)}
lng:d 2} it
(m Pptn=1 a

where the prime of the sum indicates that n is restricted by
nZ£0 (mod ¢%) for z=Zq<w, q}fk.

Then for non-negative constant { we have

(1.4) Wdx; k, 1 2z, w)
= 5 ¢ F (o (1= )45 -0((ox ) )}
where
log - log -
“=Togw ' YT Tlogz ' 1<usgv.

From this it follows that, denoting as usual by P, the integer which has at
most 7 prime factors counting the multiplicity, there is a P, such that

Ar
P, <kt  P.=[(modk), r=2,
uniformly for all [, (¢, [)=1, where

_ _ log{4/(014-3"")}
Ar=r+1 log 3 ’

Now, the special case (i.e. if z=(x/k)"*) of the first inequality of (1.2)
gives the Brun-Titchmarsh theorem

w(x; k, l)é(Z—l—e)—L}——,
@(k) log ¢~

where 7(x; k, [) denotes as usual the number of primes less than x and con-
gruent to /mod k. But recently in our papers[3], this has been improved
to

x(x; k, 1)§<2+s>—~LT,
@(k) log—yk——

for all [, (k I)=1 and for almost all /, (k, [)=1 accordingly to 2<x*® and to
k<x"¢, respectively. Our result has been obtained by the direct application
of a rather routine analytical procedure to the Selberg sieve. Thus it seems
natural to expect that our method may give some improvements in the results
of Jurkat and Richert. This is the main purpose of the present paper. How-
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ever, the investigation of the problem on the requirement that the result should
hold uniformly for all reduced residue classes turns out rather tedious and also
is of little use, since, then, we have to impose the condition 2<x%*°, Hence
we will concentrate our concern to the average behaviour of their sieve pro-
cedure. As a whole our present paper can be considered to be the asymp-
totical study of the works and in the case of arithmetic progressions.
Our results are as follows:
THEOREM 1. Let A>1 be an arbitrary number, and let

k=< x(log x) 4.
Then for any z with 2<z<x/ B we have

Alx; k1 2)= %ﬁ(z)[f( l"“”T/XJT)—O((log x)‘fT)} ,
log z

X 1
A(x; by 15 2) < %ﬁ(z)[F( log VT)JrO((log x)"ﬁ)] ,
log z

save for at most k(log x) “/®+2 yeduced residue classes I mod k.
THEOREM 2. Let A>1 be an arbitrary number, and let

k=< x(log x)™4, 2<zsw<

\J/CE (log x)~4.

Then, for any non-negative constant {, we have, save for at most k(log x) (4/2+33
reduced residue classes [ mod &,

Wex; R, 1; 2z, w)
= £ =P (=) (1= 0 7).

where

log_l.f_. log_._x___
U= , V= ogz I<u=v.

Compared with (1.2) and (1.4), our results differ only in that the factor
x/k is replaced by x/+k in all expressions. But this is a considerable im-
provement when application is made to the problem of almost primes.

COROLLARY TO THEOREM 2. There exist numbers such that

P,<EW, P,=I(mod#),
P,<k(log k), Py=1l(mod#k),

save for at most k(log k)% reduced residue classes I mod k.
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This should be compared with the result of Turdn [6]: On the extended
Riemannian Hypothesis there exists a prime number p such that

p=k(logk)**, p=1I(modk),

for almost all [, (k, [)=1.

Notations: x is a sufficiently large positive variable, and it is supposed
that k=<x. 7 means that n-n=1 (mod k) for any integer n, (k, n)=1. ¢(k) is
the number of reduced residue classes mod k2. X is a Dirichlet character mod &,
and X, denotes the principal character. L(s, X) is the Dirichlet L-function
attached to X and s a complex variable. The symbol [d,, d,] stands for the
least common multiple of d; and d,. The constants implied by the symbols

“O” and “<” depend only on A and ¢ a sufficiently small positive constant.

§2. Fundamental inequality.

Our whole calculations depend on a combinatorial identity similar to the
formula (2.1) of which maximize the effect of the Selberg sieve. Before
stating this identity we introduce here some conventions to simplify the nota-
tions in what follows.

We take two numbers 4 and A>1 which are to be determined later and
should be considered to be fixed and sufficiently large, for a while. Let
{py, ---, o} be a set of prime numbers with arbitrary a=0. For the positive
variable x we write

X -4 4
(2.1) Xo= VE (log 4)~4, '\/k pl (lOg 4y
and we impose following conditions to {p,, ---, ;ba} :

(2 2) Cl(x):C1<x; A; A)E {pj/{/k! p1< '\/Z ]Zly 2; Tty a} s

Cz(x):c2<x; A; A>E{p1/{/ k; pj< '\/x—_g .7:1; 2, ) a_l;pa*k; '\/x—agpa<xa} .

Then our basic identity is
LEMMA 2.1. Let z be restricted by z=~'x,. Then for an arbitrary integer
r=1 and for any z, 2=z,<z, we have

Ak )= % (=1 3% A(gg ik b bis a)
0sisr—1 z1<m<( )<p1<z b
+(‘1) " \Pr\ p1<z <P1 k lpl pr; p'r)

+ 3 (-1 A o bbb 1)

1sisr z1<:01,<(<)171<2
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PrOOF. This can be shown by the induction on 7 as of [T].
Let introduce one more basic parameter z, such that

2=<2z,<z,

and hereafter let z stand for the triple (z, z;, z) when it appears in formulas.
By the simple application of Buchstab’s identity (see (2.2) of we have, for
both v=1 and 2,

1y  x
Osgr—l( 1) zlgpi<2<p1<zA< prob; s R, lpl “Di; Zl)

01(1‘)
S <WA( g b B Bis )
i=v (mod 2) C1(x)
(2.3)
1y _x
+( 1) Oégr—l zlépi<;<p1<zA< Pl "‘pl k lpl P;,Zo)
i=v+1 (mod 2) Cy ()
—-1) Al ———; &, I
+( 1) OSL;?‘ 1 21<P1,<EKP1<Z 20S§():<21 (popl p N pop1 pz;p0>
i=v+1 (mod 2) C(x) Potk

Further we put

AP(x;152;7)
(2.4)

— v+1
=1 0si=r—1 zlgpi<;<p1<z (pl P, s Rk, 1Dy - P,,,Zo>

i=y+1 (mod 2) Cq1(x>

and

AP(x;152;57)

A< ; R, ljbl <D Z1>
0siSr—1 z;5pil<p<z N D1 P
i=y (mod 2) Ci(@)

A( 5 kb, WoPy i bo)
0SiSr—1 25 <<p <z 2p=py<zy Popl - D:
i=y+1 (mod 2) C (@ Dotk

(2.5)
X
o %?IQA(_———A...I,T b, 15 By r)
1.1‘

+ léizér 21 =5p;<- <p1<z A( ]_')1 pl k lpl “Di; p)

t=v (mod 2) Co(x)

Then from and by (2.3) we get easily the following fundamental
inequalities :
LEMMA 2.2. If r is even,
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Alx; by 1; 2)S AP(x; L 2, ) AP(x; L 25 7).
Also if r is odd,
Alx; kb 1; 2)Z AP (x5 L 25 ) —AP(x; L 25 7).

To AP (x;1;z;7) and to AP(x;!l;z;r) we shall apply the Eratosthenes-

Legendre sieve and the Selberg sieve, respectively.

§ 3. Selberg’s sieve.

In this paragraph we summarise some results from the theory of the

Selberg sieve, and later we modify
Let 7;, n, be arbitrary positive numbers, and let

4y _ 1 —1 d<
#(d) SD(d) Yk (vh 772)(m§=1 sD(m) ’ for (ky d)_]-; d=v2)

— m=Eynq/d
AN, M2) mIP,{0)

0 , otherwise.
Here

- 1
Yk(771; 7]2)— m§nz ——So(m) .

m| Pp(ny)
Then as is well-known we have
(3'1) Izd(‘)?ly 7]2)] § 1 ’
and
_ Aa4y(n1, 02)Aa(0s, 72)
. Vi, — ai\1y Y2)Aa\ 1
(3 2) k (vl 7?2) dvlf?(zﬂl) [dl, d2] .

Further, if »,>7%,, where 7, is a sufficiently large constant, we have

1

(3.3) Y5 (s 72) < Tel)(1+0(e* Tog7s))

(see p. 224 of [1]), and also we have

(3.4) Yty ) £ Tfk)—(log 7).

Now, we put, for any set of prime numbers {p,, --*, po}, P; ¥ & (j=1, -+

(3.5) Oprpa(tt; L3, )= X ( X Adny, 7).
n=lp;-pg (mod k) dln
néu/?r"pa dIPk(vl)

Then we have by the standard application of the Selberg sieve

’ (1),
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(3.6) A(ﬁ s Ry Py Do 7]1> =dpppatt; 157, 1)
Next, we put

U(u;l;x,2;7)

= u;l; z, Vx
0 1,:‘-‘:—1 11<P1,< <p1< prl Pl( 1 1.)
v (mod 2) Cy(x)
3.7 + u; l;
( ) 0312})—-1 215p1.< §p1<z z05p0<z1 ¢p0p1 P Por po
i=y+1(mod 2) Cy(x) Py
¢P1 Pr(u l prr \/JC,.)
21=pr e <P1
Cy(x
+ 2 Doy pl(u Ly Vxg, ¥Vxi).
1Sisr 2y <pi< <P1<
i=y (mod 2) Cy(x)

From (2.5) and we see easily
(3.8) AP(x; L2, )STP(x; L x, 25 7).
Also, if we put

;5 2;7)
(3.9)

e _1 y+1 A( k l z)
( ) OSET—]_ z1<pl<2<p1<2 1)1 pl pl pi » %0
i=y+1 (mod 2) Cy(x)

obviously from (2.4) we have, for both v=1 and 2,

(3.10) AP(x; Lz, r)=U(x; 1 x, 25 7).

Therefore, if we put, for v=1, 2,

(3.11) Bu;l;x,z;r)=¥w; L x, 2, r)H(=10¥(u; 1y x, 25 7),

we get from Lemma 2.2 and from (3.8), ((3.10),
LEMMA 3.1. If 7 is even,

Alx; Ry 1; 2)S By(x; 15 x, 25 7).
Also if v is odd,
Alx; k1 2)ZBy(x; 1 x,2;5 7).

§4. Application of analytic method.

Our next problem is the asymptotical estimation of By(u;[; x, z;r). For
this sake we introduce
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(41) Biu; i zin)={ Bw;l;x2;r)- %
1

which, we shall see later, has an analytic representation. From we have
(4.2) Biu; ;2 2;r)=TPu; 1 x, 25 )+ TP U x, 25 1),
where, as is easily seen,

TO(u;l;x,2;7)
4.3)

=(=1" 3 ) > tog(—5 )
0SiZr—1 z;Sp;<<p;<z n=lpTp; (mod k) npl < b
i=y+1 (mod 2) Cy(x) @, Pplzp)=1
nEU/PyPy

and T®(u;l; x, z;7) is defined to be the sum which is obtained by replacing
&py2,(u; 15 1, ma)'s in the expression by

(4.4) QZpl...pi(u; lr 771! 772)

= 2 2 _u
n:—l}j?’%(mod k)( d% d(m’ 72)) log( npy - by ) ’
nsu/pyPy d\Pp(nyd

Now, let a>1, then we have

E log( npl « Dq )

n={p;—p; (mod k)
O, Pp(zgN=1
nsu/py--py

(4.5)
1

= ) oD 1P f”zzf L(s,X)pgo(l X(zb))(p1 - 32,

which is nothing other than the application of the Eratosthenes-Legendre sieve.
Also we have

¢P1 P;( 1 s M1y 772)

(4.6)
S d
(k) L Uiy b0 2mj. L(s, DH(s, X5 75, ﬁz)(ﬁ S
where
7 HG i 79=,, 2, KT 6D Aaln Je el T
Here it should be remarked that we can write
(4.8) H(s, X; s M 772)‘ E c(i" Pd(771, N2)

ds”z

where
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0401, D2)= = [d 2dl(771, 772)’2d2<771y 72),
d,,lplk(m)
v=1,2

and that by
<
(4.9) lpa(n1, 72)] =a=[§{d2]1 =74(d).

Hence, collecting [(3.7), (4.5) and (4.6), we find
Buu;l;x2;7)

(4.10) .
_ 7 . R
= miglh) (n%)d k)x(l)j(a)L(s, DOM(s, X;x,2;7) 3 ds
where
MJ(s, X; x,2;7)
— (1 KPPy qp X(P>
—( 1) Oéé'r-l zlépi§<i:o1<z (plpl) pSzo )
i=v+1 (mod 2) Cqi(x)
1\ X<p0p1 p) ( / )
+( 1) 0<zszr—1 zlspl<2<p1<z zo<§<z1 (pop1 pi)’ > x Po b
i=y+1 (mod 2) Ci(x Py
(4.11)
-1 % 3 Ml s oz, V)
osisr—1 2 5p;<<p<2 (pa pz)
i=y (mod 2) Cy(®)

1\ X(pl . pr) ‘
+H=h 21§Pr§<p1<z (py - Dy )S H(s, X ; pr, \/36—,-—)

Ci(x)
RS> »  Mbb) g ox v, V).
121sr 212 <p<e (pl pz)
i=y (mod 2) 02(1‘)

This complicated expression can be simplified as follows:
LEMMA 4.1. We have

M(s,X;x,z;7)= § X(m) Q¥ (m; x, z),

where
| O (m ; x, z)| = 47,(m),
and under the condition

(4.12) z00< 23
we have

M< —§:(1og 4y 4,

PrOOF. From and (4.11) we see

31
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OY(m; x, z)=(=1p*" 3 > p@)
0si<r-1 m=vpy-p;
i=y+1 (mod 2) z;5p;<<p;<2
1(x)
vl Pplzg)
X
+H-1 3 % oo a2 )
0<isr—1 m=vpopy--Pg b
i=p+1 (mod 2) z1=p;<-<P<z
C1(x
20=pg<z,pptk
VEX/Pg
+(=1* = 2 oz, V)
0sisr—1 m=op;--p;
i=y (mod 2) 2;=p;<+<p ;<2
01(1‘)
LEY7)

"’F('—"l)” 2 , Pv(p'ry '\/E)

m=vpy-p
21 S2pr<p1<2
1)
VSTyp
+(=1 S oV, VE):
1537 m=vp;-P;
i=y (mod 2) z;=p;<<0;<2
Cy(x)
LES 2

In the first double sum m is restricted by
Mm=zgp; -+ pi,

since obviously v=z{° and on the other hand we have by the condition C,(x)

o E (log Ay Az p
i les iz pizat.

So we have

m< iﬁ; o (log 4)™4.
In other sums it is easy to see that by the conditions C,(x) or Cy(x) readily
we have

m< j-k— (log 4)4.
This proves the assertion of the lemma on the size of M. Now, by we
get

[O¥(m; x, 2)|< 3 > o1
0=i=sr—1 m=vp Py
PPy

S D X OO RS SR S O)

0SiSr—1 M=vPyP Py S1Er—1 m=vp;-p;

P<pi<<Py P<<Py
+ I )+ X > (v)
m=vpq---Pr 1sisr M=vpy-P;

Py <Py PPy



Almost-primes in arithmetic progressions : 373

§4 2 Z TS(”)!

1=isr vim
o)
which proves the lemma.
Now, returning to the formula (4.10) we change the line of integration
from Re(s)=a to Re(s)=1/2. This is permissible by the well-known estimate

of L(—zl—-l—it, X) and by the boundedness of M.,(s, X; x, z; ) with respect to s
which follows from [Lemma 4.1. And we get

Bu;l;x2; 1) == ML, %o; %, 2; 7)
bl S WL DM, 1 5, 25 1) ds
2”1§D(k) 2 (mod &) ('2‘) ’ Wy Ly Ay £y 2

So it follows
é |By(u; s x,2;7)— —M»(l Xo; x, 25 7)|2
i=1
QD=

2

j L L(s, OM(s, 25 x, 25 7)—-ds
(3) S

_ 1
= Tp(R) 4 e

(2+ti X, Z;r

< (k) j_:{ (mod &)

Here we have

(mod k)

(4.13)

L(4- L tit, x)’ R +1) log®(k([£]+1)),

X (mod k)

(see [2]). Also we have from

Mg+

» K (s gwim, ; x, 2)09(m, ; x, 2)|

(mod k) [m=M2 1+” m=m,m
X m2 1m2

X (mod k)

KEHMY) B oo | S 0(m; 5 2)0P(my; x, 2)1°

m m:mlmz

<(e+M?Y) 3 L (zy(m)),

m=mM2

I)/\

which is on the condition

< k(1+(-5) (log 4)*4) (log x)*.
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Hence we get, on [4.12),

3
by
=1

(k,0D=1

~ 2
B»(u; l; X, %5 r)—%Mv(ly XO; X, 2, 7’)

(4.14)
< u(1+% (log A)—A)(log Xy,

Now, since B,(u;[; x, z; r) is a non-decreasing function of ¥, we have for any
J, 0<0<1,

713—[;_53”(”; ;% z; 7)%"§B.;(x; I;x,2;7)

zed
é%fz B,(u;l; x,Z;r)—d,—f—.
Thus we have from (4.14)
LEMMA 4.2. Uniformly for any integer r=1, for each v=1, 2 and for any
030<0<1, we have on the condition (4.12)

k

2 ‘Bv(u' l’ X, Z; r)__lkt‘ Mv(]-’ xO: X, 25 7')
(k.tl:)1=1

2

U

O M3(L Xo; %, 25 7) 437" u(1+—(log 4)* )(log ).

§5. Main term.

Le a 4.2 suggests that the main term of By(u;!l;x, z;7r) is

—Z- (1, Xo; x, z; ) and that this quantity bounds A(x; &, [; z) from below and

above according to r=y (mod 2) vy=1 and 2, respectively. So it is required to
calculate M,(1, X,; x, z; 7), and here the functions F and f, which are intro-
duced in the introduction, play the important role.

We put as in
F(u) if v=0 (mod?2),

Ffw) if v=1 (mod?2).
Also we remark the well-known fact that
(5.1) Fu)=1+0(e™), flu)=1+0(e™), u=1l.

We have
LEMMA 5.1. Let

[\
A
KA
IIA
N
IA
e
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Then for any integer r=1, and for both v=1 and 2, we have

Fk(Z)gp( log 1, >: ogiZ;r—l(*l)i ) Fk(Zl)i vﬂ( log x; )

log z 215p;Em<pi<z D1 o log z,
LX)

_1\7 Fk(pr) IOg Xr
+( 1) zlgpr<2<p1<z b b Buir log pr>

¢
1y Fk(j)'l.) log x;
+1§1.2§r( D zlépé%?fpl@ Dy s gvH( log p: )
2 X

log®z log log 3%
+0(I'u(2) og'z, ).

PROOF. This can be shown as Theorem 4 of [1]
Now, from (4.11) we see that, apart from the first double sum, M,(1, X,; x,
z;7) is the sum of H(1, X,; 7y, 7.)’s. By we have

H(, X,; N1 772) = Y?(’?n 7]2) .

Thus from [(3.3), (3.4}, (4.11) and we get, after some elementary considera-
tions,

(_1)1: v(lr Xo; X, Z; 7’)
=— ¥ 5 Fded g (81N o)

0siSr—1  zy=pir<py<z D1 Ds log 2,
i=vy+1 (mod 2) C1(x)

Typ) , (logx, %
+ oéig—l zlgpi§<pl<z 20§%3<21P0P1 pkgv+1.( log z, >{1+O(8 To% B )}
t=y+1 (mod 2) Cq(x) Ptk
o I'(2,) 1 1
Tz g, (log30)y 4ot
05i5i-1  mspi<ocpy<s D1 D Eve log z, >{1+ (670 )}
i=v+1 (mod 2) C1(2)

Fk(j),.) log X _ log zp
asprl<pi<e Dy P 2\ Togp, ){1+O(e log pr )}
1 X

Vi I'(p:) log x; log log 3k
+ 3 (-1 z1<pz<2(w1<z o8 Jog b ){1+O( g 5. )}
Z‘t

where in the last sum we have used the fact that on C,(x)

g0 =o.

and also that by Mertens’ theorem
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gty Clog VE) =T p) (255 ) (1+0(LE 083 )

From this we deduce
LEMMA 5.2. If z=<x, and r=vy (mod 2), then we have

(——]-))J u(ly XO; X, Z; r)

< (~1PT@)g, (185 ) 1o(Iy(z) 108 Rologlog 3y L p (o oy,

log z log®z,
where
logx-
Era< x  x  Dda) g
0sisr~1 213p;< (<)101az pl i
+ E k(p'r) }22 ;: .

2 Py <P1<2 p1 p'r
C1(x)

ProOOF. Noticing that

I'i(z)— X
zOSpo\zl p
Dotk

—I'(po)y=1"z,),

we see that the first three sums of the right side of (5.2) can be combined
into

1y 1\ I'y(z) log x;
( 1) 0§§'r—1( 1) z1§p8<(2)<pl<z by Dy ot log z, )
1 .
[’ (Z ) log x;
0 k\%1 o8z ).
+ <0§i§r—1 zl§pi<-2--<p1<z P1 pt ¢ e )

PXES)

If r=v (mod2), the fourth sum of (5.2) can be written as

I (pr) log x.
— T+y x , ,
( 1) zl§p1é<(2§pl<z pl pT gu-}-r log pr )
1 x
I (p ) _ log zy
o LRIr) peens
+ (21§Pz<§§pl<z pl ~o P, € logp >_
1 x

So by we get, on the condition of the present lemma,

(_—1)va(1’ XO) X, 25 T)

S (- TuDe (%) +Ex 2)

1 7 loglog 3k
+O(1§zi:§r z1§pi<;<p1<z b bi \ log 2 ) )
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And this O-term is

< log log 3k Z) 1/ > i)
2, =2p<2

log z, S\ S p
(log log 3k)?
< (log z1)° log z,

which proves the lemma.

§6. Proof of Theorem 1.
Now, in the above considerations we set

k=< x(log x)™4, d=x,
and also we write

(6.1) X= j;; (log x)™4 (=1, also).

377

If /X <z=<X, then, since we have (1.1), the result of the theorem has already
been essentially proved in our previous paper [3] Thus in what follows we

may assume that

z2< VX .
And as in we set

z() - O(l) ’
z;=exp ((log X )_1%) ,
(6.2)

_ (log X))o X)“’ ( ) _3(log X)W X)lO
“Sloglog3X = “4loglog3X °

(In particular the condition is satisfied). Then we have

_ logx, - e
logz, = T Tog log 3%, 1=0,1,2,--,7r—1

(see pp. 231-232 of [I]), from which it follows that, since x;>z,

Luz) o

€ logz;

0Sisr—1 215P1< <p <2z pl pl
Ci(x)

Fk(21> < L
< (log z,)? 2% i! \zlg%"a P>

log z
£ (Tog 2,)° log log 3% .
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Also we have as in p. 233 of [1]

log
Fk(pr) e logpr <1 (z)e” logz o,
215 pp 1<z by
Cl(x)

where
0=-£-(1+0((log log 3t)/(log X)*)),
and so by (6.2)
67 =0((log X)" %) .
Thus, noticing that by (1.1)

log -
g"< ll?)gg)z( ) g“( log,\ék >+O< loglolgix )’

we have from
LEMMA 6.1. On the assumption (6.2)

log _* .
(=1M.(1, %5 x, 25 1) =( —D”Fk(z){g,,(wl%%ﬁo«log x)"“‘)} ,

if 7=y (mod?2).
A
On the other hand, putting u=x, 6=(log x) 2 "*° in we get

k
B |Buws 1 5 25 =ML L 3,250 < Clog 7 H
D=1

Hence, applying the familiar assertion of éebyéev’s inequality to the above

result, we see that follows immediately from and

§7. Proof of Theorem 2.

Now for W¢(x; k, [; z, w) which has been defined in the introduction we

have
Wex; b, 1z, w)=Alx; by 1 2)— 2 > 1
z<q<w n=l (mod k)

gtk n=0 (mod ¢2)
n=rx

o 3 (A ;)

=Alx;k, 1; 2)—=S(x; 1; 2, w)—{Q(x; I; z, w), say.

First we treat S(x;l; z, w), but we shall be brief. We have

(7.1)
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xIe
Stes 1z w)s [ 7S(y; 1 2, w92
1 y

-1 %((1) (xe)s
=05 x(gﬂ)x(»{ Lis, 1 = }

z<q
From this we get as in the proof of
% (St 1z wraa(E)
E\ z

(k l) 1

T, (Iog x> j‘( ){x (mod k)

where we have used Let a(n)=1if n is the square of a prime ¢, z=¢g¢<w,
and a(n)=0 otherwise. And let b(n)= ¥ a(n)a(n,). Then we have

n=njngy

OPRACH,

2
z<q\w q

Yhlds

ER

X(q*)

28
esgew 4

% (mod k)

¥ (mod &)

x( .
_ﬁ’sl)—b(n)' ,

z4§n< 4

which, by the familiar way of dividing the range of n, is

< (log w)2 max JR+U) X by , (Re(s):%),

Usn<2U n

L (logw)*y—4+w }
So we get

2 {S(x;1; 2, w)}2<<x(logx)"{— \/k}

(k l) 1

from which it follows immediately
LEmmaA 7.1. If

E<x(log )4, w< N3 (log x)™4,

then we have
S(x; 1 2, w)<< ~_ (log x)°

save for at most k(log x)**~4 reduced residue classes [ mod k.

Next, we have to study the average behaviour of Q(x;[; z, w). We first
note that

.. _loggqg Xy s,
(7.2) Qu;izws X (1-8L)A( ik 1g; 2)
< (£)2

ark
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+.3, 0—08)ACT sk i (),

(X )z
q}:k

where X is defined by We set 4=x and let z(q) stand for the triple
(20(q>1 zl(q)1 Z(Q))y Where

z,(q): a sufficiently large constant,
(7.3) z,(q) =exp ((log X/q)™),

z(g)=z.

Further the even integer 7(q) is to satisfy

X \& X
(7.4) (s 7>;0( =(3) "= (o )" );
3log log 37 4 log log 3—

With these conventions we put

Rlu;l;x zw)= ZSKW (l—ﬁq—ﬁ?z(—z— ;1 ; —qx—, z(q); r(q))

log w
z<( z)2
(7.5)
NS X CHAC S ACIIE
zz( %
q*k

Then we see, from and from [(3.6),
(7.6) Qx; 1z, w)SR(x; 1; x, 2, w).

Now, let

Ru:l;zx z w):f1
then we have from (4.6), (4.10) and (7.5)
Ru;l;x 2z, w)
2 IOf L6 NG, 25 5,2, w)-gds

—_ 1
- 27Z'Z§D(k) ¥ (mod k)

where
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N(s, X; x, z, w)

= 3 (M (s 15, 2(0); @) AL
s

+.3, (iog)iG 1 (g )h (D
zg( Q )2
From LemmaT4.1 and from we have

where
Am; zzw)= 3 (1-25L05,(v; X 2(0))

v log w
S g

(X9

Q*k

I Eaean)
(5
and so
Alm; x, z, w) L T4(m),

since the condition is satisfied because of Hence as in the proof
of we obtain, for any 8, 0<d<1,

i ‘R(u; l; X, Z, w)_%jv(ly Xo; ) <y

[=1
(k, =1

.7) ,
«OHN(L, Xy x, 2, w)+3u(1+--(log 2)*)(log 2)°.

Next we have to calculate N(1, X,; x, z, w). By our present assumptions [(7.3),

and from Lemma 6.1, we get
N(li XO; x; Zi w)

X
log
=3, (- REh) ol (og ) +0(roe-) )]
(X
uk
1 1 log log 3%
B O oo o )

lHk
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=) F((1—1))(1-29) 20T 2)log 27 ),

where

log —r log A
LAY/ AP/
logw ’ logz

Thus in particular we have from (7.7)

k ) 2
2 R<x: l.- X, 2, W)"'_Z—N(]., XO; X, 2, w)

=1
(k,1)=1

4 130

2 p—
<<—x]7(log x) 2,
which means that, since [7.6),
Q(x; l; 2z, w)

= T POO—1)() 4 0tog 07}

_A4
save for at most k(log x) 2 "% reduced residue classes /mod k. Hence from

Theorem 1, Cemma 7.1 and the above result, the assertion of fol-
lows immediately.

CONCLUDING REMARK: If we assume the so-called X-analogue of the
Lindel6f hypothesis

") L(-5+it, X) < k(1] +1)7,

where D is a positive constant, then the above procedure combined with higher
Riesz mean would give results similar to [[heorem 1| and [Theorem 2| but dif-
ferent in that the factor x/+/% is replaced by x. So from (*) it follows that
there is a P, such that

P,<k*, P,=I (modF#)

for almost all [, (k, [)=1, where ¢’—0 as ¢—0.

Added in proof: Professors Halberstam and Richert kindly suggested the
present author at Oberwolfachmeeting of Analytic Number Theory (Nov. 1975)
that the argument of the present paper might give a result concerning the
least square-free integer in an arithmetic progression. So we add the follow-
ing result:

There is a Py such that
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Py=1(modk), p(P)=0, P,<hk*,
for almost all [, (k,1)=1.

This can be proved along the reasoning of W. Fluch (Monatsch. f. Math., 72
(1968), 427-430).

(1]
[2]

(3]
[4]

[5]
L6]
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