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Fix an algebraically closed field & of characteristic p. All abelian varieties
we will talk about are always defined over k, and in particular, X will denote
an abelian variety of dimension g throughout the paper. Recently, S. Koizumi
discovered a very useful fact, which he calls the “rank theorem”, and using
it he proved projective normality of the model of X embedded in P(I'(L%) in
the usual way, in the case of ¢=3 and any ample invertible sheaf L on X.
He has, however, restricted his considerations only to the case of characteristic
»=0. In the present paper, mainly following his ideas in [I], we generalize
his main results to almost all characteristic cases.

After recalling some fundamental properties of theta groups in Section 0,
we shall prove the “rank theorem” in Section 1 in the following style:

RANK THEOREM (Theorem 1.4). Let L be a principal invertible sheaf on X;
and a, b be positive integers prime to each other with a<b and p ) abla+b).
Let 6 be a suitable section of I'(L*) such that {U;0} ;encany 1S @ basis of I'(L®),
where H(ab)* is a lifting in the theta group G(L*®) of a maximal isotropic direct
summand of X,, with respect to et® and U is the natural action of @(L*) on
I'(L®). Moreover we denote by H(a)* and H(b)* the subgroups of H(ab)* con-
sisting of elements of order dividing a and b rvespectively. Then the matrix

(Uz+p'9(0))<z,me}1<a>*x H*
is of rank a®.
In the last section 2, we shall consider the canonical map:

I'(LYQI'(LY) —> I'(L**?)

where L is an ample invertible sheaf on X, and show the surjectivity of the
map for a=2 and =3 in the case of characteristic p+2, 3, 5.

I want to thank Professor S. Koizumi for his useful suggestions during
preparing this paper.

TERMINOLOGY AND NOTATION. For any integer # and any abelian variety X,

ny : X —> X the homomorphism defined by x—— nx
X, =Kker ny
X the dual abelian variety of X.
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For any invertible sheaf L on X,
¢ : X —> X the homomorphism defined by x+—> T*LQL™
K(L)=Kker ¢,

et : K(L) X K(L) — G, the canonical pairing defined by L
(cf. Mumford [3], p. 227)

G(L) the theta group of L
Ir'iey=rx,Ly.
For a vector space V and its elements y;, -+, ¥y,
{y1, ***, ¥Yu» the subspace spanned by ¥y, *+, Vn.

For a group G operating on a vector space V, we say a subspace W of V is
G-stable (resp. G-invariant), if o(W)=W for any oG (resp. o(x)=x for any
oG and x€W). Moreover we denote V¢ the subset of V consisting of G-
invariant elements.

0. Let L be an ample invertible sheaf on X of separable type; i.e., an
invertible sheaf which is ample and p } degree ¢;. Then there exist subgroups
H(L), and H(L), of K(L) such that K(L)=H(L),DH(L), and e*|pury;xmcry; =1
(i=1,2). In the paper we call such a subgroup H(L), a maximal isotropic
direct summand of K(L). We have an exact sequence containing the theta
group G(L) as one of its members:

J(L)
1— k*—> @(L) — K(L) —> 0

and @(L) has a unique irreducible representation /'(L) in which k* acts by its
natural character. The action U of ¢(L) on I'(L) is given as follows:
T¥ o
U, I'(L)y— I'(T¥L) — I'(L)
for z=(x, ¢)=G(L) with x€K(L) and ¢:L=T}¥L. For the details on these
facts one can see Mumford [2], § 1, or [4]. We mean by a level subgroup

K* in G(L) a subgroup such that 2*"\K*={1}. Then there is a 1-1 corre-
spondence between level subgroups K* in @(L) and pairs (7, a):

w: X —> Y=X/K the canonical map

a: w*M_~, L an isomorphism for some
invertible sheaf M on Y
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where K=j(L)(K*) (cf. Mumford [2], § 1, Proposition 1).
Two theta groups which arise from two deta (X, L) and (Y, M) related by an
isogeny have following relations:

PROPOSITION 0.1. Let f: X—Y be a separable isogeny of abelian varieties
with K=kerf. Let L and M be invertible sheaves on X and Y respectively,
such that there exists an isomorphism a: f*M=L. Let K* be the level sub-
group of G(L) defined by the isomorphism a, and we put j=j(L). Then we have

@) fHEM)CKL),

(ii) A{centralizer of K* in @(L)}=j'(f"Y(K(M)), which we denote by @(M)*,

(iii) @M)=g(M)*/K* canonically
(cf. Mumford [2], § 1, Proposition 2).

PROPOSITION 0.2. Under the same assumptions as in Proposition 0.1, for
any element z in @(M)*, we denote by Z its canonical image in G(M). Let
f*: 'Y, M)—I'(X, L) be the injection defined by the pair (f, a). Then we have

the commutative diagram:
%

I'(Y, M) —J—(—> I'X, L)

Us | o | v
'y, M) — I'(X, L)
(cf. Mumford [2], §1).
Concerning products of two abelian varieties, we have
PrOPOSITION 0.3. Let X and Y be two abelian varieties, and let L and M
be ample invertible sheaves of separable type on X and Y. Let p,: XXY—-X
and p,: XXY-Y be the projections. Then we have the canonical isomorphism :

G(pFLQpEM) = a(L) x G(M)/{(4, A7) | A€ k*}

(cf. Mumford [2], §3, Lemma 1).

The section will end with two easy remarks which will be used later.

PROPOSITION 0.4. Let L be a principal invertible sheaf on X (i.e., L is
ample and X(L)=1), and let m, n be positive integers which are prime to each
other and p Y mn. Let j=j(L™). Then j~'(X,) (CQ(L™)) is isomorphic to G(L™).
Therefore 1f M is a j-'(X,)-stable non-trivial subspace in I'(L™), we have
dim M=rn® for some r=1.

PrOOF. If we take a maximal isotropic direct summand H(mn) of K(L™")
=X, then H(n)={mx|xs H(mn)} becomes a maximal one of K(L")=X, and
we have isomorphisms K(L”‘")EH(mn)xﬁ(mn) and K(L");H(n)xﬁ(n), where
H indicates the dual group of a group H. Here we denote by i the canonical
inclusion H(n)—H(mn). Moreover theta groups €(L™) and &(L") are isomor-
phic to Heisenberg groups K(mn)=Fk* X H(mn) Xﬁ(mn) and K(n)———k*xH(n)xFI(n)
respectively. Now choosing a positive integer m’ such that mm’=1 mod n,
we embed ﬁ(n) into Fl(mn) by ¢:I( )—=l(m’m-()) for any leﬁ(n). Then ob-
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N 1 XiX¢ ”
viously K(n)=Fk*x H(n) X H(n) ———— K(mn)=Fk* X H(mn) X H(mn) is an injec-

tive homomorphism and its image corresponds to j '(X,), which implies our
assertion. Q.E.D.

Hereafter we denote by Py, or simply by P, the Poincaré sheaf on XX X,
and for any ac X we mean by P, the restricted sheaf P|x«(a-

LEMMA 0.5. Let L be a principal invertible sheaf on X, and let m, n be
two positive integers such that p f mn. For a closed point an, we put j=
J(L™RQP,). Then j7Y(X,) is contained in the centralizer of j~Y(X,,) in Q(L™QRP,).

PROOF. Since el™"®Pa=¢l™" we have only to show that eZ™(x, y)=1 for
any x€X, and yeX,. In fact, since x€K(L™) and yen;'K(L™), we have
eL™(x, y)=e™(x, 0)=1. Therefore we obtain our assertion. Q.E.D.

mn

1. First of all we give an easy lemma which makes the first step of the
“rank theorem”.

LEMMA 1.1. Let M be a principal invertible sheaf on an abelian variety Y
of dimg. Let n be a positive integer prime to p. Then there exists a triplet
X, =, L):

X : an abelian variety

w; X—>Y an isogeny of degree n®
L: a principal symmetric invertible sheaf on X

such that a*M=L"QP; for some reX and kerw is a maximal isotropic direct
summand of K(L")=X,.

ProOF. We put M=(¢3)*M, and we take a maximal isotropic direct sum-
mand H of K(M™. Moreover we put X=Y/H and we denote by # the ca-
nonical projection Y—X. Then there exists a principal invertible sheaf L on X
such that #*L=M". Hence we have ngz=rodzo% or ny=rnodzozod,, where
w: X—Y is the dual map of #. On the other hand, ¢..y=%0@yoxn. Therefore
we have nyon=no0@;0R0@y0n=n0P;0Pry, i.€., ny=@z0@y, which implies
K(#@*M)=X,, because ¢; is isomorphic. Hence there exists a principal inverti-
ble sheaf L’ on X such that #*M=L’". Moreover it is an easy fact that every
invertible sheaf is algebraically equivalent to a symmetric invertible sheaf.
Therefore we can see the existence of such an L in the proposition. Further-
more from the way of the choice of ﬁ, ker = has the required property. Q.E.D.

The next proposition is a translation of “generalized addition formulas”
in into the abstract case, which also play an essential role in the proof of
our “rank theorem”.

PROPOSITION 1.2. Let a, b be positive integers, and we define a homomor-
phism &: XX X—XXX by (x, y)—(x—by, x+ay). Let L be a symmetric invertible
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sheaf on X. Then we have

EX(PH(L*Q Po) @ pE(L"Q Pp)) = pHL " Q Parg) @ pE (L™ Q Pog-pa)

for any «a, ﬂeX, where p,: XX X— X denotes the projection to the i-th component

for 1=1, 2.
PrROOF. Let y be any closed point of X. First of all we notice that T},L
=TFL*QL'"™ for any integer n. From this notice and the following commuta-

tive diagram:

X
Ty
. b
X=X x {y} C—— XXX Xx X
\pz
T,
Yy X ,

we have
E*(PHL*QP) @ PF(L"Q Pe)) | xxiyy = (T %y L*Q Po) @ (T & L* Q Pg)
= (TFL QL Q P Q(T§ LQ L@ Py)
=L@ Pasg -
On the other hand, from the symmetricity of L and the commutative diagram :

X

—by
b

X= {0 ><XL———>X><X—-—E——>X><X

lpz
5

X,
we have

EX(PHL*Q Po) @F(L*Q Pa)) 11« x = (—bx)*(L*Q Pa) @ (a x)*(L*Q Pg)
o~ (Lab2® P-ba)®(La2b®Paﬂ> ~ Lab(a.+b)® Paﬂ—ba .
Therefore by Seesaw theorem, we obtain
EX(PF(L*Q P) Q15 (L’ @ Pp)) = (L@ Pas g) QPF(L™*P @ Pap-va) -

Q.E.D.
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REMARK. The homomorphism & in the above proposition is separable if
and only if p)fa+b. Asfor deg & we have the explicit equality deg £§=(a-+b)%*.

Throughout the rest of the section, L denotes a principal symmetric inverti-
ble sheaf on X, and q, b are positive integers such that (a, b)=1 and p | ab(a+D).
We mean by & the homomorphism defined in [Proposition 1.2l Then by the
proposition we have an isomorphism

5 ‘
EX(PHLQPIQPF (L' QPg)) -2 DL QP p) QD (L™ P Q@ Pop-pa)

and the injection
*

§
I(L*QPHQI(L'QPg) —> I'(L** " QPasg) QI (L**** @ Pag-va) -

Once for all ¢ is fixed and both sides in the former relation will be identified
in the rest of the paper. Now we take non-zero elements # and v in I'(L*QP,)
and I'(L’®P;s) respectively, and fix them. Let {s,, -+, s} and {t;, -, ts} be
basis of I'(L***@®Pasp) and ['(L¥*PQP,g ,) respectively, where [=(a-+b)*
and m={ab(a+b)}%. Then we obtain an equation,

® ux=by)o(rtan = 3 cusDh()

IAIIA
A

for some c,,k. The isomorphism ¢ defines a lifting of the group K=ker§:

J
1 —> k* —> G(pF( L’ QP as ) QDF (L PR Pys_pa)) —> Xass X Xapcarny—>0
U U
K* a— K.
We denote by &* the centralizer of K* Then since K={(by, y)|yEXoss}, We
have

ey G* D77 ({0} X Xa),

from [Proposition 0.3 and Lemma 0.5 For any decomposition K(L%)=H(a),BH(a),
and K(L®)=H(b),PDH(b), into maximal isotropic subgroups, there exists a de-
composition K(L%@+)=H(ab(a-+b)),DH(abla+b)), into maximal ones such that
H(ab(a+b));DH(a);, H(®); for i=1, 2. Let H(ab(a+b))¥ be a level subgroup in
QLR Pag_pa) of H(ab(a+b)); for each i=1,2. Then H(a); and H(b); are
also simultaneously lifted up to subgroups H(a)} and H(b)¥ in H(ab(a-+Db))¥
respectively. The image of the subgroup {1} X H(ab(a+b))} by the canonical
map :

Q(La+b®Pa+ﬁ> Xg(Lab(u+b)®Pap—ba>
—> G(L***Q P p) X G(L™** PR Pog-va) /{4, A7) | A€ R¥}
;g(pi‘((La+b®Pa+B)®p;k(Lab(a+b)®Pa,'3—ba)) y
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which we also denote by H(ab(a-+b))¥, is a level subgroup of {0} X H(ab(a-+b)),
for each i=1,2. Therefore the subgroups H(a)} and H(b)¥ in H(ab(a+b))¥
also can be identified with level subgroups of {0} X H(a); and {0} X H(b); respec-
tively. From the above inclusion relation (1),

@* D H(a)¥, H(b)F
for 1=1, 2. Since (ab, a+b)=1, we have
Ha)fN"K*={1} and HO}NK*=/{1}.

Therefore the subgroups H(a)f and H(b)} are canonically isomorphic to sub-

groups of
G*/K* = G(pF(L*Q Pa) @ pF(L*Q Pp))

= G(L*Q Pa) X A(L"Q Pp)/{(2, A7) | A € ¥}

(cf. Proposition 0.1 and [Proposition 0.3), which we denote by H(a)f and H(b)¥
respectively. Moreover H(a)¥ and H(b)¥ are canonically identified with sub-
groups of G(L*®P,) and G(L*QPs) respectively, because (g, b)=1. For any
element z< H(a)¥\JH(b)¥, we denote by Z its canonical image in H(a)¥\JH(b)¥.
Under these notations we have the key proposition.

PROPOSITION 1.3. Let j/=7(L*“*PQPys_44).

(0) We have

rank (c,,)=1[, i.e., =(a+0b)? for cu’s in (%)

and

u(x—by)(x+ay) € '(L***Q Prp) QW

where W, is a j’~'(Xg4p)-stable subspace of I'(L**PQP,p_pq) 0of dim L
Movreover if we put i,=1 or 2, then we have the following three statements.
Q) If v is Hb)f-invariant, W, is not only j~*(Xgys)-stable, but H(b)E-

invariant.
(i) If {Uiu}xemm;g is a basis of I'(L*QP,) and we put W:ze1§a>2'§,U2W°
in I'(LY*YQPas_sa), then W is the direct sum of U,Wy’s.
(i) If {Uiubicnwyx and {Uivlienex are basis of I'(L*QPa) and I'(L’Q Pp)
respectively, then
L(L™*PQ Pog-pa) = s> UppWo.

e peH@FXHB

PRrROOF. Since
EX N (L*QPHIQI(L*QPp)) = (I (L* QP g) QI (L P Q Pop_pa))®

u(x—by)v(x+ay) is invariant under the action of K*. If r=rank (c.,)<(a+b),
there exist non-degenerate matrices P and ¢ such that
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u(x—by)v(x+ay) ="(s(x)P E | o \@7®O,

010

where (s,(x)) and (¢,()) mean column vectors. Now we put ‘(s,)P '='(s},) and
Q~'(t,)=(t)). Then

u(x—by)o(x+ay)= B s(HG)

On the other hand, since G(L**’®P,,s) operates irreducibly on I'(L***QPqu.p),
the subspace <si, --+, s,»> must be bijectively mapped to a distinct subspace of
I'(L*"®QP,.5) by a suitable element of j”*(X,.s), where j”=j(L***QPy.p). So
u(x—by)v(x+ay) can not be invariant under the action of K*, which contradicts
our first notice. Therefore r=rank (c.,) must be equal to I=(a-+b)%. After
choosing a suitable basis, we may assume that

@ u(r—by)o(r-+ay) = 3 s(I0)

If we put Wo=<¢,, ---, 1), then it becomes stable under the action of j'~'(Xq+s)
(CG(L¥P“™ PR Pys_sa)), because I'(LPRPaig)=<sy, -+, 5;». Hence we obtain
our first assertion (0). For the rest of our assertions, we may assume, with-
out loss of generality, that i,=1. By [Proposition 0.2, for each z< H(a)¥\JH(a)¥

VHbF I Hb)F CG(pF(L* QP ass)QDF (LR Pys_pe)) we have a commutative
diagram :

*

¢

T (L'@PIRI(L'QPy) = I'(L™@Pos ) QT (L™ **P@Pos_s)
3) Us | o |u.

[ (L'QPIRI(L'QP5) —> [ (L @Par )OI (L™ *QPos_1) -

Applying this diagram to the equation (2), we obtain

(4) (Uzu><x—by)v(x+ay):i:21si(x>Uzti(y> for A< H(a)¥JH(a)f
and
G  w—b)Up)eta) = Zs@Uk)  for ¥eHOIJHEL.

Therefore if v is H(b)¥-invariant, the latter equation implies that

é} Si(x)Uz'ti(y)Zé‘l si0)t(y)  for AeH(b),

i. e,
Upti(y)=t(y) (@=1,--,1) for any € H(b)¥.

Hence (i) has been proved. As for the assertion (ii), we first assume that
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{Uzu}senex is a basis of I'(L°®P,). Then the equation (4) leads us to

UV x—by)u(r-+ay) = 3 s (UL U3t)0)

for any A4, H(a)f and A, H(a)¥. Since {U}ﬂ};eym);k is a basis of I'(L*QP,),
(Uz,Uzu)(x—by) can be expressed as a linear combination of (Uju)(x—by)’s.
Therefore (U3 Uz u)(x—by)v(x+ay) is also expressed as a linear combination of
{(Uzw)(x—=by)v(x+ay)}enay; i e, UzUxt’s are expressed as linear combina-
tions of {Uxti}gslggfz;k. This implies that W is j/ Y Xa(as5)(CE(LP PR P s pa))-

stable. Therefore by [Proposition 0.4, we obtain

dim W= {a(a+D)}#,

which implies the equality W= & U,W, The last assertion (iii) in the pro-

leH@¥
position is proved in the same manner as (ii) is. Q.E.D.

THEOREM 1.4 (The rank theorem; cf. [1], Theorem 2.5). Let Y be any
abelian variety of dim g; let M be any principal invertible sheaf on Y ; and let
a, by, be positive integers such that b=b,—a>0, (a, by)=1 and p )Y abb,. Let
K(M®)=H(ab,),DH(ab,),, K(M*)=H(a),DH(a), and K(M®)=H(b,),(DH(b). are
decompositions into maximal isotropic subgroups, such that H(aby);DH(a);, H(b,);.
Then these maximal isotropic subgroups are lifted up to level subgroups:

1 —> % —> G(M™) —> Y gy —> 0,
U U
H(aby)¥* = H(aby),
H(a)¥* = Ha),
H(b¥* = H(by)s

for i=1,2. Let 0=I'(M®0) be a section such that {U.0} sencavppx is a basis of
F(Mabo) and that <{U10}ZEH(a)i“*> is H(a)i*-stable or <{U,u0}yeH(b0)l**> is H(bo)§*-
stable. Then for any closed point y&Y, we have the equality

rank <Ul+y0<y>)(l,#)EH(a)ik*xH(bo)ik* =a®.

Proor. By [Lemma 1.1, there exist an abelian variety X, an isogeny
m: X—Y and a principal symmetric invertible sheaf L on X such that

TH( M) = L@ P,  for some 7e& X

and kerx is a maximal isotropic direct summand H(b), of K(L")=X, Now
we take a solution «, S& X of the equation af—ba=y. Then a fixed isomor-
phism 7¥(M*0)= L**PRP,q_,, defines a lifting of the group H(b),:
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1 — ¥ —> Q(Lab(a'm)@Paﬁ_ba) _—> Xab(a+b) —>0.

HbY = H(b),

Moreover if we denote by @(M®)* the centralizer of H(b)¥, we have a canonical
isomorphism C(M0)=g(M)*/H(b)¥. Since H(b)¥ is contained in the center
of G(M®)* and (ab,, b)=1, the given level subgroups H(ab,)¥*, H(a)}* and
H(by)¥* in @(M) are naturally isomorphic to subgroups H(ab,)¥, H(a)¥ and
H(by¥ of G(M®)* respectively. Moreover we have the isomorphism defined
by #* from I'(M%0) to the H(b)¥-invariant subspace I’ (L“”b°®Paﬂ_,,a)”“>ik,
which is compatible with the actions of 2(M?%°) and G(M*)*. Therefore we
have been able to reduce our assertion to the equality

rank (U2+,uﬁ(y))(2,,u)EH(a}i|‘xH(bo)ik =at,

for any y=X and a section 8’ (L“””O(X)Pa@_,,a)”"”ik such that {U.0}.cuwp¥ is
a basis of I’ (L"””O(X)Pa,g_ba)”“”ik and that ({Uﬁ}zema)p is j/~1(X,)-stable or
U0} senap> is j'7*(Xasp)-stable. Under the notation in Proposition 1.3, we
take an H(a)¥ (resp. H(b)¥)-invariant non-zero element u (resp. v). Then
{Uzu} ienc¥ becomes a basis of I'(L*®P,). Moreover, according to Proposi-

tion 1.3, we have

u(x—by)v(x+ay) €I (L’ QPoig) QW CI'(L*P°Q Py g) QI (L™ **PQPop-pa) »
where W, is j/7%(X,,s)-stable and invariant under the actions of H(b)¥ and
H(a)¥, and

F(Lab(a+b)®Paﬁ—ba) DW= @ U/IWO .

ieH@F

Since W is H(b)f¥-invariant and of dim (ab,)?!, we have

W= & UZWO:F(Pabb()@Paﬁ—ba)H(b)f.

ieH@F

If we take an H(by)¥-invariant ¢’ in W, {U .0’} weH@pp¥ becomes a basis of W.
Moreover, from the equation (4), we obtain ’

v(x+ ay)(Ulu(x_by»XGH(a)ik
= (U2+y0/(y))(2,/1)EH(a)IkxH(bo);k(cpi)(si(x))lgi§l .
Since {Uu(x—by)} JeH@¥ are linearly independent for any fixed y, we obtain
(*) rank (Uzsu0'(9))amenca* <ok = a8 .

If & is an element of W such that {Uzﬁ}zeg(abo)ik is a basis of W and W'=
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LU0} EHM,;O is H(a)¥-stable, then there exists a non-trivial H(a)s-invariant
element #” in W’, and W’:<{U10”}1ey(a)ik>. Therefore there exists a non-
singular a® X a®-matrix A such that

(Uze)zema);" = A(Uzﬁ”)zemm;k ’

(U1+p0)<1,p)ema>;kxH(a+b>i‘<: A(U2+;t6”)(2+,u)611(a);kxH(a.+b)ik ’
which implies the equality
(%) rank (U2+/10(y>)(2,,u)€}1(a)i"xH(a+b);"

=rank (U2+,u0”(y))(l,y)eﬂ(a)ikxH(a+b)i" .

Moreover since W, is H(a)f-invariant and of dim (a+b)%, {U.0'} uencarny and
{Uu0"} pencasny are basis of W, Therefore for some non-singular (a+b)®
X (a+b)®-matrix B, we have

t(U;ﬂ”),ueHmw);k = t(U,uﬁ/)yEH(a+b)ikB ’

(UZ+;¢0”)(2,;1)EH(¢1)I*><H(a+ Oty :(U1+p0’)<z,p>ey(a>l*xH<a+b>;|‘B ’
which implies the equality
(k%) rank (U2+,u€”(y))(i,y)eH(a)i“xH(a+b);"
=rank (Ul+p0,(y))(2,,u)eﬂ(a)i“xH(a+b)i" .
Hence from (), (¥*%) and (***), we obtain our required equality
rank (U2+yﬁ(y))(l,/l)EH(a)i"xH(a+b>;" =af.

If we assume that # is an element of W such that {U,ﬁ}zeycabo);k is a basis of
W and W”={{U 0} yenwyx> is H(b)f-stable, then there also exists a non-trivial
H(by)¥-invariant element 6” in W”, and W”={{U 0"} ,,EH(,,m;k). Therefore by
the same argument as in above, we also obtain our assertion in the case. Q.E.D.

2. In the section, a, b, d denote positive integers such that (ad, a+b)=1,
abd>a+b and p ) abd(a+b). As in [Proposition 1.2, we define a homomorphism
£: XX X—=XXX by (x,y)—(x—by, x+ay).

ProrosITION 2.1 (cf. [1], Proposition 3.2). Let L be a symmetric principal
invertible sheaf on X, and let a, B be two closed points on X Let ﬁ(abd) be
a maximal isotropic direct summand of K((qﬁzl)L“”d):Xabd and we put ﬁ(d):
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)?dmﬁ(abd). Then
2 I'L*QPan)QL(L*Q Pyiy) —> I'(L*M Q) Pasp)

refi@
is surjective.

PrOOF. Let ?:X/Fl(d) and # : X—7 be the canonical projection ; further-
more let 7: Y—X be the dualized map of 2. Then by Lemma L], there exists
a principal invertible sheaf M on Y such that #*L=M? and ker 7 is a maxi-
mal isotropic direct summand of K(M?), which we put K. From the way of
the choice of ﬁ(abd), there exists a maximal isotropic direct summand
H(abd(a-+b)) of K(M®***PQPuzp 424 such that H(abd(a+-b))NK={0}. Here
we put H(abd)=H(abd(a+b))N\Yapa, H(a+b)=H(abd(a+b)NY s, H(a)=
H(abd(a+-b))NY, and H(b)=H(abd(a+b))NY,. We denote by adding **-symbol
to them the level subgroups in G(M*®H**PQP, 5 4z,) such that H(abd(a+b))**
DH(abd)**, H(a+b)**; H(abd)**DH(a)**, H(b)**; and K** corresponds to the
isomorphism M®¥HDRP 25 47 (=T (LY DQP,5_4,). If we denote by &* the
centralizer of K** in G(M****®Q P,z 5-174), we have the canonical isomorphism

G* /K = G(L™ D@ Pys_yp) .

By H(a+b)**, H(a)** and H(b)** are contained in &*. Therefore
by the assumption (d,a+b)=1 and the fact (H(a)**JH(b)**)N\K**={0},
H(a+b)**, H(a)** and H(b)** are canonically isomorphic to subgroups of
QL™ DR P,s_5a), which we denote by H(a-b)*, H(a)* and H(b)* respectively.
Hence by [Proposition 0.2, for any A< H(a+0)**UH(a)**\UH(b)**, we obtain a
commutative diagram :

Tk
]‘Y(Lab(a+b)® Pa[i—b(r) 7' - F(Mabd(a+b) ® Pa?rﬁ‘bﬁa)
Us Ua
7Z'*
(L@ Pop-0) = (M P Q Pozp-via),

where A’ is the canonical image of 4 in H(a+b)*\JH(a)*\JH(b)*. Moreover the
relation Tx(M*¥PQPoz s pz o) ZT4(T¥( L PQPop )= 2 L¥““PQPop_parr

rEH()
leads us to the decomposition :
n*

(*) 2 (L PQPogpast) = (M PQP oz p-via) -

reH@

Furthermore, for any g=(y, ¢)= H(abd)**, we obtain a commutative diagram :
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k

IF(Lab(ub)@Paﬁ_M) T > F(M“bd(“w@f’a&ﬁ—bﬁa)

/

/

/ T* T
! i L Y
!
] T*

@ Unl TTHL™@ Pap-sa) = D(TIMS* P Q@ Pagpsia) | U

1

1 =1

\ 2 |9

\

\ TL’*
- [v(]uabdw.w)@ Par?ﬁ—bﬁ a) .

\
T(LPYQ Pop_pasascatng L oxn)

Here we denote by U/, the composite of the left vertical arrows. On the

other hand, for any x< X, the diagram:

XxX XxX
T(O,.r) T(—bx,ax)
XxX 3 XXX

commutes. Hence we have an isomorphism

EX(T Eb2,am(PF(L* QPR pF(L'QPp))) = T 8,0 E*(PH L QPR pF(L'QPy)) ,

i.e.,

EPHL®Pacang ) D H L@ P1 arg )
= pik(LMb@Pmﬁ)®p§k(Lab(a+b)®Paﬁ—ba+ab(a+b>¢L(z)) .

Therefore we obtain a commutative diagram :

R
., I(L*Q@PIQT(L'® Pp) : I(L*"@Pusp) QT (L@ Pap-ba)
S Thugew 19T,
/, 5*
(3) Ui|  I(T*mL*@P)RI (Tt L'®Ps) T (L@ Py ) QT (T LY@ Pog_y0) v,
|
\
\
\
5*
T(LAPQP oy )R (0+Y

®Paﬁ—bn+ab(a+b)t,"L(7ry))

\
\ F(L"@Pa-ab¢L(zy>)®F(LD®Pﬂ+ub¢L<fw)

Similarly, we denote by U/ the composite of the left vertical arrows. Once
more we notice that the subgroups H(a)* and H(b)* of G(L¥“*PQP,s-4,) are
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canonically isomorphic to subgroups H(a)* and H(b)* of ¢(L*QP.) and G(L*Q P)
respectively (cf. § 1), and we denote by Z the canonical image in H(a)*\UH(b)*
of an element z€ H(a)*\JH(b)*. Now we take sections u and v from ['(L*QP,)
and I'(L’Q@Pg) such that {Uzu}ienr and {Ugv} enay are basis of I'(L*QP,)
and I'(L®@Pg) respectively. Then from [Proposition 1.3, (iii), for a suitable
basis {s;, -+, 8} and a section Ol (L®PQPys4a) such that
{Uzs 150} e fcarormear~aare becomes a basis of I'(L™**P@Pyga) and the
subspace {{U;0} cncasvry i8S J' 1 (Xq.sp)-stable, we have

E*(uv) ="(s)12i1(Us0) rencarre -
Applying the diagram (1) to this equality, we obtain
(1Q7*)E*(uv) =" (sisis1(Uim*0) rencasrvr -
Therefore from the commutative diagram (2) and (3), we have
(x%) "(AQT*)EXU j(uv)))(%, ¥)) pencavars

= t(si(x))1giéz((Uz+y(7f*¢9))(y))u,p)ema+br-xH(abd)n .

On the other hand, the subspace {{U;7*0}cuca+v~y is stable under the action
of j(Mabd(Mb)@Pm?ﬁ-m?a)_I(Ya+b)y and {U,m*0} a wencassroxmw@sa becomes a
basis of I'(M®¥**DRQP, 25 sna). Therefore by the rank theorem, we obtain
the equality

rank (U2+,u7r*0(0))(2,/1)€H(a+b)“xH(abd)" =(a+b)*.

Hence we obtain our assertion, putting ¥y=0 in (**). Q. E.D.

REMARK. The assertion of Proposition 2.1 is still true without assuming
the symmetricity of L, because every invertible sheaf is algebraically equi-
valent to a symmetric invertible sheaf.

THEOREM 2.2 (cf. [1], Theorem 4.2). Let L be an ample invertible sheaf
of separable type on X, and let a, B be two closed points on X Let H(L®9)
be a maximal isotropic direct summand of K(L®?), and we put H(L?)=
H(L®)AK(LY) and H(d)=¢,(H(L?). Then

2 IN'L*Q@Pan)QI(L’Q Ppir) —> I'(L**Q Paug)

reH(D)

is surjective.

ProoF. If we put H=K(L)NH(L?%), then it is a maximal isotropic direct
summand of K(L). Let m=: X—X/H be the canonical projection, and M be a
principal invertible sheaf on X/H such that z*M=L. Moreover we put K=
Pu(n(H(LY))) and H=ker #. Obviously, K is isomorphic to ﬁ(d) by #. Now
we take two points a’, 8’ from #7'(a) and #7'(8) respectively. Then for any
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7' €K, we have
[ T*MOQ Por-r) = L*Q Po-zr

THMP® Pyar) = L'® Ppair

or
{ T(L°® Pa-ir) = B M@ Pz
W*(Lb®Pp+f:r') = X?gﬁMb@ Pgoiriia,
i.e.,

[ [(L*@Peir) = T (M°@ Porisa)
[(IP@Psir)= 3, T(M @ Parria)

Hence we obtain a commutative diagram:

S I(L*®Pe @I (P@Ps.r) [(L**QPars)
7TEH(D
z
2, T M@Par-ra O T, T DPprsrsy) z
z

2.3 (BT MQPuiy-1)QI (M QPpispsv))) —> 2, LM QPgrsprsn) -
v'EH ' +p' =y y'EK v'EH
Therefore we have been able to reduce our theorem to some principal cases.
Q.E.D.

Lastly, we assume that p+#2, 3,5. Then we have

THEOREM 2.3. Let L be any ample invertible sheaf of separable type on X;
let a, B be two closed points on X Then

I'(L*QPIQI (L’QPg) —> I'(L***QPasp)

s surjective for all integers a, b such that a=2, b=3.

PROOF. Applying in the case of a=2, b=3 and d=1, we
obtain the surjectivity of the map ['(L*QP)RI'(L*QPg)—I'(L*QPp). For
general a, b, the assertion can be inductively reduced to the case by Mumford’s
lemma and his method in [4], pp. 68-70. Q.E.D.
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