Tightness of compact Hausdorff spaces and normality of product spaces

By Tsugunori NOGURA

(Received May 10, 1975)

Let X be a topological space. The *tightness* of X, denoted by t(X), is less than or equal to the cardinal number τ if $M \subset X$ and $x \in Cl(M)$ imply the existence of $N \subset M$ such that the cardinality of N is $\leq \tau$ and $x \in Cl(N)$. This important notion was introduced by A.V. Arhangel'skii [1] and has been investigated by many mathematicians. Arhangel'skii also gave a characterization of the tightness of compact spaces (see Lemma 4 below). In this paper we give another characterization. We show that the tightness of a compact space X is characterized by the normality of the product space of X with a space of ordinal numbers.

The author thanks to Professor K. Nagami for his valuable suggestions.

§1. Preliminaries.

The symbol τ denotes an infinite cardinal number and τ^+ denotes the smallest cardinal number greater than τ . Ordinal numbers are denoted by α , β and γ . The initial ordinal number of τ is denoted by $\omega(\tau)$. Let X be a topological space. Then the set $\{x_{\alpha}: x_{\alpha} \in X \text{ and } \alpha < \omega(\tau)\}$ is called a free sequence in X of length τ if $Cl(\{x_{\alpha}: \alpha < \beta\}) \cap Cl(\{x_{\alpha}: \alpha \geq \beta\}) = \emptyset$ for any $\beta < \omega(\tau)$. A space is called strongly τ -compact if the closure of any subset of cardinality $\leq \tau$ is compact ([4], p. 762).

In the arguments below, all spaces are assumed to be completely regular and T_1 .

LEMMA 1 ([3], Theorem 4). Let X be a compact space and Y be a pseudocompact space. Then $X \times Y$ is pseudo-compact.

LEMMA 2 ([3], Theorem 1). Let $X \times Y$ be pseudo-compact. Then $\beta(X \times Y) = \beta X \times \beta Y$, where βX is the Stone-Čech compactification of X.

LEMMA 3. Let M and N be disjoint closed sets in a normal space X. Then $Cl_{\beta X}(M) \cap Cl_{\beta X}(N) = \emptyset$.

LEMMA 4 ([2], Theorem 1). For any infinite compact space X, $t(X) = \sup \{\tau : there exists a free sequence in X of length <math>\tau \}$.

LEMMA 5 ([5], Theorem 1.4). Let X be a paracompact space with $t(X) \leq \tau$

and Y be a normal strongly τ -compact space. Then $X \times Y$ is collectionwise normal.

§2. Theorem.

THEOREM. Let X be an infinite compact space. Then the following conditions are equivalent.

(1) $t(X) \leq \tau$.

(2) $X \times Y$ is normal for any normal strongly τ -compact space Y.

(3) $X \times [0, \omega(\tau^+))$ is normal.

PROOF. (1) \rightarrow (2). This case is a direct corollary of Lemma 5.

(2) \rightarrow (3) Since $[0, \omega(\tau^+))$ is normal and strongly τ -compact, this case is clearly proved.

(3) \rightarrow (1). We assume $t(X) \geq \tau^+$. Put $Z = X \times [0, \omega(\tau^+))$. Since $[0, \omega(\tau^+))$ is pseudo-compact, then by Lemmas 1 and 2, $\beta Z = X \times [0, \omega(\tau^+)]$. The inequality $t(X) \geq \tau^+$ implies the existence of a free sequence in X of length τ^+ (Lemma 4). Let $F = \{x_\alpha : \alpha < \omega(\tau^+)\}$ be such a free sequence. Put $F_\beta = \{x_\alpha : \alpha > \beta\}$. Then $\cap \{Cl(F_\beta) : \beta < \omega(\tau^+)\} \neq \emptyset$ since X is compact. Let $p \in \cap \{Cl(F_\beta) : \beta < \omega(\tau^+)\}$. Put

$$M = Cl_{Z}(\{(x_{\alpha}, \alpha) : \alpha < \omega(\tau^{+})\}),$$
$$N = \{(p, \alpha) : \alpha < \omega(\tau^{+})\}.$$

Then M and N are closed sets in Z.

We show $M \cap N = \emptyset$. If $(p, \alpha) \in M \cap N$, then $(p, \alpha) \in Cl_Z(\{(x_\beta, \beta) : \beta \leq \alpha\})$ or $(p, \alpha) \in Cl_Z(\{(x_\beta, \beta) : \beta > \alpha\})$. If $(p, \alpha) \in Cl_Z(\{(x_\beta, \beta) : \beta \leq \alpha\})$, then $p \in Cl_X(\{x_\beta : \beta \leq \alpha\})$. But by definition of $p, p \in Cl_X(\{x_\beta : \beta \geq \alpha + 1\})$. This contradicts the definition of the free sequence. The second case is impossible since $X \times [0, \alpha]$ is an open neighborhood of (p, α) which does not intersect $\{(x_\beta, \beta) : \beta > \alpha\}$.

Next we show $(p, \omega(\tau^+)) \in Cl_{\beta Z}(M) \cap Cl_{\beta Z}(N)$. Let $U \times (\alpha, \omega(\tau^+)]$ be an arbitrary neighborhood of $(p, \omega(\tau^+))$. Then $U \cap \{x_\beta : \beta > \alpha\} \neq \emptyset$. Therefore there exists $\gamma > \alpha$ such that $x_r \in U$. This shows that $(x_r, \gamma) \in U \times (\alpha, \omega(\tau^+)]$. Thus $M \cap (U \times (\alpha, \omega(\tau^+)) \neq \emptyset$. On the other hand, $(p, \gamma) \in N \cap (U \times (\alpha, \omega(\tau^+)))$. Thus we obtain $(p, \omega(\tau^+)) \in Cl_{\beta Z}(M) \cap Cl_{\beta Z}(N)$. By Lemma 3, those are impossible since $X \times [0, \omega(\tau^+))$ is normal. The proof is finished.

The author does not know whether the implication $(3) \rightarrow (1)$ in this theorem is still true for the cases when X is merely paracompact.

References

[1] A. V. Arhangel'skii, On the cardinality of bicompacta satisfying the first axiom of countability, Dokl. Acad. Nauk SSSR, 187 (1964), 967-970 (Russian). English

Transl.: Soviet Math. Dokl., 12 (1969), 951-955.

- [2] A.V. Arhangel'skii, On bicompacta hereditarily satisfying Suslin condition. Tightness and free sequence, Dokl. Acad. Nauk SSSR, 199 (1971), 1227-1230 (Russian). English Transl.: Soviet Math. Dokl., 12 (1971), 1253-1256.
- [3] I. Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc., 90 (1959), 369-382.
- [4] J. Keesling, Normality and properties related to compactness in hyperspaces, Proc. Amer. Math. Soc., 24 (1970), 760-766.
- [5] A. P. Kombarov, On the product of normal spaces. Uniformities on Σ-products, Dokl. Akad. Nauk SSSR, 205 (1972), 1033-1035 (Russian). English Transl.: Soviet Math. Dokl., 13 (1972), 1068-1071.

Tsugunori NOGURA Department of Mathematics Ehime University Bunkyo-cho, Matsuyama Japan