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The purpose of this note is to give a direct proof to a theorem of Alek-
seevskii which asserts existence of a special kind of neighborhoods around a
certain point of a Riemannian manifold.

Let $M$ be a Riemannian manifold of dimension $m\geqq 3$ . The following is
known as Lichnerowicz’s conjecture: If the largest connected group $C_{0}(M)$ of
conformal transformations of $M$ is essential (See \S 1 for the meaning of ter-
minology), then $M$ is conformal either to $a$ Euclidian sphere $S^{m}$ or to $a$ Eucli-
dian space $E^{m}$. This conjecture is affirmatively answered by Lelong-Ferrand
[2] and by Obata [3] in the case when $M$ is compact, and also by others
under some additional conditions (cf. [4]). Recently Alekseevskii [1] tried to
assure the conjecture for the most general case. The theorem we shall estab-
lish in this paper is stated in a slightly weaker form in the paper [1] with
a proof which seems incomplete. We shall show, in a way slightly different
from Alekseevskii’s, how our theorem is applied to a proof of Lichnerowicz’s
conjecture for the general case under the assumption that $M$ admits an essential
one-parameter subgroup of $C_{0}(M)$ .

The author wishes to express his hearty thanks to Professor T. Ochiai
for his kind advices and encouragements.

\S 1. Statement of Theorem.

Let $M$ be a Riemannian manifold. Throughout this paper, manifolds, func-
tions etc. are assumed to be of class $C^{\infty}$ . We shall denote by $C(M)$ the group
of all conformal transformations of $M$ endowed with the compact-open topo-
logy and $C_{0}(M)$ its connected component of the identity. A subgroup $G$ (resp.
an element $\phi$ ) of $C(M)$ is said to be essential, if $G$ (resp. $\phi$ ) is not contained
in the group of all isometric transformations of the manifold $M$ endowed with
any Riemannian metric conformal to the original one.

Let $\Psi$ be a family of diffeomorphisms of a Riemannian manifold $M$ which
leave a point $p\in M$ fixed. A neighborhood $U$ of $p$ is said to be $\Psi$ -admissible
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if for any $\phi\in\Psi$ different from the identity transformation, and for any $x\in U$

one of the sequences $\{\phi^{(i)}(x)|i=1, 2, \}$ and $\{\phi^{(-i)}(x)|i=1, 2, \}$ lies entirely
in $U$ and converges to $p$ , where $\phi^{(i)}$ and $\phi^{(-i)}$ are i-th iterated products of $\phi$

and $\phi^{-1}$ respectively. When $\Psi$ consists of only one element $\phi$ , $U$ is said to
be $\phi$ -admissible.

We can now state:
THEOREM. Let $M$ be a Riemannian manifold of dimension $m\geqq 3$ , and $\phi$ be

an essential conformal transformation of $(M, g)$ which leaves a Point $p\in M$

fixed. Then there exists, in an arbitrary small neighborhood of $p,$ a $\phi$ -admissible
neighborhood $U$ of the Point $p$ . Moreover, when the diferential $\phi_{*p}$ of $\phi$ at $p$

is an orlhogonal transformation of the tangent space $T_{p}(M)$ to $M$ at $p$ , there
exists a Point $q\in U(q\neq P)$ such that both $seque\eta ces$ $\{\phi^{(i)}(q)|i=1, 2, \}$ and
$\{\phi^{(- i)}(q)|i=1, 2, \}$ lie entirely in $U$ and converge to $p$ .

REMARK. The condition that $\phi_{*p}$ is an orthogonal transformation of $T_{p}(M)$

is preserved under any conformal change of the metric $g$.
We make a few observations about the proof of this theorem in the Alek-

seevskii’s paper [1]. Let $\phi^{i}(x)$ be the i-th coordinate of $\phi(x)$ with respect to
geodesic coordinate $x^{i}$ around $p,$ $\phi$ being the transformation in the theorem,

and let

$\phi^{i}(x)=A_{j}^{i}x^{j}+\frac{1}{2!}A_{jk}^{i}x^{j}x^{k}+\frac{1}{3!}A_{jkl}^{i}x^{j}x^{k}x^{l}+\cdots$

be the Taylor expansion of the function $\phi^{i}(x)$ around the point $p$ . Here and
in the following, $\cdots$ means a residue term of higher order, indices run over
1, $\cdots$ , $m$ , and we use the Einstein’s convention. Alekseevskii proved the theo-
rem ([1], \S 2, Proposition 2) assuming that all the coefficients of the third order
$A_{jkl}^{i}$ are zero. It is not clear whether this is true, and even if this fact is
admitted, it seems that his proof is still not complete. In this paper, we shall
prove the theorem by taking into account all the coefficients up to the third
order of the $a\mathfrak{h}OVe$ Taylor expansion. Our proof may clarify local behavior
of the essential transformation $\phi$ leaving a point fixed.

We get the following:
COROLLARY 1. Let $M$ be a Riemannian manifold of dimension $m\geqq 3$ , and

$\Psi=\{\phi_{t}\}$ be an essential one-parameter subgroup which leaves a point $p\in M$ fixed.
Then there exists, in an arbitrary small neighborhood of $p,$ a $\Psi$ -admissible neigh-
borhood.

COROLLARY 2. The assumptiOns and notation being as in Corollary 1, sup-
Pose that the $differe\eta iial(\phi_{r})_{*p}$ at $p$ of a transformation $\phi_{r}\in\Psi(r\neq 0)$ is an
orthogonal transformation of $T_{p}(M)$ . Let $U6e$ a $\Psi_{\urcorner}$ admissible neighborhood of
$p$ , and $P^{ut}\Psi U=\{\phi x|\phi\in\Psi, x\in U\}$ . Then $\Psi U=M$.

PROPOSITION 1. The assumptions and notation being as in Corollary 1,
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suppose that the differential $(\phi_{r})_{*p}$ at $P$ of a transformation $\phi_{r}\in\Psi(r\neq 0)$ is an
orthogonal transformation of $T_{p}(M)$ . Then $M$ is conformal to $S^{m}$.

REMARK. An essential one-parameter subgroup of $C(M)$ always has a
fixed point (see, for example, [5]).

The following has been proved.
PROPOSITION 2 (Avez [6], Obata [5]). Suppose that a Riemannian mani-

fold $M$ of dimension $m\geqq 3$ admits $a$ one-parameter subgroup of $C(M)$ such that,
at each of its fixed points, the divergence of the corresponding vector field does
not vanish. Then $M$ is conformal to $S^{m}$ or $E^{m}$.

By Proposition 1 and 2, we get the following theorem.
THEOREM A. If a Riemannian manifold $M$ of dimension $m\geqq 3$ admitis an

essential one-parameter subgroup of $C(M)$ , then $M$ is conformal to $S^{m}$ or $E^{m}$ .

\S 2. Proof of Theorem.

We shall denote the k-dimensional standard real vector space by $R^{k}$ , and
its dual space by $(R^{k})^{*}$ . An element of $R^{k}$ will be considered as a column
vector, and an element of $(R^{k})^{*}$ as a row vector with respect to the canonical
basis of $R^{k}$ . For $y\in R^{k}$ (resp. $(R^{k})^{*}$ ) ${}^{t}y$ will denote the transpose of $y$ . We
denote by $(, )$ the standard inner product on $R^{k}$ , and put $|y|=(y, y)^{1/2}$ for
$y\in R^{k}$ . A linear transformation of $R^{k}$ will be represented by a $k\times k$ matrix
with respect to the canonical basis of $R^{k}$ . The orthogonal group of degree $k$

is denoted by $O(k)$ .
Let $(x^{1}, \cdots , x^{m})$ be a system of geodesic coordinates around $p\in M$ with

respect to the metric $g(m=\dim M)$ . We shall identify the tangent space
$T_{p}(M)$ (resp. the space $T_{p}^{*}(M)$ of covectors) of $M$ at $p$ with $R^{m}$ (resp. $(R^{m})^{*}$),

a tangent vector $\sum_{i=1}^{m}a^{i}(\partial/\partial x^{i})_{p}$ (resp. a covector $\sum_{i=1}^{m}b^{i}(dx^{i})_{p}$) being identified

with ${}^{t}(a^{1}, \cdots , a^{m})\in R^{m}$ (resp. ( $b_{1},$ $\cdots$ , $b_{m})\in(R^{m})^{*}$). A coordinate neighborhood
around $p$ will be identified with an open subset of $R^{m}$ through the mapping
$q\rightarrow{}^{t}(x^{1}(q),$ ,

Let $A$ be the linear transformation of $R^{m}$ corresponding to the differential
$\phi_{*p}$ of the essential transformation $\phi$ at $p$ . Let $\nu$ be the function on $M$ defined
by $\phi^{*}g=e^{\nu}g$ and $\xi$ be the element in $R^{m}$ such that ${}^{t}\xi$ corresponds to the dif-
ferential $d\nu_{p}$ of $\nu$ at $p$ . We may assume ${}^{t}\xi A=^{t}\xi$ ([1], \S 2, Lemma 1). This
implies that ${}^{t}A\xi=\xi,{}^{t}A$ being the transpose of $A$ .

Now if $\nu(p)\neq 0$, then the theorem is easily proved. So we assume $\nu(P)=0$.
Then $A\in O(m)$ and we are under the assumption of the second half of the
theorem. Since $\phi$ is essential, $\xi$ is not $0$ ([1], \S 2, Proposition 1). $\phi$ can be
expanded as follows in the geodesic coordinates around $P$ with respect to the
metric $g$ :
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(1) $\phi^{i}(x)=A_{j}^{i}x^{j}+\frac{1}{2!}A_{jk}^{i}x^{j}x^{k}+\frac{1}{3!}A_{jkl}^{i}x^{j}x^{k}x^{l}+\cdots$ .

REMARK. The assumption dim $M\geqq 3$ in Theorem is necessary for the proof
of Proposition 1 in the paper [1].

LEMMA 1. We have

(2) $|\phi(x)|^{2}=|x|^{2}+\frac{1}{2}(\xi, x)|x|^{2}+\frac{1}{6}|x|^{2}((x, \xi)^{2}+{}^{t}x\phi x)$

$+\frac{1}{6}x^{a}x^{b}(g_{ab,st}-A_{a}^{i}A_{b}^{j}g_{ij,kl}A_{s}^{k}A_{t}^{l})x^{s}x^{t}$

$-\frac{1}{48}|x|^{4}|\xi|^{2}+o(|x|^{4})$ ,

where
$g_{ab,st}=\frac{\partial^{2}(g(\partial/\partial x^{a},\partial/\partial x^{b}))}{\partial x^{s}\partial x^{t}}(0)$

and $\phi$ is the $m\times m$ matrix whose $(i, j)$ compOnents are

$\partial^{2}\nu/\partial x^{i}\partial x^{j}(0)$ $(1\leqq i, j\leqq m)$ .

PROOF. Since $\{x^{i}\}$ are geodesic coordinates, the function $g_{ij}=g(\partial/\partial x^{i}$ ,
$\partial/\partial x^{j})$ can be expanded as

(3) $ g_{ij}(x)=\delta_{ij}+\frac{1}{2}g_{ij,kl}x^{k}x^{l}+\cdots$ .
From (1) and (3) follows

(4) $ g_{ij}(\phi(x))=\delta_{ij}+\frac{1}{2}g_{ij,kl}A^{k}A^{l}x^{s}x^{t}+\cdots$

And by (1)

(5) $\partial\phi^{i}(x)/\partial x^{a}=A_{a}^{i}+A_{ak}^{i}x^{k}+\frac{1}{2}A_{akl}^{t}x^{k}x^{l}+\cdots$ ,

(6) $\partial\phi^{j}(x)/\partial x^{b}=A_{b}^{j}+A_{bk}^{j}x^{k}+\frac{1}{2}A_{bkl}^{j}x^{k}x^{l}+\cdots$ .
The function $e^{\nu}$ is expanded as

(7) $e^{\nu(x)}=1+\xi_{k}x^{k}+\frac{1}{2}\xi_{k}\xi_{l}x^{k}x^{l}+\frac{1}{2}\Phi_{kl}x^{k}x^{l}+\cdots$ ,

where $\xi_{k}=\partial\nu/\partial x^{k}(0)$ and $\Phi_{kl}=\partial^{2}\nu/\partial x^{k}\partial x^{l}(0)$ . The local expression of $\phi^{*}g=e^{\nu}g$

is

(8) $g_{ij}(\phi(x))\frac{\partial\phi^{i}(x)}{\partial x^{a}}\frac{\partial\phi^{j}(x)}{\partial x^{b}}=e^{\nu(x)}g_{ab}(x)$ .

Substituting the formulas (3), (4), (5), (6) and (7) in (8) and comparing the co-
efficients of the second order terms, we obtain
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(9) $\sum_{j=1}^{m}(\frac{1}{2}A_{b}^{i}A_{akl}^{f}x^{k}x^{l}+A_{ak}A_{bl}^{f}x^{k}x^{l}+\frac{1}{2}A_{a}^{f}A_{bkl}^{f}x^{k}x^{l})$

$+\frac{1}{2}A_{a}^{i}A_{b}^{j}g_{ij,kl}A_{s}^{k}A_{\iota^{X^{S}X^{t}}}^{l}$

$=\frac{1}{2}g_{ab,kl}x^{k}x^{l}+\frac{1}{2}\delta_{ab}\xi_{k}\xi_{l}x^{k}x^{l}+\frac{1}{2}\delta_{ab}\Phi_{kl}x^{k}x^{l}$ .
Comparing the coefficients of the Prst order terms, we obtain

$\sum_{j=1}^{m}(A_{a}^{j}A_{bk}^{j}+A_{b}^{j}A_{ak}^{j})=\xi_{k}\delta_{ab}$ .
$From_{-}this$ follows

$A_{x}y=\frac{1}{2}A\{(\xi, x)y+(\xi, y)x-(x, y)\xi\}$ ,

where $x$ and $y$ are m-vectors and $A_{x}$ is the $m\times m$ matrix whose $(i, j)$ com-
ponents are $A_{jk}^{i}x^{k}$ ([1], \S 2, p. 292). Put $y=x$ in the above formula. Then we
obtain

(10) $ A_{x}x=(\xi, x)Ax-\frac{1}{2}|x|^{2}A\xi$ .
Therefore

(11) $|A_{x}x|^{2}=\frac{1}{4}|x|^{4}|\xi|^{2}$ .
Now from (9) we get

(12) $\sum_{j=1}^{m}A_{b}^{j}A_{akl^{xxxx^{l}+|A_{x}x|^{2}+\frac{1}{2}x^{a}x^{b}A_{a}^{i}A_{b}^{j}g_{ij,kl}A_{s}^{k}A_{t}^{l}x^{s}x^{t}}}^{jabk}$

$=\frac{1}{2}x^{a}x^{b}g_{ab,kl}x^{k}x^{l}+\frac{1}{2}|x|^{2}((x, \xi)^{2}+\iota x\Phi x)$ .
From (1) we get

(13) $|\phi(x)|^{2}=|Ax|^{2}+(Ax, A_{x}x)+\frac{1}{3}\sum_{i=1}^{m}A_{j}^{i}A_{ku^{XXXX^{t}}}^{ijkl}$

$+\frac{1}{4}|A_{x}x|^{2}+o(|x|^{4})$ .

Substituting the formulas (10), (11) and (12) in (13), it follows:

$|\phi(x)|^{2}=|x|^{2}+\frac{1}{2}(\xi, x)|x|^{2}+\frac{1}{6}|x|^{2}((x, \xi)^{2}+{}^{t}x\Phi x)$

$+\frac{1}{6}x^{a}x^{b}(g_{ab,st}-A_{a}^{i}Aig_{ij,kl}A^{k}A^{l})x^{s}x^{t}$

$-\frac{1}{48}|x|^{4}|\xi|^{2}+o(|x|^{4})$ .

This proves the formula (2) in Lemma 1.
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LEMMA 2. Let $\alpha$ be any Positive constant less than $|\xi|/4$ . Then there
exists a Positive constant $\epsilon_{1}=\epsilon_{1}(\alpha)$ with the following Property: If $|x|<\epsilon_{1}$ and
$(\xi, x)<-\alpha|x|$ , then $|\phi(x)|<|x|$ and $(\xi, \phi(x))<-\alpha|\phi(x)|$ .

PROOF. We note first

$|\phi(x)|^{2}=|x|^{2}+\frac{1}{2}(\xi, x)|x|^{2}+o(|x|^{3})$ .

If $|x|(x\neq 0)$ is sufficiently small, then

$|o(|x|^{3})|/|x|^{2}<\alpha|x|/2$ .
If $|x|(x\neq 0)$ is sufficiently small and $(\xi, x)<-\alpha|x|$ , then

$|\phi(x)|^{2}=|x|^{2}+|x|^{2}(\frac{1}{2}(\xi, x)+\frac{o(|x|^{3})}{|x|^{2}})$

$<|x|^{2}+|x|^{2}(-\frac{1}{2}\alpha|x|+\frac{1}{2}\alpha|x|)=|x|^{2}$

and so $|\phi(x)|<|x|$ .
If $-2\alpha|x|<(\xi, x)<-\alpha|x|$ , then from (1) and (10) we see

$(\xi, \phi(x))=(\xi, x)+\frac{1}{2}(\xi, x)^{2}-\frac{1}{4}|x|^{2}|\xi|^{2}+o(|x|^{2})$

$=(\xi, x)+\frac{1}{2}(\xi, x)^{2}-\frac{1}{8}|x|^{2}|\xi|^{2}-\frac{1}{8}|x|^{2}|\xi|^{2}+o(|x|^{2})$

$<(\xi, x)+\frac{1}{2}|x|^{2}(4\alpha^{2}-\frac{1}{4}|\xi|^{2})-\frac{1}{8}|x|^{2}|\xi|^{2}+o(|x|^{2})$ .

Thus if $|x|(x\neq 0)$ is sufficiently small, then

$(\xi, \phi(x))<(\xi, x)<-\alpha|x|<-\alpha|\phi(x)|$ .

Since $(\xi, \phi(x))-(\xi, x)=o(|x|)$ holds, we have

$|(\xi, \phi(x))-(\xi, x)|<\alpha|x|$

for any $x(x\neq 0)$ whose $|x|$ is sufficiently small. Therefore if $(\xi, x)\leqq-2\alpha|x|$ ,

then
$(\xi, \phi(x))<-2\alpha|x|+\alpha|x|=-\alpha|x|<-\alpha|\phi(x)|$ .

This proves Lemma 2.
LEMMA 3. Let $\alpha$ be a positive constant less than $|\xi|/\sqrt{24}$ and $n$ be a

sufficiently large positive integer. Then there exists a positjve constant $\epsilon_{2}=\epsilon_{2}(n)$

with the following Property: If $0<|x|<\epsilon_{2}$ and $-\alpha|x|\leqq(\xi, x)\leqq 0$ , then $|\phi^{(n)}(x)|$

$<|x|$ .
PROOF. We see



284 Y. YOSHIMATSU

$(\phi^{(r)})^{*}g=e^{(\nu\phi+\nu\phi^{(r^{-}2})+\cdots+\nu\phi+\nu)}g(r^{-1)}$

where $r$ is a positive integer. If we put $\nu(r)=\nu\phi^{(r- 1)}+\nu\phi^{(r- 2)}+\cdots+\nu\phi+\nu$ , then

$\frac{\partial\nu(r)}{\partial x^{i}}=\frac{\partial\nu}{\partial x^{k}}\frac{\partial x^{k}\phi^{(r- 1)}}{\partial x^{i}}+\frac{\partial\nu}{\partial x^{k}}\frac{\partial x^{k}\phi^{(r- 2)}}{\partial x^{i}}+\cdots+\frac{\partial\nu}{\partial x^{k}}\frac{\partial x^{k}\phi}{\partial x^{l}}+\frac{\partial\nu}{\partial x^{i}}$

and therefore $ d\nu(r)_{p}=r\xi$ . Furthermore,

(14) $\frac{\partial^{2}\nu(r)}{\partial x^{i}\partial x^{j}}=\sum_{q=1}^{r}(\frac{\partial^{2}\nu}{\partial x^{k}\partial x^{s}}\frac{\partial x^{k}\phi^{(q-1)}}{\partial x^{i}}\frac{\partial x^{s}\phi^{(q-1)}}{\partial x^{j}}+\frac{\partial\nu}{\partial x^{k}}\frac{\partial^{2}x^{k}\phi^{(q- 1)}}{\partial x^{i}\partial x^{j}})$ .

Since $ d\nu(r)_{p}=r\xi$ and $(\phi^{(r)})_{*p}=A^{r}$ , the formula (10) applied to $\phi^{(r)}$ is

(15) $(A_{r})_{x}x=r\{(\xi, x)A^{r}x-\frac{1}{2}|x|^{2}A^{r}\xi\}$ ,

where $(A_{r})_{x}$ is the $m\times m$ matrix whose $(i, j)$ components are

$\frac{\partial^{2}x^{i}\phi^{(r)}}{\partial x^{j}\partial x^{k}}(0)x^{k}$ .

Let $\Phi^{(n)}$ be the $m\times m$ matrix whose $(i, j)$ components are
$\partial^{2}\nu(n)/\partial x^{i}\partial x^{j}(0)$ .

From (14) for $r=n$ we get

${}^{t}x\Phi^{(n)}x=\sum_{q=1}^{n}{}^{t}x^{t}(A^{q- 1})\Phi A^{q-1}x+\sum_{q=1}^{n}(\xi, (A_{q-1})_{x}x)$ .

From this equality and (15) for $r=q-1$ , we get

${}^{t}x\Phi^{(n)}x=\sum_{q=1}^{n}{}^{t}x^{t}(A^{q-1})\Phi A^{q-1}x+\sum_{q=1}^{n}(q-1)\{(\xi, x)^{2}-\frac{1}{2}|x|^{2}|\xi|^{2}\}$ .

Since $A\in O(m)$ , there exist positive constants $M_{1}$ and $M_{2}$ such that

$t_{\chi\Phi^{(n)}x\leqq nM_{1}}|x|^{2}+\frac{n(n-1)}{2}\{(\xi, x)^{2}-\frac{1}{2}|x|^{2}|\xi|^{2}\}$

and
$x^{a}x^{b}(g_{ab,st}-(A^{n})_{a}^{i}(A^{n})_{b}^{j}g_{ij,kl}(A^{n})_{s}^{k}(A^{n})_{t}^{l})x^{s}x^{t}\leqq M_{2}|x|^{4}$ .

Note that $M_{1}$ and $M_{2}$ are independent of the choice of $n$ .
Applying (2) to $\phi^{(n)}$ , it follows that

$|\phi^{(n)}(x)|^{2}=|x|^{2}+\frac{1}{2}n(\xi, x)|x|^{2}+\frac{1}{6}|x|^{2}(n^{2}(x, \xi)^{2}+tx\Phi^{(n)}x)$

$+\frac{1}{6}x^{a}x^{b}(g_{ab,st}-(A^{n})_{a}^{i}(A^{n})_{b}^{j}g_{ij,kl}(A^{n})_{s}^{k}(A^{n})_{t}^{l})x^{s}X^{t}$

$-\frac{1}{48}n^{2}|x|^{4}|\xi|^{2}+o(|x|^{4})$ .
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From this equality and the above two inequalities, we get

$|\phi^{(n)}(x)|^{2}\leqq|x|^{2}+\frac{1}{2}n(\xi, x)|x|^{2}$

$+\frac{1}{6}|x|^{2}n^{2}((x, \xi)^{2}-\frac{1}{3}$ . $\frac{1}{8}|x|^{2}|\xi|^{2})$

$+\frac{1}{6}|x|^{4}(nM_{1}+M_{2}-\frac{1}{3}\cdot\frac{1}{8}n^{2}|\xi|^{2})$

$+\frac{n(n-1)}{2}\frac{1}{6}|x|^{2}((\xi, x)^{2}-\frac{1}{2}|x|^{2}|\xi|^{2})$

$-\frac{1}{6}$ . $\frac{1}{3}$ . $\frac{1}{8}|x|^{4}n^{2}|\xi|^{2}+o(|x|^{4})$ .

If $0<\alpha<|\xi|/\sqrt{24},$ $-\alpha|x|\leqq(\xi, x)\leqq 0$ and $x\neq 0$ , then

$(x, \xi)^{2}-\frac{1}{3}\frac{1}{8}|x|^{2}|\xi|^{2}<0$

and

$(\xi, x)^{2}-\frac{1}{2}|x|^{2}|\xi|^{2}<0$ .
If $n$ is sufficiently large, then

$nM_{1}+M_{2}-\frac{1}{3}$ . $\frac{1}{8}n^{2}|\xi|^{2}<0$ .

If $|x|(x\neq 0)$ is sufficiently small, then

$-\frac{1}{6}$ . $\frac{1}{3}$ . $\frac{1}{8}|x|^{4}n^{2}|\xi|^{2}+o(|x|^{4})<0$ .

Thus we get Lemma 3.
Since $\phi^{(n)}$ is expanded as

$\phi^{(n)}(x)=A^{n}x+\frac{1}{2}(A_{n})_{x}x+\cdots$ ,

we get from (15) for $r=n$

$(\xi, \phi^{(n)}(x))=(\xi, x)+\frac{1}{2}n(\xi, x)^{2}-\frac{1}{4}n|x|^{2}|\xi|^{2}+o(|x|^{2})$

$=(\xi, x)+\frac{1}{2}n((\xi, x)^{2}-\frac{1}{4}|x|^{2}|\xi|^{2})$

$-\frac{1}{8}n|x|^{2}|\xi|^{2}+o(|x|^{2})$ .

From this equality we get the following lemma.
LEMMA 4. Let $\alpha$ be a positive constant less than $|\xi|/2$ and $n$ be any posi-

tive integer. Then there exists a positive constant $\epsilon_{3}=\epsilon_{3}(n)$ with the following
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Property: If $0<|x|<\epsilon_{3}$ and $-\alpha|x|\leqq(\xi, x)\leqq 0$ , then $(\xi, \phi^{(n)}(x))<(\xi, x)\leqq 0$ .
LEMMA 5. Let $n$ be a sufficiently large integer. Then there exists a posi-

tive constant $\tau=\tau(n)$ with the following Property: If $(\xi, x)\leqq 0$ and $ 0<|x|<\tau$ ,
then $|\phi^{(n)}(x)|<|x|$ and $(\xi, \phi^{(n)}(x))\leqq 0$ . And if $(\xi, x)\geqq 0$ and $ 0<|x|<\tau$ , then
$|\phi^{(- n)}(x)|<|x|$ and $(\xi, \phi^{(- n)}(x))\geqq 0$ .

PROOF. Let $\alpha$ be a sufficiently small positive constant, and $\epsilon$ be a positive
constant less than $\epsilon_{1}(\alpha),$ $\epsilon_{2}(n)$ and $\epsilon_{3}(n)$ in Lemmas 2, 3 and 4. Using Lemma
2 $n$ times, we see that if $ 0<|x|<\epsilon$ and $(\xi, x)<-\alpha|x|$ , then $|\phi^{(n)}(x)|<|x|$ and
$(\xi, \phi^{(n)}(x))<-\alpha|\phi^{(n)}(x)|$ . From Lemmas 3 and 4 we see that if $ 0<|x|<\epsilon$ and
$-\alpha|x|\leqq(\xi, x)\leqq 0$ , then $|\phi^{(n)}(x)|<|x|$ and $(\xi, \phi^{(n)}(x))<(\xi, x)\leqq 0$ . Therefore if
$ 0<|x|<\epsilon$ and $(\xi, x)\leqq 0$ , then

(16) $|\phi^{(n)}(x)|<|x|$ and $(\xi, \phi^{(n)}(x))\leqq 0$ .

Now let $\tilde{\nu}$ be the function on $M$ defined by $(\phi^{-1})^{*}g=e^{\nu}g\sim$. Since the differ-
ential $(\phi^{-1})_{*p}$ of $\phi^{-1}$ at $p$ is $A^{-1}$ and the differential $d\tilde{\nu}_{p}$ of il at $p$ is $-{}^{t}\xi$ , we
can prove in the same way as above existence of a positive constant $\sim\epsilon$ with
the following property: If $ 0<|x|<\epsilon$ and $(-\xi, x)\leqq 0$ , then $|\phi^{(-n)}(x)|<|x|$ and
$(-\xi, \phi^{(-n)}(x))\leqq 0$ . This implies that if $0<|x|<\epsilon\sim and(\xi, x)\geqq 0$ , then

(17) $|\phi^{(- n)}(x)<|x|$ , and $(\xi, \phi^{(- n)}(x))\geqq 0$ .

Let $\tau$ be a positive constant less than $\epsilon$ and 5. Then $\tau$ satisfies the con-
ditions in Lemma 5, as follows from (16) and (17).

LEMMA 6. Let $W$ be a subset of $R^{k}$ containing the origin $0$ of $R^{k}$ , and $\phi$

be a continuous map of the closure $\overline{W}$ of $W$ into itself such that $\phi(0)=0$ and
$|\phi(x)|<|x|$ for any point $x\in\overline{W}(x\neq 0)$ . Then for any point $y\in W$ the sequence
$\{\phi^{(i)}(y)|i=1, 2, \}$ converges to $0$ .

PROOF. Take any point $y\in W$. To prove the statement, we may assume
$y\neq 0$ . Since the sequence $\{\phi^{(i)}(y)|i=1, 2, \}$ is bounded, there exists a sub-
sequence $\{\phi^{(t_{i})}(y)|i=1, 2, \}$ which converges to a point $y_{0}\in\overline{W}$. Then the
sequence of positive numbers $\{|\phi^{(t_{i})}(y)||i=1, 2, \}$ converges to $|y_{0}|$ . On the
other hand, since the sequence $\{|\phi^{(i)}(y)||i=1, 2, \}$ is monotone decreasing, it
must converge to a certain number $\gamma\geqq 0$ . We get $\gamma=|y_{0}|$ , because $\{|\phi^{(t_{i})}(y)|$

$|i=1,$ 2, } is a subsequence of $\{|\phi^{(i)}(y)||i=1, 2, \}$ . Since $\phi$ is a continuous
map, the sequence $\{\phi^{(t_{i+1)}}(y)|i=1, 2, \}$ converges to $\phi(y_{0})$ . It follows that
$\gamma=|\phi(y_{0})|$ by the same reason as above. Therefore $|y_{0}|=|\phi(y_{0})|$ . Then we
see $y_{0}=0$ by the assumption that $|x|<|\phi(x)|$ for any point $x\in\overline{W}(x\neq 0)$ . So
$\gamma=0$ , which means that $\{\phi^{(i)}(y)|i=1, 2, \}$ converges to $0$ . This proves
Lemma 6.

PROOF OF THEOREM. Let $n$ be a sufficiently large integer and $\tau=\tau(n)$ be
the positive constant in Lemma 5. In $R^{m}$ we consider two subsets $W_{1}$ and $W_{2}$
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defined by
$W_{1}=\{x||x|<\tau/2, (\xi, x)\leqq 0\}$ ,

$W_{2}=\{x||x|<\tau/2, (\xi, x)\geqq 0\}$ .
APplying Lemma 6 to $W_{1}$ and $\phi^{(n)}$ , we see that for any point $y\in W_{1}$ the

sequence $\{\phi^{(kn)}(y)|k=1, 2, \}$ converges to $0$ . Put $U_{1}=\bigcup_{i=0}^{n-1}\phi^{(i)}(W_{1}),$ $\phi^{(0)}$ being

the identity transformation of $R^{m}$. Since $W_{1}$ is invariant by $\phi^{(n)},$ $U_{1}$ is invari-
ant by $\phi$ . Let $x$ be any point in $U_{1}$ and put $x=\phi^{(s)}(y)$ , where $y\in W_{1}$ and $s$ is
a nonnegative integer less than $n$ . Then the sequence $\{\phi^{(kn-s)}(x)|k=1, 2, \}$

converges to $0$ . So the sequences $\{\phi^{(kn-s+t)}(x)|k=1, 2, \}$ converge to $0$

$(t=0,1,2, \cdots , n-1)$ . This implies that the sequence $\{\phi^{(i)}(x)|i=1, 2, \}$ con-
verges to $0$ .

Put $U_{2}=\bigcup_{i=1}^{n-1}\phi^{(i)}(W_{2})$ . Then by the same reason as above it follows that $U_{2}$

is invariant by $\phi^{-1}$ and for any $x\in U_{2}$ the sequence $\{\phi^{(-i)}(x)|i=1, 2, \}$ con-
verges to $0$ . Put $W=W_{1}\cup W_{2}$ . Then the open set $U=\bigcup_{i=0}^{n-1}\phi^{(i)}(W)$ is clearly a
$\phi$ -admissible neighborhood of the point $0$ . Let $V$ be an arbitrary neighbor-
hood of $0$ . Then we can choose in $V$ the admissible neighborhood $U$ , because
we can choose an arbitrary small positive constant $\tau$ for the definition of the
sets $W_{1}$ and $W_{2}$ . Let $q$ be any point such that $|q|<\tau/2$ and $(\xi, q)=0$ , then
the both sequences $\{\phi^{(i)}(q)|i=1, 2, \}$ and $\{\phi^{(-i)}(q)|i=1, 2, \}$ converge to $0$

and lie entirely in $U$ . This completes our proof of Theorem.

\S 3. Proof of Corollaries.

To prove Corollary 1 we need the following:
LEMMA 7. Let $\Psi=\{\phi_{t}\}$ be $a$ one-parameter group of diffeomorphisms of a

Riemannian manifold $(M, g)$ which leaves a Point $p\in M$ fixed, and $V$ be a $\phi_{r^{-}}$

admissible neighborhood of $p(r\neq 0)$ . Then $U=\bigcup_{0\leqq t<r}\phi_{t}(V)$ is a $\Psi$ -admissible
neighborhood.

PROOF. Let $x$ be any point in $U$ and put $x=\phi_{so}(y)$ , where $y\in V$ and $ 0\leqq$

$s_{0}<r$. We put $\phi=\phi_{r}$ for brevity. Since $V$ is a $\phi$ -admissible neighborhood,
one of the sequences $\{\phi^{(i)}(y)|i=1, 2, \}$ and $\{\phi^{(-i)}(y)|i=1, 2, \}$ lies entirely
in $V$ and converges to $p$ . Assume that the sequence $\{\phi^{(i)}(y)|i=1, 2, \}$ con-
verges to $p$ . Now

(18) $(\phi_{t})^{(i)}(x)=\phi_{i}(\phi^{(k_{i})}(y))$ (resp. $(\phi_{-t})^{(- i)}(x)=\phi_{s_{i}}(\phi^{(k_{i})}(y))$

for $\phi_{t}\in\Psi,$ $t>0$ (resp. $t<0$), where $t_{i}+s_{0}=s_{i}+k_{i}r,$ $0\leqq s_{i}<r$ and $i$ is a positive
integer. When $i$ goes to infinity, $k_{i}$ also goes to infinity, and so $\phi^{(k_{i})}(y)$ con-
verges to $p$ . Let $W$ be a relatively compact neighborhood of $p$ , and $d$ denote
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the distance between two points with respect to the metric $g$. Since the func-
tion $f(s, q)=d(\phi_{s}(q), p)$ on $[0, r]\times\overline{W}$ is uniformly continuous and $f(s, P)=0$ for
any number $s$ , the sequence $\{(\phi_{t})^{(i)}(x)|i=1, 2, \}$ (resp. $\{(\phi_{-t})^{(-i)}(x)|i=1,$ 2, $\}$ )
converges to $p$ . We see easily from (18) that the sequence $\{(\phi_{t})^{(i)}(x)|i=1, 2, \}$

(resp. $\{(\phi_{-t})^{(-i)}(x)|i=1,$ 2, $\}$ ) lies entirely in $U$. In the case when the sequence
$\{\phi^{(-i)}(y)|i=1, 2, \}$ converges to $p$ , we can show in the same way as above
that for any $t>0$ the sequences $\{(\phi_{t})^{(-i)}(x)|i=1, 2, \}$ and $\{(\phi_{-t})^{(i)}(x)|i=1, 2, \}$

converge to $p$ and lie entirely in $U$. Thus we get Lemma 7.
PROOF OF COROLLARY 1. First one can see that any conformal transfor-

mation $\phi_{t}\in\Psi(t\neq 0)$ is essential ([1], \S 2, Proposition 1). Let $V$ be an arbitrary
neighborhood of $p$ . Then there exist a positive constant $r$ and a neighborhood
$V^{\prime}$ of $p$ such that $\phi_{t}(x)\in V$ for any $t(0\leqq t<r)$ and $x\in V^{\prime}$ . By Theorem we
can find, in an arbitrary small neighborhood of $p$ , an admissible neighborhood
of $p$ . Let $W$ be a $\phi_{r}$-admissible neighborhood of $p$ contained in $V^{\prime}$ , and put
$U=\bigcup_{0\leqq t<r}\phi(W)$ . It is clear that $U$ is contained in $V$. We see by Lemma 7

that $U$ is a $\Psi$-admissible neighborhood, which proves Corollary 1.
PROOF OF COROLLARY 2. Suppose that $M-\Psi U$ is not empty and let $x$ be

any element in $M-\Psi U$. Then $x$ is a Pxed point under $\Psi$ ([1], \S 4, Lemma 6,
Corollary). By Corollary 1, there exists a $\Psi$-admissible neighborhood $V$ of $x$.
Then $\Psi U-\{p\}=\Psi V-\{x\}$ ([1], \S 4, Lemma 6, Corollary). By Theorem, there
exists a point $q\in\Psi U-\{P\}$ such that both sequences $\{(\phi_{r})^{(i)}(q)|i=1, 2, \}$ and
$\{(\phi_{r})^{(-i)}(q)|i=1, 2, \}$ converge to $p$ . On the other hand, since $q\in\Psi V-\{x\}$ ,
one of them converges to $x$ which is a contradiction. Thus we get Corol-
lary 2.

\S 4. Proof of Proposition 1 and Theorem A.

PROOF OF PROPOSITION 1. Let $U$ be a $\Psi$-admissible neighborhood of $p$ .
Put $W=\{q\in M|\lim_{i\rightarrow-\infty}\phi_{t}(q)=p\}$ , $W^{*}=\{q\in M|\lim_{t\rightarrow\infty}\phi_{t}(q)=p\}$ . By Corollary 2, $M=$

$\Psi U$ . Since $\Psi U\subset W\cup W^{*},$ $M$ is conformally flat ([5], \S 1, Lemma 1.2). There-
fore $M$ is conformal to an $\tilde{\Psi}$ -invariant open submanifold $V$ of $S^{m}$ , where $\tilde{\Psi}=$

$\{\phi_{t}\}$ is an essential one-parameter subgroup of $C(S^{m})$ with a Pxed point $\tilde{p}\in V$,
and $(\phi_{r})_{*\tilde{p}}$ is an orthogonal transformation of $T_{\tilde{p}}(S^{m})$ ([1], \S 4, the proof of
Lemma 5). Let $O(\subset V)$ be a $\Psi$ -admissible neighborhood of $\tilde{p}$ . Then $V=$

$\Psi V\supset\Psi O$ . Therefore $V=S^{m}$ by Corollary 2, which proves Proposition 1.
LEMMA 8. Let $X$ be a vector field on a Riemannian manifold $(M, g)$ , and

denote by div $X$ the divergence of $X$ and by $L_{x}$ the Lie derivative with respect
to X. Then

trace $(L_{X}g)_{q}=2(divX)_{q}$ .

PROOF. Recall that $(divX)_{q}$ is the trace of the endomorphism $V\rightarrow\nabla_{X}X$ of
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$T_{q}(M)$ , where $\nabla$ denotes the covariant derivation. Then

trace $(L_{X}g)_{q}=g^{ij}(\nabla_{i}X_{j}+\nabla_{j}X_{i})$

$=2g^{ij}\nabla_{i}X_{j}=2(divX)_{q}$ .
LEMMA 9. Let $\Psi=\{\phi_{t}\}$ be $a$ one-parameter subgroup of $C(M)$ with a fixed

pOint $p$ , and $X$ be the corresponding vector field. Then $(divX)_{q}=0$ if and only
if the differential $(\phi_{1})_{*p}$ of $\phi_{1}$ at $p$ is an orthogonal transformation of $T_{p}(M)$ .

REMARK. If $(\phi_{1})_{*p}$ is an orthogonal transformation of $T_{p}(M)$ , then $(\phi_{t})_{*p}$

is also an orthogonal transformation of $T_{p}(M)$ for any $t$.
PROOF. Let $\nu_{t}$ be the function on $M$ defined by $\phi_{t}^{*}g=e^{\nu t}g$. Then $(\phi_{t}^{*}g)_{p}$

$=e^{t\nu_{1}(p)}g_{p}$ . Therefore $(L_{X}g)_{p}=\nu_{1}(p)g_{p}$ . By Lemma 8, if $\nu_{1}(p)=0$ , then $(divX)_{p}$

$=0$ and if $\nu_{1}(p)\neq 0$ , then div $X\neq 0$ , which proves Lemma 9.
PROOF OF THEOREM A. Let $\Psi$ be an essential one-parameter subgroup of

$C(M)$ and $X$ be the corresponding vector Pled. If $\Psi$ has a fixed point $p$ such
that $(divX)_{p}=0$ , then by Corollary 2 and Lemma 9, $M$ is conformal to $S^{m}$.
Otherwise, by Proposition 2, $M$ is conformal to $S^{m}$ or to $E^{m}$.

The author wishes to express his sincere gratitude to the referee whose
suggestions improved very much the present paper.
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