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Introduction.

In this paper, we shall determine the homotopy spheres that admit free
actions of the finite cyclic group $Z_{m}$ where $m$ is an integer. In the case of
free involutions, namely when $m=2$ , Lopez de Medrano gave an answer in [6]

using the results of Browder [2] on Kervaire invariants. Also, Orlik [9]

showed that every homotopy sphere that bounds a parallelizable manifold
admits a free $Z_{p^{r}}$-action where $p$ is an odd prime by constructing explicit
examples on Brieskorn spheres.

If one tries to follow the line of Lopez de Medrano when $m$ is an arbitrary
integer, one faces with the difficulty when $m\equiv 0(mod 4)$ . So we shall adopt
the philosophy of Brumfiel [3]. In this process, we must construct a surgery
theory on manifolds with singularity which are called $\tilde{Z}_{m}$-manifolds in this
paper (\S \S 4, 5). We shall give a brief view of our program:

\S 1: We state our main result (Theorem 6.1) together with notations
which will be frequently used in this paper.

\S 2: We construct a free $Z_{m}$-action on a Brieskorn sphere of dimension
$=4k+1$ . This example plays an important r\^ole in later sections.

\S 3: We discuss the surgery theory on odd-dimensional manifolds with
$\pi_{1}=Z_{m}$ improving the result of Wall [13] $14E.4$ .

\S 4: The definition and elementary properties of $\tilde{Z}_{m}$-manifolds are stated.
\S 5: The results of \S 3 and \S 4 are combined to yield the surgery theory

for ”simply connected” $\tilde{Z}_{m}$-manifolds.
\S 6: The results of \S 3 and \S 5 are applied to give a proof of our main

theorem.
I would like to thank Professors A. Hattori and Y. Matsumoto for valuable

criticism and advices.

\S 1. Statement of the main theorem.

We have a linear $Z_{m}$-action on $S^{2n+1}\subset C^{n+1}$ where the action is given by
$(z_{0}, z_{1}, \cdots , z_{n})\mapsto(\alpha z_{0}, \alpha^{p_{1}}z_{1}, \cdots , \alpha^{p_{n}}z_{n})$ with $\alpha=\exp(2\pi i/m)$ and $(p_{j}, m)=1$ . The
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quotient space of $S^{2n+1}$ under this action is the lens space denoted by
$L^{2n+1}(m;p_{1}, \cdots , p_{n})$ . It is well known that two lens spaces $L^{2n+1}(m;p_{1}, \cdots , p_{n})$

and $L^{2n+1}(m;q_{1}, \cdots , q_{n})$ are homotopy equivalent preserving the natural orienta-
tions if $p_{1}\cdots p_{n}\equiv q_{1}\cdots q_{n}(mod m)$ . Also it is known that for any free $Z_{m^{-}}$

action on a homotopy sphere $\Sigma^{2n+1}$ , the quotient space is homotopy equivalent
to $L^{2n+1}(m;p_{1}, \cdots , p_{n})$ for some appropriate choice of $p_{1},$ $\cdots$ , $p_{n}$ . Hence $\Sigma^{2n+1}/Z_{m}$

is homotopy equivalent to $L_{q}^{2n+1}=L^{2n+1}(m;q, 1, \cdots , 1)$ for some $q$ . In this case,
we shall call this action a free $Z_{m}$-action of type $q$ . Our main result is

MAIN THEOREM. A homotopy sphere $\Sigma^{2n+1}$ admits a free $Z_{m}$-action of type
$q$ if and only if its normal invariant $\eta(\Sigma)$ belongs to the subgroup $\pi_{q}^{*}([L_{q}^{2n+1}, G/O])$

of $\pi_{2n+1}(G/O)$ where $\pi_{q}^{*}$ is the natural map induced by the projection $\pi_{q}$ ; $S^{2n+1}$

$\rightarrow L_{q}^{2n+1}$ and $n\geqq 3$ .
We shall fix some notations which will be frequently used in this paper.

We have a standard CW-decomposition of the lens space $L^{2n+1}(m;p_{1}, \cdots , p_{n})$

with cells $e^{0},$ $e^{1},$ $\cdots$ , $e^{2n+1}$ where

$e^{2r}=$ { $[z_{0},$ $\cdots$ , $z_{r},$ $0,$ $\cdots$ , $0]|z_{r}\neq 0$ and arg $(z_{r})=0$ }
and

$e^{2r+1}=$ { $[z_{0},$ $\cdots$ , $z_{\gamma},$ $0,$ $\cdots$ , $0]|z_{r}\neq 0$ and $0<\arg(z_{r})<2\pi/m$}.

Let $L^{2n}(m;P_{1}, \cdots p_{n-1})$ be the mapping cone of the natural projection $ S^{2n-1}\rightarrow$

$L^{2n- 1}(m;P_{1}, \cdots , p_{n-1})$ . Then $L^{2n}(m;p_{1}, \cdots , p_{n-1})$ is homeomorphic to the 2n-
skeleton of $L^{2n+1}$ $(m;p_{1}, \cdots , p_{n- 1}, p_{n})$ under the standard CW-decomposition
above. The following notations are used when there is no fear of confusion:

$L_{q}^{2n+1}=L^{2n+1}(m;q, 1, ’ 1)$ ,

$\hat{L}_{Q}^{2n}=\hat{L}^{2n}(m;q, 1, \cdots 1)$ ,

$L^{2n+1}=L^{2n+1}(m;p_{1}, p_{n})$

and
$L^{2n}=L^{2n}(m;p_{1}, p_{n- 1})$ .

\S 2. Free $Z_{m}$-actions on Brieskorn spheres.

Let $f(z_{0}, z_{1}, \cdots , z_{2k+1})=z_{0}^{s}+z_{1}^{2}+\cdots+z_{2k+1}^{2}$ be a complex valued function on
$C^{2k+2}$ with $s\equiv\pm 3(mod 8)$ and $(s, m)=1$ . The existence of such an integer $s$

is assured by the existence of infinitely many primes which are of the form
$8j\pm 3$ . Then it is well known that the manifold $\Sigma_{s^{k+1}}4=f^{-1}(0)\cap S^{4k+3}$ is a homo-
topy sphere bounding a parallelizable manifold and that $\Sigma_{s}4k+1$ is not diffeo-
morphic to the standard sphere in dimensions where ”Kervaire invariant con-
jecture” holds. We define a $Z_{m}$-action on $C^{2k+2}$ by

$(z_{0}, z_{1}, \cdot.. z_{2k+1})-(\alpha^{2t}z_{0}, \alpha z_{1}, \cdot.. \alpha z_{2k+1})$
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where $\alpha=\exp(2\pi i/m)$ and $st\equiv 1(mod m)$ . Clearly, this $Z_{m}$-action keeps $S^{4k+3}$

invariant. It also keeps $f^{-1}(0)$ invariant since $f(\alpha^{2t}z_{0}, \alpha z_{1}, \cdots , \alpha z_{2k+1})=$

$\alpha^{2}f(z_{0}, z_{1}, \cdots , z_{2k+1})$ holds. Hence this action induces a $Z_{m}$-action $T_{s}$ on $\Sigma_{s}4k+1$

We can easily verify that the $Z_{m}$-action $(\Sigma_{s}4k+1T_{s})$ is free.
Now let $\varphi_{1}$ ; $\Sigma_{s}4k+1/T_{s}\rightarrow L_{1}^{4k+1}$ and $\varphi_{2}$ : $L_{1}^{4k+1}\rightarrow L_{t}^{4k+1}$ be defined by

$\varphi_{1}([Z_{0}, Z_{1}, z_{2k+1}])=[z_{1}/c_{1}, z_{2k+1}/c_{1}]$

$\varphi_{2}([u_{0}, u_{1}, u_{2k}])=[u_{0}/c_{2}, u_{1}^{t}/c_{2}, u_{2}/c_{2}, u_{2k}/c_{2}]$

where $c_{1}=(\sum_{j=1}^{2k+1}|z_{j}|^{2})^{1/2}$ and $c_{2}=(|u_{0}|^{2}+|u_{1}|^{2t}+\sum_{j=2}^{2k}|u_{j}|^{2})^{1/2}$ . Then $\varphi_{1}$ (resp. $\varphi_{2}$) is

an s-fold (resp. t-fold) ramified covering map and we have deg $(\varphi_{2}\varphi_{1})\equiv 1(mod m)$ .
Therefore by the theorem of Olum [8] the quotient manifold $\Sigma_{s}4k+1/T_{s}$ is homo-
topy equivalent to $L_{t}^{4k+1}$ since both $\varphi_{1}$ and $\varphi_{2}$ induce isomorphisms of funda-
mental groups. Thus we obtain the following

PROPOSITION 2.1. The quotient space of the free $Z_{m}$-action $(\Sigma_{s}4k+1T_{s})$ is
homoiopopy equivalent to $L^{4k+1}(m;P_{1}, \cdots , p_{2k})$ with $sP_{1}\cdots P_{2k}\equiv 1(mod m)$ .

PROPOSITION 2.2. Every homotopy $(4k+1)$ -sphere that bounds a paralleliza-
ble manifold admits a free $Z_{m}$ -action for any integer $m$ .

Proposition 2.2 is an affirmative answer to the conjecture of Orlik [9] in
dimensions $4k+1$ .

When $m$ is even, by restricting this action to the subgroup $Z_{2}\subset Z_{m}$ , one
obtains the so-called Brieskorn-Hirzebruch involution $(\Sigma_{s}4k+1T_{s}|Z_{2})$ (see [6]

V.4).

LEMMA 2.3. When $m$ is even, $(\Sigma_{s}4k+1T_{s})$ does not admit codimension 2
characteristic spheres.

PROOF. In dimension$=4k+1$ , the obstruction to the existence of codim $=2$

$Z_{2}$-characteristic spheres, Browder-Livesay invariant and abstract codim $=1$

and 2 surgery obstructions are all equal ([6]). These obstructions do not
vanish for $(\Sigma_{s}4k+1 , T_{s}|Z_{2})$ ([2], [5]).

\S 3. Surgery on odd-dimensional manifolds with $\pi_{1}=Z_{m}$ .
In this section we shall discuss the surgery obstructions for odd dimen-

sional manifolds with $\pi_{1}=Z_{m}$ . Surgery theories for $\pi_{1}=\{1\},$ $Z_{2}$ and $Z$ are
assumed to be known. The main reference here is Wall’s book [13]. First
we quote two lemmas due to Wall [18].

LEMMA 3.1 (Wall). The transfer homomorphism $\tau;L_{0}^{\epsilon}(Z_{m})\rightarrow L_{0}(1)(\epsilon=h, s)$

is surjective.
LEMMA 3.2 (Wall). For $\epsilon=h,$ $s$ ,

i)
$L_{2n- 1}(Z)\rightarrow^{\alpha}L_{2n- 1}^{\epsilon}(Z_{m})\rightarrow^{p}L_{n+1}^{\frac{e}{2}}(Z\rightarrow Z_{m})$ is zero.
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ii) $L_{2n-1}(Z)\rightarrow^{\alpha}L_{2n- 1}^{\epsilon}(Z_{m})$ is zero unless $n,$ $m$ are even.
In the above, $\alpha$ is induced by the natural epimorphism $Z\rightarrow Z_{m}$ . The map

$p$ is characterized as follows: Let $f:M^{2n- 1}\rightarrow X^{2n- 1}$ be a normal map with
$\pi_{1}(X)\cong Z_{m}$ and surgery obstruction $x=\theta(f)\in L_{2n-1}^{\vee}(Z_{m})$ . Denote by $\tilde{X}\rightarrow X$ the
universal covering of $X$. It induces an m-fold covering $\tilde{M}\rightarrow M$ and a map
$f;\tilde{M}\rightarrow\tilde{X}$ covering $f$. Then we have a well-defined normal map

$\overline{f}=f\times z_{m}id:\tilde{M}\times z_{m}D^{2}\rightarrow\tilde{x}\times z_{m}D^{2}$ .

We have $p(x)=\theta(\overline{f})$ in $L_{2n+1}^{e}(Z\rightarrow Z_{m})$ .
The surgery obstructions define a homomorphism

$\theta:\Omega_{n}(K(Z_{m}, 1)\times G/O)\rightarrow L_{n}^{\epsilon}(Z_{m})$

as stated in [13] $13B3$ .
LEMMA 3.3. The compOsitiOn of maPs

$\theta$ $p$

$p\theta:\Omega_{3}(K(Z_{m}, 1)\times G/O)\rightarrow L_{3}^{\epsilon}(Z_{m})\rightarrow L_{5}^{\epsilon}(Z\rightarrow Z_{m})$

is zero.
PROOF. The Conner-Floyd bordism spectral sequence [4] shows that the

Hurewicz map

$\mu:\Omega_{3}(K(Z_{m}, 1)\times G/O)\rightarrow H_{3}(K(Z_{m}, 1)\times G/O$ ; $Z$ )

is an isomorphism.
Case I. $m$ is odd:
$\Omega_{3}(K(Z_{m}, 1)\times G/O)$ is isomorphic to $Z_{m}$ generated by

$\varphi:L_{1}^{3}K(Z_{m}\underline{(\varphi_{1},\varphi_{2})}1)\times G/O$

where $\varphi_{1}$ : $L_{1}^{3}\rightarrow K(Z_{m}, 1)$ is the classifying map of the universal covering $S^{3}\rightarrow L_{1}^{3}$

and $\varphi_{2}$ : $L_{1}^{3}\rightarrow G/O$ is the trivial map. Then we have $\theta(\varphi)=0$ since $\theta(\varphi_{2})$ is
already zero.

Case II. $m$ is even:
The group $\Omega_{3}(K(Z_{m}, 1)\times G/O)\cong Z_{m}\oplus Z_{2}$ has two generators:

$\varphi:L_{1}^{3}\rightarrow K(Z_{m}, 1)\times G/O$

as above and
$j\times k$

$\psi:S^{1}\times S^{2}\rightarrow K(Z_{m}, 1)\times G/O$

where $[j]\in\pi_{1}(K(Z_{m}, 1))$ and $[k]\in\pi_{2}(G/O)$ are generators of respective groups.
We have $\theta(\varphi)=0$ as above. Denote by $\psi^{\prime}$ : $S^{1}\times S^{2}\rightarrow G/O$ the map
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$\psi$ proj
$S^{1}\times S^{2}\rightarrow K(Z_{m}, 1)\times G/0\rightarrow G/O$ .

Then we have $\theta(\psi)=(J)_{*}\theta(\psi^{\prime})$ where

$(J)_{*}:$ $L_{3}(Z)\rightarrow L_{3}^{\epsilon}(Z_{m})$

is equal to $\alpha$ . Therefore $\theta(\psi)=0$ holds by Lemma 3.2 (i).

LEMMA 3.4. For any normal map $\varphi:L^{5}(m;p_{1}, p_{2})\rightarrow G/O$ , its surgery obstruc-
tion $\theta(\varphi)$ in $L_{5}^{\epsilon}(Z_{m})$ vanishes $(\epsilon=h, s)$ .

PROOF. Let $N$ be a closed tubular neighborhood of $L^{3}=L^{3}(m;p_{1})$ in $L^{5}=$

$L^{5}(m;p_{1}, p_{2})$ and put $E=L^{5}$–int $N$. Then the surgery obstruction for $\varphi|N:N$

$\rightarrow G/O$ is given by $\theta(\varphi|N)=P\theta(\varphi|L^{3})$ in $L_{5}^{\epsilon}(Z\rightarrow Z_{m})$ . This is zero by Lemma
3.3. Now consider the normal map

$\overline{f}=f\circ p_{1}$ ; $L^{5}\times CP(2)-G/O$ .

Then $\theta(f|N\times CP(2))=0$ by the periodicity of surgery obstructions, and we
obtain an $\epsilon$ -equivalence $(\epsilon=h, s)$ at $N\times CP(2)$ . The remaining surgery obstruc-
tion lies in $L_{9}(\pi_{1}(E\times CP(2))=L_{9}(Z)$ which is mapped to $\theta(\overline{f})\in L_{9}^{\epsilon}(Z_{m})$ by the
natural map

$\alpha$ ; $L_{9}(Z)\rightarrow L_{9}^{e}(Z_{m})$

since surgery obstructions are natural for inclusions ([13], 3.2). We have
$\theta(\overline{f})=0$ by Lemma 3.2, and by periodicity again we see that $\theta(f)=0$ . This
completes the proof.

The argument above can be taken as the Prst step of the induction used
by Wall $([13], 14E4)$ to calculate the surgery obstructions for lens spaces.
Hence Wall’s theorem 14E4 holds for $\epsilon=s$ as well as $\epsilon=h$ . Instead of giving
a reproduction of his proof, we shall turn to the general situation with $\pi_{1}=Z_{\pi\iota}$

here.
LEMMA 3.5. The surgery obstntction map

$\theta:\Omega_{5}(K(Z_{m}, 1)\times G/O)\rightarrow L_{5}^{\epsilon}(Z_{m})$

is zero $(\epsilon=h, s)$ .
PROOF. Consider the Conner-Floyd spectral sequence for $\Omega_{*}(K(Z_{m}, 1)\times G/O)$

with $E_{p.q}^{2}=H_{p}(K(Z_{m}, 1)\times G/O;\Omega_{q})$ ([4]). Then $E_{5,0}^{2}$ is a torsion group since
$H_{5}(G/O;Z)$ is. Hence all differentials vanish on $E_{5.0}^{r}$ . Therefore, we have
$E_{5,0}^{2}=E_{5.0}^{\infty}$ , namely the Hurewicz map

$\mu$ : $\Omega_{6}(K(Z_{m}, 1)\times G/O)\rightarrow H_{5}(K(Z_{m}, 1)\times G/O$ ; $Z$)

is surjective. Put
$A_{i}=Image\{\Omega_{i}(K(Z_{m}, 1))\otimes\Omega_{5- i}(G/O)\rightarrow\Omega_{6}(K(Z_{m}, 1)\times G/O)\}$ .
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Then we can verify that $A_{0},$ $A_{1},$ $A_{3}$ and $A_{5}$ generate $\Omega_{6}(K(Z_{m}, 1)\times G/O)$ .
I. $\theta(A_{0})=0$ : An element of $A_{0}$ is represented by

$\varphi:M^{5}K(Z_{m}\underline{(\varphi_{1}}\underline{\varphi_{2})},1)\times G/O$

where $\varphi_{1}$ is the trivial map. We can therefore assume that $M^{5}$ is simply con-
nected. Then we have $\theta(\varphi)=(\varphi_{1})_{*}\theta(\varphi_{2})=0$ since $\theta(\varphi_{2})\in L_{5}(1)=0$ .

II. $\theta(A_{1})=0$ : Take a representative

$\varphi:S^{1}\times M^{4}K(Z_{m}\underline{\varphi^{\prime}\times\varphi^{\prime\prime}}1)\times G/O$

of $A_{1}$ . Then as before we may assume that $M^{4}$ is simply connected. We have
$\theta(\varphi)=(\varphi^{\prime})_{*}\theta(p_{2}\varphi^{\prime\prime})$ by dePnition. If $[\varphi^{\prime}]=q[j]\in\pi_{1}(K(Z_{m}, 1))$ where $ j:S^{1}\rightarrow$

$K(Z_{m}, 1)$ represents the generator, $(\varphi^{\prime})_{*}$ factors as

$L_{5}(Z)\rightarrow L_{6}(Z)(q)_{*}\rightarrow^{\alpha}L_{5}^{\epsilon}(Z_{m})$

which is zero by Lemma 3.2 (ii).

III. $\theta(A_{5})=0$ : Take a representative

$\varphi:M^{5}K(Z_{m}\underline{(\varphi_{1},\varphi_{2})}1)\times G/O$

of $A_{5}$ where $\varphi_{2}$ is trivial. Then $\theta(\varphi_{2})$ is already zero in this case.
IV. Final case: When $m$ is odd, we have $\theta(A_{3})=0$ since $\Omega_{3}(K(Z_{m}, 1))$

$\otimes\Omega_{2}(G/O)\cong Z_{m}\otimes Z_{2}=0$ . Let us assume that $m$ is even. The free $Z_{m}$-action
$(\Sigma_{s}^{s}, T_{s})$ of \S 2 defines a homotopy smoothing $\Sigma_{s}5/T_{s}\rightarrow L^{6}=L^{5}(m;t, 1)$ whose
normal invariant is denoted by $\varphi_{2}$ : $L^{5}\rightarrow G/O$ . We know that the $k_{2}$-class for
this normal invariant does not vanish [2] or equally we have $\theta(\varphi_{2}|L^{3})\neq 0$ in
$L_{3}^{e}(Z_{m})$ where $L^{3}=L^{3}(m;t)\subset L^{5}$ . Let $\varphi_{1}$ : $L^{5}\rightarrow K(Z_{m}, 1)$ classify the universal
cover and put

$(\varphi_{1}, \varphi_{2})$

$\varphi:L^{5}-\rightarrow K(Z_{m}, 1)\times G/O$ .
Denote by $x\in H^{3}(K(Z_{m}, 1);Z_{2})$ and $k_{2}\in H^{2}(G/O;Z_{2})$ the generators. Then
$\varphi^{*}(xk_{2})[L^{5}]$ does not vanish whereas $xk_{2}$ is annihilated by elements which
belong to $A_{0},$ $A_{1}$ and $A_{5}$ . This shows that $A_{0},$ $A_{1},$ $A_{5}$ and $\varphi$ generate the whole
group $\Omega_{5}(K(Z_{m}, 1)\times G/O)$ since $A_{8}\cong Z_{2}$ . The surgery obstruction for $\varphi$ vanishes
by Lemma 3.4. This completes the proof.

LEMMA 3.6. Let $X^{n}$ be a compact n-manifold with $\pi_{1}(X)\cong Z_{m}$ and $n\geqq 6$ .
Then there exists a submanifold $Y^{n- 2}$ of $X^{n}$ satisfying the following conditions:
Let $N$ be a closed tubular neighborhood of $Y$ in $X$ and put $E=X$–int N. The
natural inclusions $Y\rightarrow X$ and $\partial E\rightarrow E$ induce isomorphisms $\pi_{1}(Y)\cong\pi_{1}(X)\cong Z_{m}$ and
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$\pi_{1}(\partial E)\cong\pi_{1}(E)\cong Z$

PROOF. Consider the map $f:X^{n}\rightarrow L_{1}^{2\infty+1}$ which classifies the universal cover
of $X$. Then we can apply the theorem of Quinn [10] to deduce our assertion
since $L_{1}^{2\infty-1}\rightarrow L_{1}^{2\infty+1}$ is a homotopy equivalence and $(L_{1}^{2\infty+1}-L_{1}^{2\infty-1})\rightarrow L_{1}^{2\infty+1}$ is homo-
topically an $S^{1}$ -bundle.

When $n$ and $m$ are even, we have a canonical map $d^{\prime}$ : $L_{2n- 1}^{\epsilon}(Z_{m})\rightarrow L_{2n- 1}(Z_{2})$

$\cong Z_{2}$ ([13]).
THEOREM 3.7. Let $M^{2n-1}$ be an oriented manifold with $\pi_{1}(M)\cong Z_{m}(n\geqq 3)$

and $f:M^{2n-1}\rightarrow G/O$ be a normal map. Then $\theta(f)=0$ in $L_{2n-1}^{\epsilon}(Z_{m})(\epsilon=h, s)$ unless
both $n$ and $m$ are even and in this case $\theta(f)=0$ if and only if $d^{\prime}\theta(f)=0$ .

PROOF. We use the induction. Let $(a_{k})$ and $(b_{k})$ be the following state-
ments:

$(a_{k})$ : The assertion of the theorem holds for $n=k$ .
$(b_{k})$ : The image of $\theta:[M^{2k-1}, G/O]\rightarrow L_{2k-1}^{\epsilon}(Z_{m})$ lies in the images of

$\alpha;L_{2k-1}(Z)\rightarrow L_{2k-1}^{\epsilon}(Z_{m})$ when $\pi_{1}(M)\cong Z_{m}$ .
We know that $(a_{3})$ and $(b_{3})$ hold by Lemma 3.5. Now we assume $(a_{n})$ and $(b_{n})$ .
Let $f:M^{2n+1}\rightarrow G/O$ be a normal map. By Lemma 3.6, there exists a submani-
fold $M^{\prime 2n-1}$ of $M^{2n+1}$ satisfying the conditions of Lemma 3.6. Let $N$ be a closed
tubular neighborhood of $M^{\prime}$ in $M$ and put $E=M$–int $N$. The surgery obstruc-
tion for $f|N$ is given by $p\theta(f|M^{\prime})\in L_{2n+1}^{\epsilon}(Z\rightarrow Z_{m})$ . But since $\theta(f|M^{\prime})$ is in the
image of $\alpha:L_{2n- 1}(Z)\rightarrow L_{2n- 1}^{\epsilon}(Z_{m})$ by $(b_{n})$ , we have $\theta(f|N)=0$ from Lemma 3.2 (i).

Therefore we obtain a homotopy equivalence ( $\epsilon$-equivalence) at $N$. The remain-
ing surgery obstruction lies in $L_{2n+1}(\pi_{1}(E))=L_{2n+1}(Z)$ . This obstruction is
mapped to $\theta(f)\in L_{2n+1}^{\epsilon}(Z_{m})$ by $\alpha$ . Thus we get $(b_{n+1})$ . $(b_{n+1})\Rightarrow(a_{n+1})$ follows
from Lemma 3.2 (ii) and the fact that the composition

$L_{2n+1}(Z)\rightarrow^{\alpha}L_{2n+1}^{e}(Z_{m})\rightarrow^{d^{\prime}}L_{2n+1}(Z_{2})=Z_{2}$

is an isomorphism when $n$ is odd and $m$ is even ([13]).

\S 4. $\tilde{Z}_{m}$-manifolds.

Let $X^{n}$ be an oriented smooth manifold with an orientation preserving
free $Z_{m}$-action $T$ on the boundary $\partial X$. Then a closed $\tilde{Z}_{m}$-manifold associated
to $(X^{n}, T)$ is the space $\hat{X}^{n}=X^{n}/\sim$ where $x\sim y$ if and only if $x,$ $y\in\partial X$ and
$T^{k}(x)=y$ for some integer $k$ . The singular subset $\delta\hat{X}=\partial X/\sim$ and $\hat{X}^{n}-\delta\hat{X}$

have natural smooth structures induced by that of $X^{n}$ . But $\hat{X}^{n}$ fails to be a
manifold unless $m=2$ , and in this case $\hat{X}$ is a non-orientable manifold if $\partial X\neq\emptyset$ .
A $\tilde{Z}_{m}$-manifold with boundary is defined similary by an object $(W^{n}, V^{n- 1}, T)$

where $W^{n}$ is an oriented manifold and $T$ is an orientation preserving free $Z_{m^{-}}$

action on a submanifold $V^{n- 1}\subset\partial W$. We define $\hat{W}^{n}=W/\sim$ where $x\sim y$ if and
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only if $x,$ $y\in V$ and $T^{k}(x)=y$ for some $k$ . We write $\delta\hat{W}=V/\sim and$ the boundary
$\partial\hat{W}$ of $\hat{W}$ is defined to be ( $\partial W$–int $V$ ) $/\sim$ .

EXAMPLE 4.1. Let $X^{2n}=D^{2n}$ and the $Z_{m}$-action on $X=S^{2n-1}$ be given by

$T(z_{0}, z_{1}, z_{n- 1})=(\alpha z_{0}, \alpha^{p_{1}}z_{1}, ’ \alpha^{p_{n-1}}z_{n-1})$

where $\alpha=\exp(2\pi i/m)$ and $(p_{j}, m)=1$ . Then $X^{2n}=L^{2n}(m;p_{1}, \cdots , p_{n- 1})$ and $\delta X$

$=L^{2n- 1}(m;p_{1}, p_{n- 1})$ .
EXAMPLE 4.2. Let $T_{0}$ be an orientation preserving free $Z_{m}$-action on an

oriented manifold $M^{n}$ . DePne

$(W^{n+1}, V^{n}, T)=(M^{n}\times I, M\times\{0\}, T_{0}\times id)$ .

Then $\hat{W}^{n+1}$ is homeomorphic to the mapping cylinder of $M^{n}\rightarrow M^{n}/T_{0}$ with
$\delta\hat{W}=M^{n}/T_{0}$ and $\partial\hat{W}=M^{n}$ .

The notion of $\tilde{Z}_{m}$-manifolds with boundary enables us to define cobordism
relations among closed $\tilde{Z}_{m}$ -manifolds and thus we obtain cobordism groups of
$\tilde{Z}_{m}$ -manifolds denoted by $\Omega_{*}(\tilde{Z}_{m})$ where addition is given by disjoint unions.
Before giving an explicit description of these cobordism groups, we make some
preparations which will be useful in later sections.

Let the objects $(X_{i}^{n_{i}}, T_{i})(i=0,1)$ define $\tilde{Z}_{m}$-manifolds $\hat{X}_{i}^{n_{i}}$ . A map

$f:(X_{0}, \partial X_{0})\rightarrow(X_{1}, \partial X_{1})$

which is $Z_{m}$-equivariant on the boundary induces a map

$f;\hat{X}_{0}\rightarrow\hat{X}_{1}$

of $\tilde{Z}_{m}$ -manifolds. In this case, we call $f$ a $\tilde{Z}_{m}$ -map (associated to $f$). When
$n_{0}=n_{1}$ , the degree of $f$ is defined to be the degree of $f$.

Let $\hat{X}^{n}$ be a $\tilde{Z}_{m}$ -manifold associated to $(X^{n}, T)$ . We fix a $Z_{m}$-action on a
cone on m-points

$C(m)=$ { $z\in C||z|\leqq 1$ , arg $(z)=2\pi j/m$ or $z=0$ }

given by $ z-\rangle$ $\alpha z,$ $\alpha=\exp(2\pi i/m)$ . Let $J$ be defined by

$J=\partial Xx_{z_{m}}D^{2}$

where $(x, v)\sim(T^{k}(x), \alpha^{k}v)$ for $x\in\partial X$ and $v\in D^{2}$ . Then $J$ contains as subsets

$K=\partial Xx_{z_{m}}C(m)$ ,

$\dot{K}=\{[x, v]\in K||v|=1\}$ ,

and boundary $\partial J=\partial X\times z_{m}S^{1}$ .
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$\dot{K}$ can be be identified with $\partial X$ by the map $[x, \alpha^{k}]-T^{-k}(x)$ . Hence we have
an embedding $\partial X=\dot{K}\rightarrow\partial J$ which has a product tubular neighborhood $\partial X\times I$.
We obtain an $(n+1)$ -dimensional manifold

$X^{n+1}=X\times IUJ=\partial X\times I$

by glueing along $\partial X\times I$. We call $X^{n+1}=$ the regularization of the $\tilde{Z}_{m}$-manifold
$\hat{X}^{n}$ . $X=$ contains $\hat{X}$ as a deformation retract since $\hat{X}$ is homeomorphic to
$X\bigcup_{\partial X=\dot{K}}K$. It can also be seen that a $\tilde{Z}_{m}$ -map

$f;\hat{X}_{0}\rightarrow\hat{X}_{1}$

between $\tilde{Z}_{m}$-manifolds extends to a map

$f^{=}:$ $(X_{0}, \partial X_{0})==\rightarrow(X_{1}, \partial X_{1})==$

which is called the regularization of $f$.
Let $M^{q}$ be a smooth manifold. An embedding $\hat{X}^{n}\rightarrow M^{q}$ is called regular

if it factors through an embedding of $X^{n+1}$ in $M^{q}$ as
$\hat{X}^{n}\subset X^{n+1}=\rightarrow M^{q}$ .

The regularization $X=$ of $\hat{X}$ has a stable normal bundle $\nu_{X}^{=}$ . The stable normal
bundle $\nu_{\hat{X}}$ is defined to be its restriction to $\hat{X},$ $\nu_{X}^{=}|\hat{X}$.

As a direct application of the notion of regularizations, we can describe
the cobordism and bordism groups of $\tilde{Z}_{m}$-manifolds in the following form.

THEOREM 4.3. The cobordism groups and bordism groups of $\tilde{Z}_{m}$ -manifolds
are represented as follows:

$\Omega_{n}(\tilde{Z}_{m})\cong\tilde{\Omega}_{n+1}(K(Z_{m}, 1))$ ,

$\Omega_{n}(A;\tilde{Z}_{m})\cong\tilde{\Omega}_{n+1}(A^{+}\Lambda K(Z_{m}, 1))$ .
PROOF.
I. Definition of a map $\Omega_{n}(\tilde{Z}_{m})\rightarrow\tilde{\Omega}_{n+1}(K(Z_{m}, 1))$ : Take a representative $\hat{X}^{n}$

of $\Omega_{n}(\tilde{Z}_{m})$ . Let $\varphi:\delta\hat{X}\rightarrow L_{1}^{2r-1}$ ( $r$ large) classify the covering $\partial X\rightarrow\delta\hat{X}$. Then
we get a $Z_{m}$-equivariant map $\tilde{\varphi}$ : $\partial X\rightarrow S^{2r-1}$ , which extends to a map

$f:(X, \partial X)\rightarrow(D^{2r}, S^{2r- 1})$

and $f$ induces a $\tilde{Z}_{m}$-map $f;\hat{x}\rightarrow L_{1}^{2r}$ . $f$ extends to a regularization

$\overline{f}$ : X7$n+1\rightarrow\overline{\overline{(L_{1}^{2r})}}=L_{1}^{2r+1}$ -int $D^{2r+1}$

$f=$, continued by the collapsing map
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$\overline{\overline{(L_{1}^{2r})}}\rightarrow\overline{\overline{(L_{1}^{2r})}}/\partial\overline{\overline{(L_{1}^{2r})}}=L_{1}^{2r+1}$

yields a map $(X^{n+1}, \partial X)==\rightarrow(L_{1}^{2r+1},*)$ which determines an element of $\tilde{\Omega}_{n+1}(K(Z_{m}, 1))$ .
II. Definition of a map $\tilde{\Omega}_{n+1}(K(Z_{m}, 1))\rightarrow\Omega_{n}(\tilde{Z}_{m})$ ; Take a representative

$F:(W^{n+1}, \partial W)\rightarrow(K(Z_{m}, 1),$ $*$) of $\tilde{\Omega}_{n+1}(K(Z_{m}, 1))$ . By taking $r$ large, $F$ can be
regarded as a map (also denoted by $F$ ) $F:(W^{n+1}, \partial W)\rightarrow(L_{1}^{2r+1}, *)$ . We may
assume that the base point is not included in $L_{1}^{2r}(\subset L_{1}^{2r+1})$ . First make $F$ t-
regular to the submanifold $L_{1}^{2r- 1}$ in $L_{1}^{2r+1}$ . Since t-regularity is an “open” con-
dition, $F$ is t-regular in the neighborhood of $L_{1}^{2r- 1}$ in $L_{1}^{2r+1}$ . Outside this neigh-
borhood, $L_{1}^{2r}$ is a submanifold of $L_{1}^{2r+1}$ . Therefore we can make $F$ t-regular to
$L_{1}^{2r}-L_{1}^{2r-1}$ by deforming $F$ by homotopy outside the neighborhood of $L_{1}^{2r- 1}$ .
Then $F^{-1}(L_{1}^{2r})$ is a $\tilde{Z}_{m^{-}}manifold$ regularly embedded in $W^{n+1}$ .

By constructions of I and II, we readily see that these maps are inverses
to each other. The proof for the bordism groups is similar.

REMARK. Let $T_{m}=S^{1}\bigcup_{m}e^{2}$ be the Moore space. We may regard $T_{m}$ as
the 2-skeleton $\hat{L}_{1}^{2}$ of $K(Z_{m}, 1)$ . The natural map

$\tau_{m}=L_{1}^{2}\rightarrow K(Z_{m}, 1)$

dePnes a natural transformation from Sullivan’s $Z_{m}$-manifold theory to our
$\tilde{Z}_{m}$-manifold theory (see [7]).

\S 5. Surgery on $\tilde{Z}_{m}$-manifolds.

Let $\hat{X}^{n}$ be a $\tilde{Z}_{m}$-manifold. A normal map of degree one is the following
diagram:

$\hat{b}$

$\nu_{\hat{M}^{-\rightarrow\xi}}$

(5a)
$\hat{M}^{n}\rightarrow\downarrow\underline{\hat{f}}\downarrow\hat{X}^{n}$

where $\hat{b}$ is a bundle map of vector bundles covering the $\tilde{Z}_{m}$-map $f$ of degree
one. As in the case of usual manifolds, we can define normal cobordism
classes of normal maps of degree one, which is denoted by $N(\hat{X})$ .

Starting from the normal map given by diagram (5a), we obtain the follow-
ing diagram by regularization:

$\overline{\overline{b}}$

$\nu_{M}^{=-\rightarrow\xi}=$

(5b)
$M^{n+1}\rightarrow\overline{\overline{X}}^{n+1}=\downarrow\downarrow\underline{f^{=}}$
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where $=\xi$ is the pull-back of $\xi$ by the retraction $=X\rightarrow\hat{X}$ and $=b$ is an extension
of $b$ . Diagram (5b) defines a normal map of degree one into the manifold
$X^{n+1}=$ . Hence this construction defines a map

$\Phi$ ; $N(\angle X)\rightarrow N(X)=$

where $N(X)=$ is the set of normal cobordism classes of normal maps of degree

one into the manifold $X^{n+1}=$ in the usual sense.
Conversely, let us start from a normal map of $X^{n+1}$ :

$=$

(5c)
$\nu_{W}\zeta\downarrow\downarrow\underline{B}--$

$W^{n+1}\rightarrow X^{n+1}\underline{F}$

Make $F$ t-regular to $\hat{X}^{n}\subset X^{n+1}=$ as in the proof of Theorem 4.3. Then $\hat{M}^{n}=$

$F^{-1}(\hat{X}^{n})$ is regularly embedded in $W^{n+1}$ and hence we have $\nu_{\hat{M}}=\nu_{W}|\hat{M}$. Let
$\hat{f}=F|\hat{M},$ $\xi=\zeta|\hat{X}$, and $\hat{b}=B|\nu_{\hat{M}}$ , then we get diagram (5a). This construction
gives rise to a map

$\Psi:N(X)=\rightarrow N(\hat{X})$ .
It is clear that $\Phi$ and $\Psi$ are inverses to each other. Therefore we have a
bijective correspondence:

$N(\hat{X})\approx N(X)=$ .

It is well known that $N(X)=$ can be identified with $[X=, G/O]$ (see $e$ . $g$ . $[12]$).

Hence we obtain
PROPOSITION 5.1. We have a bijective correspondence

$N(\hat{X}^{n})\approx[\hat{X}^{n}, G/O]$ .
DEFINITION. Let $\epsilon=h$ or $s$ . A $\tilde{Z}_{m}$-map $f;\hat{M}^{n}\rightarrow\hat{X}^{n}$ of $\tilde{Z}_{m}$-manifolds is

called an $\epsilon$-smoothing of $\hat{X}^{n}$ if $f$ is an $\epsilon$ -homotopy equivalence of pairs
$(\hat{M}^{n}, \delta\hat{M})\simeq(\hat{X}^{n}, \delta\hat{X})$ .

DEFINITION. Two $\epsilon$-smoothings $\hat{f}_{i}$ : $\hat{M}_{i}^{n}\rightarrow\hat{X}^{n}(i=0,1)$ are called concordant
if there exists an $\epsilon$-smoothing

$\hat{F}:\hat{W}^{n+1}\rightarrow\hat{X}^{n}\times I$

with
$\partial\hat{W}=\hat{M}_{0}\cup\hat{M}_{1}$ and $f_{i}=\hat{F}|\hat{M}_{i}$ .

The set of concordance classes of $\epsilon$-smoothings of $\hat{X}^{n}$ is denoted by $hS^{\epsilon}(\hat{X})$ .
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Let $f;\hat{M}^{n}\rightarrow\hat{X}^{n}$ be an $\epsilon$ -smoothing of $\hat{X}^{n}$ and $g$ be its homotopy inverse.
Then we have a normal map:

$\hat{M}^{n}\rightarrow\hat{X}^{n}\nu_{\tilde{M}^{-\rightarrow g^{*}\nu_{\hat{M}}}}\downarrow_{\underline{\hat{f}}}\downarrow$

whose normal cobordism class is called the normal invariant of $f$. Thus we
obtain a map

$\eta:hS^{\epsilon}(\hat{X}^{n})\rightarrow[\hat{X}^{n}, G/O]$ .

Let the object $(X^{2n}, T)$ define the $\tilde{Z^{\prime}}_{m}$ -manifold $\hat{X}^{2n}$ .
THEOREM 5.2. Let $\hat{X}^{2n}$ be a $\tilde{Z}_{m}$-manifold with $\pi_{1}(X)=\pi_{1}(\partial X)=\{1\}$ . Then

we have the following exact sequence valid for $n\geqq 3$ :

$hS^{\epsilon}(\hat{X}^{2n})\rightarrow^{\eta}[\hat{X}, G/O]\rightarrow^{\theta}Q_{2n}$

$(\epsilon=h, s)$

where $Q_{2n}$ is $Z_{2}$ when $m$ is even and is the trivial group when $m$ is odd.
PROOF. Let $n=2k+1$ . Take a normal map $f;\hat{M}^{4k+2}\rightarrow\hat{X}^{4k+2}$ . By Theorem

3.7, we can make $\delta\hat{f}:\delta\hat{M}\rightarrow\delta\hat{X}$ into an $\epsilon$ -equivalence by surgery. Then we
have a surgery problem $f:(M, \partial M)\rightarrow(X, \partial X)$ with $f|\partial M$ an $\epsilon$-equivalence.
Define $\theta(f)=\theta(f)\in Z_{2}$ , the Kervaire obstruction. We can construct a normal
cobordism $F:N^{4k+2}\rightarrow\delta\hat{X}\times I$ such that $\partial N=M_{0}\cup M_{1},$ $M_{0}=\delta\hat{M},$ $F|M_{0}=\delta f$, and
$F|M_{1}$ is also an $\epsilon$ -equivalence. Then extend this cobordism in the neighbor-
hood of $\delta\hat{M}$ in $\hat{M}$. Denote by $\tilde{M}_{0},\tilde{M}_{1}$ and $\tilde{N}$ the natural m-fold coverings of
$M_{0},$ $M_{1}$ and $N$ respectively. Then the manifold $M^{\prime}=MU\tilde{N}\partial M=M_{0}$ gives a $\tilde{Z}_{m^{-}}mani-$

fold $\hat{M}^{\prime}$ and a normal map $f$’ : $\hat{M}^{\prime}\rightarrow\hat{X}$ which is normally cobordant to $f$. Since
Kervaire invariants are multiplied by $m$ under coverings, $\theta(\hat{f}^{\prime})$ can be made
zero if $m$ is odd. When $m$ is even, $\theta(f)=\theta(\hat{f}^{\prime})$ is a well-dePned element in $Z_{2}$ .

Let $n=2k$ . Take a normal map $f;\hat{M}^{4k}\rightarrow\hat{X}^{4k}$ . Define $\theta(f)=d^{\prime}\theta(\delta\hat{f})$ , the
surgery obstruction for $\delta\hat{f}:\delta\hat{M}\rightarrow\delta\hat{X}$. This is always zero when $m$ is odd.
Suppose that this obstruction vanishes, we have an $\epsilon$-equivalence at $\delta\hat{X}$. The
remaining problem is to compute the index obstruction of $f:(M, \partial M)\rightarrow(X, \partial X)$

keeping $\partial f=f|\partial M$ fixed. If this index obstruction, say $\sigma$ , is not zero in $L_{4k}(1)$ ,

we choose an element $\sigma^{\prime}\in L_{4k}^{\epsilon}(Z_{m})$ with $\tau(\sigma^{\prime})=-\sigma$ by Lemma 3.1 of Wall.
Letting $\sigma^{\prime}$ act on $\delta\hat{f}:\delta\hat{M}\rightarrow\delta\hat{X}$ we obtain a normal map $\hat{f}^{\prime}$ : $\hat{M}^{\prime}\rightarrow\hat{X}$ with $\delta\hat{f}^{\prime}$ an
$\epsilon$-equivalence. Then the normal map $f^{\prime}$ : $(M^{\prime}, \partial M^{\prime})\rightarrow(X, \partial X)$ has zero index
obstruction by the additivity of index. This completes the proof.

REMARK. Let the object (X $4k+2T$ ) define the $\tilde{Z}_{m}$-manifold $\hat{X}$ with $\pi_{1}(X\rangle$

$=\pi_{1}(\partial X)=\{1\}$ . When $m$ is even, we can construct a $\tilde{Z}_{2}$ -manifold $\overline{X}$ by restrict-
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ing the $Z_{m}$-action to the subgroup $Z_{2}\subset Z_{m}$ . Then $\overline{X}$ is a non-orientable mani-
fold and we have a natural projection $\rho:\overline{X}\rightarrow\hat{X}$ which is a homeomorphism on
$\overline{X}-\delta\overline{X}$ and an $(m/2)$ -fold covering on $\delta\overline{X}$. The proof of Theorem 5.2 shows
that we have a commutative diagram

$\theta$

$[\hat{X}^{4k+2}, G/O]\rightarrow Z_{2}$

$\rho^{*\sim}$ $\nearrow c$

$[\overline{X}^{4k+2}, G/O]$

where $c$ is the Kervaire obstruction map.
Let $m$ be even and consider the natural inclusions $i:L^{4k- 2}\rightarrow L^{4k-1}$ and

$i:L^{4k-1}\rightarrow L^{4k}$ where $L^{4k}=L^{4k}(m;P_{1}, \cdots , p_{2k- 2}, p_{2k-1}),$ $L^{4k- 1}=L^{4k- 1}(m;p_{1},$ $\cdots$ , $p_{2k- 2}$ ,
$p_{2k-1})$ and $L^{4k- 2}=L^{4k- 2}(m;P_{1}, p_{2k-2})$ .

LEMMA 5.3. We have the following commutative diagram

PROOF. $ d^{\prime}\theta j^{*}=\theta$ is clear by the proof of Theorem 5.2. Let $f:L^{4k-1}\rightarrow G/O$

be a normal map. Then $f|L^{4k-3}$ is representable by an $\epsilon$ -equivalence by
Theorem 3.7. The surgery obstruction $\theta(f)\in L_{4k-1}^{g}(Z_{m})$ comes from a class
$x\in L_{4k-1}(Z)$ as in the proof of Theorem 3.7. On the other hand, $L^{4k- 2}-L^{4k-3}$

gives the splitting of $L^{4k-1}-L^{4k-3}$ which induces the isomorphism $ L_{4k-1}(Z)\cong$

$L_{4k-2}(1)\cong Z_{2}$ . By this identification we have $d^{\prime}\theta(f)=x=\theta(i^{*}(f))$ .
LEMMA 5.4. Let $m$ be even, then

(i) $\theta:[L^{2n}(m;p_{1}, p_{n- 1}), G/O]\rightarrow Z_{2}$

and

(ii) $d^{\prime}\theta:[L^{4k-1}(m;p_{1}, p_{2k-1}), G/O]\rightarrow Z_{2}$

are surjective.

PROOF. By Lemma 5.3, it is enough to show that

$\theta:[L^{4k}(m;p_{1}, p_{2k-1}), G/O]\rightarrow Z_{2}$

is surjective. Take an integer $P_{2k}$ satisfying
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$p_{1}\cdots p_{2k-1}p_{2k}s\equiv 1$ $(mod m)$ ,

then we have a homotopy equivalence

$\Sigma_{s}4k+1/T_{s}\rightarrow L^{4k+1}(m;p_{1}, p_{2k-1}, p_{2k})$

by Proposition 2.1. This example defines a normal invariant

$f:L^{4k+1}(m;p_{1}, p_{2k- 1}, p_{2k})\rightarrow G/O$

such that $\theta(f|L^{4k}(m;p_{1}, \cdots , p_{2k-1}))=d^{\prime}\theta(f|L^{4k-1}(m;p_{1}, \cdots , p_{2k-1}))$ is non-zero by
Lemma 2.3. This completes the proof.

\S 6. Free $Z_{m}$-actions on homotopy spheres.

Making use of the results developed so far, we shall determine homotopy
spheres which admit free $Z_{m}$-actions. We have the commutative diagram
below with exact rows

(A)

where $\tau$ is the transfer map, $\kappa$ takes the universal covering, $\pi_{q}$ ; $S^{2n-1}\rightarrow L_{q}^{2n-1}$

$=L^{2n-1}(m;q, 1, \cdots , 1)$ is the natural projection and the map $\theta^{\prime}$ is equal to $ d^{\prime}\theta$

if $m,$ $n$ are even and is trivial otherwise.
Now we are in position to state our main theorem. We shall work in the

category of h-smoothings and h-equivalences though all the results hold similarly
for the ”simple” category.

THEOREM 6.1. A homotopy sphere $\Sigma^{2n-1}(n\geqq 3)$ admits a free $Z_{m}$-action of
tyPe $q$ if and only if its normal invariant $\eta(\Sigma^{2n- 1})$ belongs to the subgroup

Image $\{\pi_{q}^{*} ; [L_{q}^{2n-1}, G/O]\rightarrow\pi_{2n- 1}(G/O)\}$

of $\pi_{2n-1}(G/O)$ .
As a direct corollary, we can give the solution of Orlik’s conjecture in a

more detailed version.
COROLLARY 6.2. Every homotopy sphere $\Sigma^{2n- 1}(n\geqq 3)$ that bounds a paral-

lelizable manifold admits a free $Z_{m}$-action of type $q$ for any $m$ and $q$ .
In the statement of the theorem above, the necessity of the condition is

apparent. We shall show its sufficiency.
PROOF OF THEOREM 6.1 WHEN $m$ IS ODD;

Let $\Sigma^{2n-1}$ be a homotopy sphere whose normal invariant $\eta(\Sigma)$ belongs to



Determination of homotopy spheres 357

Image $\pi_{q}^{*}$ . In this case, since the map $\eta:hS(L_{q}^{2n-1})\rightarrow[L_{Q}^{2n-1}, G/O]$ is surjective,
there exists a homotopy smoothing $f:M^{2n- 1}\rightarrow L_{q}^{2n-1}$ satisfying $\eta(\Sigma)=\pi_{q}^{*}\eta(M^{2n-1})$ .
The universal cover $\kappa(M)=\tilde{M}$ and $\Sigma$ have the same normal invariants in
$\pi_{2n-1}(G/O)$ by commutativity of the diagram (A). Hence there exists an ele-
ment $\lambda\in L_{2n}(1)$ with $\lambda*M=\Sigma$ . Since the transfer map $\tau$ is surjective when $m$

is odd, there exists an element $\lambda^{\prime}\in L_{2n}(Z_{m})$ with $\tau(\lambda^{\prime})=\lambda$ . Then the universal
cover of the homotopy smoothing $\lambda^{\prime}*M$ is diffeomorphic to $\Sigma^{2n-1}$ . This com-
pletes the proof when $m$ is odd.

From now on we assume that $m$ is even. Then the proof of Theorem 6.1
can be deduced by the following two lemmas.

LEMMA 6.3. If $\eta_{0}\in Image\pi_{q}^{*}$ , then there exists a homotopy smoothing
$h;M^{2n- 1}\rightarrow L_{q}^{2n-1}$ with $\eta_{0}=\pi_{q}^{*}\eta(M^{2n- 1})$ .

LEMMA 6.4. If a homotopy sphere $\Sigma_{0}2n- 1$ admits a free $Z_{m}$ -action of type $q$ ,
then $\Sigma_{0^{n-1}}2\#\Sigma^{2n-1}$ admits a free $Z_{m}$-action of tyPe $q$ for any $\Sigma^{2n-1}\in bP_{2n}$ .

PROOF OF LEMMA 6.3. If $n$ is odd, then any normal map $f:L_{q}^{2n-1}\rightarrow G/O$

is obtained as the normal invariant of a homotopy smoothing by Theorem 3.7.
Hence in this case the assertion follows. When $n$ is even, take a normal map
$f:L_{q}^{2n-1}\rightarrow G/O$ with $\eta_{0}=\pi_{q}^{*}(f)$ . Suppose that $\theta^{\prime}(f)=0$ , then $f$ is the normal
invariant of a homotopy smoothing of $L_{q}^{2n-1}$ as before. Let $\theta^{\prime}(f)\neq 0$ . There
exists a normal map $g:\hat{L}_{q}^{2n}\rightarrow G/O$ with $\theta(g)\neq 0$ by Lemma 5.4(i). Consider the
normal map

$f^{\prime}=f+(g|L_{q}^{2n-1}):L_{q}^{2n-1}\rightarrow G/O$

where addition is given by the H-space structure (Whitney sum) of $G/O$ .
Then we have $\pi_{q}^{*}(f^{\prime})=\pi_{q}^{*}(f)=\eta_{0}$ since

$[L_{q}^{2n}, G/O]\rightarrow^{j^{*}}[L_{q}^{2n-1}, G/O]\rightarrow\pi_{2n-1}(G/O)\pi_{q}^{*}$

is exact where $j$ is the inclusion. According to Lemma 5.3 and the remark
after Theorem 5.2, we see that the map

$\theta^{\prime}=d^{\prime}\theta:[L_{q}^{2n-1}, G/O]\rightarrow Z_{2}$

can be calculated as
$i^{*}$

$\rho^{*}$ $c$

$[L_{q}^{2n-1}, G/O]\rightarrow[\hat{L}_{q}^{2n-2}, G/O]\rightarrow[P^{2n- 2}, G/O]\rightarrow Z_{2}$ .
Therefore $\theta^{\prime}$ is a homomorphism since the Kervaire obstruction map $c$ is a
homomorphism by the primitivity of Sullivan’s k-class ([11], [13]). Hence we
have $\theta^{\prime}(f^{\prime})=0$ and there exists a homotopy smoothing $M^{2n-1}\rightarrow L_{q}^{2n-1}$ with $\eta(M)$

$=f^{\prime}$ satisfying the condition $\eta_{0}=\pi_{Q}^{*}\eta(M)$ .
PROOF OF LEMMA 6.4. When $n$ is even, surjectivity of the transfer map
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$\tau;L_{2n}(Z_{m})\rightarrow L_{2n}(1)$ implies the assertion by chasing the diagram (A). Let $n=$

$2k+1$ . Put
$\hat{X}^{4k+2}=\Sigma_{0^{k+1}}4\times {}_{z_{m}}C(m)$

where $C(m)$ is a cone on m-points, $i$ . $e.\hat{X}$ is the mapping cylinder of the
natural projection $\pi$ : $\Sigma_{0}\rightarrow\Sigma_{0}/Z_{m}$ . Then $\hat{X}^{4k+2}$ is a $\tilde{Z}_{m}$-manifold with boundary
$\partial\hat{X}=\Sigma_{0}$ . We have a cofibration

$\Sigma_{0}\rightarrow^{\pi}\Sigma_{0}/Z_{m}=\delta\hat{X}\rightarrow^{e}\hat{X}/\partial\hat{X}$ .
Similar results hold for the surgery theory of ( $\hat{X}$ rel $\partial\hat{X}$ ) as in the case of
closed $\tilde{Z}_{m}$-manifolds. Then we have the following commutative diagram where
all rows and columns are exact:

(B)

According to the remark after Theorem 5.2, we have a commutative diagram

where $h;\hat{X}/\partial\hat{X}\rightarrow\hat{L}_{q}^{4k+2}$ is a homotopy equivalence. Hence by Lemma 5.4 (i),
there exists $f\in[\hat{X}/\partial\hat{X}, G/O]$ with $\theta(f)\neq 0$ . Since we can perform surgery on
$f|\delta\hat{X}$ by Theorem 3.7, $f$ is represented by a normal map $\hat{g}:\hat{M}^{4k+2}\rightarrow\hat{X}^{4k+2}$ such
that $\delta\hat{g}:\delta\hat{M}\rightarrow\delta\hat{X}$ is a homotopy equivalence. Then $M^{4k+2}$ is a parallelizable
manifold with Kervaire $invariant\neq 0$ and its boundary is the disjoint union of
$\Sigma_{0}4k+1$ and the universal cover of $\delta\hat{M}$. Therefore the universal cover of $\delta\hat{M}$ is
diffeomorphic to $\Sigma_{0}^{4k+1}\#\Sigma_{K}4k+1$ where $\Sigma_{K}4k+1$ is the Kervaire sphere. Thus the
proof is complete.
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