On the prolongation of local holomorphic solutions of partial differential equations, III, equations of the Fuchsian type

By Yoshimichi Tsuno

(Received May 2, 1975)

§ 1. Introduction.

In the theory of partial differential equations in the complex n-dimensional space \boldsymbol{C}^{n}, one of interesting problems is the holomorphic continuation of the homogeneous solutions of $P(z, D) u(z)=0$. There obtained several results concerning this problem ([2], [3], [5], [7], [8] and others). In our preceding paper [6], we study the holomorphic continuation over the pluri-harmonic surface and the result obtained is the following: If the surface is defined by $\operatorname{Re} \Phi(z)=0$ for some non-degenerate holomorphic function Φ, and the principal part of $P, P_{m}(z, \operatorname{grad} \Phi)$, does not vanish identically on the analytic variety $\{\Phi(z)=0\}$, then every solution of $P(z, D) u(z)=0$ in $\{z \mid \operatorname{Re} \Phi(z)>0\}$ becomes holomorphic near the boundary.

In this paper we study the case where $P_{m}(z, \operatorname{grad} \Phi)$ is identically zero on the set $\{\Phi(z)=0\}$ but the function $\Phi(z)$ is not characteristic, that is, $P_{m}(z, \operatorname{grad} \Phi)$ does not vanish identically near the boundary. In such case, $P_{m}(z, \operatorname{grad} \Phi)$ can be divided by Φ^{k} for some $k \geqq 1$ because the variety $\{\Phi=0\}$ is irreducible and then the notion of the differential operator of the Fuchsian type with respect to Φ is naturally introduced (see also M. S. Baouendi and C. Goulaouic [1]). The main result in this paper is roughly expressed as follows: If the operator $P(z, D)$ is of the Fuchsian type with respect to $\Phi(z)$ then every homogeneous solution of $P(z, D) u(z)=0$ in $\{z \mid \operatorname{Re} \Phi(z)>0\}$ is holomorphic near the boundary of the function of $\log \Phi(z)$ and z.

§ 2. Partial differential operators of the Fuchsian type.

Let Ω be a domain in the complex n-dimensional space \boldsymbol{C}^{n} whose boundary $\partial \Omega$ is defined by the level surface of some pluri-harmonic function, and $P(z, D)$ be a linear partial differential operator of order m near $\partial \Omega$ with holomorphic coefficients. We denote its principal part by $P_{m}(z, D)$. Since we study only the local properties of the holomorphic solutions of $P(z, D) u(z)=0$, we may
assume without loss of generality that $\Omega=\left\{z \in U \mid \operatorname{Re} z_{1}>0\right\}$ for some neighborhood U of 0 . In our preceding paper [6], we deal with the case where $P_{m}(z, N)$ does not vanish identically on the complex hypersurface $z_{1}=0$ where $N=(1,0, \cdots, 0)$. Now in this paper we study the case where $P_{m}(z, N)$ vanishes identically on the set $\left\{z_{1}=0\right\}$ but the function $\Phi(z)=z_{1}$ is not characteristic, this means that $P_{m}(z, N)$ does not vanish identically in U. We write $P(z, D)$ $=\sum_{p+|\alpha| \leq m} a_{(p, \alpha)}(z)\left(\partial / \partial z_{1}\right)^{p}\left(\partial / \partial z^{\prime}\right)^{\alpha}$ where $z^{\prime}=\left(z_{2}, \cdots, z_{n}\right)$ and $\alpha=\left(\alpha_{2}, \cdots, \alpha_{n}\right)$ is a multi-index, and use the terminology in M.S. Baouendi and C. Goulaouic [1]. We say that a differential monomial which may be written as $c\left(z_{1}, z^{\prime}\right) z_{1}^{l}\left(\partial / \partial z_{1}\right)^{p}$ $\left(\partial / \partial z^{\prime}\right)^{\alpha}$, where $c\left(0, z^{\prime}\right) \not \equiv 0$, has the weight $p-l$. We now consider the following conditions on the differential operator $P(z, D)$:
(i) the coefficient of $\left(\partial / \partial z_{1}\right)^{m}$ is $a(z) z_{1}^{k}$ with $0 \leqq k \leqq m$ and $a(z) \neq 0$ in a neighborhood of 0 ,
(ii) $P(z, D)$ can be written as the finite sum of differential monomials each of which has the weight at most $m-k$,
(iii) each monomial in the principal part $P_{m}(z, D)$, except $a(z) z_{1}^{k}\left(\partial / \partial z_{1}\right)^{m}$, has the weight at most $m-k-1$.
Definition. A differential operator satisfying the above conditions (i), (ii) and (iii) is said to be of the Fuchsian type (with respect to z_{1}).

Remark 1 (see also [1], Remark 1). These conditions (i), (ii) and (iii) are invariant under the coordinate transformation which preserves the hypersurface $z_{1}=0$. Therefore we may say in general that $P(z, D)$ is of the Fuchsian type with respect to the complex hypersurface S if and only if, in some local coordinates (which associate to S the hyperplane $z_{1}=0$), the operator $P(z, D)$ satisfies (i), (ii) and (iii).

Remark 2. Our definition of the Fuchsian operator is weaker than that of M.S. Baouendi and C. Goulaouic [1]. They request the Fuchsian operator to satisfy the condition (iii) for all differential monomial in $P(z, D)$ except for the terms $a_{(k, 0)}(z)\left(\partial / \partial z_{1}\right)^{k}(k=0,1, \cdots, m)$.

Since we deal only with the homogeneous equation $P(z, D) u(z)=0$, we may assume in general that $m=k$ and the coefficient of $\left(\partial / \partial z_{1}\right)^{m}$ is equal to z_{1}^{m} in the above definition. Then the Fuchsian operator is written in the form

$$
\begin{equation*}
P(z, D)=\sum_{p+|\alpha| \leqq m} a_{\langle p, \alpha\rangle}(z) z_{1}^{p}\left(\frac{\partial}{\partial z_{1}}\right)^{p}\left(\frac{\partial}{\partial z^{\prime}}\right)^{\alpha}, \tag{1}
\end{equation*}
$$

and especially its principal part is in the form

$$
\begin{equation*}
P_{m}(z, D)=z_{1}^{m}\left(\frac{\partial}{\partial z_{1}}\right)^{m}+z_{1} \sum_{\substack{p \nmid \alpha(\alpha)=m \\ p<m}} b_{(p, \alpha)}(z) z_{1}^{p}\left(\frac{\partial}{\partial z_{1}}\right)^{p}\left(\frac{\partial}{\partial z^{\prime}}\right)^{\alpha}, \tag{2}
\end{equation*}
$$

where $a_{\left(p, c_{0}\right)}(z)$ and $b_{(p, r)}(z)$ are holomorphic in U.

Now we take U as the set

$$
\begin{equation*}
U_{z}(\rho, r)=\left\{z| | z_{1}\left|<\rho,\left|z_{j}\right|<r \quad j=2, \cdots, n\right\}\right. \tag{3}
\end{equation*}
$$

for some positive constants ρ and r, and set

$$
\begin{equation*}
\Omega_{z}(\rho, r)=\left\{z \in U_{z}(\rho, r) \mid \operatorname{Re} z_{1}>0\right\} . \tag{4}
\end{equation*}
$$

Here we may assume that there exists a constant M such that

$$
\begin{equation*}
\left|b_{(p, \alpha)}(z)\right| \leqq M \tag{5}
\end{equation*}
$$

in $U_{z}(\rho, r)$ for every (p, α) with $p+|\alpha|=m$ and $p<m$. Then we make the holomorphic transformation of coordinates from (z_{1}, z^{\prime})-variables to (t, z^{\prime}). variables as follows:

$$
\begin{equation*}
z_{1}=e^{t} . \tag{6}
\end{equation*}
$$

This change of variables is well-known for the Euler equation in the theory of ordinary differential equations and we have the next relations,

$$
\begin{equation*}
z_{1}^{k}\left(\frac{\partial}{\partial z_{1}}\right)^{k}=\frac{\partial}{\partial t}\left(-\frac{\partial}{\partial t}-1\right) \cdots\left(\frac{\partial}{\partial t}-k+1\right) \quad k=1,2, \cdots . \tag{7}
\end{equation*}
$$

Under this transformation the domain Ω given by (4) is bi-holomorphically mapped into the following domain,

$$
\begin{equation*}
\tilde{\Omega}_{\left(t, z^{\prime}\right)}(\log \rho, r)=\left\{\left(t, z^{\prime}\right)\left|\operatorname{Re} t<\log \rho,|\operatorname{Im} t|<\pi / 2,\left|z_{j}\right|<r \quad j=2, \cdots, n\right\}\right. \tag{8}
\end{equation*}
$$

and by the relation (7), the Fuchsian operator $P(z, D)$ given by (1) is transformed to a differential operator $\widetilde{P}\left(t, z^{\prime} ; \partial / \partial t, \partial / \partial z^{\prime}\right)$ whose coefficients are holomorphic in

$$
\begin{equation*}
\tilde{U}_{\left(t, z^{\prime}\right)}(\log \rho, r)=\left\{\left(t, z^{\prime}\right)\left|\operatorname{Re} t<\log \rho,\left|z_{j}\right|<r \quad j=2, \cdots, n\right\} .\right. \tag{9}
\end{equation*}
$$

Then the principal part of $\widetilde{P}\left(t, z^{\prime} ; \partial / \partial t, \partial / \partial z^{\prime}\right)$ with respect to $\left(\partial / \partial t, \partial / \partial z^{\prime}\right)$ is, by (2),

$$
\begin{align*}
\tilde{P}_{m}\left(t, z^{\prime} ;\right. & \left.\frac{\partial}{\partial t}, \frac{\partial}{\partial z^{\prime}}\right) \tag{10}\\
& =\left(\frac{\partial}{\partial t}\right)^{m}+e^{t} \sum_{\substack{p+1 \alpha \mid=m \\
p<m}} b_{(p, \alpha)}\left(e^{t}, z^{\prime}\right)\left(\frac{\partial}{\partial t}\right)^{p}\left(\frac{\partial}{\partial z^{\prime}}\right)^{\alpha} .
\end{align*}
$$

Here we should pay the attention to the following two points:
(i) under this transformation, the hyperplane $t=0$ becomes non-characteristic,
(ii) there exists the term e^{t} in every coefficients of differential monomials $(\partial / \partial t)^{p}\left(\partial / \partial z^{\prime}\right)^{\alpha}(p+|\alpha|=m, p<m)$.

These conditions mean that if $\operatorname{Re} t$ is sufficiently small, then the characteristic hyperplane becomes "almost" parallel to the t-axis (see Lemma 1 in the next section), and this is essential in our theory.

§ 3. Prolongation of local holomorphic solutions.

In this section we study the holomorphic continuation of the homogeneous solutions of the Fuchsian partial differential equation $P(z, D) u(z)=0$.

We define the bilinear inner product \langle,$\rangle in \boldsymbol{C}^{n}$ by $\langle z, \lambda\rangle=\sum_{j=1}^{n} z_{j} \lambda_{j}$ and the norm of z by $|z|^{2}=\langle z, \bar{z}\rangle$ and set $S^{2 n-1}=\left\{\zeta \in \boldsymbol{C}^{n}| | \zeta \mid=1\right\}$. The real hyperplane $H\left(\zeta, z_{0}\right)$ through the point z_{0} with the complex normal direction $\zeta \in S^{2 n-1}$ is defined by

$$
\begin{equation*}
H\left(\zeta, z_{0}\right)=\left\{z \mid \operatorname{Re}\left\langle z-z_{0}, \zeta\right\rangle=0\right\} . \tag{11}
\end{equation*}
$$

We also denote this by $H(\zeta)$ when z_{0} has no need to be mentioned. The vector $\zeta \in S^{2 n-1}$ is said to be characteristic with respect to $P(z, D)$ at z_{0} if ζ satisfies the equation $P_{m}\left(z_{0}, \zeta\right)=0$. For an open set V in \boldsymbol{C}^{n} and a differential operator $P(z, D)$ in V, we denote by $\operatorname{Car}_{P}(V)$ the closure in $S^{2 n-1}$ of all vectors that are characteristic for some point in V. Then we have the next theorem.

Theorem 1 (J. M. Bony and P. Schapira [3] Théorème 2.1, see also L. Hörmander [4], Theorem 5.3.3). Let Ω_{1} and Ω_{2} be two open convex sets in \boldsymbol{C}^{n} such that $\Omega_{1} \subset \Omega_{2}$ and let $P(z, D)$ be a differential operator in Ω_{2}. We assume that every hyperplane $H(\zeta)$ with $\zeta \in \operatorname{Car}_{P}\left(\Omega_{2}\right)$ which intersects Ω_{2} also meets Ω_{1}. Then every $u(z)$ holomorphic in Ω_{1} and satisfying the equation $P(z, D) u(z)=0$ becomes holomorphic in Ω_{2}.

We remark that the function $u(z)$ extended holomorphically to that on Ω_{2} satisfies also the equation $P(z, D) u(z)=0$ in Ω_{2} by the theorem of identity.

We now study the vector ζ in $\operatorname{Car}_{\widetilde{P}}\left(\tilde{U}_{\left(t, z^{\prime}\right)}(\log \rho, r)\right)$ for the operator $\tilde{P}\left(t, z^{\prime} ; \partial / \partial t, \partial / \partial z^{\prime}\right)$, where $\tilde{U}_{\left(t, z^{\prime}\right)}(\log \rho, r)$ is given by (9) and the principal part of $\tilde{P}\left(t, z^{\prime} ; \partial / \partial t, \partial / \partial z^{\prime}\right)$ is given by (10) in the preceding section. Then we have the following lemma.

Lemma 1. For any number $C>0$, there exists $\tau(\tau<\log \rho)$ such that

$$
C\left|\zeta_{1}\right| \leqq\left|\zeta_{2}\right|+\cdots+\left|\zeta_{n}\right|
$$

for any $\left.\zeta \in \operatorname{Car}_{\widetilde{P}}\left(\tilde{U}_{\left(t, z^{\prime}\right)}\right)(\tau, r)\right)$.
Proof. Let ζ be any vector that is characteristic with respect to \tilde{P} at some point in $\tilde{U}_{\left(t, r^{\prime}\right)}(\tau, r)$. Then by (5) and (10) we have

$$
\begin{aligned}
\left|\zeta_{1}\right|^{m} & \leqq e^{-} \sum_{\left\{\begin{array}{l}
p+i \alpha \mid=m \\
p<m
\end{array}\right.}\left|b_{(p, \alpha)}\right|\left|\zeta_{1}^{p \zeta^{\prime \alpha}}\right| \\
& \leqq M e^{-}\left\{\left(\left|\zeta_{1}\right|+\cdots+\left|\zeta_{n}\right|\right)^{m}-\left|\zeta_{1}\right|^{m}\right\} .
\end{aligned}
$$

Therefore

$$
\left\{\left(1+M^{-1} e^{-5}\right)^{1 / m}-1\right\}\left|\zeta_{1}\right| \leqq\left|\zeta_{2}\right|+\cdots+\left|\zeta_{n}\right|,
$$

and this inequality completes the proof because the coefficient of $\left|\zeta_{1}\right|$ tends to infinity as $\tau \rightarrow-\infty$.

We next study the relation between open convex sets and hyperplanes. Let $\Delta(a, b)(a, b$ real) be an open convex set in the complex plane \boldsymbol{C} with the variable t defined by

$$
\begin{equation*}
\Delta(a, b)=\{t|\operatorname{Re} t<a,|\operatorname{Im} t|<b\} . \tag{12}
\end{equation*}
$$

Using this notation, we have

$$
\tilde{\Omega}_{\left(t, z^{\prime}\right)}(a, r)=\left\{\left(t, z^{\prime}\right)\left|t \in \Delta(a, \pi / 2),\left|z_{j}\right|<r \quad j=2, \cdots, n\right\} .\right.
$$

Furthermore we set $\hat{\Omega}_{\left(t, z^{\prime}\right)}(\Delta(a, b), r)$ the convex hull of the set $\tilde{\Omega}_{\left(t, z^{\prime}\right)}(a, r)$ and the set $\left\{\left(t, z^{\prime}\right) \mid t \in \Delta(a, b), z^{\prime}=0\right\}$. We remark that $\hat{\Omega}$ obtained above is an open convex set in \boldsymbol{C}^{n}.

Lemma 2. Let $\zeta \in S^{2 n-1}$ be any vector satisfying the inequality

$$
C\left|\zeta_{1}\right| \leqq\left|\zeta_{2}\right|+\cdots+\left|\zeta_{n}\right|
$$

for some constant $C>0$. Then if the hyperplane $H(\zeta)$ intersects $\hat{\Omega}_{\left(t, z^{\prime}\right)}(\Delta(a, \pi / 2$ $+C r), r)$, it also meets $\tilde{\Omega}_{\left(t, z^{\prime}\right)}(a, r)$.

Proof. Since $\hat{\Omega}_{\left(t, z^{\prime}\right)}(\Delta(a, \pi / 2+C r), r)$ is the convex hull of $\tilde{\Omega}_{\left(t, z^{\prime}\right)}(a, r)$ and the set $\left\{\left(t, z^{\prime}\right) \mid t \in \Delta(a, \pi / 2+C r), z^{\prime}=0\right\}$, the hyperplane $H(\zeta)$ which intersects $\hat{\Omega}$ must also meets $\tilde{\Omega}$ or $\left\{\left(t, z^{\prime}\right) \mid t \in \Delta(a, \pi / 2+C r), z^{\prime}=0\right\}$. Thus for the poof of this lemma it is sufficient to show that the hyperplane $H(\zeta)$ meets $\tilde{\Omega}$ if there is a point $(\alpha+i \beta, 0, \cdots, 0)(\alpha, \beta$ real) in $H(\zeta)$ such that $\alpha<a$ and $|\beta|<\pi / 2+C r$.

We now write $\zeta_{j}=\xi_{j}+i \eta_{j}(j=1, \cdots, n)\left(\xi_{j}, \eta_{j}\right.$ real) and $t=x+i y$ (x, y real). Then $H(\zeta)$ is the set of all points ($x+i y, z_{2}, \cdots, z_{n}$) satisfying

$$
\begin{equation*}
\xi_{1}(x-\alpha)-\eta_{1}(y-\beta)=-\operatorname{Re} \sum_{j=2}^{n} \zeta_{j} z_{j} . \tag{13}
\end{equation*}
$$

If we take $x_{0}=\alpha$ and $\left|y_{0}\right|<\pi / 2$ such that $\left|y_{0}-\beta\right|<C r$, then by the assumption we have

$$
\left|\xi_{1}\left(x_{0}-\alpha\right)-\eta_{1}\left(y_{0}-\beta\right)\right|<C\left|\zeta_{1}\right| r \leqq r\left(\left|\zeta_{2}\right|+\cdots+\left|\zeta_{n}\right|\right) .
$$

On the other hand the right hand side of (13) can take any value whose absolute value is less than $r\left(\left|\zeta_{2}\right|+\cdots+\left|\zeta_{n}\right|\right)$ at some point $\left(z_{2}, \cdots, z_{n}\right)$ satisfying $\left|z_{j}\right|<r(j=2, \cdots, n)$. Thus there exists a point $\left(t_{0}, z_{0}^{\prime}\right)=\left(x_{0}+i y_{0}, z_{2}^{(0)}, \cdots\right.$, $\left.z_{n}^{(0)}\right)$ in $H(\zeta)$ which is also contained in $\tilde{\Omega}$. This completes the proof.

Now we have the following main theorem.
ThEOREM 2. Let $\tilde{P}\left(t, z^{\prime} ; \partial / \partial t, \partial / \partial z^{\prime}\right)$ be a differential operator in the domain $\tilde{U}_{\left(t, z^{\prime}\right)}(\log \rho, r)$ given by (9) with the principal part given by (10). Then for any positive number C there exists $\tau(\tau<\log \rho)$ such that every $u\left(t, z^{\prime}\right)$ holomorphic
in $\tilde{\Omega}_{\left(t, z^{\prime}\right)}(\tau, r)$ and satisfying the equation $\widetilde{P}\left(t, z^{\prime} ; \partial / \partial t, \partial / \partial z^{\prime}\right) u\left(t, z^{\prime}\right)=0$ becomes holomorphic in $\hat{\Omega}_{\left(t, r^{\prime}\right)}(\Delta(\tau, \pi / 2+C r), r)$.

Proof. For a given number C we take τ by Lemma 1 such that

$$
C\left|\zeta_{1}\right| \leqq\left|\zeta_{2}\right|+\cdots+\left|\zeta_{n}\right|
$$

for any $\zeta \in \operatorname{Car}_{\widetilde{P}}\left(\tilde{U}_{\left(t, z^{\prime}\right)}(\tau, r)\right)$. We then apply Theorem 1 with $\Omega_{1}=\tilde{\Omega}_{\left(t, z^{\prime}\right)}(\tau, r)$ and $\Omega_{2}=\hat{\Omega}_{\left(t, r^{\prime}\right)}(\Delta(\tau, \pi / 2+C r), r)$ and, using Lemma 2, we get this theorem.

Since for any number $\varepsilon(0<\varepsilon<C r)$ there exists $\rho(0<\rho<\min (\exp \tau, r))$ such that the set $\left\{\left(t, z^{\prime}\right)\left|\operatorname{Re} t<\log \rho,|\operatorname{Im} t|<\pi / 2+C r-\varepsilon,\left|z_{j}\right|<\rho j=2, \cdots, n\right\}\right.$ is contained in $\hat{\Omega}_{\left(t, z^{\prime}\right)}(\Delta(\tau, \pi / 2+C r), r)$, we can now restate the above theorem as follows.

Theorem 2bis. Let $P(z, D)$ be a differential operator of the Fuchsian type with respect to z_{1} in a neighborhood U of 0 in \boldsymbol{C}^{n}. Then for any positive number C we can choose $r>0$ such that every $u(z)$ holomorphic in $\Omega=\left\{z \in U \mid \operatorname{Re} z_{1}>0\right\}$ and satisfying the equation $P(z, D) u(z)=0$ becomes holomorphic with respect to the variables $\left(\log z_{1}, z_{2}, \cdots, z_{n}\right)$ in the following domain

$$
\left\{\begin{array}{l}
\left|z_{j}\right|<r \quad(j=1,2, \cdots, n) \\
\left|\arg z_{1}\right|<C .
\end{array}\right.
$$

References

[1] M.S. Baouendi and C. Goulaouic, Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math., 26 (1973), 455-475.
[2] P. Pallu de La Barrière, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, C. R. Acad. Sci. Paris, 279 (1974), 947-949.
[3] J. M. Bony et P. Schapira, Existence et prolongement des solutions holomorphes des équations aux dérivées partielles, Invent. Math., 17 (1972), 95-105.
[4] L. Hörmander, Linear partial differential operators, Springer-Verlag, 1963.
[5] Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, J. Math. Soc. Japan, 26 (1974), 523-548.
[6] Y. Tsuno, On the prolongation of local holomorphic solutions of partial differential equations, II, prolongation across the pluri-harmonic hypersurface, J. Math. Soc. Japan, 28 (1976), 304-306.
[7] Y. Tsuno, On the prolongation of local holomorphic solutions of nonlinear partial differential equations, J. Math. Soc. Japan, 27 (1975), 454-466. Its summary is published in Proc. Japan Acad., 50 (1974), 702--705.
[8] M. Zerner, Domaines d’holomorphie des fonctions vérifiant une équation aux dérivées partielles. C. P \cad. Sci. Paris, 272 (1971), 1646-1648.

Yoshimichi Tsuno

Department of Mathematics
Hiroshima University
Present address:
Department of Mathematics
Okayama University
Tsushima, Okayama
Japan

