Homomorphism of the Lie algebras of vector fields

By Kazuo MASUdA

(Received June 14, 1975)
(Revised Oct. 29, 1975)

Introduction.

The Lie algebra $\mathcal{A}(M)$ formed by vector fields on a smooth manifold M gives an important example of infinite dimensional Lie algebra and has a geometric significance for the manifold theory. A basic theorem states that the Lie algebra structure of $\mathcal{A}(M)$ completely determines the underlying smooth structure of M. Namely, for two smooth manifolds M and N and for any Lie algebra isomorphism φ of $\mathcal{A}(M)$ onto $\mathcal{A}(N)$, we can find a diffeomorphism Φ of M onto N satisfying $\varphi=\Phi_{*}([2],[5])$. Our investigation starts from the observation of this theorem. In this paper we shall consider not only isomorphisms but also homomorphisms of $\mathcal{A}(M)$ into $\mathcal{A}(N)$ and study the relation between M and N.

There is a non-trivial homomorphism of $\mathcal{A}(M)$ into $\mathcal{A}(N)$ when N has some bundle structure over a product manifold of copies of M. We shall prove that if N is compact and there is a non-trivial homomorphism, then N is necessarily related to M in such a manner; hence, in particular, we have $\operatorname{dim} M \leqq \operatorname{dim} N$, and M is also compact. We deduce these results from the fact that any homomorphism is, in a sense, of local character and can be expressed by the use of the jets of vector fields.

We shall describe an outline of this paper. In § 1 we shall determine the local form of a homomorphism. Let φ be a homomorphism of $\mathcal{A}(M)$ into $\mathcal{A}(N)$. For a generic point q of N we can find a finite number of points p_{1}, \cdots, p_{l} of M and charts $\left\{U_{\nu} ;\left(x_{\nu}\right)=\left(x_{\nu}^{1}, \cdots, x_{\nu}^{n}\right)\right\}$ near p_{ν} and $\left\{U ;\left(x_{*}, y\right)\right\}$ near q with

$$
\left(x_{*}, y\right)=\left(x_{1}, \cdots, x_{l}, y\right)=\left(x_{1}^{1}, \cdots, x_{1}^{n}, \cdots, x_{l}^{n}, y^{1}, \cdots, y^{d-n l}\right),
$$

which satisfy the following property:
For any $X \in \mathcal{A}(M)$ with $X=\sum_{i} f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}$ on each U_{ν} we have

$$
\varphi(X)\left(x_{*}, y\right)=\sum_{\nu=1}^{l} \sum_{i=1}^{n}\left(f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}+\sum_{0<|\alpha| \leq h} \frac{D^{\alpha}}{\alpha!} f_{\nu}^{i}\left(x_{\nu}\right) Y_{i \nu}^{\alpha}(y)\right)
$$

on U for some integer h and vector fields $Y_{i \nu}^{\alpha}(y)=\sum_{j} Y_{i \nu}^{\alpha j}(y) \partial_{y_{j} j}$ where $\partial_{x_{\nu}^{i}}$ de-
notes the vector field $\partial / \partial x_{i}^{i}$.
If N is compact and φ is non-trivial, then N has a rahter restricted structure subject to M. The relation between M and N will be clarified in $\S 2$ as follows: For any positive integer l, let M_{l} be a smooth manifold formed by all the sets of distinct l points of M and put $N_{0}=\{q \in N \mid \varphi(X)$ vanishes at q for any $X \in \mathcal{A}(M)\}$. Then N is a finite disjoint union of N_{0} and some topological fibre bundles N_{l} over M_{l}. The bundle N_{l} is closely related to the jet bundle of the tangent bundle of $M^{l}=M \times \cdots \times M$. Actually, we can construct many examples of homomorphisms which yield such situations. However we have no example such that $N_{0} \neq \emptyset$ or N_{l} is not a smooth bundle. Since the behaviour of $\varphi(X)$ near q depends only on the behaviour of X near p_{1}, \cdots, p_{l}, we can consider the germ of φ at $\left(q ; p_{1}, \cdots, p_{l}\right)$. We say φ is transitive at q if the image $\varphi(\mathcal{A}(M))$ is transitive at q. In $\S 3$ we shall show that the classification of the transitive germs can be reduced to that of certain subalgebras of ${ }^{\ominus} \mathfrak{g}(n, h)$ where $\mathfrak{g}(n, h)$ is the finite dimensional Lie algebra formed by the h-jects of vector fields on \boldsymbol{R}^{n} vanishing at 0 . In $\S 4$ we shall prove that any homomorphism of $\mathcal{A}(M)$ into $\mathcal{A}(N)$ is necessarily continuous in the C^{∞}-topology. As a consequence, when N is compact, it follows from [4; Theorem 1.3.2] that φ induces a local homomorphism between the diffeomorphism groups of M and N. This establishes an analogy to the corresponding theorem known for finite dimensional Lie algebras and Lie groups.

Some of our results were announced in [3].

§ 1. Local normal form of a homomorphism.

For any smooth manifold M, we denote by $\mathcal{A}(M)$ the Lie algebra formed by all the smooth vector fields on M under the usual bracket operation. Let $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ be a Lie algebra homomorphism. In this section we shall give an explicit expression of φ in terms of local coordinate systems on M and N. For this purpose, we first establish the following theorem concerning a characterization of the subalgebra of $\mathcal{A}(M)$ with finite codimension, essentially due to I. Amemiya [1]. We consider $\mathcal{A}(M)$ as a $C^{\infty}(M)$-module under the usual multiplication. For any point p of M, we put $\mathscr{M}_{p}=\left\{f \in C^{\infty}(M) \mid f(p)=0\right\}$.

Theorem 1. Let \mathcal{B} be a proper subalgebra of $\mathcal{A}(M)$ with $\operatorname{codim} \mathscr{B}=d<\infty$. Then we can find a finite number of points p_{1}, \cdots, p_{l} of M such that the relation

$$
\bigcap_{\nu=1}^{t} \mathscr{M}_{p_{\nu}} \mathcal{A}(M) \supset \mathcal{B} \supset \bigcap_{\nu=1}^{t} \mathscr{M}_{P_{\nu}}^{h+1} \mathcal{A}(M)
$$

holds for $h=2\left((d-n l)^{2}+d-n l\right)+1$ where $n=\operatorname{dim} M$. Moreover we have $l \leqq d / n$.
In order to prove this theorem, we need two lemmas. For any open set
U of M, we put $\mathcal{A}_{U}=\{X \in \mathcal{A}(M) \mid \operatorname{supp} X \subset U\}$.
Lemma 1. Let \mathcal{B} be as in Theorem 1. Suppose that there are $Z \in \mathcal{A}=\mathcal{A}(M)$ and $g \in C^{\infty}(M)$ such that $Z(g) \equiv 1$ on U. Then we can find a non-trivial polynomial P with $\operatorname{deg} P \leqq 2\left(d^{2}+d\right)$ such that $P(g) \mathcal{A}_{U} \subset \mathscr{B}$.

Proof. Put $\mathscr{B}^{\prime}=\{X \in \mathscr{B} \mid[X, Y] \in \mathscr{B}$ for every $Y \in \mathcal{A}\}$. For any $X \in \mathscr{B}$, ad $X: Y \rightarrow[X, Y]$ induces a linear transformation $T_{X}: \mathcal{A} / \mathscr{B} \rightarrow \mathcal{A} / \mathscr{B}$. Since \mathscr{B}^{\prime} is the kernel of the map $X \rightarrow T_{X}$ of \mathscr{B} into the space of endomorphisms of $\mathcal{A} / \mathscr{B}$, we have $\operatorname{codim} \mathscr{B}^{\prime} \leqq d^{2}+d$. Let \mathscr{P} be the space of all polynomials and put $\mathscr{P}^{\prime}=\left\{P \in \mathscr{P} \mid g P(g) Z, P(g) Z \in \mathscr{B}^{\prime}\right\}$. Then we have $\operatorname{codim} \mathscr{P}^{\prime}$ in $\mathscr{P} \leqq 2\left(d^{2}+d\right)$ since \mathscr{P}^{\prime} is the kernel of the map $\mathscr{P} \rightarrow A / \mathscr{B}^{\prime} \oplus \mathcal{A} / \mathscr{B}^{\prime}$ induced by the map $P \rightarrow g P(g) Z$ $\oplus P(g) Z$. Hence we can find a non-trivial polynomial $P \in \mathscr{P}^{\prime}$ with $\operatorname{deg} P \leqq$ $2\left(d^{2}+d\right)$. For any $X \in \mathcal{A}_{U}$ we have

$$
\begin{aligned}
& \mathscr{B} \ni[P(g) Z, g X]=g[P(g) Z, X]+P(g) Z(g) X, \\
& \mathscr{B} \ni[g P(g) Z, X]=g[P(g) Z, X]-X(g) P(g) Z
\end{aligned}
$$

and hence

$$
\begin{equation*}
\mathscr{B} \ni P(g) X+X(g) P(g) Z \tag{*}
\end{equation*}
$$

Substituting $X(g) Z \in \mathcal{A}_{U}$ for X in (*), we obtain $\mathscr{B} \ni 2 X(g) P(g) Z$, which combined with (*), gives $\mathscr{B} \ni P(g) X$. This completes the proof.

Lemma 2. Let $U_{\nu}(\nu=1,2, \cdots)$ be open sets of M such that \bar{U}_{ν} 's are disjoint and locally finite and let $\left(x_{\nu}\right)=\left(x_{\nu}^{1}, \cdots, x_{\nu}^{n}\right)$ be a coordinate system on U_{ν}. Then there are a finite number of integers $\nu_{1}, \cdots, \nu_{l}\left(l \leqq 2\left(d^{2}+d\right)\right)$ such that $\mathscr{B} \supset \mathcal{A}_{U}$, for $U^{\prime}=\bigcup_{\nu} U_{\nu}-\bigcup_{i=1}^{L} U_{\nu i}$.

Proof. Hereafter we shall denote by $\partial_{x i \nu}$ the vector field $\partial / \partial x_{\nu}^{i}$. Choose $Z \in \mathcal{A}(M)$ and $g \in C^{\infty}(M)$ such that $Z=\partial_{x_{\nu}^{1}}$ and $g=x_{\nu}^{1}+$ constant on every U_{ν}. We may assume that $\nu<g<\nu+1$ on U_{ν}. Since $Z(g)=1$ on $U=\cup U_{\nu}$, by Lemma 1 we have $P(g) \mathcal{A}_{U} \subset \mathscr{B}$ for some polynomial P with $\operatorname{deg} P \leqq 2\left(d^{2}+d\right)$. We can take integers ν_{1}, \cdots, ν_{l} for which we have $P(g) \neq 0$ on $U^{\prime}=U-\bigcup_{i=1}^{l} U_{\nu i}$. Then for any $Y \in \mathcal{A}_{U}$, there is $X \in \mathcal{A}_{U}, \subset \mathcal{A}_{U}$ such that $Y=P(g) X$ and hence $Y \in \mathscr{B}$, which completes the proof.

Proof of Theorem 1. We say a point p of M is singular if for any neighborhood U of p we have $\mathscr{B} \perp \mathcal{A}_{U}$. Then by Lemma 2 the number of singular points is at most $2\left(d^{2}+d\right)$. Let $\left\{p_{1}, \cdots, p_{l}\right\}$ be the set of singular points. We show that $\mathcal{B} \supset \bigcap_{\nu=1}^{l} \mathscr{M}_{p \nu}^{m} \mathcal{A}_{U}$ where $m=2\left(d^{2}+d\right)$ and U is some neighborhood of the set $\left\{p_{1}, \cdots, p_{l}\right\}$. For each ν let $\left(x_{\nu}\right)$ be a coordinate system on some neighborhood U_{ν} of p_{ν} with $p_{\nu}=(0)$. Choose $Z \in \mathcal{A}(M)$ and $g \in C^{\infty}(M)$ such that $Z=\partial_{x \frac{1}{\nu}}$ and $g=x_{\nu}^{1}$ on each U_{ν}. Then by Lemma 1 there is a polynomial $P(t)=t^{p}(1+a t+\cdots)(p \leqq m)$ for which we have $P(g) \mathcal{A}_{U^{\prime}} \subset \mathscr{B}$ for $U^{\prime}=\cup U_{\nu}$.

Since $1+a g+\cdots \neq 0$ on some neighborhood $U^{\prime \prime}$ of $\left\{p_{1}, \cdots\right\}$, we have $g^{p} \mathcal{A}_{U^{\prime \prime}} \subset \mathcal{B}$ and hence $g^{m} \mathcal{A}_{U} \cdot \subset \mathcal{B}$. For any $g \in C^{\infty}(M)$ which is a homogeneous polynomial of (x_{ν}^{i}) of degree 1 on each U_{ν}, we have the same relation $g^{m} \mathcal{A}_{V} \subset \mathscr{B}$ for some V. Since any homogeneous polynomial of degree m is a linear combination of some m^{\prime} th powers of homogeneous polynomials of degree 1 , we have $\cap \mathscr{H}_{p_{\nu}}^{m} \mathcal{A}_{U}$ $\subset \mathscr{B}$ for some U as desired. Next, we prove that $\mathscr{B} \supset \cap \mathscr{H}_{p_{\nu}}^{m} \mathcal{A}(M)$. For any $p \in M-\left\{p_{1}, \cdots\right\}$, by definition, we have $\mathscr{B} \supset \mathcal{A}_{U_{p}}$ for some neighborhood U_{p} of p. Then $\{U\} \cup\left\{U_{p}\right\}_{p}$ covers M. According to the dimension theory, M admits a finite open covering $\left\{U, U_{1}, \cdots, U_{n+1}\right\}$ such that for each $i \leqq n+1, U_{i}=\bigcup_{j} U_{i j}$ where $U_{i 1}, U_{i 2}, \cdots$ satisfy the conditions in Lemma 2 and each $U_{i j}$ is contained in some U_{p}. By Lemma 2 there are a finite number of integers j_{1}, j_{2}, \cdots such that $\mathscr{B} \supset \mathcal{A}_{U_{i}^{\prime}}$ for $U_{i}^{\prime}=U_{i}-\bigcup_{k} U_{i j_{k}}$. Since $\mathscr{B} \supset \mathcal{A}_{U i_{j_{k}}}$, using the partition of unity subordinate to the finite covering $\left\{U, U_{1}^{\prime}, U_{1_{j}}, U_{1_{2}}, \cdots, U_{2}^{\prime}, \cdots\right\}$ of M, we have $\mathscr{B} \supset \cap \mathscr{M}_{p_{\nu}}^{m} \mathcal{A}(M)$ as desired. Next, we show that $\cap \mathscr{M}_{p_{\nu}} \mathcal{A}(M) \supset \mathscr{B}$. Assume the contrary. Then there is $Z \in \mathscr{B}$ which does not vanish at some p_{ν}. We can take a coordinate system (x^{1}, \cdots, x^{n}) on some neighborhood U of p_{ν} such that $Z=\partial_{x^{1}}$ on U. Choose $g \in C^{\infty}(M)$ satisfying $g=x^{1}$ on U. Then by Lemma 1 we have $\mathscr{B} \supset P(g) \mathcal{A}_{U}$ for some polynomial P. For any $Y \in \mathcal{A}_{U}$, we have $\mathscr{B} \ni$ $[P(g) Y, Z]=-P^{\prime}(g) Z(g) Y+P(g)[Y, Z]$ and hence $\mathscr{B} \ni-P^{\prime}(g) Z(g) Y=-P^{\prime}(g) Y$, which implies $\mathscr{B} \supset P^{\prime}(g) \mathcal{A}_{U}$. Applying the same argument successively, we have $\mathscr{B} \supset \mathcal{A}_{U}$, which contradicts the fact that p_{ν} is singular. Therefore we have $\cap \mathscr{M}_{p_{\nu}} \mathcal{A}(M) \supset \mathscr{B}$. Since $\operatorname{codim} \cap \mathscr{M}_{p_{\nu}} \mathcal{A}(M)$ is $n l$, we have $l \leqq d / n$. We must show $\mathscr{B} \supset \cap \mathscr{M}_{p_{\nu}}^{h+1} \mathcal{H}(M)$ instead of $\mathscr{B} \supset \cap \mathscr{M}_{p_{\nu}}^{m} \mathcal{H}(M)$. Choose (x_{ν}), Z and g as in the proof of $\mathscr{B} \supset \bigcap_{\nu=1}^{t} \mathscr{M}_{p_{\nu}}^{m} \mathcal{C}_{U}$. Then the argument similar to the proof of Lemma 1 shows that there is a polynomial P with $P(0)=0$ and $\operatorname{deg} P \leqq 2\left(e^{2}+e\right)+1$ $=h$ where $e=d-n l=\operatorname{codim} \mathscr{B}$ in $\cap \mathscr{M}_{p_{\nu}} \mathcal{A}(M)$ such that we have $P(g) \cap \mathscr{M}_{p_{\nu}} \mathcal{A}_{U}$ $\subset \mathscr{B}$ for $U=\cup U_{\nu}$. Then the same argument as above shows that $\mathcal{B} \supset \cap \mathcal{S}_{p \nu}^{n+1} \mathcal{A}(M)$, which completes the proof of Theorem 1.

Now, let $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ be a non-trivial Lie algebra homomorphism. Throughout this paper we assume that M and N are connected and have no boundary and $\operatorname{dim} M=n$ and $\operatorname{dim} N=d$ are positive. Put $\mathcal{A}_{q}(N)=\mathscr{M}_{q} \mathcal{A}(N)$ and $N^{+}=\left\{q \in N \mid \varphi^{-1} \mathcal{A}_{q}(N) \neq \mathcal{A}(M)\right\}$. Then $q \in N$ belongs to N^{+}if and only if there is $X \in \mathcal{A}(M)$ such that $\varphi(X)(q)$, the value of $\varphi(X)$ at $q, \neq 0$. Hence N^{+}is nonempty open subset of N. For any $q \in N^{+}$we have $\operatorname{codim} \varphi^{-1} \mathscr{A}_{q}(N) \leqq \operatorname{codim} \mathcal{A}_{q}(N)$ $=d<\infty$, hence by Theorem 1, there are points p_{1}, \cdots, p_{l} of M such that

$$
\begin{equation*}
\bigcap_{\nu=1}^{\iota} \mathscr{M}_{p_{\nu}} \mathcal{A}(M) \supset \varphi^{-1} \mathcal{A}_{q}(N) \supset \bigcap_{\nu=1}^{\iota} \mathscr{M}_{p_{\nu}}^{n+1} \mathcal{A}(M) \tag{1}
\end{equation*}
$$

holds for $h=2\left((d-n l)^{2}+d-n l\right)+1$.

Lemma 3. For any $X \in \mathcal{A}(M), \varphi(X)(q)$ is determined by the h-jets of X at p_{1}, \cdots, p_{l}.

Proof. For each ν let $\left(x_{\nu}\right)=\left(x_{\nu}^{1}, \cdots, x_{\nu}^{n}\right)$ be a coordinate system on some neighborhood U_{ν} of p_{ν} and $\left(a_{\nu}\right)$ the coordinates of p_{ν}. For any multi-index $\alpha=\left(\alpha_{1}, \cdots, \alpha_{n}\right)$, choose $Y_{i \nu}^{\alpha} \in \mathcal{A}(M)$ such that $Y_{i \nu}^{\alpha}=x_{\nu}^{\alpha} \partial_{x_{\nu}^{i}}=\left(x_{\nu}^{1}\right)^{\alpha_{1}} \cdots\left(x_{\nu}^{n}\right)^{\alpha_{n}} \partial_{x_{\nu}^{i}}$ on some neighborhood of p_{ν} and supp $Y_{i \nu}^{\alpha} \subset U_{\nu}$. We assume that U_{ν} 's are disjoint. If $X=\sum_{i} f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}$ on each U_{ν}, we have

$$
X-\sum_{\nu, i} \sum_{|\alpha| \leqq h} \frac{D^{\alpha}}{\alpha!} f_{\nu}^{i}\left(a_{\nu}\right) \sum_{\beta \leqq \alpha}\binom{\alpha}{\beta}\left(-a_{\nu}\right)^{\alpha-\beta} Y_{i \nu}^{\beta} \in \cap \mathcal{M}_{p_{\nu}}^{h+1} \mathcal{A}(M) \subset \varphi^{-1} \mathcal{A}_{q}(N) .
$$

Here we denote by D^{α} the differential operator $\partial^{|\alpha|} /\left(\partial x^{1}\right)^{\alpha_{1}} \cdots\left(\partial x^{n}\right)^{\alpha_{n}}$ where $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. Therefore we have

$$
\begin{equation*}
\varphi(X)(q)=\sum_{\nu, i} \sum_{|\alpha| \leqq h} \frac{D^{\alpha}}{\alpha!} f_{\nu}^{i}\left(a_{\nu}\right) \sum_{\beta \leq \alpha}\binom{\alpha}{\beta}\left(-a_{\nu}\right)^{\alpha-\beta} \varphi\left(Y_{i \nu}^{\beta}\right)(q), \tag{2}
\end{equation*}
$$

which completes the proof.
Note that the set $\left\{p_{1}, \cdots, p_{l}\right\}$ is uniquely determined by (1). The set $\left\{p_{1}, \cdots, p_{l}\right\}$ is denoted by $\psi(q)$ for $q \in N^{+}$. Let $k(\leqq d / n)$ be the maximal number of p_{ν} 's when q ranges over N^{+}, and for each $l \leqq k$, let N_{l} be the set of points q 's of N^{+}such that the number of the corresponding points is l.

EXAMPLE 1. Let $\varphi: \mathcal{A}\left(\boldsymbol{R}^{1}\right) \rightarrow \mathcal{A}\left(\boldsymbol{R}^{3}\right)$ be a homomorphism given by

$$
\varphi\left(f(x) \partial_{x}\right)=f(x) \partial_{x}+f(y) \partial_{y}+\left(f^{\prime}(x)+f^{\prime}(y)\right) \alpha(z) \partial_{z}
$$

where $\alpha(z)$ is a smooth function. For a point $q=(a, b, c) \in \boldsymbol{R}^{3}$ we have

$$
\varphi^{-1} \mathcal{A}_{(a, b, c)}\left(\boldsymbol{R}^{3}\right)=\left\{f(x) \partial_{x} \mid f(a)=f(b)=\left(f^{\prime}(a)+f^{\prime}(b)\right) \alpha(c)=0\right\}
$$

and hence

$$
\mathscr{M}_{a} \cap \mathscr{M}_{b} \mathcal{A}\left(\boldsymbol{R}^{1}\right) \supset \varphi^{-1} \mathcal{A}_{(a, b, c)}\left(\boldsymbol{R}^{3}\right) \supset \mathscr{M}_{a}^{2} \cap \mathscr{M}_{b}^{2} \mathcal{A}\left(\boldsymbol{R}^{1}\right) .
$$

Therefore we obtain

$$
\begin{aligned}
& \psi((a, b, c))=\{a, b\} \text { when } a \neq b,=\{a\} \text { when } a=b \\
& N_{1}=\left\{(x, x, z) \in \boldsymbol{R}^{3}\right\} \text { and } N_{2}=\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x \neq y\right\}
\end{aligned}
$$

Now we shall study the set $\psi(q)$.
Lemma 4. For each $l \leqq k, N_{k} \cup N_{k-1} \cup \cdots \cup N_{l}$ is an open subset of N^{+}. Let q be a point of N_{l} with $\psi(q)=\left\{p_{1}, \cdots, p_{l}\right\}$ and U_{ν} a neighborhood of p_{ν} for each ν such that $U_{\nu} \cap U_{\mu}=\emptyset$ for $\nu \neq \mu$. Then there are a neighborhood U of q and a continuous map $\tilde{\psi}: U \cap N_{l} \rightarrow U_{1} \times \cdots \times U_{l} \subset M^{l}=M \times \cdots \times M$ such that for any $q^{\prime} \in$ $U \cap N_{l}, \tilde{\psi}\left(q^{\prime}\right)=\left(p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right)$ implies $\psi\left(q^{\prime}\right)=\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$.

PROOF. Fix $l \leqq k$ and $q \in N_{l}$. It suffices to show that there is a neighbor-
hood U of q such that for any $q^{\prime} \in U$ there are points p_{ν}^{\prime} of U_{ν} for all ν satisfying $\psi\left(q^{\prime}\right) \supset\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$. Assume the contrary. Then there is a sequence of points $\left\{q_{i}\right\}$ converging to q such that for some fixed $\nu^{\prime}, \psi\left(q_{i}\right) \cap U_{\nu^{\prime}}=\left\{p_{i 1}, \cdots\right.$, $\left.p_{i m}\right\} \cap U_{\nu^{\prime}}=\emptyset$ for all $i(0 \leqq m \leqq k)$. Choose $X \in \mathcal{A}(M)$ satisfying supp $X \subset U_{\nu^{\prime}}$ and $X\left(p_{\nu^{\prime}}\right) \neq 0$. Then by the definition of ψ we have

$$
X \in \bigcap_{\nu=1}^{m} \mathscr{M}_{p_{i \nu} p_{i}+1} \mathcal{A}(M) \subset \varphi^{-1} \mathcal{A}_{q_{i}}(N) \quad \text { and } \quad X \in \bigcap_{\nu=1}^{l} \mathscr{M}_{p_{\nu}} \mathcal{A}(M) \supset \varphi^{-1} \mathcal{A}_{q}(N) .
$$

Therefore we obtain $\varphi(X)\left(q_{i}\right)=0$ and $\varphi(X)(q) \neq 0$, which is a contradiction. This completes the proof.

Now let q be a point of Int N_{l}, the topological interior of N_{l} in N. Then Lemma 3 implies the next

Lemma 5. Let U and U_{ν}, be the neighborhoods given in Lemma 4. Then for any $X \in \mathcal{A}(M), \varphi(X) \mid U$, the restriction of $\varphi(X)$ to U, depends only on $X \mid \cup U_{\nu}$.

By this lemma we may restrict our consideration to U and $\cup U_{\nu}$. In the following arguments we replace these neighborhoods by smaller ones if necessary. Choose a coordinate system $\left(x_{\nu}\right)=\left(x_{\nu}^{i}\right)=\left(x_{\nu}^{1}, \cdots, x_{\nu}^{n}\right)$ on U_{ν} for each ν. Since $\varphi\left(\partial_{x_{\nu}^{i}}\right)(q)$'s are linearly independent and $\left[\varphi\left(\partial_{x_{\nu}^{i}}\right), \varphi\left(\partial_{x_{\mu}^{j}}\right)\right]=\varphi\left[\partial_{x_{v}^{i}}, \partial_{x_{i}^{j}}\right] \equiv 0$, we can choose a coordinate system $\left(x_{*}, y\right)=\left(x_{1}, \cdots, x_{l}, y\right)=\left(x_{1}^{1}, \cdots, x_{1}^{n}, \cdots, x_{l}^{n}, y^{1}\right.$, $\left.\cdots, y^{d-n l}\right)$ on U such that $\varphi\left(\partial_{x_{\nu}^{i}}\right)=\partial_{x_{i}}$ for all i and ν.

Lemma 6. Let $\tilde{\psi}_{\nu}^{i}\left(x_{*}, y\right)$ be the ($\left.i, \nu\right)$-component of $\tilde{\phi}\left(x_{*}, y\right) \in U_{1} \times \cdots \times U_{l}$ with respect to the above coordinate systems. Then $\tilde{\psi}_{\nu}^{i}\left(x_{*}, y\right)=x_{\nu}^{i}+c_{\nu}^{i}(y)$ for some continuous function c_{ν}^{i}. Moreover $\tilde{\psi}$ is a smooth submersion on some open dense subset of U.

Proof. For any point $\left(a^{*}, b\right) \in U$, we have

$$
X \equiv\left(x_{\nu}^{i}-\tilde{\psi}_{\nu}^{i}\left(a_{*}, b\right)\right)^{h+1} \partial_{x_{\nu}^{i}} \in \varphi^{-1} \mathcal{\mathcal { I } _ { (a ^ { * } , b) }}(N)
$$

and hence

$$
0=\varphi(X)\left(a_{*}, b\right)=\sum_{s=0}^{h+1}\binom{h+1}{s}\left(-\tilde{\psi}_{\nu}^{i}\left(a_{*}, b\right)\right)^{h+1-s} \varphi\left(\left(x_{\nu}^{i}\right)^{s} \partial_{x_{\nu}^{i}}\right)\left(a_{*}, b\right) .
$$

We put $\left(z^{1}, \cdots, z^{d}\right) \equiv\left(x_{*}, y\right)$ and $Y=\Sigma Y^{q} \partial_{z} q$ for $Y \in \mathcal{A}(U)$. Put $\tilde{\psi}_{\nu}^{i}\left(x_{*}, y\right)=$ $x_{\nu}^{i}+c_{\nu}^{i}\left(x_{*}, y\right)$. Then $c_{\nu}^{i}\left(a_{*}, b\right)$ satisfies the equations

$$
F_{\hbar}^{q}\left(c_{\nu}^{i}, a_{*}, b\right) \equiv \Sigma\binom{h+1}{s}\left(-a_{\nu}^{i}-c_{\nu}^{i}\right)^{h+1-s} \varphi\left(\left(x_{\nu}^{i}\right)^{s} \partial_{x_{\nu}^{i}}\right)^{q}\left(a_{*}, b\right)=0, \quad q=1, \cdots, d
$$

For any j and μ we have

$$
\begin{aligned}
\frac{\partial}{\partial a_{\mu}^{j}} \varphi\left(\left(x_{\nu}^{i}\right)^{s} \partial_{x_{\nu}^{i}}\right)^{q}\left(a_{*}, b\right) & =\left[\varphi\left(\partial_{x_{\mu}^{j}}\right), \varphi\left(\left(x_{\nu}^{i}\right)^{s} \partial_{x_{\nu}^{i}}\right)\right]^{q}\left(a_{*}, b\right) \\
& =\delta s \varphi\left(\left(x_{\nu}^{i}\right)^{s-1} \partial_{x_{\nu}^{i}}\right)^{q}\left(a_{*}, b\right)
\end{aligned}
$$

where $\delta=1$ when $j=i$ and $\mu=\nu$ and $\delta=0$ otherwise. Using this equation we have easily $-\frac{\partial}{\partial a_{\mu}^{j}} F_{n}^{q}\left(c_{\nu}^{i}, a_{*}, b\right) \equiv 0$, and hence F_{n}^{q} is independent of (a_{*}). Since by Lemma 4 $c_{\nu}^{i}\left(a_{*}, b\right)$ is continuous and F_{h}^{q} is a polynomial with respect to c_{ν}^{i}, it follows that c_{ν}^{i} is independent of (a_{*}) as desired. Now we prove the second part of the lemma. Let U_{0} be a non-empty open subset of U. Since $\left(x_{\nu}^{i}-\widetilde{\psi}_{\nu}^{i}\left(a_{*}, b\right)\right)^{h+1} \partial_{x_{\nu}^{i}} \in \varphi^{-1} \mathcal{A}_{(a, b)}(N)$ and $\partial_{x_{\nu}^{i}} \notin \varphi^{-1} \mathcal{A}_{(a, b)}(N)$ for any point (a_{*}, b) of U_{0}, we can find an integer $m \leqq h$ and a point (d_{*}, e) of U_{0} such that $\left(x_{\nu}^{i}-\tilde{\psi}_{\nu}^{i}\left(a_{*}, b\right)\right)^{m+1} \partial_{x_{\nu}^{i}} \in \varphi^{-1} \mathcal{I}_{\left(a_{*}, b\right)}(N)$ for any point $\left(a_{*}, b\right)$ of U_{0} and $\left(x_{\nu}^{i}-\tilde{\phi}_{\nu}^{i}\left(d_{*}, e\right)\right)^{m} \partial_{x_{\nu}^{i}} \notin \varphi^{-1} \mathcal{A}_{(d, e)}(N)$. Then c_{ν}^{i} satisfies the equations $F_{m}^{q}\left(c_{\nu}^{i}, a_{*}, b\right)$ $=0$ and we have

$$
\frac{\partial F_{m}^{q}}{\partial c_{\nu}^{i}}\left(c_{\nu}^{i}\left(d_{*}, e\right), d_{*}, e\right)=-(m+1) \varphi\left(\left(x_{\nu}^{i}-\tilde{\psi}_{\nu}^{i}\left(d_{*}, e\right)\right)^{m} \partial_{x_{\nu}^{i}}\right)^{q}\left(d_{*}, e\right) \neq 0
$$

for some q. Therefore by the inverse function theorem, c_{ν}^{i} is smooth on some neighborhood of (d_{*}, e). The same arguments for other (i, ν)'s complete the proof.

Now we can prove the main theorem of this section. For each $l \leqq k$, put $N_{l}^{+}=\left\{q \in \operatorname{Int} N_{l} \mid \hat{\psi}\right.$ is smooth near $\left.q\right\}$.

Theorem 2. $\bigcup_{l=1}^{k} N_{l}^{+}$is dense in N^{+}. Let q be a point of N_{l}^{+}with $\psi(q)=$ $\left\{p_{1}, \cdots, p_{l}\right\}$ and $\left(x_{\nu}\right)=\left(x_{\nu}^{1}, \cdots, x_{\nu}^{n}\right)$ a coordinate system on some neighborhood U_{ν} of p_{ν} for each ν. Then there is a coordinate system $\left(x_{*}, y\right)=\left(x_{1}, \cdots, x_{l}, y\right)=$ ($x_{1}^{1}, \cdots, x_{1}^{n}, \cdots, x_{l}^{n}, y^{1}, \cdots, y^{d-n l}$) on some neighborhood U of q satisfying the following properties:
i) $\tilde{\phi}(U) \subset U_{1} \times \cdots \times U_{l}, \tilde{\phi}\left(x_{*}, y\right)=\left(x_{*}\right)=\left(x_{1}, \cdots, x_{l}\right)$ and $\varphi\left(\partial_{x_{\nu}^{i}}\right)=\partial_{x_{\nu}^{i}}$.
ii) For any $X \in \mathcal{A}(M)$ with $X \mid U_{\nu}=\sum_{i} f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}$ we have

$$
\begin{equation*}
\varphi(X) \left\lvert\, U=\sum_{\nu=1}^{\prime} \sum_{i=1}^{n}\left(f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}+\sum_{0<|\alpha| \leqq n} \frac{D^{\alpha}}{\alpha!} f_{\nu}^{i}\left(x_{\nu}\right) Y_{i \nu}^{\alpha}(y)\right) .\right. \tag{3}
\end{equation*}
$$

Here $h=2\left((d-n l)^{2}+d-n l\right)+1$ and Y 's are fixed vector fields such that $Y_{i \nu}^{\alpha}(y)$ $=\sum_{p} Y_{i \nu}^{\alpha p}(y) \partial_{y p}$ and satisfy the following relation:

$$
\begin{equation*}
\left[Y_{i \nu}^{\alpha}, Y_{j \mu}^{\beta}\right]=0 \quad \text { for } \nu \neq \mu \text { and }\left[Y_{i \nu}^{\alpha}, Y_{j \nu}^{\beta}\right]=\beta_{i} Y_{j \nu}^{\alpha+\beta-i}-\alpha_{j} Y_{i \nu}^{\alpha+\beta-j} . \tag{4}
\end{equation*}
$$

In the right hand side of the second equation we put $Y_{i \nu}^{\gamma} \equiv 0$ if $|\gamma|>h$. We use i instead of the multi-index α such that $\alpha_{j}=\delta_{j i}$ (Kronecker's δ).

Remark 1. Note that the vector fields $x_{\nu}^{\alpha} \partial_{x_{\nu}^{i}}$'s satisfy the same relation as (4). It is easy to show that for all $Y(y)$'s satisfying the relation (4), the $\operatorname{map} \varphi: \mathcal{A}\left(\cup U_{\nu}\right) \rightarrow \mathcal{A}(U)$ given by (3) is a homomorphism.

Proof of Theorem 2. It follows easily from Lemma 4 and Lemma 6 that
$\cup N_{l}^{+}$is dense in N^{+}. Let q be as in the theorem. Then we can choose a coordinate system (x_{*}, y) satisfying i). For any point (x_{*}, y) of U, since $\tilde{\psi}\left(x_{*}, y\right)=\left(x_{*}\right)$ we have, by (2),

$$
\varphi\left(\sum_{\nu i} f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}\right)\left(x_{*}, y\right)=\sum_{\nu i} \sum_{|\alpha| \leq n} D^{\alpha} f_{\nu}^{i}\left(x_{\nu}\right) Z_{i \nu}^{\alpha}\left(x_{*}, y\right)
$$

where Z 's are suitable smooth vector fields. Since $\varphi\left(\partial_{x_{\nu}^{i}}\right)=\partial_{x_{\nu}^{i}}$, we have $Z_{i \nu}^{0}$ $=\partial_{x_{i} i}$. We investigate Z 's for $\alpha>0$. First, applying φ to the equation

$$
\left[\partial_{x_{\mu}^{j}}, \sum_{\nu i} f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}\right]=\sum_{i} D^{i} f_{\mu}^{i}\left(x_{\mu}\right) \partial_{x_{\mu}^{i}},
$$

we have $\left[\partial_{x_{\mu}^{j}}, Z_{i \nu}^{\alpha}\right] \equiv 0$ so that $Z_{i \nu}^{\alpha}\left(x_{*}, y\right)=Z_{i \nu}^{\alpha}(y)$. Putting $Z_{i \nu}^{\alpha}(y)=\sum_{\mu j} Z_{i \nu \mu}^{\alpha j}(y) \partial_{x_{\mu}^{j}}$ $+\sum_{p} Z_{i v}^{\alpha p}(y) \partial_{y p}$, we show that $Z_{i \nu}^{\alpha j} \equiv 0$. Assume the contrary. Then there is some $Z_{i \bar{i} \bar{j}}^{\bar{j}}$ such that $Z_{\bar{i} \overline{\bar{\nu}} \overline{\tilde{j}}}^{\overline{\frac{j}{\mu}}}(y) \neq 0$ on some non-empty open set $U^{\prime} \subset U$. Applying φ to the equation

$$
\begin{aligned}
& {\left[\sum_{\nu i} f_{\nu}^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}, \sum_{\xi k} g_{\xi}^{k}\left(x_{\xi}\right) \partial_{x_{\xi}^{k}}\right]} \\
& \quad=\sum_{\nu i k} f_{\nu}^{i}\left(x_{\nu}\right) D^{i} g_{\nu}^{k}\left(x_{\nu}\right) \partial_{x_{\nu}^{k}}-\sum_{\xi k i} g_{\xi}^{k}\left(x_{\xi}\right) D^{k} f_{\xi}^{i}\left(x_{\xi}\right) \partial_{x_{\hat{\xi}}}
\end{aligned}
$$

we have

$$
\begin{align*}
& {\left[\sum_{\nu i}\left(f_{\nu}^{i} \partial_{x i \nu}^{i}+\sum_{0<|\alpha| \leqq n} D^{\alpha} f_{\nu}^{i}\left(\sum_{\mu j} Z_{i \nu \mu}^{\alpha} \partial_{x_{\mu}^{j}}+\sum_{p} Z_{i \nu}^{\alpha \nu} \partial_{y p}\right)\right), \sum_{\xi k}\left(g_{\xi}^{k} \partial_{x_{\xi}^{k}}+\sum_{0<|\beta| \leqq n} D^{\beta} g_{\xi}^{k} Z_{k \xi}^{\beta}\right)\right]} \tag{*}\\
& =\sum_{\nu i k}\left(f_{\nu}^{i} D^{i} g_{\nu}^{k} \partial_{x_{\nu}^{k}}+\sum_{0<|\alpha| \leqq n} \sum_{\gamma \leqq \alpha}\binom{\alpha}{\gamma} D^{r} f_{\nu}^{i} D^{i+\alpha-\gamma} g_{\nu}^{k} Z_{k \nu}^{\alpha}\right) \\
& -\sum_{\xi k i}\left(g_{\xi}^{k} D^{k} f_{\xi}^{i} \partial_{x_{\xi}^{i}}+\sum_{0<|\alpha| \leqslant n} \sum_{\gamma \leqq \alpha}\binom{\alpha}{\gamma} D^{\gamma} g_{\xi}^{k} D^{k+\alpha-\gamma} f_{\xi}^{\ell} Z_{i \xi}^{\alpha}\right) .
\end{align*}
$$

We claim that $Z_{i \bar{\mu}}^{\alpha} \equiv 0$ on U^{\prime} for all α and i. Suppose it is not true. Then there is some $Z_{i \bar{\mu}}^{\tilde{\alpha}} \not \equiv 0$ such that $Z_{i \bar{\mu}}^{\alpha} \equiv 0$ on U^{\prime} if $|\alpha|>|\tilde{\alpha}|$, or $|\alpha|=|\tilde{\alpha}|$ and $\alpha_{\bar{j}}>\tilde{\alpha}_{\bar{j}}$. Comparing the coefficients of $D^{\bar{\alpha}} f_{\bar{\nu}}^{\bar{i}} D^{\tilde{\alpha}+\bar{j}} g_{\bar{\mu}}^{\tilde{i}}$ in both sides of (*), we have $Z_{\bar{i} \bar{\mu} \bar{\mu}}^{\bar{j}} Z_{i_{\bar{\mu}}}^{\alpha} \equiv 0$ on U^{\prime}, which is a contradiction. Therefore we obtain $Z_{i \bar{\mu}}^{\alpha} \equiv 0$ on U^{\prime} for all α and i. Next, comparing the coefficients of $D^{\alpha} f_{\bar{\nu}}^{\bar{i}} D^{j} g_{\frac{1}{\mu}}^{1} \partial_{x_{\bar{\mu}}^{1}}$ in both sides of (${ }^{*}$), we have $Z_{\bar{i} \bar{i} \bar{\mu}} \overline{\frac{j}{\mu}} \equiv 0$ on U^{\prime}, which is a contradiction. Thus we have proved that $Z_{i \nu \mu}^{\alpha} \equiv 0$ and hence that $Z_{i \nu}^{\alpha}(y)=\sum_{p} Z_{i \nu}^{\alpha p}(y) \partial_{y p}$. Putting $Z_{i \nu}^{\alpha}(y)=$ $\frac{1}{\alpha!} Y_{i \nu}^{\alpha}(y)$, it is easy to show that φ is a homomorphism if and only if (4) holds. This completes the proof of Theorem 2.

Example 2. Let $G(n, h)$ be a Lie group consisting of all h-jets at 0 of diffeomorphisms of \boldsymbol{R}^{n} fixing the origine 0 and $g(n, h)$ its Lie algebra. We
assume that the diffeomorphisms act on \boldsymbol{R}^{n} from the right, i. e., $(g h)(p)=$ $h(g(p))$ for any diffeomorphisms g, h and any point p of \boldsymbol{R}^{n}. Then we can take $\left\{x^{\alpha} \partial_{x^{i}}|0<|\alpha| \leqq h, i \leqq n\}\right.$ as a basis of $g(n, h)$ with the usual bracket operation and the exponential mapping $\mathfrak{g}(n, h) \rightarrow G(n, h)$ is given by $\exp t X=$ the h-jet of $\operatorname{Exp} t X$ at 0 where $\operatorname{Exp} t X$ is the 1-parameter group of local transformations generated by $X=\Sigma X_{\alpha}^{i} x^{\alpha} \partial_{x i}$. Let $J^{h-1} T M^{l}$ be the $(h-1)$-jet bundle of the tangent bundle $T M^{l}$. It is a G-bundle where $G=\stackrel{\oplus}{\oplus} G(n, h)$. Let P be its associated principal G-bundle. For a right G-manifold F, put $N=F \times{ }_{G} P$. Then Diff (M), the group of all diffeomorphisms of M, acts on N naturally, namely there is a homomorphism $\Phi: \operatorname{Diff}(M) \rightarrow \operatorname{Diff}(N)$, hence we get a homomorphism $\varphi=\Phi_{*}: \mathcal{A}(M) \rightarrow \mathcal{A}(N) . \varphi$ is given as follows. For $X \in \mathcal{A}(M)$ let $\operatorname{Exp} t X$ be the 1-parameter group of transformations generated by X (we assume that the manifolds are compact). Then $\varphi(X)=\Phi_{*}(X)$ is the infinitesimal transformation of $\Phi(\operatorname{Exp} t X)$. Put $Y_{i \nu}^{\alpha}=\rho_{*}\left(x_{\nu}^{\alpha} \partial_{x_{\nu}^{i}}\right) \in \mathcal{A}(F)$ where $\rho: G \rightarrow \operatorname{Diff}(F)$ is a homomorphism induced by the action of G on F and $\rho_{*}: \stackrel{\ell}{\oplus} \mathrm{g}(n, h) \rightarrow \mathcal{A}(F)$ is a homomorphism induced by ρ. Let $U_{1} \times \cdots \times U_{l} \times F=U \subset N$ be a local trivial structure of N. Then it is easy to show that φ is given by the formula (3) in Theorem 2. Hence the map $\tilde{\psi}$ is the projection map $N \rightarrow M^{l}$ in this case.

Remark 2. Let $V_{1} \times \cdots \times V_{l} \times F=V \subset N$ be another local trivial structure of N and let g be a diffeomorphism of $W=\left(U_{1} \cap V_{1}\right) \times \cdots \times\left(U_{l} \cap V_{l}\right) \times F$ induced by the transition function of N, and let φ_{U} and φ_{V} be homomorphisms of $\mathcal{A}(M)$ into $\mathcal{A}\left(U_{1} \times \cdots \times U_{l} \times F\right)$ and $\mathcal{A}\left(V_{1} \times \cdots \times V_{l} \times F\right)$ respectively given by the formula (3). Then we have $g_{*}\left(\varphi_{U}(X) \mid W\right)=\varphi_{V}(X) \mid W$ for all $X \in \mathcal{A}(M)$. We shall use this fact in the proof of Theorem 3 and Theorem 3'.

In Example 2, the map $\tilde{\psi}$ can be defined globally $N \rightarrow M^{l}$, but this is not true in general as shown in the next example.

Example 3. Let σ be a free involution of a manifold F and τ a free involution of $M \times M \times F$ given by $\tau(x, y, z)=(y, x, \sigma(z))$. Let $\varphi: \mathcal{A}(M) \rightarrow$ $\mathcal{A}(M \times M \times F)$ be a homomorphism given by

$$
\varphi\left(\Sigma f^{i}(x) \partial_{x i}\right)(x, y, z)=\Sigma f^{i}(x) \partial_{x i}+\Sigma f^{i}(y) \partial_{y i} .
$$

Since $\tau_{*} \varphi(X)=\varphi(X), \varphi$ induces a homomorphism $\mathcal{A}(M) \rightarrow \mathcal{A}(M \times M \times F / \tau)$. Clearly in this case the map $\tilde{\psi}: M \times M \times F / \tau \rightarrow M \times M$ does not exist globally.

§ 2. Bundle structure of N_{l}.

In this section we shall show that N_{ι} is a (topological) fibre bundle with the projection map ψ and study its bundle structure. It will be seen that N_{l} is closely related to $N=F \times{ }_{G} P$ in Example 2 (cf. Theorem 3). Now, put $M(l)$
$=\left\{\left(p_{1}, \cdots, p_{l}\right) \in M^{l} \mid p_{i} \neq p_{j}\right.$ for $\left.i \neq j\right\} \subset M^{l}$. Since the symmetric group S_{l} acts freely on $M(l)$, we obtain a smooth manifold $M_{l}=M(l) / S_{l}$ which consists of all the sets of distinct l points of M. Put $M\{k\}=\bigcup_{l=1}^{k} M_{\iota}$ and give it the quotient topology induced by the natural map $M^{k} \rightarrow M\{k\}$.

Proposition 1. i) Let X be a vector field on M with compact support and q a point of N. Suppose that at $q \operatorname{Exp} t \varphi(X)$ (cf. Example 2) is defined for $0 \leqq t \leqq 1$. Then for any $Y \in \mathcal{A}(M)$ we have $\varphi\left((\operatorname{Exp} X)_{*} Y\right)=(\operatorname{Exp} \varphi(X))_{*} \varphi(Y)$ at the point $\operatorname{Exp} \varphi(X) q$. Moreover if $q \in N^{+}$we have $\operatorname{Exp} \varphi(X) q \in N^{+}$and $\psi(\operatorname{Exp} \varphi(X) q)=\operatorname{Exp} X \psi(q)$.
ii) ψ is a continuous map of N_{l} into M_{l}. If M is not compact then $N^{+}=N$ and ψ is a continuous map of N into $M\{k\}$.

Remark 3. When $\operatorname{dim} M=\operatorname{dim} N$, the part ii) remains true even if M is compact. We do not know whether this fact holds in general.

Proof of Proposition 1. First we prove i) under the following additional assumption :
(*) $q \in N_{k}^{+}$and for each $\nu, X\left(p_{\nu}\right) \neq 0$ or $X \equiv 0$ on some neighborhood of p_{ν}. Here $\psi(q)=\left\{p_{1}, \cdots, p_{k}\right\}$.
Choose $U_{\nu},\left(x_{\nu}\right), U$ and $\left(x_{*}, y\right)$ as in Theorem 2. We may assume that $X \mid U_{\nu}=$ $\partial_{x_{\nu}^{1}}$ for $\nu \leqq s$ and $X \mid U_{\nu} \equiv 0$ for $\nu>s$ for some s and hence that $\varphi(X) \mid U=\partial_{x_{1}^{1}}+$ $\cdots+\partial_{x_{s}^{1}}$. For brevity we put $p_{\nu t}=\operatorname{Exp} t X p_{\nu}$ and $q_{t}=\operatorname{Exp} t \varphi(X) q$. We can extend the coordinate system $\left(x_{*}, y\right)$ to some open set U^{\prime} containing all the points $q_{t}(0 \leqq t \leqq 1)$ so that $\operatorname{Exp} t \varphi(X)\left(x_{*}, y\right)=\left(x_{1}^{1}+t, x_{1}^{2}, \cdots, x_{1}^{n}, \cdots, x_{s}^{1}+t, \cdots, x_{s+1}^{1}\right.$, $\left.\cdots, x_{k}^{n}, y\right)$. Similarly we can extend $\left(x_{\nu}\right)(1 \leqq \nu \leqq s)$ to some open set U_{ν}^{\prime}. Then we have $\varphi(X) \mid U^{\prime}=\partial_{x_{1}^{1}}+\cdots+\partial_{x_{s}^{1}}$ and $X \mid U_{\nu}^{\prime}=\partial_{x_{\nu}^{1}}$. Note that $U^{\prime \prime}$ s are not necessarily disjoint. For each $t(0 \leqq t \leqq 1)$, consider the following statement:
$C_{t}: \quad q_{t} \in N_{k}^{+}, \psi\left(q_{t}\right)=\operatorname{Exp} t X \psi(q)=\left\{p_{1 t}, \cdots, p_{k t}\right\}$ and the coordinate systems $\left(x_{\nu}\right)$ and $\left(x_{*}, y\right)$ satisfy i) of Theorem 2 on some neighborhoods of $p_{\nu t}$ and q_{t} respectively.
Since the set $\left\{t \mid C_{t}\right.$ is true $\}$ is open and contains a sufficiently small t, to prove C_{1} it suffices to show that if C_{t} is true for $t<s$ then C_{s} is true. Take $Y_{\nu}^{i} \in$ $\mathcal{A}(M)(1 \leqq \nu \leqq k)$ such that $Y_{\nu}^{i}=\partial_{x_{\nu}^{i}}$ on some neighborhood of $p_{\nu s}$ and supp $Y_{\nu}^{i} \nexists p_{\mu s}$ for $\mu \neq \nu$. Then $\varphi\left(Y_{\nu}^{i}\right)=\partial_{x_{\nu}^{i}}$ on some neighborhood V of the set $\left\{q_{t} \mid s-\varepsilon<t<s\right\}$ for some $\varepsilon>0$ and hence $\varphi\left(Y_{\nu}^{i}\right)\left(q_{s}\right) \neq 0$, which implies that $q_{s} \in N^{+}$. Further we have $\psi\left(q_{s}\right) \ni p_{\nu s}$. Really if $\psi\left(q_{s}\right) \nexists p_{\nu s}$ we can choose Y_{ν}^{i} so that supp $Y_{\nu}^{i} \cap \psi\left(q_{s}\right)$ $=\emptyset$ and hence that, in view of Lemma 33, $\varphi\left(Y_{\nu}^{i}\right)\left(q_{s}\right)=0$, which is a contradiction. Since $p_{y s}$'s are distinct and k is, by definition, the maximal number of p_{ν} 's, it follows that $\psi\left(q_{s}\right)=\left\{p_{1 s}, \cdots, p_{k s}\right\}$ and hence $q_{s} \in N_{k}$. By Lemma 5 we may restrict our consideration to some neighborhoods of $p_{\nu s}$ and q_{s}. Since $L_{\varphi(x)} \varphi\left(\partial_{x_{\nu}^{i}}\right)$
$=\left[\varphi(X), \varphi\left(\partial_{x_{\nu}^{i}}\right)\right]=\varphi\left[X, \partial_{x_{\nu}^{i}}\right]=0$ (we denote by $L_{\varphi(X)}$ the Lie derivative with respect to $\varphi(X)$) and $\varphi\left(\partial_{x_{\nu}^{i}}\right)=\partial_{x_{\nu}^{i}}$ on V, we obtain $\varphi\left(\partial_{x_{\nu}^{i}}\right)=\partial_{x_{i}^{i}}$. By Lemma 6 we have $\tilde{\psi}_{\nu}^{i}\left(x_{*}, y\right)=x_{\nu}^{i}+c_{\nu}^{i}(y)$ for some c_{ν}^{i}, and since $\tilde{\psi}_{\nu}^{i}\left(x_{*}, y\right)=x_{\nu}^{i}$ on V, it follows that $\tilde{\psi}_{\nu}^{i}\left(x_{*}, y\right)=x_{\nu}^{i}$. Therefore we have $q_{s} \in N_{k}^{+}$and the coordinate systems $\left(x_{\nu}\right)$ and (x_{*}, y) satisfy i) of Theorem 2, which completes the proof of C_{s}. It remains to prove that $\varphi\left((\operatorname{Exp} X)_{*} Y\right)=(\operatorname{Exp} \varphi(X))_{*} \varphi(Y)$ at q_{1}, but this is clear since $\operatorname{Exp} X$ and $\operatorname{Exp} \varphi(X)$ are parallel translations and φ is given by (3) in Theorem 2,

Now we prove i) in general case. If $q \in \bar{N}_{k}=\bar{N}_{k}^{+}$we can, by Theorem 2, choose a sequence $\left\{q_{i}\right\}$ in N_{k}^{+}converging to q such that each q_{i} satisfies the assumption in i) and the assumption (*). Then we have $\varphi\left((\operatorname{Exp} X)_{*} Y\right)=$ $(\operatorname{Exp} \varphi(X))_{*} \varphi(Y)$ at $q_{i 1}$ and hence at q_{1}. It follows that $\varphi^{-1} \mathcal{A}_{q_{1}}(N)=$ $(\operatorname{Exp} X)_{*}\left(\varphi^{-1} \mathcal{A}_{q}(N)\right)$. Therefore if $q \in N^{+}$then we have $q_{1} \in N^{+}$and $\psi\left(q_{1}\right)=$ $\operatorname{Exp} X \psi(q)$. Note that we have $q_{t} \in \bar{N}_{k}$ for $0 \leqq t \leqq 1$ since $q_{i t} \in N_{k}^{+}$converges to q_{t} and hence that if $q \in N-\bar{N}_{k}$ then $q_{t} \in N-\bar{N}_{k}$. Applying the above argument to the manifold $N-\bar{N}_{k}$, we can prove i) for $q \in \bar{N}_{k-1}-\bar{N}_{k}$ and similarly for $q \in \bar{N}_{1} \cup \cdots \cup \bar{N}_{k}=\bar{N}^{+}$. For $q \in N-\bar{N}^{+}$, we have $\varphi\left((\operatorname{Exp} X)_{*} Y\right)=(\operatorname{Exp} \varphi(X))_{*} \varphi(Y)$ $=0$ at $q_{1}=q$ since $\varphi(Z) \equiv 0$ on $N-\bar{N}^{+}$for any $Z \in \mathcal{A}(M)$. This completes the proof of i). ii) Lemma 4 implies that ψ is continuous on N_{l}. We assume that M is not compact. Let K be a compact set of N. We prove that $L(K)=$ $\left\{p \mid p \in \psi(q)\right.$ for some $\left.q \in K \cap N^{+}\right\}$is relatively compact in M. Assume the contrary. Then there is a sequence $\left\{q_{i}\right\}$ in $K \cap N^{+}$converging to some point q^{\prime} of K such that the set $\left\{p_{i 1}\right\}_{i}$ is discrete where $\psi\left(q_{i}\right)=\left\{p_{i 1}, p_{i 2}, \cdots\right\}$. We may assume that $p_{i 1} \neq p_{j \nu}$ for all ν and $j<i$. By Lemma 3 we can choose $Y \in \mathcal{A}(M)$ such that $\left|\varphi(Y)\left(q_{i}\right)\right| \geqq i$, which is a contradiction. Here || denotes the norm of the vector with respect to some metric on M. Therefore $L(K)$ is relatively compact. Next, let $\left\{q_{i}\right\} \subset N^{+}$be a sequence converging to a point q of N and K a compact neighborhood of q. We show $q \in N^{+}$. Assume the contrary. Put $\psi\left(q_{i}\right)=\left\{p_{i_{1}}, p_{i_{2}}, \cdots\right\}$. Since $L=L(K)$ is relatively compact, we may assume that the sequence $\left\{p_{i 1}\right\}_{i}$ converges to some point p_{1} of \bar{L}. Since M is not compact, we can choose $Y \in \mathcal{A}(M)$ such that supp Y is compact and $\operatorname{Exp} Y(U) \cap L=\emptyset$ for some neighborhood U of p_{1}. Since by assumption $q \notin N^{+}$, we have $\varphi(Y)(q)$ $=0$. So we may assume that at $q_{i} \operatorname{Exp} t \varphi(Y)$ is defined for $0 \leqq t \leqq 1$ and $\operatorname{Exp} \varphi(Y) q_{i} \in K$ for all i. Then by i) we have $\psi\left(\operatorname{Exp} \varphi(Y) q_{i}\right)=\operatorname{Exp} Y \psi\left(q_{i}\right)=$ $\left\{\operatorname{Exp} Y p_{i_{1}}, \cdots\right\}$. By the definition of L we have $\operatorname{Exp} Y p_{i_{1}} \in L$, which contradicts the fact that $\operatorname{Exp} Y(U) \cap L=\emptyset$. Thus we have $q \in N^{+}$. This implies that N^{+} is closed. Since N^{+}is open and N is connected, we have $N^{+}=N$. Next, we show that $\psi\left(q_{i}\right)=\left\{p_{i 1}, \cdots\right\} \rightarrow \psi(q)=\left\{p_{1}, \cdots, p_{m}\right\}$ in $M\{k\}$. Assume the contrary. Then we have two cases:

1) There is a subsequence $\left\{q_{i}^{\prime}\right\}$ of $\left\{q_{i}\right\}$ such that the sequence $\left\{p_{i 1}^{\prime}\right\}$ converges to a point p with $p \neq p_{\nu}$ for $\nu=1,2, \cdots, m$.
2) There is a neighborhood U of p_{1} such that $U \nexists p_{i \nu}$ for all i and ν.

In case 1 , we can choose $Y \in \mathcal{A}(M)$ such that supp Y is compact and does not contain p_{ν} for $\nu=1, \cdots, m$ and that $\operatorname{Exp} Y(U) \cap L=\emptyset$ for some neighborhood U of p. Then by Lemma 3 we have $\varphi(Y)(q)=0$, which yields a contradiction by the same argument as above. In case 2 , we can choose $Y \in \mathcal{A}(M)$ such that supp $Y \subset U$ and $Y\left(p_{1}\right) \neq 0$. Then we have $\varphi(Y)\left(q_{i}\right)=0$ for all i and $\varphi(Y)(q)$ $\neq 0$, which is a contradiction. Therefore we have that $\psi\left(q_{i}\right) \rightarrow \psi(q)$ in $M\{k\}$, which completes the proof of ii).

Corollary 1. Suppose that N is compact. Then M is also compact and φ is injective. Moreover each non-empty N_{l} is a (topological) fibre bundle over M_{l} with the projection map ψ.

Proof. First we show that M is compact. Assume the contrary. Then by Proposition 1ψ is continuous. Let q be a point of $N_{k}(\neq \emptyset)$ with $\psi(q)=$ $\left\{p_{1}, \cdots, p_{k}\right\}$. For any point $\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$ of M_{l}, there are $X_{i}^{\prime} s \in \mathcal{A}(M)$ such that $\operatorname{supp} X_{i}$'s are compact and $\operatorname{Exp} X_{i}\left\{p_{1}, \cdots, p_{k}\right\} \rightarrow\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$ in $M\{k\}$ as $i \rightarrow \infty$ (recall that M is connected). Since $\psi(N)$ is compact and $\psi\left(\operatorname{Exp} \varphi\left(X_{i}\right) q\right)=$ $\operatorname{Exp} X_{i} \psi(q) \in \psi(N)$, we have $\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\} \in \psi(N)$ and hence $\psi(N)=M\{k\}$. Since $\psi(N)$ is compact, so is M, which is a contradiction. Therefore M is compact. Next, let q be a point of $N_{l} \neq \emptyset$ with $\psi(q)=\left\{p_{1}, \cdots, p_{l}\right\}$. For any point $\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$ of M_{l}, there is $X \in \mathcal{A}(M)$ such that $\psi(\operatorname{Exp} \varphi(X) q)=\operatorname{Exp} \psi(q)=\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$. Thus $\psi: N_{l} \rightarrow M_{l}$ is surjective. In particular $\psi: N_{k}(\neq \emptyset) \rightarrow M_{k}$ is surjective. The injectivity of φ follows easily from this fact and the definition of ψ. It is clear that $\operatorname{Exp} \varphi(X)$ gives a homeomorphism of $\psi^{-1}\left\{p_{1}, \cdots, p_{l}\right\}$ onto $\psi^{-1}\left\{p_{1}^{\prime}, \cdots, p_{l}^{\prime}\right\}$. Now we give the local trivial structure of N_{l}. Let U_{ν} be a neighborhood of p_{ν} and $\left(x_{\nu}\right)$ a coordinate system on some neighborhood of $\bar{U}_{\nu}(\nu \leqq l)$. We assume that \bar{U}_{ν} 's are disjoint and diffeomorphic to the unit disk $\left\{\left.x \in \boldsymbol{R}^{n}| | x\right|^{2} \leqq 1\right\}$ by these coordinate systems. Choose $X_{\nu}^{i} \in \mathcal{A}(M)$ with $X_{\nu}^{i} \mid U_{\nu}=\partial_{x_{\nu}^{i}}$ and $X_{\nu}^{i} \mid U_{\mu} \equiv 0$ for $\mu \neq \nu$. Let $\left(a_{\nu}\right)$ be the coordinates of p_{ν} and put $F_{l}=\psi^{-1}\left\{p_{1}, \cdots, p_{l}\right\}$. Then the local trivial structure of N_{l} is given by the map $\chi_{U}: U_{1} \times \cdots \times U_{l} \times F_{l} \rightarrow$ $\psi^{-1}\left(U_{1} \times \cdots \times U_{l}\right) \subset N_{l}$ defined by $\chi_{U}\left(\left(x_{1}\right) \times \cdots \times\left(x_{l}\right) \times y\right)=\operatorname{Exp} \varphi\left(\sum_{i \nu}\left(x_{\nu}^{i}-a_{\nu}^{i}\right) X_{\nu}^{i}\right) y$. Here we consider $U=U_{1} \times \cdots \times U_{l}$ as a subset of M_{l}. This completes the proof of Corollary 1 .

To express the transition functions of the bundle N_{l}, we need some definitions. We assume that M is oriented and $\operatorname{dim} M=n \geqq 3$. Let $\mathcal{U}=\{U\}$ be an open covering of M such that each intersection of finite U 's is a disk and $\left(x_{U}\right)=\left(x_{U}^{i}\right)$ a coordinate system on U. Let $G^{+}(n, h)$ be the connected component of $G(n, h)$ (cf. Example 2) containing the identity element 1 and $\tilde{G}^{+}(n, h)$ its universal covering Lie group. Since $G^{+}(n, h)$ is homotopically equivalent to $S O(n), \tilde{G}^{+}(n, h)$ is a double covering of $G^{+}(n, h)$ and homotopically equivalent to $\operatorname{Spin}(n)$. For any U and V with $U \cap V \neq \emptyset$, let $J_{U V}: U \cap V \rightarrow G^{+}(n, h)$ be a
map given by $J_{U V}\left(x_{U}\right)=$ the h-jet of the coordinate transformation $x_{V}\left(x_{U}\right)$ at $\left(x_{U}\right)$ and let $\tilde{J}_{U V}: U \cap V \rightarrow \tilde{G}^{+}(n, h)$ be one of its liftings. Note that $J_{U V}$ is a transition function of $J^{h-1} T M$. Since $J_{U V}\left(x_{U}\right) J_{V W}\left(x_{V}\left(x_{U}\right)\right)=J_{U W}\left(x_{U}\right)$ for any $\left(x_{U}\right)$ $\in U \cap V \cap W$, there is an element $\varepsilon_{U V W} \in \boldsymbol{Z}_{2} \subset \widetilde{G}^{+}(n, h)$ such that $\tilde{J}_{U V}\left(x_{U}\right) \tilde{J}_{V W}\left(x_{V}\left(x_{U}\right)\right)$ $=\varepsilon_{U V W} \tilde{J}_{U W}\left(x_{U}\right)$ for any $\left(x_{U}\right)$. Here \boldsymbol{Z}_{2} is the inverse image of 1 by the covering map $\tilde{G}^{+}(n, h) \rightarrow G^{+}(n, h)$. Note that $\left\{\varepsilon_{U V W}\right\}$ gives the second Whitney class of $M, w_{2}(M) \in H^{2}\left(M ; \boldsymbol{Z}_{2}\right)$, and hence that if M has a spin structure we can choose the liftings $\tilde{J}_{U V}$ so that each $\varepsilon_{U V W}=1$. Let $\mathcal{U}^{l}=\{U\}=\left\{U_{1} \times \cdots\right.$ $\left.\times U_{l} \mid U_{\nu} \in \mathcal{G}\right\}$ be an open covering of M^{l} and $\left(x_{U}\right)=\left(x_{U_{1}}, \cdots, x_{U_{l}}\right)$ a coordinate system on U. Finally let $\tilde{J}_{U V}: U \cap V \rightarrow \stackrel{\downarrow}{\oplus} \tilde{G}^{+}(n, h)$ be a map given by $\tilde{J}_{U V}\left(x_{U}\right)$ $=\oplus \tilde{J}_{U_{\nu} V_{\nu}}\left(x_{U_{\nu}}\right)$ and put $\varepsilon_{U V W}=\oplus \varepsilon_{U_{\nu} V_{\nu} W_{\nu}} \in \stackrel{\iota}{\oplus} \tilde{G}^{+}(n, h)$. With these notations we have the following

Theorem 3. Assume that N is compact and M is oriented with $\operatorname{dim} M$ $=n \geqq 3$. i) Let \tilde{N}_{l} be the lifting of the bundle N_{l} to $M(l)$ by the map $M(l) \rightarrow M(l) / S_{l}=M_{l}$. Then there is a topological fibre bundle \hat{N}_{l} over M^{l} with $\hat{N}_{l} \mid M(l)=\tilde{N}_{l}$.
ii) Put $h=2\left((d-n l)^{2}+d-n l\right)+1$ where $d=\operatorname{dim} N$. Then $G=\stackrel{l}{\oplus} \tilde{G}^{+}(n, h)$ acts on the fibre F_{l} of the bundle \hat{N}_{l} from the right and hence we have a homomorphism $\rho: G \rightarrow$ Homeo $\left(F_{l}\right)$. The transition functions of \hat{N}_{l} are given by $g_{U V}\left(x_{U}\right)=$ $\rho\left(\tilde{J}_{U V}\left(x_{U}\right)\right) h_{U V}$, where $h_{U V}$'s are elements of the centralizer of $\rho(G)$ in Homeo $\left(F_{l}\right)$ satisfying the relation $h_{U V} h_{V W}=\rho\left(\varepsilon_{U V W}\right) h_{U W}$.

Remark 4. It would seem that the fibre F_{l} is a smooth submanifold (with corner) of N_{l}. If this is true, it is easily seen that N_{l} is a smooth fibre bundle and that Homeo $\left(F_{l}\right)$ can be replaced by $\operatorname{Diff}\left(F_{l}\right)$. Further note that for any smooth right $\stackrel{\leftarrow}{\oplus} \tilde{G}^{+}(n, h)$-manifold F_{l} and for all $h_{U V}$'s $\in \operatorname{Diff}\left(F_{l}\right)$ satisfying the conditions in Theorem 3ii), $\left\{g_{U v}\right\}$ gives a smooth fibre bundle \hat{N}_{l} over M^{l}. We can construct a local homomorphism $\Phi: \operatorname{Diff}(M) \rightarrow \operatorname{Diff}\left(\hat{N}_{l}\right)$ by using the local trivial structure of \hat{N}_{l} and hence get a homomorphism $\varphi=\Phi_{*}: \mathcal{A}(M) \rightarrow$ $\mathcal{A}\left(\hat{N}_{l}\right)$. If $\rho\left(\stackrel{\prime}{\oplus} \boldsymbol{Z}_{2}\right)=\{1\} \subset \operatorname{Diff}\left(F_{l}\right)$ (which means that $\stackrel{t}{\oplus} G^{+}(n, h)$ acts on $\left.F_{l}\right), \Phi$ can be extended to a global homomorphism $\operatorname{Diff}(M) \rightarrow \operatorname{Diff}\left(\hat{N}_{l}\right)$. In this case, since $\rho\left(\varepsilon_{U V W}\right)=1$, we may put each $h_{U V}=1$. The homomorphism φ obtained in this way is exactly the same one given in Example 2.

Since $\varphi(\mathcal{A}(M))$ is a subalgebra of $\mathcal{A}(N)$ and by Proposition 1 $\operatorname{Exp} t \varphi(X) \varphi(\mathcal{A}(M)) \subset \varphi(\mathcal{A}(M))$, it follows that for any point q of N_{l} there is a
leaf $L\left(\subset N_{l}\right)$ containing q. Clearly the map $X \rightarrow \varphi(X) \mid L$ gives a homomorphism $\mathcal{A}(M) \rightarrow \mathcal{A}(L)$. For this homomorphism we have a more precise theorem, namely

Theorem 3^{\prime}. i) L is a smooth fibre bundle over M_{l}. Let \tilde{L} be the lifting of L to $M(l)$. Then there is a smooth fibre bundle \hat{L} over M^{l} with $\hat{L} \mid M(l)=\widetilde{L}$. Moreover there are a covering space \tilde{M}^{l} of M^{l} and a closed subgroup H of $G=\stackrel{\oplus}{\oplus} \tilde{G}^{+}(n, h)$ such that \hat{L} is a fibre bundle over \tilde{M}^{l} with connected fibre $H \backslash G$ (homogeneous space).
ii) The transition functions of the bundle \hat{L} over \tilde{M}^{l} are given by $g_{U V}\left(x_{U}\right)$ $=R\left(\tilde{J}_{U V}\left(x_{U}\right)\right) L\left(k_{U V}\right)$, where $k_{U V}$'s are elements of the group $H \backslash N(H)(N(H)$ is the normalizer group of H in G) satisfying the relation $k_{V W} k_{U V}=\varepsilon_{U V W} k_{U W}$ and R and L are actions on $H \backslash G$ induced by the right and the left translations of G respectively. Here U, V and W are elements of the open covering of \tilde{M}^{l} induced by q^{l}.

Proof of Theorem 3 and Theorem 3^{\prime}. We investigate the bundle \tilde{N}_{l}. Let (p_{1}, \cdots, p_{l}) be a point of $U \cap M(l)$ where $U=U_{1} \times \cdots \times U_{l} \in \mathcal{U}^{l}$, and let $U_{\nu}^{\prime \prime}$ s be disjoint neighborhoods of p_{ν} 's respectively. Then the local trivial structure of $N_{l} \mid U_{1}^{\prime} \times \cdots \times U_{l}^{\prime}$ given in Corollary 1 gives a foliation of $\operatorname{dim} n l$ of $\tilde{N}_{l} \mid U_{1}^{\prime} \times$ $\cdots \times U_{\imath}^{\prime}$ and this foliation depends only on the coordinate system (x_{U}). Therefore we have a foliation of $\tilde{N}_{l} \mid U_{1} \times \cdots \times U_{l} \cap M(l)$ and each leaf is a covering space of $U_{1} \times \cdots \times U_{l} \cap M(l)=U \cap M(l)$. Since $U \cap M(l)$ is simply connected by the assumption that $\operatorname{dim} M \geqq 3$, each leaf is homeomorphic to $U \cap M(l)$ and hence we get a local trivial structure of $\tilde{N}_{l} \mid U \cap M(l)$. We first prove Theorem 3'. Since the groups generated by $\operatorname{Exp} X$'s and $\operatorname{Exp} \varphi(X)$'s for $X \in \mathcal{A}(M)$ act transitively on M_{l} and L respectively and $\psi(\operatorname{Exp} \varphi(X) q)=\operatorname{Exp} X \psi(q)$, it follows that L is a bundle over M_{l} and that, in view of Lemma 6, ψ is a smooth submersion of L onto M_{l}. Therefore $L=L_{l}^{+}$and the expression (3) of φ in Theorem 2 holds good everywhere. Now we study the bundle \widetilde{L}. Let (p_{1}, \cdots, p_{l}) be a point of $U \cap M(l),\left(a_{U}\right)$ its coordinates and F_{L} the fibre over (p_{1}, \cdots, p_{l}). We give the local trivial structure of $\widetilde{L} \mid U \cap M(l)=(U \cap M(l)) \times F_{L}$ as above. Choose $X_{i \nu}^{\alpha} \in \mathcal{A}(M)$ such that $\operatorname{supp} X_{i \nu}^{\alpha} \nexists p_{\mu}$ for $\mu \neq \nu$ and $X_{i \nu}^{\alpha} \equiv\left(x_{U_{\nu}}-a_{U_{\nu}}\right)^{\alpha} \partial_{x_{U_{\nu}}}$ on some neighborhood of p_{ν}. Put $Y_{i \nu}^{\alpha}=\varphi\left(X_{i \nu}^{\alpha}\right) \mid F_{L}$. Then $Y_{i \nu}^{\alpha}$ is a vector field on F_{L} by ii) of Theorem 2. Moreover for $X \in \mathcal{A}(M)$ with $X \mid U_{\nu}=\sum_{i} f_{U_{\nu}}^{i}\left(x_{U_{\nu}}\right) \partial_{x_{U_{\nu}}}$ we have

$$
\begin{equation*}
\varphi(X)=\sum_{\nu=1}^{l} \sum_{i=1}^{n}\left(f_{U_{\nu}}^{i}\left(x_{U_{\nu}}\right) \partial_{x_{U_{\nu}}^{i}}+\sum_{0 \leqslant \backslash|\alpha| \leq h} \frac{D^{\alpha}}{\alpha!} f_{U_{\nu}}^{i}\left(x_{U_{\nu}}\right) Y_{i \nu}^{\alpha}\right) \tag{5}
\end{equation*}
$$

on $\widetilde{L} \mid U \cap M(l)=(U \cap M(l)) \times F_{L}$. For another $V \in \mathcal{U}^{l}$ we get a similar expression of φ with $Y_{i \nu}^{\alpha}$ replaced by $Y_{i \nu}^{\alpha^{\prime}} \in \mathcal{A}\left(F_{L}^{\prime}\right)$ where F_{L}^{\prime} is a fibre over some point ($p_{1}^{\prime}, \cdots, p_{l}^{\prime}$) of $V \cap M(l)$. Then we have

Lemma 7. There is a diffeomorphism $g: F_{L} \rightarrow F_{L}^{\prime}$ such that $g_{*} Y_{i \nu}^{\alpha}=Y_{i \nu}^{\alpha \prime}$ for all α, i and ν.

Proof. Let (\tilde{x}_{ν}) be a coordinate system on some simply connected neighborhood \tilde{U}_{ν} of $\left\{p_{\nu}, p_{\nu}^{\prime}\right\}$ which is identical with $\left(x_{U_{\nu}}\right)$ and ($x_{V_{\nu}}$) on some neighborhoods of p_{ν} and p_{ν}^{\prime} respectively. Then we have a local trivial structure of $\widetilde{L} \mid \tilde{U}_{1} \times \cdots \times \tilde{U}_{l} \cap M(l)$ and the expression (5) of φ. This trivial structure gives the desired diffeomorphism.

By this lemma for all $V \in \mathcal{G}^{l}$ we have the local trivial structure of $L \mid V \cap M(l)=(V \cap M(l)) \times F_{L}$ and the expression (5) with the same fibre F_{L} and the vector fields $Y_{i \nu}^{\alpha}$'s. Now we investigate the transition function $g_{U V}\left(x_{U}\right)$ of \tilde{L}. Since $Y_{i \nu}^{\alpha}$'s satisfy the relation (4) in Theorem 2, the map $x_{\nu}^{\alpha} \partial_{x_{\nu}^{i}} \rightarrow Y_{i \nu}^{\alpha}$ gives a homomorphism $\oplus_{\oplus} \mathrm{g}(n, h) \rightarrow \mathcal{A}\left(F_{L}\right)$. Since $\operatorname{Exp} t \varphi\left(X_{i \nu}^{\alpha}\right)$ are defined for all $t \in \boldsymbol{R}$, it follows that $\operatorname{Exp} t Y_{i \nu}^{\alpha}$ are also defined for all $t \in \boldsymbol{R}$ and hence that there is a homomorphism $\rho: G=\stackrel{l}{\oplus} \tilde{G}^{+}(n, h) \rightarrow \operatorname{Diff}\left(F_{L}\right)$, namely, G acts on F_{L}. Then $\rho\left(\tilde{J}_{U V}\left(x_{U}\right)\right)$ gives a diffeomorphism of $(U \cap V) \times F_{L}$. Let φ_{U} be a homomorphism $\mathcal{A}(M) \rightarrow \mathcal{A}\left(U \times F_{L}\right)$ given by (5) and φ_{V} a similar one. Then we have $\rho\left(\tilde{J}_{U V}\left(x_{U}\right)\right) * \varphi_{U}(X)=\varphi_{V}(X)$ on $(U \cap V) \times F_{L}$ by Remark 2. (Remark 2 remains valid with $\stackrel{\prime}{\oplus} G(n, h)$ replaced by $\stackrel{t}{\oplus} \tilde{G}^{+}(n, h)$.) Put $h_{U V}\left(x_{U}\right)=\rho\left(\tilde{J}_{U V}\left(x_{U}\right)\right)^{-1} g_{U V}\left(x_{U}\right)$. Then we have $h_{U V}\left(x_{U}\right)_{*} \varphi_{U}(X)=\varphi_{U}(X)$ on $(U \cap V) \times F_{L}$ for all $X \in \mathcal{A}(M)$. It follows easily that $h_{U V}\left(x_{U}\right)$ is independent of x_{U} and $\left(h_{U V}\right)_{*} Y_{i \nu}^{\alpha}=Y_{i \nu}^{\alpha}$ for all α, i and ν, which implies that $h_{U V}$ commutes with every element of $\rho(G)$. Since $\tilde{J}_{U V}\left(x_{U}\right) \tilde{J}_{V W}\left(x_{V}\left(x_{U}\right)\right)=\varepsilon_{U V W} \tilde{J}_{U W}\left(x_{U}\right)$, we have $h_{U V} h_{V W}=\rho\left(\varepsilon_{U V W}\right) h_{U W}$. Note that $g_{U V}\left(x_{U}\right)=\rho\left(\tilde{J}_{U V}\left(x_{U}\right)\right) h_{U V}$ is defined for all $x_{U} \in U \cap V$. Hence $\left\{g_{U V}\right\}$ gives a bundle \hat{L} over M^{l} as desired. The last part of i) of Theorem 3; follows from the facts that \hat{L} is connected and that the action of G is transitive. Note that for this bundle \hat{L} over \tilde{M}^{l}, the same fact as in Lemma 7 holds. The action of G on $H \backslash G$ is induced by the right translation and the centralizer of $\rho(G)$ in Diff $(H \backslash G)$ is isomorphic to the group $H \backslash N(H)$ and its action on $H \backslash G$ is induced by the left translation of G. This completes the proof of Theorem 3^{\prime}. Since the diffeomorphism $\operatorname{Exp} \varphi\left(X_{i \nu}^{\alpha}\right)$ of N gives a homeomorphism of the fibre F_{l} of the bundle N_{l}, Theorem 3 follows from the above argument.

When $\stackrel{\ell}{\oplus} G^{+}(n, h)$ acts on F_{l} or M has a spin structure, the relation $h_{U V} h_{V W}$ $=\boldsymbol{\rho}\left(\varepsilon_{U V W}\right) h_{U W}$ reduces to $h_{U V} h_{V W}=h_{U W}$ and hence $\left\{h_{U V}\right\}$ gives a locally constant bundle over M^{l}. We give an example such that some $\rho\left(\varepsilon_{U V W}\right) \neq 1$.

Example 4. Assume that there is an element $v \in \operatorname{Tor} H^{2}(M ; \boldsymbol{Z})$ reduced to $w_{2}(M)(\neq 0) \in H^{2}\left(M ; \boldsymbol{Z}_{2}\right)$. For example, $(4 k+1)$-dim real projective space satisfies this condition. Let $\rho_{1}: \tilde{G}^{+}(n, 1) \rightarrow G L(N, C)$ be a complex representation such that $\rho_{1}(-1)=-I_{N}=-$ identity and let $\rho_{2}: G L(N, \boldsymbol{C}) \rightarrow$ Diff $\left(S^{2 N-1}\right)$ be a homomorphism induced by the action of $G L(N, \boldsymbol{C}) \subset G L(2 N, \boldsymbol{R})$ on the sphere $S^{2 N-1}$ considered as the real Stiefel manifold $V_{2 N, 1}$. Put $\rho=\rho_{2} \rho_{1}: \tilde{G}^{+}(n, 1) \rightarrow$ Diff $\left(S^{2 N-1}\right)$. Then $\rho(-1) \neq 1$. Since $v \in \operatorname{Tor} H^{2}(M ; \boldsymbol{Z})$, there is a locally con-
stant complex line bundle whose first Chern class is v, where locally constant means that the transition functions $k_{U V}$'s are constant. The assumption assures that there are complex numbers $h_{U V}^{\prime}$'s such that $h_{U V}^{\prime}=k_{U V}$ and $h_{U V}^{\prime} h_{V W}^{\prime}=\varepsilon_{U V W} h_{U W}^{\prime}$. Here we consider $\varepsilon_{U V W} \in \boldsymbol{Z}_{2}=\{1,-1\}$ as a complex number. Put $h_{U V}=\rho_{2}\left(h_{U V}^{\prime} I_{N}\right)$. Then it commutes with all the elements of $\rho\left(\tilde{G}^{+}(n, 1)\right)$ and we have $h_{U V} h_{V W}=$ $\rho\left(\varepsilon_{U V W}\right) h_{U W}$ and some $\rho\left(\varepsilon_{U V W}\right) \neq 1$ as desired.

In Examples $1 \sim 4$ we have $\bar{N}_{k}=N$, but this is not true in general. The local trivial structure given in Corollary 1 gives a foliation of $N_{l} \mid U \cap M(l) / S_{l}$. In general the behaviour of each leaf near N_{l-1} is not simple. Really we have

Example 5. Let $\varphi: \mathcal{A}\left(\boldsymbol{R}^{n}\right) \rightarrow \mathcal{A}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{m}\right)$ be a homomorphism given by

$$
\varphi\left(\sum f^{i}(x) \partial_{x^{i}}\right)(x, y, z)=\sum f^{i}(x) \partial_{x^{i}}+\sum f^{i}(y) \partial_{y^{i}}
$$

For this homomorphism, we have $\psi(x, y, z)=\{x, y\}$ and hence $\bar{N}_{2}=N$. The leaf of the foliation of N_{2} (given by the natural coordinate system (x) of $\boldsymbol{R}^{n}=M$) is given by $z=$ constant. We shall deform this homomorphism. First put $(X, Y, Z)=(x-y, y, z)$. Then we have $N_{2}=\left\{(X, Y, Z) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{m} \mid X \neq 0\right\}$ and

$$
\begin{aligned}
\varphi\left(\sum f^{i}(x) \partial_{x^{i}}\right)(X, Y, Z) & =\Sigma\left(f^{i}(X+Y)-f^{i}(Y)\right) \partial_{X^{i}}+\Sigma f^{i}(Y) \partial_{Y^{i}} \\
& =\sum_{i j} \int_{0}^{1} \partial_{j} f^{i}(t X+Y) d t X^{j} \partial_{X^{i}}+\Sigma f^{i}(Y) \partial_{Y^{i}}
\end{aligned}
$$

Let $(R, \theta)=\left(R, \theta^{1}, \cdots, \theta^{n-1}\right)$ be a polar coordinate system of \boldsymbol{R}^{n} such that $R^{2}=$ $|X|^{2}$ and $X^{i}=R S^{i}(\theta)$ for some S^{i}. Then $\partial_{X^{i}}=S^{i}(\theta) \partial_{R}+\sum_{m} A_{i}^{m}(\theta) \frac{1}{R} \partial_{\theta^{m}}$ for some A_{i}^{m}. Next, let $(\bar{X}, \bar{Y}, \bar{Z})=(X, Y, \alpha(R, Z))$ be another coordinate system of N_{2}. Then the leaf is given by $\bar{Z}=\alpha\left(|\bar{X}|, Z_{0}\right)$ for some constant vector Z_{0}. Choose a smooth function $R(r)$ with $R^{\prime}(r)>0$ for $r>2$ and $R(r)=0$ for $r \leqq 2$. Let (\tilde{X}) and (r, θ) be the coordinate systems of \boldsymbol{R}^{n} such that $\tilde{X}^{i}=r S^{i}(\theta)$. Then N_{2} is diffeomorphic to $\left\{(\tilde{X}, \bar{Y}, \bar{Z}) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{m}| | \tilde{X} \mid=r>2\right\}$ by the map $(R(r), \theta, \bar{Y}, \bar{Z}) \rightarrow(r, \theta, \bar{Y}, \bar{Z})$. In this coordinate system $(r, \theta, \bar{Y}, \bar{Z})$ we have on N_{2}

$$
\begin{aligned}
X^{j} \partial_{X^{i}}= & R(r) / R^{\prime}(r) S^{j} S^{i} \partial_{r}+\sum_{m} S^{j} A_{i}^{m} \partial_{\theta^{m}} \\
& +S^{j} S^{i} R(r) \sum_{k} \partial_{R} \alpha^{k}(R(r), Z(R(r), \bar{Z})) \partial_{\bar{Z}^{k}}
\end{aligned}
$$

where $Z(R, \bar{Z})$ denotes the inverse of $\bar{Z}=\alpha(R, Z)$. Now we assume that $R(r) / R^{\prime}(r)$ and $R(r) \partial_{R} \alpha^{k}(R(r), Z(R(r), \bar{Z}))$ can be extended to smooth functions $g(r)$ and $h^{k}(r, \bar{Z})$ respectively such that $g(r)=r$ and $h^{k}(r, \bar{Z})=0$ for $r \leqq 1$. For example $R(r)=\exp (-\exp 1 /(r-2))$ and $\alpha^{k}(R, Z)=\log R+Z^{k}$ satisfy these conditions. Put

$$
P_{i}^{j}=g(r) S^{j} S^{i} \partial_{r}+\sum_{m} S^{j} A_{i}^{m} \partial_{\theta^{m}}+S^{j} S^{i} \sum_{k} h^{k}(r, \bar{Z}) \partial_{\bar{Z}^{k}}
$$

Then it is a smooth vector field with respect to the coordinate systems (\tilde{X}, \bar{Z}) and (r, θ, \bar{Z}). Let $\varphi_{1}: \mathcal{A}\left(\boldsymbol{R}^{n}\right) \rightarrow \mathcal{A}\left(\boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{m}\right)$ be a map given by

$$
\varphi_{1}\left(\Sigma f^{i}(x) \partial_{\left.x^{i}\right)}\right)(\tilde{X}, \bar{Y}, \bar{Z})=\sum_{i j} \int_{0}^{1} \partial_{j} f^{i}(v) d t P_{i}^{j}+\Sigma f^{i}(\bar{Y}) \partial_{\bar{Y} i}
$$

where $v=\left(v^{1}, \cdots, v^{n}\right)=\left(t R(r) S^{1}(\theta)+\bar{Y}^{1}, \cdots\right)$. Then $\varphi_{1} \mid N_{2}$ is a homomorphism. If $|X|=r \leqq 2$, then $R(r)=0$ and hence we have

$$
\varphi_{1}\left(\Sigma f^{i}(x) \partial_{x^{i}}\right)=\sum_{i j} \partial_{j} f^{i}(\bar{Y}) P_{i}^{j}+\Sigma f^{i}(\bar{Y}) \partial_{\bar{Y} i} .
$$

It is easy to show that P_{i}^{j} 's satisfy the relation (4) in Theorem 2, Therefore by Remark $1 \varphi_{1}$ is a homomorphism. For this homomorphism φ_{1}, we have $\phi(\tilde{X}, \bar{Y}, \bar{Z})=\{\bar{Y}, v\}$ and hence $N_{2}=\left\{(\tilde{X}, \bar{Y}, \bar{Z}) \in \boldsymbol{R}^{n} \times \boldsymbol{R}^{n} \times \boldsymbol{R}^{m}| | \tilde{X} \mid>2\right\}, \quad N_{1}=$ $\left\{(\tilde{X}, \bar{Y}, \bar{Z})||\tilde{X}| \leqq 2\}, F_{2}=\boldsymbol{R}^{m} \cup \boldsymbol{R}^{m}\right.$ and $F_{1}=D^{n} \times \boldsymbol{R}^{m}$. If we take $\alpha^{k}(R, Z)=$ $\log R+Z^{k}$, then the leaf is given by $\bar{Z}^{k}=\alpha^{k}\left(R, Z_{0}\right)=\log R(|\tilde{X}|)+Z_{0}^{k}$ for some constant vector Z_{0}.

§ 3. Classification of transitive germs of homomorphisms.

In this section we shall consider the classification of germs of homomorphisms. Let $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ be a homomorphism and q a point of N with $\psi(q)=\left\{p_{1}, \cdots, p_{l}\right\}$. Then by (1) in § 1 we have

$$
\bigcap_{\nu=1}^{l} \mathscr{M}_{p_{\nu}} \mathcal{A}(M) / \bigcap_{\nu=1}^{l} \mathcal{M}_{p_{\nu}}^{h+1} \mathcal{A}(M) \supset \varphi^{-1} \mathcal{A}_{q}(N) / \bigcap_{\nu=1}^{l} \mathcal{M}_{p_{\nu}}^{h+1} \mathcal{A}(M) .
$$

The left hand side of this formula is isomorphic to the algebra $g=\stackrel{l}{\oplus} g(n, h)$ and hence the right hand side, denoted by B_{q}, is considered as a subalgebra of \mathfrak{g}. However, since the above isomorphism depends on the coordinate systems, B_{q} is not well defined as a subalgebra of \mathfrak{g}. We say subalgebras B and B^{\prime} of g are equivalent if $\operatorname{Ad}(g) B=B^{\prime}$ for some $g \in \oplus \oplus G(n, h)$ and denote by $B(n, h, l)$ the set of the equivalence classes of subalgebras of \mathfrak{g}. Then B_{q} gives an element of $B(n, h, l)$, denoted by B_{q} also. Now we say φ is transitive at q if $\left\{\varphi(X) \in T_{q} N \mid X \in \mathcal{A}(M)\right\}=T_{q} N$ where $T_{q} N$ denotes the tangent space of N at q. Then we have

Lemma 8. If φ is transitive at q, then there is a neighborhood U of q such that $B_{q}=B_{q^{\prime}}$ for all $q^{\prime} \in U$.

Proof. By i) of Proposition 1 we have $\varphi\left((\operatorname{Exp} X)_{*} Y\right)=(\operatorname{Exp} \varphi(X))_{*} \varphi(Y)$ at the point $q_{1}=\operatorname{Exp} \varphi(X) q$ and hence $\varphi^{-1} \mathcal{A}_{q_{1}}(N)=(\operatorname{Exp} X)_{*} \varphi^{-1} \mathcal{A}_{q}(N)$. Let $g \in \stackrel{\ell}{\oplus} G(n, h)$ be the h-jet of $\operatorname{Exp} X$ at $\left\{p_{1}, \cdots, p_{l}\right\}$. Then we have $\operatorname{Ad}(g) B_{q}$ $=B_{q_{1}}$. The assumption of the lemma implies that $\{\operatorname{Exp} \varphi(X) q \mid X \in \mathcal{A}(M)\}$ covers some neighborhood of q.

Let φ be transitive at q. Then $q \in \operatorname{Int} N_{t}^{+}$and hence by Lemma 5 there are neighborhoods U and U_{ν} of q and p_{ν} respectively such that $\varphi(X) \mid U$ depends only on $X \mid \cup U_{\nu}$. Therefore we may consider the germ of φ at ($q ; p_{1}, \cdots, p_{l}$). We say the germs φ and φ^{\prime} at $\left(q ; p_{1}, \cdots, p_{l}\right)$ are equivalent if there are diffeomorphisms $g: \cup V_{\nu} \rightarrow \cup V_{\nu}^{\prime}$ and $h: V \rightarrow V^{\prime}$, where $V_{\nu}, V_{\nu}^{\prime}, V$ and V^{\prime} are some neighborhoods of p_{ν} and q respectively, such that $g\left\{p_{1}, \cdots, p_{l}\right\}=\left\{p_{1}, \cdots, p_{l}\right\}$, $h(q)=q$ and $h_{*}(\varphi(X) \mid V)=\varphi^{\prime}\left(g_{*}\left(X \mid \cup V_{\nu}\right)\right) \mid V^{\prime}$ for any $X \in \mathcal{A}(M)$. We do not require that φ and φ^{\prime} are the restrictions of the global homomorphisms $\mathcal{A}(M)$ $\rightarrow \mathcal{A}(N)$. We denote by $H_{t}(n, l, d)$ the set of equivalence classes of transitive germs at ($q ; p_{1}, \cdots, p_{l}$) (recall that $\operatorname{dim} M=n$ and $\operatorname{dim} N=d$) and by $B(n, h, l, e)$ the set of equivalence classes of the subalgebras of $\oplus \mathfrak{g}(n, h)$ of codim e. Then we have

Theorem 4. The correspondence $\varphi \rightarrow B_{q}$ gives a bijection $H_{t}(n, l, d) \rightarrow$ $B(n, h, l, e)$ where $e=d-n l$ and $h=2\left(e^{2}+e\right)+1$.

Proof. We first show that the map is injective. Since $\operatorname{codim}\left(\cap \mathscr{M}_{p_{\nu}} \mathcal{A}\left(\cup U_{\nu}\right)\right)$ in $\mathcal{A}\left(\cup U_{\nu}\right)$ is equal to $n l$ and φ is transitive at q, it follows that $\operatorname{codim} B_{q}$ $=d-n l=e$. By Lemma 6 and i) of Proposition 1, ψ is a smooth submersion on some neighborhood of q and hence by Theorem 2 we have the expression (3) of φ. We use the same notations as in Theorem 2, Let (a_{*}, b) be the coordinates of q and put $F=\left\{\left(x_{*}, y\right) \in U \mid\left(x_{*}\right)=\left(a_{*}\right)\right\}$. Since the correspondence $x_{\nu}^{\alpha} \partial_{x_{\nu}^{i} \rightarrow Y_{i \nu}^{\alpha}}$ gives a homomorphism $f: \mathfrak{g}=\stackrel{\iota}{\oplus} \mathfrak{g}(n, h) \rightarrow \mathcal{A}(F), G=\stackrel{l}{\oplus} G(n, h)$ acts locally on F in the following sense. There are a neighborhood V of $\{1\} \times F$ in $G \times F$ and a map $g: V \rightarrow F$ such that $g\left(\exp X, q^{\prime}\right)=\operatorname{Exp} f(X) q^{\prime}$ for $\left(\exp X, q^{\prime}\right) \in V$. Since φ is transitive, this action is transitive and hence F is locally diffeomorphic to the germ of the homogeneous space $H \backslash G$, where H is a subgroup of G whose Lie algebra is $\left\{\sum a_{i \nu}^{\alpha} \nu_{\nu}^{\alpha} \partial_{x_{\nu}^{i}} \in \mathfrak{g} \mid \sum a_{i \nu}^{\alpha} Y_{i \nu}^{\alpha}(b)=0\right\}=B_{q}$. More precisely, there are an open set F^{\prime} of F containing q and a neighborhood W of 1 in G such that F^{\prime} is diffeomorphic to $H_{W} \backslash W$, where H_{W} is a connected component of $H \cap W$ containing 1. The right translation of G induces a homomorphism $\varphi_{1}: g \rightarrow \mathcal{A}\left(H_{W} \backslash W\right)$ and $\varphi_{1}\left(x_{\nu}^{\alpha} \partial_{x_{\nu}^{i}}\right)$ corresponds to $Y_{i \nu}^{\alpha} \mid F^{\prime}$ by the above diffeomorphism. Since φ is determined by $Y_{i \nu}^{\alpha}$'s, it is determined by H_{W} and hence by B_{q}. Thus the map $\varphi \rightarrow B_{q}$ is injective. On the other hand, for any $B \in B(n, h, l, e)$ we can construct $H_{W} \backslash W$ and get $\varphi_{1}\left(x_{\nu}^{\alpha} \partial_{x_{\nu}^{i}}\right) \in \mathcal{A}\left(H_{W} \backslash W\right)$ and hence a homomorphism $\varphi: \mathcal{A}\left(\cup U_{\nu}\right) \rightarrow \mathcal{A}\left(\cup U_{\nu} \times\left(H_{W} \backslash W\right)\right)$ given by the formula (3). This completes the proof.

Example 6. For $(n, l, d)=(1,1,2)$ we have $H_{t}(1,1,2)=B(1,5,1,1)=$ $\left\{B_{1}, B_{2}, B_{3}\right\}$. The subalgebras $B_{i} \subset \mathfrak{g}(1,5)$ and the corresponding transitive homomorphisms $\varphi: \mathcal{A}\left(\boldsymbol{R}^{1}\right) \rightarrow \mathcal{A}\left(\boldsymbol{R}^{2}\right)$ are given as follows.

$$
\begin{array}{ll}
B_{1}=\left\{\sum_{j=1}^{5} a_{j} x^{j} \partial_{x} \mid a_{1}=0\right\}, & \varphi\left(f(x) \partial_{x}\right)=f(x) \partial_{x}+f^{\prime}(x) \partial_{y} \\
B_{2}=\left\{\sum_{j=1}^{5} a_{j} x^{j} \partial_{x} \mid a_{1}+a_{2}=0\right\}, & \varphi\left(f(x) \partial_{x}\right)=f(x) \partial_{x}+\left(f^{\prime}(x)+\frac{1}{2!} f^{\prime \prime}(x) e^{y}\right) \partial_{y} \\
B_{3}=\left\{\sum_{j=1}^{5} a_{j} x^{j} \partial_{x} \mid a_{1}+a_{3}=0\right\}, & \varphi\left(f(x) \partial_{x}\right)=f(x) \partial_{x}+\left(f^{\prime}(x)+\frac{1}{3!} f^{\prime \prime \prime}(x) e^{2 y}\right) \partial_{y}
\end{array}
$$

In general, the cardinality of $B(n, h, l, e)$ is not finite. For example, in case $n \geqq 2, l=1$ and $d=2 n$, for any $t \in \boldsymbol{R}$ put

$$
B_{t}=\left\{\sum_{i=1}^{n} \sum_{0<|\alpha| \leqq n} a_{\alpha}^{i} x^{\alpha} \partial_{x^{i}} \mid \sum_{i} a_{k}^{i}+t \sum_{i \neq j} a_{j}^{i}=0 \text { for } k=1, \cdots, n\right\} \subset g(n, h)
$$

where $h=2\left(n^{2}+n\right)+1$. Then $B_{t}=B_{s}$ in $B(n, h, l, n)$ if and only if $t=s$. The corresponding transitive homomorphism $\varphi_{t}: \mathcal{A}\left(\boldsymbol{R}^{n}\right) \rightarrow \mathcal{A}\left(\boldsymbol{R}^{2 n}\right)$ is given by

$$
\begin{aligned}
\varphi_{t}\left(\sum_{i} f^{i}(x) \partial_{x^{i}}\right)(x, y)= & \sum_{i} f^{i}(x) \partial_{x^{i}}+\sum_{i} D^{i} f^{i}(x) \partial_{y^{i}} \\
& +\sum_{i \neq j} D^{j} f^{i}(x) e^{y^{j}-y^{i}} \sum_{k}\left(t+\delta_{j k}\right) \partial_{y^{k}}
\end{aligned}
$$

§ 4. Continuity of a homomorphism.

In [4] H. Omori proved that if M and N are compact and $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ is a homomorphism which is continuous in the C^{∞}-topology, then φ induces a local homomorphism Diff $(M) \rightarrow \operatorname{Diff}(N)$. We shall show that any homomorphism φ is continuous without the assumption of compactness of M and N. Lemma 3 implies the continuity of φ in the weak topology. Theorem 2 does not imply the continuity of φ, because in general the local coordinate system (x_{*}, y) on a neighborhood U of q does not fit with the given one $(u)=\left(u^{p}\right)$ on an open set U_{1} of N, that is, $D_{x \nu}^{\alpha} u^{p}, D_{y}^{\alpha} u^{p}, D_{u}^{\alpha} x_{\nu}^{i}$ and $D_{u}^{\alpha} y^{j}$ are not necessarily bounded when q tends to a point of $\left(N-N_{i}^{+}\right) \cap U_{1}$. Here D_{z}^{α} denotes the differential operator with respect to z. Recall that the C^{∞}-topology of $\mathcal{A}(N)$ is given by the seminorms $\left|\left.\right|_{U, r}\right.$ defined as follows. Let $(u)=\left(u^{p}\right)$ be a coordinate system on a relatively compact open set U of N which can be extended to some neighborhood of \bar{U}. Then for $Y \in \mathcal{A}(N)$ with $Y=\Sigma g^{p}(u) \partial_{u p}$ on U, we put

$$
|Y|_{U, r}=\sup _{|\alpha| \leqq r, u \in U, p}\left|D^{\alpha} g^{p}(u)\right|
$$

First we assume that M is compact. Then there is a finite open covering $\left\{V_{\mu}\right\}$ of M satisfying the following properties:
i) Each V_{μ} is diffeomorphic to the unit disk $\left\{\left.x \in \boldsymbol{R}^{n}| | x\right|^{2}<1\right\}$ by the coordinate system $\left(x_{\mu}\right)=\left(x_{\mu}^{1}, \cdots, x_{\mu}^{n}\right)$ on some neighborhood of \bar{V}_{μ}.
ii) Any set $\left\{p_{1}, \cdots, p_{k}\right\} \subset M$ is contained in some V_{μ}, where k is the integer defined in $\S 1$.

To prove the continuity of φ it suffices to show the next
Lemma 9. For any seminorm $\left|\left.\right|_{U, r}\right.$, there is a constant C such that for any $X \in \mathcal{A}(M)$ we have

$$
|\varphi(X)|_{U, r} \leqq C \sum_{\mu}|X|_{V_{\mu}, a r+b},
$$

where $a=[d / n]=$ the integer part of d / n and $b=2 a\left((d-n)^{2}+d-n+1\right)-1$.
Proof. Let $\varphi(X) \mid U=\Sigma \varphi^{p}(X)(u) \partial_{u p}$. Now we estimate $D_{u}^{\beta} \varphi^{p}(X)(u)$ for $|\beta| \leqq r$. For any $q \in U \cap N_{l}^{+}$, choose an open set V_{μ} containing $\psi(q)=\left\{p_{1}, \cdots, p_{l}\right\}$. Applying Theorem 2 to $U_{\nu}=V_{\mu}$ and $\left(x_{\nu}\right)=\left(x_{\mu}\right)(\nu=1, \cdots, l)$, we can get a coordinate system $\left(x_{*}, y\right)$ on some neighborhood U_{q} of q such that $\tilde{\psi}\left(x_{*}, y\right)=$ $\left(x_{*}\right)=\left(x_{1}, \cdots, x_{l}\right) \in U_{1} \times \cdots \times U_{l}=V_{\mu} \times \cdots \times V_{\mu}$ and that for any $X \in \mathcal{A}(M)$ with $X=\Sigma f^{i}\left(x_{\mu}\right) \partial_{x_{\mu}}$ on V_{μ} we have

$$
\varphi(X)\left(x_{*}, y\right)=\sum_{\nu i}\left(f^{i}\left(x_{\nu}\right) \partial_{x_{\nu}^{i}}+\sum_{0<|\alpha| \leqq h} \frac{D^{\alpha}}{\alpha!} f^{i}\left(x_{\nu}\right) Y_{i \nu}^{\alpha}(y)\right)
$$

on U_{q}. It follows that

$$
D_{u}^{\beta} \varphi^{p}(X)(u)=\sum_{\nu i} \sum_{|r| \leq n+r} D^{\gamma} f^{i}\left(x_{\nu}(u)\right) Z_{i \nu}^{\gamma \beta p}(u)
$$

on U_{q}, where Z 's are smooth functions on U_{q}. To eliminate Z 's we need the following lemma which will be proved at the end of this section.

Lemma 10. Let $\Phi: C^{\infty}\left(\boldsymbol{R}^{n}\right) \rightarrow C^{\infty}\left(\boldsymbol{R}^{n t}\right)\left[Z_{\nu}^{\alpha}\right]\left(=\right.$ the polynomial ring over $\left.C^{\infty}\left(\boldsymbol{R}^{n t}\right)\right)$ be a map given by

$$
\Phi(f(x))=\sum_{\nu=1}^{1} \sum_{|\alpha| \leqslant h} D^{\alpha} f\left(x_{\nu}\right) Z_{\nu}^{\alpha}
$$

Then we have

$$
\begin{aligned}
\Phi(f(x))= & f\left(x_{1}\right) \Phi(1)+ \\
& \left.\sum_{k=1}^{k}(-1)^{m} \sum_{1 \leqq i_{1}<\cdots<i_{m} \leq k}^{k} \sum_{j_{1}, \cdots, j_{k}=1}^{n} \int_{0}^{n} \cdots \int_{0}^{1} x_{i 1}^{j_{1}} \cdots x_{i_{m}}^{j_{m}} \Phi\left(x^{j_{m+1}+\cdots+j_{k}}\right)\right|_{x_{\nu}+l e=x_{2}},
\end{aligned}
$$

where

$$
\begin{aligned}
& x(k)=\left(1-t_{1}\right) x_{1}+\left(1-t_{2}\right) t_{1} x_{2}+\cdots+\left(1-t_{k}\right) t_{k-1} \cdots t_{1} x_{k}+t_{k} t_{k-1} \cdots t_{1} x_{k+1}, \\
& d t(k)=t_{1}^{k-1} t_{2}^{k-2} \cdots t_{k-1} d t_{1} \cdots d t_{k} .
\end{aligned}
$$

Put $\Phi(f(x))=\Phi(f(x))\left(x_{*}\right)=\sum_{\nu=1}^{i} \sum_{|r| \leq h+r} D^{r} f\left(x_{\nu}\right) Z_{i \nu}^{r \beta p}(u)$. Then we have $\Phi(f(x))\left(x_{*}(u)\right)$ $=D_{\mu}^{\beta} \varphi^{p}\left(f\left(x_{\mu}\right) \partial_{x_{\mu}^{i}}\right)(u)$. Here we consider $f\left(x_{\mu}\right) \partial_{x_{\mu}^{i}}$ as a vector field on M by extending it suitably. For $u \in U_{q}$, the right hand side of the above equation is independent of this extension. Applying Lemma 10 to Φ and substituting
$x_{*}(u)$ for x_{*}, we have

$$
\begin{aligned}
& D_{u}^{\beta} \varphi^{p}\left(f\left(x_{\mu}\right) \partial_{x_{\mu}^{i}}\right)(u)=f\left(x_{1}\right) D_{u}^{\beta} \varphi^{p}\left(\partial_{x_{\mu}^{i}}\right)(u) \\
& \quad+ \sum_{k=1}^{\ell(h+r+1)-1} \sum_{j_{k}} \int_{0}^{1} \cdots \int_{0}^{1} \partial_{j_{1}} \cdots \partial_{j_{k}} f(x(k)) d t(k) \\
&\left.\sum_{m=0}^{k}(-1)^{m} \sum_{i_{*}} x_{i 1}^{j_{1}} \cdots x_{i_{m}}^{j_{m}} D_{u}^{\beta} \varphi^{p}\left(x_{\mu}^{j_{m+1}+\cdots+j_{k}} \partial_{x_{\mu}^{i}}\right)(u)\right|_{x_{\nu+l e}=x_{\nu}}
\end{aligned}
$$

Note that $\left|x_{\nu}\right|<1$, that $\left.x(k)\right|_{x_{\nu+l e}=x_{\nu}} \in V_{\mu}$ and that $D_{u}^{\beta} \varphi^{p}\left(x_{\mu}^{j_{m+1}+\cdots+j_{k}} \partial_{x_{\mu}}\right)(u)$ is smooth on \bar{U} and hence bounded on \bar{U}. If we fix the extension of $x_{\mu}^{j m_{+1}+\cdots+j_{k}} \partial_{x_{\mu}^{i}}$, there is a constant $C_{\mu l}^{i}$ not depending on $q \in U \cap N_{l}^{+}$such that we have

$$
\left|D_{u}^{\beta} \varphi^{p}\left(f\left(x_{\mu}\right) \partial_{x_{\mu}^{i}}\right)(u)\right| \leqq C_{\mu \mu}^{i}\left|f\left(x_{\mu}\right) \partial_{x_{\mu}^{i}}\right|_{V_{\mu}, t}
$$

for $u \in U_{q}$, where $t=l(h+r+1)-1$. Putting $C=\sum_{i \mu l} C_{\mu l}^{i}$, we obtain

$$
\left|D_{u}^{\beta} \varphi^{p}(X)(u)\right| \leqq C \sum_{\mu}|X|_{V_{\mu}, t}
$$

for $u \in U \cap\left(\cup N_{i}^{+}\right)$. Since $\overline{\cup N_{l}^{+}}=\bar{N}^{+}$and $\varphi(X) \equiv 0$ on $N-\bar{N}^{+}$, it follows that the above inequality holds for all $u \in U$. By Theorem 1 we have $t \leqq a r+b$, which completes the proof of Lemma 9.

Next, we consider the case where M is not compact. Let q be a point of $N=N^{+}$with $\psi(q)=\left\{p_{1}, \cdots, p_{l}\right\}$. Then by ii) of Proposition 1 there are neighborhoods U and U_{ν} of q and p_{ν} respectively such that $\psi\left(q^{\prime}\right)=\left\{p_{1}^{\prime}, \cdots, p_{m}^{\prime}\right\} \subset \cup U_{\nu}$ for any $q^{\prime} \in U$. We may assume that there is an open set V which is diffeomorphic to the unit disk and contains $\cup U_{\nu}$. By the similar argument as above, we can show that $|\varphi(X)|_{U, r} \leqq C|X|_{V, a r+b}$ and hence φ is continuous.

Thus we have proved
Theorem 5. Any homomorphism $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ is continuous in the C^{∞} topology.

By Corollary 1 to Proposition 1 in $\S 2$ and Theorem 1.3.2 in [4] we have
Corollary. If N is compact then φ induces a local homomorphism Diff $(M) \rightarrow$ Diff (N).

Proof of Lemma 10. By the definition of Φ we have

$$
\begin{align*}
& \Phi(f(x)) \text { - the right hand side of the desired equation } \tag{6}\\
& =\sum_{\nu=1}^{1} \sum_{|\alpha| \leq h} Z_{\nu}^{\alpha} D_{y}^{\alpha}\left[f(y)-f\left(x_{1}\right)-\sum_{k=1}^{s} \sum_{j_{*}} \int_{0}^{1} \cdots \int_{0}^{1} \partial_{j_{1}} \cdots \partial_{j_{k}} f(x(k)) d t(k)\right. \\
& \left.\quad \sum_{m=0}^{k}(-1)^{m} \sum_{i_{*}} x_{i 1}^{j_{1}} \cdots x_{i_{m}}^{j_{m}} y^{j_{m+1}+\cdots+j_{k}}\right|_{\substack{y=x_{\nu}=x_{2} \\
x_{\nu+l}=x_{\nu}}}
\end{align*}
$$

where $s=l(h+1)-1$. Let S_{k} be the symmetrization operator with respect to j_{1}, \cdots, j_{k}. Then we have easily

$$
S_{k} \sum_{m=0}^{k}(-1)^{m}{ }_{1 \leq i_{1}<\cdots<i_{m} \leq k} x_{i 1}^{j_{1}} \cdots x_{i_{m}}^{j_{m}} y^{j_{m+1}+\cdots+j_{k}}=S_{k} \prod_{\nu=1}^{k}\left(y^{j_{\nu}}-x_{\nu}^{j \nu}\right) .
$$

The interior of [] in (6) is equal to

$$
\begin{aligned}
f(y)- & f\left(x_{1}\right)-\sum_{k=1}^{s} \sum_{j_{k}} \int_{0}^{1} \cdots \int_{0}^{1} \partial_{j_{1}} \cdots \partial_{j_{k}} f(x(k)) d t(k) S_{k} \prod_{\nu=1}^{k}\left(y^{j_{\nu}}-x_{\nu}^{j_{\nu}}\right) \\
= & \int_{0}^{1} \frac{d}{d t_{1}} f\left(x_{1}+t_{1}\left(y-x_{1}\right)\right) d t_{1}-\sum_{k=1}^{s} \cdots \\
= & \sum_{j_{1}} \int_{0}^{1} \partial_{j_{1}} f\left(\left(1-t_{1}\right) x_{1}+t_{1} y\right) d t_{1}\left(y^{j_{1}}-x_{1}^{j_{1}}\right) \\
& -\sum_{j_{1}} \int_{0}^{1} \partial_{j_{1}} f\left(\left(1-t_{1}\right) x_{1}+t_{1} x_{2}\right) d t_{1}\left(y^{j_{1}}-x_{1}^{j_{1}}\right)-\sum_{k=2}^{s} \cdots \\
= & \sum_{j_{1}} \int_{0}^{1} \int_{0}^{1} \frac{d}{d t_{2}} \partial_{j_{1}} f\left(\left(1-t_{1}\right) x_{1}+t_{1} x_{2}+t_{2}\left(t_{1} y-t_{1} x_{2}\right)\right) d t_{1} d t_{2}\left(y^{j_{1}}-x_{1}^{j_{1}}\right)-\sum_{k=2}^{s} \cdots \\
= & \sum_{j_{1}, j_{2}} \int_{0}^{1} \int_{0}^{1} \partial_{j_{1}} \partial_{j_{2}} f\left(\left(1-t_{1}\right) x_{1}+\left(1-t_{2}\right) t_{1} x_{2}+t_{2} t_{1} y\right) t_{1} d t_{1} d t_{2}\left(y^{j_{1}}-x_{1}^{j_{1} 1}\right)\left(y^{j_{2}}-x_{2}^{j_{2}}\right) \\
& -\sum_{k=2}^{s} \cdots \\
= & \sum_{j_{1}, \cdots, j_{s+1}} \int_{0}^{1} \cdots \int_{0}^{1} \partial_{j_{1}} \cdots \partial_{j_{s+1}} f\left(\left(1-t_{1}\right) x_{1}+\cdots+\left(1-t_{s+1}\right) t_{s} \cdots t_{1} x_{s+1}\right. \\
& \left.+t_{s+1} t_{s} \cdots t_{1} y\right) d t(s+1) S_{s+1} \prod_{\nu=1}^{s+1}\left(y^{j_{\nu}}-x_{\nu}^{j_{\nu}}\right) .
\end{aligned}
$$

Since $s+1=l(h+1)$ and $|\alpha| \leqq h$, we have

$$
\left.D_{y}^{\alpha}[]\right|_{\substack{x=x_{\nu}=x_{\nu} \\ x_{\nu}+l e=x_{\nu}}} \equiv 0,
$$

which completes the proof of Lemma 10 .

References

[1] I. Amemiya, Lie algebra of vector fields and complex structure, J. Math. Soc. Japan, 27 (1975), 545-549.
[2] I. Amemiya, K. Masuda and K. Shiga, Lie algebra of differential operators, Osaka J. Math., 12 (1975), 139-172.
[3] K. Masuda, Continuity of homomorphism of Lie algebras of vector fields, Proc. Japan Acad., 51 (1975), 359-361.
[4] H. Omori, Infinite dimensional Lie transformation groups, Lecture Notes in Math., 427, Springer-Verlag, Berlin, 1974.
[5] L. E. Pursell and M.E. Shanks, The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc., 5 (1954), 468-472.

Kazuo Masuda
Department of Mathematics Tokyo Institute of Technology Oh-okayama, Meguro-ku
Tokyo, Japan

