On the prolongation of local holomorphic solutions of partial differential equations, III, equations of the Fuchsian type

By Yoshimichi TSUNO

(Received May 2, 1975)

§1. Introduction.

In the theory of partial differential equations in the complex *n*-dimensional space C^n , one of interesting problems is the holomorphic continuation of the homogeneous solutions of P(z, D)u(z)=0. There obtained several results concerning this problem ([2], [3], [5], [7], [8] and others). In our preceding paper [6], we study the holomorphic continuation over the pluri-harmonic surface and the result obtained is the following: If the surface is defined by Re $\Phi(z)=0$ for some non-degenerate holomorphic function Φ , and the principal part of P, $P_m(z, \text{grad } \Phi)$, does not vanish identically on the analytic variety $\{\Phi(z)=0\}$, then every solution of P(z, D)u(z)=0 in $\{z | \text{Re } \Phi(z)>0\}$ becomes holomorphic near the boundary.

In this paper we study the case where $P_m(z, \operatorname{grad} \Phi)$ is identically zero on the set $\{\Phi(z)=0\}$ but the function $\Phi(z)$ is not characteristic, that is, $P_m(z, \operatorname{grad} \Phi)$ does not vanish identically near the boundary. In such case, $P_m(z, \operatorname{grad} \Phi)$ can be divided by Φ^k for some $k \ge 1$ because the variety $\{\Phi=0\}$ is irreducible and then the notion of the differential operator of the Fuchsian type with respect to Φ is naturally introduced (see also M. S. Baouendi and C. Goulaouic [1]). The main result in this paper is roughly expressed as follows: If the operator P(z, D) is of the Fuchsian type with respect to $\Phi(z)$ then every homogeneous solution of P(z, D)u(z)=0 in $\{z | \operatorname{Re} \Phi(z) > 0\}$ is holomorphic near the boundary of the function of $\log \Phi(z)$ and z.

$\S 2$. Partial differential operators of the Fuchsian type.

Let Ω be a domain in the complex *n*-dimensional space C^n whose boundary $\partial \Omega$ is defined by the level surface of some *pluri-harmonic function*, and P(z, D) be a linear partial differential operator of order *m* near $\partial \Omega$ with holomorphic coefficients. We denote its principal part by $P_m(z, D)$. Since we study only the local properties of the holomorphic solutions of P(z, D)u(z)=0, we may

assume without loss of generality that $\Omega = \{z \in U | \text{Re } z_1 > 0\}$ for some neighborhood U of 0. In our preceding paper [6], we deal with the case where $P_m(z, N)$ does not vanish identically on the complex hypersurface $z_1=0$ where $N=(1, 0, \dots, 0)$. Now in this paper we study the case where $P_m(z, N)$ vanishes identically on the set $\{z_1=0\}$ but the function $\Phi(z)=z_1$ is not characteristic, this means that $P_m(z, N)$ does not vanish identically in U. We write $P(z, D) = \sum_{p+|\alpha| \leq m} a_{(p,\alpha)}(z)(\partial/\partial z_1)^p (\partial/\partial z')^\alpha$ where $z'=(z_2, \dots, z_n)$ and $\alpha=(\alpha_2, \dots, \alpha_n)$ is a multi-index, and use the terminology in M. S. Baouendi and C. Goulaouic [1]. We say that a differential monomial which may be written as $c(z_1, z')z_1^l(\partial/\partial z_1)^p (\partial/\partial z')^\alpha$, where $c(0, z') \neq 0$, has the *weight* p-l. We now consider the following conditions on the differential operator P(z, D):

- (i) the coefficient of $(\partial/\partial z_1)^m$ is $a(z)z_1^k$ with $0 \le k \le m$ and $a(z) \ne 0$ in a neighborhood of 0,
- (ii) P(z, D) can be written as the finite sum of differential monomials each of which has the weight at most m-k,
- (iii) each monomial in the principal part $P_m(z, D)$, except $a(z)z_1^k(\partial/\partial z_1)^m$, has the weight at most m-k-1.

DEFINITION. A differential operator satisfying the above conditions (i), (ii) and (iii) is said to be of the Fuchsian type (with respect to z_1).

REMARK 1 (see also [1], Remark 1). These conditions (i), (ii) and (iii) are invariant under the coordinate transformation which preserves the hypersurface $z_1=0$. Therefore we may say in general that P(z, D) is of the Fuchsian type with respect to the complex hypersurface S if and only if, in some local coordinates (which associate to S the hyperplane $z_1=0$), the operator P(z, D) satisfies (i), (ii) and (iii).

REMARK 2. Our definition of the Fuchsian operator is weaker than that of M. S. Baouendi and C. Goulaouic [1]. They request the Fuchsian operator to satisfy the condition (iii) for all differential monomial in P(z, D) except for the terms $a_{(k,0)}(z)(\partial/\partial z_1)^k$ ($k=0, 1, \dots, m$).

Since we deal only with the homogeneous equation P(z, D)u(z)=0, we may assume in general that m=k and the coefficient of $(\partial/\partial z_1)^m$ is equal to z_1^m in the above definition. Then the Fuchsian operator is written in the form

(1)
$$P(z, D) = \sum_{p+|\alpha| \leq m} a_{(p,\alpha)}(z) z_1^p \left(\frac{\partial}{\partial z_1}\right)^p \left(\frac{\partial}{\partial z'}\right)^{\alpha},$$

and especially its principal part is in the form

(2)
$$P_{m}(z, D) = z_{1}^{m} \left(\frac{\partial}{\partial z_{1}}\right)^{m} + z_{1} \sum_{\substack{\{p+|\alpha|=m\\p$$

where $a_{(p,\alpha)}(z)$ and $b_{(p,\alpha)}(z)$ are holomorphic in U.

Now we take U as the set

(3)
$$U_z(\rho, r) = \{z \mid |z_1| < \rho, |z_j| < r \quad j = 2, \dots, n\}$$

for some positive constants ρ and r, and set

(4)
$$\Omega_z(\rho, r) = \{z \in U_z(\rho, r) \mid \operatorname{Re} z_1 > 0\}.$$

Here we may assume that there exists a constant M such that

$$(5) |b_{(p,\alpha)}(z)| \leq M$$

in $U_z(\rho, r)$ for every (p, α) with $p+|\alpha|=m$ and p<m. Then we make the holomorphic transformation of coordinates from (z_1, z') -variables to (t, z')-variables as follows:

This change of variables is well-known for the Euler equation in the theory of ordinary differential equations and we have the next relations,

(7)
$$z_1^k \left(\frac{\partial}{\partial z_1}\right)^k = \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - 1\right) \cdots \left(\frac{\partial}{\partial t} - k + 1\right) \qquad k = 1, 2, \cdots.$$

Under this transformation the domain Ω given by (4) is bi-holomorphically mapped into the following domain,

(8)
$$\tilde{\Omega}_{(t,z')}(\log \rho, r) = \{(t, z') \mid \text{Re } t < \log \rho, |\text{Im } t| < \pi/2, |z_j| < r j = 2, \cdots, n\}$$

and by the relation (7), the Fuchsian operator P(z, D) given by (1) is transformed to a differential operator $\tilde{P}(t, z'; \partial/\partial t, \partial/\partial z')$ whose coefficients are holomorphic in

(9)
$$\widetilde{U}_{(t,z')}(\log \rho, r) = \{(t, z') \mid \text{Re } t < \log \rho, |z_j| < r \quad j = 2, \dots, n\}.$$

Then the principal part of $\tilde{P}(t, z'; \partial/\partial t, \partial/\partial z')$ with respect to $(\partial/\partial t, \partial/\partial z')$ is, by (2),

(10)
$$\widetilde{P}_{m}\left(t, z'; \frac{\partial}{\partial t}, \frac{\partial}{\partial z'}\right) = \left(\frac{\partial}{\partial t}\right)^{m} + e^{t} \sum_{\substack{\{p < m \\ p < m}} b_{(p,\alpha)}(e^{t}, z') \left(\frac{\partial}{\partial t}\right)^{p} \left(\frac{\partial}{\partial z'}\right)^{\alpha}.$$

Here we should pay the attention to the following two points:

- (i) under this transformation, the hyperplane t=0 becomes non-characteristic,
- (ii) there exists the term e^t in every coefficients of differential monomials $(\partial/\partial t)^p (\partial/\partial z')^{\alpha}$ $(p+|\alpha|=m, p < m)$.

Y. TSUNO

These conditions mean that if $\operatorname{Re} t$ is sufficiently small, then the characteristic hyperplane becomes "almost" parallel to the *t*-axis (see Lemma 1 in the next section), and this is essential in our theory.

§ 3. Prolongation of local holomorphic solutions.

In this section we study the holomorphic continuation of the homogeneous solutions of the Fuchsian partial differential equation P(z, D)u(z)=0.

We define the bilinear inner product \langle , \rangle in C^n by $\langle z, \lambda \rangle = \sum_{j=1}^n z_j \lambda_j$ and the norm of z by $|z|^2 = \langle z, \overline{z} \rangle$ and set $S^{2n-1} = \{\zeta \in C^n | |\zeta| = 1\}$. The real hyperplane $H(\zeta, z_0)$ through the point z_0 with the complex normal direction $\zeta \in S^{2n-1}$ is defined by

(11)
$$H(\zeta, z_0) = \{z \mid \operatorname{Re} \langle z - z_0, \zeta \rangle = 0\}.$$

We also denote this by $H(\zeta)$ when z_0 has no need to be mentioned. The vector $\zeta \in S^{2n-1}$ is said to be characteristic with respect to P(z, D) at z_0 if ζ satisfies the equation $P_m(z_0, \zeta)=0$. For an open set V in \mathbb{C}^n and a differential operator P(z, D) in V, we denote by $\operatorname{Car}_P(V)$ the closure in S^{2n-1} of all vectors that are characteristic for some point in V. Then we have the next theorem.

THEOREM 1 (J. M. Bony and P. Schapira [3] Théorème 2.1, see also L. Hörmander [4], Theorem 5.3.3). Let Ω_1 and Ω_2 be two open convex sets in \mathbb{C}^n such that $\Omega_1 \subset \Omega_2$ and let P(z, D) be a differential operator in Ω_2 . We assume that every hyperplane $H(\zeta)$ with $\zeta \in \operatorname{Car}_P(\Omega_2)$ which intersects Ω_2 also meets Ω_1 . Then every u(z) holomorphic in Ω_1 and satisfying the equation P(z, D)u(z)=0becomes holomorphic in Ω_2 .

We remark that the function u(z) extended holomorphically to that on Ω_2 satisfies also the equation P(z, D)u(z)=0 in Ω_2 by the theorem of identity.

We now study the vector ζ in $\operatorname{Car}_{\widetilde{P}}(\widetilde{U}_{(t,z')}(\log \rho, r))$ for the operator $\widetilde{P}(t, z'; \partial/\partial t, \partial/\partial z')$, where $\widetilde{U}_{(t,z')}(\log \rho, r)$ is given by (9) and the principal part of $\widetilde{P}(t, z'; \partial/\partial t, \partial/\partial z')$ is given by (10) in the preceding section. Then we have the following lemma.

LEMMA 1. For any number C>0, there exists τ ($\tau < \log \rho$) such that

$$C|\zeta_1| \leq |\zeta_2| + \dots + |\zeta_n|$$

for any $\zeta \in \operatorname{Car}_{\widetilde{P}}(\widetilde{U}_{(t,z')}(\tau, r)).$

PROOF. Let ζ be any vector that is characteristic with respect to \tilde{P} at some point in $\tilde{U}_{(t,z')}(\tau, r)$. Then by (5) and (10) we have

$$\begin{aligned} |\zeta_{1}|^{m} &\leq e^{z} \sum_{\substack{\{\frac{p}{p} \leq m \\ p \leq m \end{bmatrix}} |b_{(p,\alpha)}| |\zeta_{1}^{p} \zeta'^{\alpha}| \\ &\leq M e^{z} \{ (|\zeta_{1}| + \dots + |\zeta_{n}|)^{m} - |\zeta_{1}|^{m} \} \end{aligned}$$

614

Therefore

$$\{(1+M^{-1}e^{-\tau})^{1/m}-1\} |\zeta_1| \leq |\zeta_2| + \cdots + |\zeta_n|,$$

and this inequality completes the proof because the coefficient of $|\zeta_1|$ tends to infinity as $\tau \rightarrow -\infty$.

We next study the relation between open convex sets and hyperplanes. Let $\Delta(a, b)$ (a, b real) be an open convex set in the complex plane C with the variable t defined by

Using this notation, we have

$$\tilde{\Omega}_{(t,z')}(a,r) = \{(t,z') \mid t \in \mathcal{A}(a,\pi/2), |z_j| < r \ j=2, \cdots, n\}.$$

Furthermore we set $\hat{\Omega}_{(t,z')}(\Delta(a, b), r)$ the convex hull of the set $\tilde{\Omega}_{(t,z')}(a, r)$ and the set $\{(t, z') \mid t \in \Delta(a, b), z'=0\}$. We remark that $\hat{\Omega}$ obtained above is an open convex set in \mathbb{C}^n .

LEMMA 2. Let $\zeta \in S^{2n-1}$ be any vector satisfying the inequality

$$C|\zeta_1| \leq |\zeta_2| + \dots + |\zeta_n|$$

for some constant C>0. Then if the hyperplane $H(\zeta)$ intersects $\hat{\Omega}_{(t,z')}(\Delta(a, \pi/2 + Cr), r)$, it also meets $\tilde{\Omega}_{(t,z')}(a, r)$.

PROOF. Since $\hat{\Omega}_{(t,z')}(\mathcal{A}(a, \pi/2+Cr), r)$ is the convex hull of $\tilde{\Omega}_{(t,z')}(a, r)$ and the set $\{(t, z') \mid t \in \mathcal{A}(a, \pi/2+Cr), z'=0\}$, the hyperplane $H(\zeta)$ which intersects $\hat{\Omega}$ must also meets $\tilde{\Omega}$ or $\{(t, z') \mid t \in \mathcal{A}(a, \pi/2+Cr), z'=0\}$. Thus for the poof of this lemma it is sufficient to show that the hyperplane $H(\zeta)$ meets $\tilde{\Omega}$ if there is a point $(\alpha+i\beta, 0, \cdots, 0)$ $(\alpha, \beta$ real) in $H(\zeta)$ such that $\alpha < a$ and $|\beta| < \pi/2+Cr$.

We now write $\zeta_j = \xi_j + i\eta_j$ $(j=1, \dots, n)$ $(\xi_j, \eta_j \text{ real})$ and t=x+iy (x, y real). Then $H(\zeta)$ is the set of all points $(x+iy, z_2, \dots, z_n)$ satisfying

(13)
$$\xi_1(x-\alpha) - \eta_1(y-\beta) = -\operatorname{Re} \sum_{j=2}^n \zeta_j z_j .$$

If we take $x_0 = \alpha$ and $|y_0| < \pi/2$ such that $|y_0 - \beta| < Cr$, then by the assumption we have

$$|\xi_1(x_0-\alpha)-\eta_1(y_0-\beta)| < C|\zeta_1|r \le r(|\zeta_2|+\cdots+|\zeta_n|).$$

On the other hand the right hand side of (13) can take any value whose absolute value is less than $r(|\zeta_2| + \cdots + |\zeta_n|)$ at some point (z_2, \cdots, z_n) satisfying $|z_j| < r$ $(j=2, \cdots, n)$. Thus there exists a point $(t_0, z'_0) = (x_0 + iy_0, z_2^{(0)}, \cdots, z_n^{(0)})$ in $H(\zeta)$ which is also contained in $\tilde{\Omega}$. This completes the proof.

Now we have the following main theorem.

THEOREM 2. Let $\tilde{P}(t, z'; \partial/\partial t, \partial/\partial z')$ be a differential operator in the domain $\tilde{U}_{(t,z')}(\log \rho, r)$ given by (9) with the principal part given by (10). Then for any positive number C there exists τ ($\tau < \log \rho$) such that every u(t, z') holomorphic

Y. TSUNO

in $\tilde{\Omega}_{(t,z')}(\tau, r)$ and satisfying the equation $\tilde{P}(t, z'; \partial/\partial t, \partial/\partial z')u(t, z')=0$ becomes holomorphic in $\hat{\Omega}_{(t,z')}(\varDelta(\tau, \pi/2+Cr), r)$.

PROOF. For a given number C we take τ by Lemma 1 such that

 $C|\zeta_1| \leq |\zeta_2| + \dots + |\zeta_n|$

for any $\zeta \in \operatorname{Car}_{\widetilde{P}}(\widetilde{U}_{(t,z')}(\tau, r))$. We then apply Theorem 1 with $\Omega_1 = \widetilde{\Omega}_{(t,z')}(\tau, r)$ and $\Omega_2 = \widehat{\Omega}_{(t,z')}(\varDelta(\tau, \pi/2 + Cr), r)$ and, using Lemma 2, we get this theorem.

Since for any number ε $(0 < \varepsilon < Cr)$ there exists ρ $(0 < \rho < \min(\exp \tau, r))$ such that the set $\{(t, z') \mid \text{Re } t < \log \rho, |\text{Im } t| < \pi/2 + Cr - \varepsilon, |z_j| < \rho \ j=2, \cdots, n\}$ is contained in $\hat{\Omega}_{(t,z')}(\varDelta(\tau, \pi/2 + Cr), r)$, we can now restate the above theorem as follows.

THEOREM 2^{bis}. Let P(z, D) be a differential operator of the Fuchsian type with respect to z_1 in a neighborhood U of 0 in \mathbb{C}^n . Then for any positive number C we can choose r>0 such that every u(z) holomorphic in $\Omega = \{z \in U | \operatorname{Re} z_1 > 0\}$ and satisfying the equation P(z, D)u(z)=0 becomes holomorphic with respect to the variables $(\log z_1, z_2, \dots, z_n)$ in the following domain

$$\begin{cases} |z_j| < r & (j = 1, 2, \dots, n) \\ |\arg z_1| < C. \end{cases}$$

References

- [1] M.S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.
- [2] P. Pallu de La Barrière, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, C.R. Acad. Sci. Paris, 279 (1974), 947-949.
- [3] J.M. Bony et P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math., 17 (1972), 95-105.
- [4] L. Hörmander, Linear partial differential operators, Springer-Verlag, 1963.
- [5] Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, J. Math. Soc. Japan, 26 (1974), 523-548.
- Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, II, prolongation across the pluri-harmonic hypersurface, J. Math. Soc. Japan, 28 (1976), 304-306.
- Y. Tsuno, On the prolongation of local holomorphic solutions of nonlinear partial differential equations, J. Math. Soc. Japan, 27 (1975), 454-466. Its summary is published in Proc. Japan Acad., 50 (1974), 702-705.
- [8] M. Zerner, Domaines d'holomorphie des fonctions vérifiant une équation aux dérivées partielles. C. P Acad. Sci. Paris, 272 (1971), 1646-1648.

Yoshimichi TSUNO Department of Mathematics Hiroshima University

Present address: Department of Mathematics Okayama University Tsushima, Okayama Japan

616