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\S 1. Introduction.

In the theory of partial differential equations in the complex n-dimensional
space $C^{n}$ , one of interesting problems is the holomorphic continuation of the
homogeneous solutions of $P(z, D)u(z)=0$ . There obtained several results con-
cerning this problem ([2], [3], [5], [7], [8] and others). In our preceding
Paper [6], we study the holomorphic continuation over the pluri-harmonic
surface and the result obtained is the following: If the surface is defined by
${\rm Re}\Phi(z)=0$ for some non-degenerate holomorphic function $\Phi$ , and the principal
part of $P,$ $P_{m}$( $z$ , grad $\Phi$ ), does not vanish identically on the analytic variety
$\{\Phi(z)=0\}$ , then every solution of $P(z, D)u(z)=0$ in $\{z|{\rm Re}\Phi(z)>0\}$ becomes
holomorphic near the boundary.

In this paper we study the case where $P_{m}$ ( $z$ , grad $\Phi$ ) is identically zero
on the set $\{\Phi(z)=0\}$ but the function $\Phi(z)$ is not characteristic, that is,
$P_{m}$ ( $z$ , grad $\Phi$ ) does not vanish identically near the boundary. In such case,
$P_{m}$ ( $z$ , grad $\Phi$ ) can be divided by $\Phi^{k}$ for some $k\geqq 1$ because the variety $\{\Phi=0\}$

is irreducible and then the notion of the differential oPerator of the Fuchsian
$tyPe$ with respect to $\Phi$ is naturally introduced (see also M. S. Baouendi and C.
Goulaouic [1]). The main result in this paper is roughly expressed as follows:
If the operator $P(z, D)$ is of the Fuchsian type with respect to $\Phi(z)$ then every
homogeneous solution of $P(z, D)u(z)=0$ in $\{z|{\rm Re}\Phi(z)>0\}$ is holomorphic near
the boundary of the function of log $\Phi(z)$ and $z$ .

\S 2. Partial differential operators of the Fuchsian type.

Let $\Omega$ be a domain in the complex n-dimensional space $C^{n}$ whose boundary
$\partial\Omega$ is defined by the level surface of some pluri-harmonic function, and $P(z, D)$

be a linear partial differential operator of order $\uparrow n$ near $\partial\Omega$ with holomorphic
coefficients. We denote its principal part by $P_{m}(z, D)$ . Since we study only
the local properties of the holomorphic solutions of $P(z, D)u(z)=0$ , we may
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assume without loss of generality that $\Omega=\{z\in U|{\rm Re} z_{1}>0\}$ for some neigh-
borhood $U$ of $0$ . In our preceding paper [6], we deal with the case where
$P_{m}(z, N)$ does not vanish identically on the complex hypersurface $z_{1}=0$ where
$N=(1, 0, \cdots , 0)$ . Now in this paper we study the case where $P_{m}(z, N)$ vanishes
identically on the set $\{z_{1}=0\}$ but the function $\Phi(z)=z_{1}$ is not characteristic,
this means that $P_{m}(z, N)$ does not vanish identically in $U$ . We write $P(z, D)$

$=\sum_{p+|\alpha|\leqq m}a_{(p,\alpha)}(z)(\partial/\partial z_{1})^{p}(\partial/\partial z^{\prime})^{a}$ where $z^{\prime}=(z_{2}, \cdots , z_{n})$ and $\alpha=(\alpha_{2}, \cdots , \alpha_{n})$ is a
multi-index, and use the terminology in M. S. Baouendi and C. Goulaouic [1].

We say that a differential monomial which may be written as $c(z_{1}, z^{\prime})z_{1}^{t}(\partial/\partial z_{1})^{p}$

$(\partial/\partial z^{\prime})^{\alpha}$ , where $c(O, z^{\prime})\not\equiv 0$ , has the weight $p-l$ . We now consider the following
conditions on the differential operator $P(z, D)$ :

(i) the coefficient of $(\partial/\partial z_{1})^{m}$ is $a(z)z_{1}^{k}$ with $0\leqq k\leqq m$ and $a(z)\neq 0$ in a
neighborhood of $0$ ,

(ii) $P(z, D)$ can be written as the finite sum of differential monomials
each of which has the weight at most $m-k$ ,

(iii) each monomial in the principal part $P_{m}(z, D)$ , except $a(z)z_{1}^{k}(\partial/\partial z_{1})^{m}$ ,
has the weight at most $m-k-1$ .

DEFINITION. A differential operator satisfying the above conditions (i),

(ii) and (iii) is said to be of the Fuchsian tyPe (with respect to $z_{1}$ ).

REMARK 1 (see also [1], Remark 1). These conditions (i), (ii) and (iii) are
invariant under the coordinate transformation which preserves the hyper-
surface $z_{1}=0$ . Therefore we may say in general that $P(z, D)$ is of the Fuch-
sian type with respect to the complex hypersurface $S$ if and only if, in some
local coordinates (which associate to $S$ the hyperplane $z_{1}=0$), the operator
$P(z, D)$ satisfies (i), (ii) and (iii).

REMARK 2. Our definition of the Fuchsian operator is weaker than that
of M. S. Baouendi and C. Goulaouic [1]. They request the Fuchsian operator

to satisfy the condition (iii) for all differential monomial in $P(z, D)$ except for
the terms $a_{(k,0)}(z)(\partial/\partial z_{1})^{k}(k=0,1, \cdots , m)$ .

Since we deal only with the homogeneous equation $P(z, D)u(z)=0$ , we may
assume in general that $m=k$ and the coefficient of $(\partial/\partial z_{1})^{m}$ is equal to $z_{1}^{m}$ in
the above definition. Then the Fuchsian operator is written in the form

(1) $P(z, D)=\sum_{p+|\alpha|\leqq m}a_{(p,\alpha)}(z)z_{1}^{p}(\frac{\partial}{\partial z_{1}})^{p}(\frac{\partial}{\partial z^{\prime}})^{a})$

and especially its principal part is in the form

(2) $P_{m}(z, D)=z_{1}^{m}(\frac{\partial}{\partial z_{1}})_{\{}^{m}+z_{1}\sum_{p+|\alpha|=m ,p<m}b_{(p,\alpha)}(z)z_{1}^{p}(\frac{\partial}{\partial z_{1}})^{p}(\frac{\partial}{\partial z^{\prime}})^{\alpha}$

where $a_{(p,\alpha)}(z)$ and $b_{(p,\alpha)}(z)$ are holomorphic in $U$ .
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Now we take $U$ as the set

(3) $U_{z}(\rho, r)=\{z||z_{1}|<\rho, |z_{j}|<r j=2, \cdots , n\}$

for some positive constants $\rho$ and $r$ , and set

(4) $\Omega_{z}(\rho, r)=\{z\in U_{z}(\rho, r)|{\rm Re} z_{1}>0\}$ .

Here we may assume that there exists a constant $M$ such that

(5) $|b_{(p,\alpha)}(z)|\leqq M$

in $U_{z}(\rho, r)$ for every $(p, \alpha)$ with $P+|\alpha|=m$ and $p<m$ . Then we make the
holomorphic transformation of coordinates from $(z_{1}, z^{\prime})$ -variables to $(t, z^{\prime})-$

variables as follows:

(6) $z_{1}=e^{t}$

This change of variables is well-known for the Euler equation in the theory
of ordinary differential equations and we have the next relations,

(7) $z_{1}^{k}(\frac{\partial}{\partial z_{1}})^{k}=-\partial\frac{\partial}{t}(-\partial\frac{\partial}{t}-1)$ $(\frac{\partial}{\partial t}-k+1)$ $k=1,2,$ $\cdots$

Under this transformation the domain $\Omega$ given by (4) is bi-holomorphically
mapped into the following domain,

\langle 8) $\tilde{\Omega}_{(t,z^{\prime})}(\log\rho, r)=\{(t, z^{\prime})|{\rm Re} t<\log\rho, |{\rm Im} t|<\pi/2, |z_{j}|<r j=2, \cdots , n\}$

and by the relation (7), the Fuchsian operator $P(z, D)$ given by (1) is trans-
formed to a differential operator $\tilde{P}(t, z^{\prime} ; \partial/\partial t, \partial/\partial z^{\prime})$ whose coefficients are
holomorphic in

(9) $\tilde{U}_{(t,z’)}(\log\rho, r)=\{(t, z^{\prime})|{\rm Re} t<\log\rho, |z_{j}|<r j=2, \cdots , n\}$ .

Then the principal part of $\tilde{P}(t, z^{\prime} ; \partial/\partial t, \partial/\partial z^{\prime})$ with respect to $(\partial/\partial t, \partial/\partial z^{\prime})$ is,
by (2),

(10) $\tilde{P}_{m}(t,$ $z^{\prime}$ ; $\frac{\partial}{\partial t},$ $\frac{\partial}{\partial z^{\prime}})$

$=(\frac{\partial}{\partial t})^{m}+e^{t}\sum_{p,\{+|\alpha|=m}b_{(p,\alpha)}(e^{t}, z^{f})(\frac{\partial}{\partial t})^{p}(\frac{\partial}{\partial z^{\prime}})^{\alpha}$

Here we should pay the attention to the following two points:
(i) under this transformation, the hyperplane $t=0$ becomes non-charac-

teristic,
(ii) there exists the term $e^{l}$ in every coefficients of differential monomials

$(\partial/\partial t)^{p}(\partial/\partial z^{\prime})^{\alpha}$ ( $p+|$ a $|=m,$ $P<m$).
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These conditions mean that if ${\rm Re} t$ is sufficiently small, then the characteristic
hyperplane becomes “almost” parallel to the t-axis (see Lemma 1 in the next
section), and this is essential in our theory.

\S 3. Prolongation of local holomorphic solutions.

In this section we study the holomorphic continuation of the homogeneous
solutions of the Fuchsian partial differential equation $P(z, D)u(z)=0$ .

We define the bilinear inner product $\langle, \rangle$ in $C^{n}$ by $\langle z, \lambda\rangle=\sum_{j=1}^{n}z_{j}\lambda_{j}$ and the

norm of $z$ by $|z|^{2}=\langle z,\overline{z}\rangle$ and set $S^{2n-1}=\{\zeta\in C^{n}||\zeta|=1\}$ . The real hyperplane
$H(\zeta, z_{0})$ through the point $z_{0}$ with the complex normal direction $\zeta\in S^{2n-1}$ is
defined by

(11) $H(\zeta, z_{0})=\{z|{\rm Re}\langle z-z_{0}, \zeta\rangle=0\}$ .

We also denote this by $H(\zeta)$ when $z_{0}$ has no need to be mentioned. The vector
$\zeta\in S^{2n-1}$ is said to be characteristic with respect to $P(z, D)$ at $z_{0}$ if $\zeta$ satisfies
the equation $P_{m}(z_{0}, \zeta)=0$ . For an open set $V$ in $C^{n}$ and a differential operator
$P(z, D)$ in $V$ , we denote by $Car_{p}(V)$ the closure in $S^{2n-1}$ of all vectors that
are characteristic for some point in $V$ . Then we have the next theorem.

THEOREM 1 (J. M. Bony and P. Schapira [3] Th\’eor\‘eme 2.1, see also L.
H\"ormander [4], Theorem 5.3.3). Let $\Omega_{1}$ and $\Omega_{2}$ be two oPen convex sets in $C^{n}$

such that $\Omega_{1}\subset\Omega_{2}$ and let $P(z, D)$ be a differential operator in $\Omega_{2}$ . We assume
that every hyPerplane $H(\zeta)$ with $\zeta\in Car_{P}(\Omega_{2})$ which intersects $\Omega_{2}$ also meets $\Omega_{1}$ .
Then every $u(z)$ holomorphjc in $\Omega_{1}$ and satisfying the equation $P(z, D)u(z)=$ (}

becomes holomorphic in $\Omega_{2}$ .
We remark that the function $u(z)$ extended holomorphically to that on $\Omega_{2}$

satisfies also the equation $P(z, D)u(z)=0$ in $\Omega_{2}$ by the theorem of identity.
We now study the vector $\zeta$ in $Car_{\tilde{p}}(\tilde{U}_{(t,z)}(\log\rho, r))$ for the operator

$\tilde{P}(t, z^{\prime} ; \partial/\partial t, \partial/\partial z^{\prime})$ , where $\tilde{U}_{(t,z^{\prime})}(\log\rho, r)$ is given by (9) and the principal part

of $\tilde{P}(t, z^{\prime} ; \partial/\partial t, \partial/\partial z^{\prime})$ is given by (10) in the preceding section. Then we
have the following lemma.

LEMMA 1. For any number $C>0$ , there exists $\tau(\tau<\log\rho)$ such that

$C|\zeta_{1}|\leqq|\zeta_{2}|+\cdots+|\zeta_{n}|$

for any $\zeta\in Car_{\tilde{P}}(\tilde{U}_{(t,z^{\prime})}(\tau, r))$ .
PROOF. Let $\zeta$ be any vector that is characteristic with respect to $\tilde{P}$ at

some point in $\tilde{U}_{(t,z^{\prime})}(\tau, r)$ . Then by (5) and (10) we have

$|\zeta_{1}|^{m}\leqq e^{-}\vee\sum_{p,\{+|\alpha|=m}|b_{(p,cr)}||\zeta_{1}^{p}\zeta^{\prime\alpha}|$

$\leqq Me^{-}\{(|\zeta_{1}|+\cdots+|\zeta_{n}|)^{m}-|\zeta_{1}|^{m}\}$ .
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Therefore
$\{(1+M^{-1}e^{--})^{1/m}-1\}|\zeta_{1}|\leqq|\zeta_{2}|+\cdots+|\zeta_{n}|$ ,

and this inequality completes the proof because the coefficient of $|\zeta_{1}|$ tends
to infinity as $\tau\rightarrow-\infty$ .

We next study the relation between open convex sets and hyperplanes.
Let $\Delta(a, b)$ ( $a,$

$b$ real) be an open convex set in the complex plane $C$ with the
variable $t$ defined by

(12) $\Delta(a, b)=\{t|{\rm Re} t<a, |{\rm Im} t|<b\}$ .

Using this notation, we have

$\tilde{\Omega}_{(t,z^{7})}(a, r)=\{(t, z^{\prime})|t\in\Delta(a, \pi/2), |z_{j}|<r j=2, \cdots, n\}$ .

Furthermore we set $\hat{\Omega}_{(t,z^{s})}(\Delta(a, b),$ $r$) the convex hull of the set $\tilde{\Omega}_{(t,z)}(a, r)$ and
the set $\{(t, z^{\prime})|t\in\Delta(a, b), z^{\prime}=0\}$ . We remark that $\hat{\Omega}$ obtained above is an open
convex set in $C^{n}$ .

LEMMA 2. Let $\zeta\in S^{2n-1}$ be any vector satisfying the inequality

$C|\zeta_{1}|\leqq|\zeta_{2}|+\cdots+|\zeta_{n}|$

for some constant $C>0$ . Then if the hyperplane $H(\zeta)$ intersects $\hat{\Omega}_{(t,z)}(\Delta(a,$ $\pi/2$

$+Cr),$ $r$), it also meets $\tilde{\Omega}_{(t,z)}(a, r)$ .
PROOF. Since $\hat{\Omega}_{(t,z^{\prime})}(\Delta(a, \pi/2+Cr),$ $r$) is the convex hull of $\tilde{\Omega}_{(t,z)}(a, r)$ and

the set $\{(t, z^{\prime})|t\in\Delta(a, \pi/2+Cr), z^{\prime}=0\}$ , the hyperplane $H(\zeta)$ which intersects
$\hat{\Omega}$ must also meets $\tilde{\Omega}$ or $\{(t, z^{\prime})|t\in\Delta(a, \pi/2+Cr), z^{\prime}=0\}$ . Thus for the poof of
this lemma it is sufficient to show that the hyperplane $H(\zeta)$ meets 9 if there
is a point $(\alpha+i\beta, 0, \cdots , 0)$ ( $\alpha,$ $\beta$ real) in $H(\zeta)$ such that $\alpha<a$ and $|\beta|<\pi/2+Cr$.

We now write $\zeta_{j}=\xi_{j}+i\eta_{j}$ ( $j=1,$ $\cdots$ , n) ( $\xi_{j},$
$\eta_{j}$ real) and $t=x+iy$ ( $x,$ $y$ real).

Then $H(\zeta)$ is the set of all points $(x+iy, z_{2}, \cdots , z_{n})$ satisfying

(13) $\xi_{1}(x-\alpha)-\eta_{1}(y-\beta)=-{\rm Re}\sum_{j=2}^{n}\zeta_{j}z_{j}$ .

If we take $ x_{0}=\alpha$ and $|y_{0}|<\pi/2$ such that $|y_{0}-\beta|<Cr$ , then by the assumption
we have

$|\xi_{1}(x_{0}-\alpha)-\eta_{1}(y_{0}-\beta)|<C|\zeta_{1}|r\leqq r(|\zeta_{2}|+\cdots+|\zeta_{n}|)$ .

On the other hand the right hand side of (13) can take any value whose
absolute value is less than $r(|\zeta_{2}|+\cdots+|\zeta_{n}|)$ at some point $(z_{2}, \cdots z_{n})$ satis-
fying $|z_{j}|<r$ $(j=2, \cdots , n)$ . Thus there exists a point $(t_{0}, z_{\acute{0}})=(x_{0}+iy_{0},$ $z_{2}^{(0)},$ $\cdots$ ,
$z_{n}^{(0)})$ in $H(\zeta)$ which is also contained in $\tilde{\Omega}$ . This completes the proof.

Now we have the following main theorem.
THEOREM 2. Let $\tilde{P}(t, z^{\prime} ; \partial/\partial t, \partial/\partial z^{\prime})$ be a differential operator in the domain

$C_{(t,z^{\prime})}(\log\rho, r)$ given by (9) with the Principal Part given by (10). Then for any
positive number $C$ there exists $\tau(\tau<\log\rho)$ such that every $u(t, z^{\prime})$ holomorphic
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in $\tilde{\Omega}_{(t,z)}(\tau, r)$ and satisfying the equation $\tilde{P}(t, z^{f} ; \partial/\partial t, \partial/\partial z^{f})u(t, z^{\prime})=0$ becomes
holomorphic in $\hat{\Omega}_{(l,z)}(\Delta(\tau, \pi/2+Cr),$ $r$).

PROOF. For a given number $C$ we take $\tau$ by Lemma 1 such that

$C|\zeta_{1}|\leqq|\zeta_{2}|+\cdots+|\zeta_{n}|$

for any $\zeta\in Car_{\tilde{p}}(\tilde{U}_{(t,z)}(\tau, r))$ . We then apply Theorem 1 with $\Omega_{1}=\tilde{\Omega}_{(t,z^{\prime})}(\tau, r)$

and $\Omega_{2}=\hat{\Omega}_{(t,z)}(\Delta(\tau, \pi/2+Cr),$ $r$) and, using Lemma 2, we get this theorem.
Since for any number $\epsilon(0<\epsilon<Cr)$ there exists $\rho(0<\rho<\min(\exp\tau, r))$

such that the set $\{(t, z^{\prime})|{\rm Re} t<\log\rho, |{\rm Im} t|<\pi/2+Cr-\epsilon, |z_{j}|<\rho j=2, \cdots , n\}$ is
contained in $\hat{\Omega}_{(t,z)}(\Delta(\tau, \pi/2+Cr),$ $r$), we can now restate the above theorem as
follows.

THEOREM $2^{bis}$ . Let $P(z, D)$ be a diferential operator of the Fuchsian type
with respect to $z_{1}$ in a neighborhood $U$ of $0$ in $C^{n}$ . Then for any Positive num-
ber $C$ we can choose $r>0$ such that every $u(z)$ holomorphic in $\Omega=\{z\in U|{\rm Re} z_{1}>0\}$

and satisfying the equation $P(z. D)u(z)=0$ becomes holomorphic with respect to
the variables $(\log z_{1}, z_{2}, \cdots , z_{n})$ in the following domain

$\left\{\begin{array}{l}|z_{j}|<r (j=1,2,\ldots n)\\|argz_{1}|<C.\end{array}\right.$
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