The Levi problem for the product space of a Stein space and a compact Riemann surface

By Kiyoshi WATANABE

(Received April 14, 1975) (Revised Dec. 1, 1975)

Introduction.

Since Oka [9] solved the Levi problem for unramified domains over C^n , many mathematicians extended Oka's theorem (cf. Andreotti-Narasimhan [1], Narasimhan [8]). On the other hand, recently Nakano [7] obtained the vanishing theorems for weakly 1-complete manifolds. The aim of the present paper is to give a solution of the following Levi problem for the product space of a Stein space and a compact Riemann surface.

THEOREM. Let S be a Stein space, R be a compact Riemann surface and X be the product space of S and R. $\pi_1: X \rightarrow S$ denotes the projection of X onto S. Let D be a domain of X. Then the following assertions (1), (2) and (3) are equivalent:

(1) D is weakly 1-complete.

(2) D is holomorphically convex.

(3) Either D is a Stein space or $D=\pi_1(D)\times R$, $\pi_1(D)$ being a Stein space.

This theorem is a generalization of the previous paper [12] and the result of Matsugu [6].

The author expresses his sincere thanks to Professor Kajiwara for his kind advice and encouragement.

§1. The Levi problem for relatively compact domains on a weakly 1-complete space.

All complex analytic spaces considered in this paper are supposed countable at infinity.

DEFINITION [7]. Let X be a complex analytic space and ϕ be a C^{∞} function on X. We say that X is complete with the exhausting function ϕ if and only if

$$X_c := \{x \in X; \ \phi(x) < c\}$$

is relatively compact for every $c \in \mathbf{R}$. Moreover if ϕ is plurisubharmonic on

X, we say that X is weakly 1-complete.

We remark that the proof of the following proposition is based on Nakano's vanishing theorem for weakly 1-complete spaces, which is pointed out by Hironaka and is proved by Fujiki [2]. It is mentioned as follows:

THEOREM. Let X be a weakly 1-complete space, B a positive line bundle on X and S be a coherent analytic sheaf on X. Then for every $c \in \mathbf{R}$, there exists a natural number m_0 such that

$$H^q(X_c, \mathcal{S} \otimes \mathcal{O}(B^m)) = 0$$

for $q \ge 1$, $m \ge m_0$.

The following lemma is used in the next proposition.

LEMMA 1. Let S be an n-dimensional analytic space, R be a compact Riemann surface and X be the product space of S and R. $\pi_2: X \rightarrow R$ denotes the projection of X onto R. Suppose that D is a complete domain with the exhausting function ϕ . Then for a point q of R there exists a set A_q of measure zero such that if $c \in \mathbf{R} - A_q$, $D_c \cap \pi_2^{-1}(q)$ consists of finitely many connected components.

PROOF. Let $\pi: \widetilde{S} \to S$ be a resolution of singularities of an analytic space S (established by Hironaka [4]). If we put $\Pi := \pi \times i : \widetilde{S} \times R \to S \times R$ and $\widetilde{D} :$ $=\Pi^{-1}(D)$, D is complete with exausting function $\psi^* := \psi \circ \Pi$ because Π is proper, where $i: R \rightarrow R$ is the identity map. We take a point q of R. Since ψ^* is a C^{∞} function on $\widetilde{D} \cap \pi_2^{-1}(q)$, the set A_q of the critical values of ψ^* is of measure zero by Sard's theorem (for example see [11]). Therefore for $c \in$ $R - A_q$, $d\psi^* \neq 0$ on $\partial \widetilde{D}_c \cap \pi_2^{-1}(q)$, where $\partial \widetilde{D}_c := \{x \in \widetilde{D}; \psi^*(x) = c\}$. Now we take a point x of $\partial \widetilde{D}_c \cap \pi_2^{-1}(q)$ for $c \in \mathbf{R} - A_q$. If we denote a local coordinate of q of R by (y_1, y_2) with q=(0, 0), we can take a coordinate neighbourhood U of x whose local coordinates are denoted by $(x_1, \dots, x_{2n-1}, \psi^* - c, y_1, y_2)$ with x = $(0, \dots, 0)$ as a differentiable manifold. We remark that $\partial \widetilde{D}_c \cap \pi_2^{-1}(q) \cap U =$ $\{(x_1, \cdots, x_{2n-1}, \phi^* - c, y_1, y_2) \in U; \phi^* = c, y_1 = y_2 = 0\}$ consists of only one connected component in U. ∂D_c can be covered by such U. Since ∂D_c is compact, we see that $\partial \tilde{D}_c \cap \pi_2^{-1}(q)$ consists of finitely many connected components. Therefore for a point q of R, there exists a set A_q of measure zero such that for $c \in \mathbf{R} - A_q$, $\partial D_c \cap \pi_2^{-1}(q)$ consists of finitely many connected components because Π is continuous. Q. E. D.

PROPOSITION. Let S be a Stein space, R be a compact Riemann surface and X be the product space of S and R. $\pi_1: X \rightarrow S$ and $\pi_2: X \rightarrow R$ denote the projections of X onto S and R respectively. Let D be a domain of X with the following conditions:

1) $D \cap \pi_1^{-1}(q_1) \subseteq \{q_1\} \times R$ for every $q = (q_1, q_2) \in D$.

2) D is weakly 1-complete with the exhausting function ϕ .

Then for every $c \in \mathbf{R}$, $D_c := \{x \in D ; \phi(x) < c\}$ is a Stein space.

PROOF. D_c is weakly 1-complete with the exhausting function $(1-e^{\phi}/e^c)^{-1}$.

606

Levi problem

So we have only to show that D_c is K-complete because of Andreotti-Narasimhan [1]. Since S is a Stein space, for any point $q=(q_1, q_2) \in D_c$, it suffices to make a holomorphic function G(x) on D_c which is not constant on a neighbourhood of q in $D \cap \pi_1^{-1}(q_1)$. If $\pi_2(D_c) \subseteq R$, D_c is an open set of the Stein space $S \times \pi_2(D_c)$. So D_c is K-complete. Therefore we may assume that $\pi_2(D_c) = R$.

Since R is a compact Riemann surface, there exists a positive holomorphic line bundle F on R which is determined by a divisor Γ :

$$F = [\Gamma], \quad \Gamma = \sum_{i=1}^{l} n_i P_i \quad (n_i \in \mathbb{Z}, P_i \in \mathbb{R}).$$

We take an open covering $\{U_i; i=0, 1, \dots, l\}$ of R such that U_i is a neighbourhood of P_i with $U_i \cap U_j = \emptyset$ $(i \neq j)$ and $U_0 := R - \{P_1, \dots, P_l\}$. Then the system of transition functions $\{f_{ij}\}$ with respect to $\{U_i\}$ of R which defines F is as follows:

(1)
$$f_{0i}(z) := z_i^{n_i} \quad \text{on} \quad U_0 \cap U_i \quad (i \neq 0)$$

where z_i denotes the local coordinate in U_i $(i \neq 0)$. Since S is a Stein space, the pull-back bundle π_2^*F of F by the projection $\pi_2: X \rightarrow R$ is positive on X.

We take an arbitrary but fixed point $q=(q_1, q_2) \in D_c$. We can assume that $D_c \cap \pi_2^{-1}(P_i)$ consists of finitely many connected components $\{\mathcal{A}_{ij}; j=1, 2, \dots, k_i\}$ for $i=1, \dots, l$ by Lemma 1. If $\mathcal{A}_{ij} \cap \pi_1^{-1}(q_1) \neq \emptyset$, we pick up a point Q_{ij} of $\mathcal{A}_{ij} \cap \pi_1^{-1}(q_1)$. If $\mathcal{A}_{ij} \cap \pi_1^{-1}(q_1) = \emptyset$, we take a point Q_{ij} of \mathcal{A}_{ij} . We put

$$A:=D\cap (\pi_1^{-1}(q_1)\cup \bigcup_{\substack{1\leq i\leq l\\1\leq j\leq k_i}}\pi_1^{-1}\pi_1(Q_{ij})).$$

Let $\mathcal{J}(A)$ be the sheaf of ideals of A in the structure sheaf \mathcal{O}_D of D. There exists the exact sequence

(2)
$$0 \longrightarrow \mathcal{J}(A) \longrightarrow \mathcal{O}_D \longrightarrow \mathcal{O}_D/\mathcal{J}(A) \longrightarrow 0.$$

Since $\mathcal{J}(A)$ is a coherent analytic sheaf on D, there exists a natural number m_0 such that

$$H^1(D_c, \mathcal{J}(A) \otimes \mathcal{O}(\pi_2^* F^m)) = 0$$

for $m \ge m_0$ by Fujiki [2]. Therefore we obtain the exact sequence

(3)
$$H^{0}(D_{c}, \mathcal{O}(\pi_{2}^{*}F^{m})) \longrightarrow H^{0}(D_{c}, \mathcal{O}_{D}/\mathcal{G}(A) \otimes \mathcal{O}(\pi_{2}^{*}F^{m})) \longrightarrow 0$$

for $m \ge m_0$ by (2).

Since the open Riemann surface $A' := D_c \cap A$ is a Stein manifold, there exists a holomorphic function g(z) on A' which vanishes at q and at each Q_{ij} up to order m_0N and which is not a constant on each connected component of q and Q_{ij} in A', where $N := \max_{1 \le i \le l} |n_i|$. We put

K. WATANABE

$$\psi_0(z) := g(z)$$
 on $A' \cap U_0$,
 $\psi_i(z) := \frac{g(x)}{z_i^{m_0 n_i}}$ on $A' \cap U_i$ $(i=1, \dots, l)$.

Since g(z) vanishes at Q_{ij} up to order m_0N , $\psi_i(z)$ is holomorphic on $A' \cap U_i$ ($i=1, \dots, l$). Then we have $\psi := \{\psi_i\} \in H^0(A', \mathcal{O}(\pi_2^*F^{m_0}|A'))$. Here $\pi_2^*F^{m_0}|A'$ denotes the restriction of $\pi_2^*F^{m_0}$ to A'. Since $H^0(A', \mathcal{O}(\pi_2^*F^{m_0}|A')) =$ $H^0(D_c, \mathcal{O}_D/\mathcal{J}(A) \otimes \mathcal{O}(\pi_2^*F^{m_0}))$, there exists a holomorphic section $\tilde{\psi} = \{\tilde{\psi}_i\} \in$ $H^0(D_c, \mathcal{O}(\pi_2^*F^{m_0}))$ such that

 $\tilde{\psi} \,|\, A' \,{=}\, \psi$

by (3). We put

$$G(x) := \begin{cases} \tilde{\varphi}_0(x) & \text{for } x \in D_c \cap (S \times U_0) \\ z_i^{m_0 n_i} \tilde{\varphi}_i(x) & \text{for } x \in D_c \cap (S \times U_i) \end{cases}$$

Then considering the construction of g, we can check easily that G(x) is a holomorphic function on D_c with G(q)=0 and is not a constant function on a neighbourhood of q in A'. Q. E. D.

§2. The proof of the main theorem.

LEMMA 2. Let S, R, X and π_i (i=1, 2) be the same as in previous Proposition. Let D be a pseudoconvex (in the sense of Lelong [5]) domain of X (i.e. a domain convex with respect to the family of plurisubharmonic functions). If $\{p_1^0\} \times R$ is contained in D for a point $p_1^0 \in \pi_1(D)$, then $D = \pi_1(D) \times R$.

PROOF. Let *E* be the set of all points $p=(p_1, p_2)$ of *D* such that $\pi_1^{-1}(p_1) \cap D = \{p_1\} \times R$. By the assumption *E* is a non-empty open subset of *D*. We prove that *E* is closed. Let $\{p^{(n)}=(p_1^{(n)}, p_2^{(n)})\}$ be a sequence of points in *E* which converges to a point $p'=(p_1', p_2')$ in *D*. Then $\{p_1'\} \times R$ is contained in the hull the compact set $\{p^{(n)}; n=1, 2, \cdots\} \cup \{p'\}$ of *D* with respect to the family of plurisubharmonic functions in *D*. Since *D* is pseudoconvex in the sense of Lelong, $\{p_1'\} \times R$ is contained in *D*. Hence we have $p' \in E$. So *E* is closed. Since *D* is connected, we have D=E. Therefore we have $D=\pi_1(D) \times R$.

Q. E. D.

We now prove the main theorem which is stated in the introduction.

THEOREM. Let S be a Stein space, R be a compact Riemann surface and X be the product space of S and R. $\pi_1: X \rightarrow S$ denotes the projection of X onto S. Let D be a domain of X. Then the following assertions (1), (2) and (3) are equivalent:

(1) D is weakly 1-complete.

(2) D is holomorphically convex.

608

Levi problem

(3) Either D is a Stein space or $D=\pi_1(D)\times R$, $\pi_1(D)$ being a Stein space.

PROOF. (3) \rightarrow (1) follows from Narasimhan [8]. (3) \rightarrow (2) is valid by definition.

 $(2)\rightarrow(1)$. Since D is holomorphically convex, it has the Remmert reduction τ $D \rightarrow Y$ with proper modification τ and Y is a Stein space (for instance, see Grauert [3]). Since Y is weakly 1-complete by Narasimhan [8], D is weakly 1-complete.

 $(1) \rightarrow (3)$. If D is weakly 1-complete, D is pseudoconvex in the sense of Lelong. So if $\{p_1\} \times R$ is contained in D for a point $p_1 \in \pi_1(D)$, we have $D = \pi_1(D) \times R$ by Lemma 2. Moreover we see that $\pi_1(D)$ is a Stein space by Andreotti-Narasimhan [1]. Hence we may assume that $\pi_1^{-1}(p_1) \cap D \subseteq \{p_1\} \times R$ for every $p = (p_1, p_2) \in D$. Since D is weakly 1-complete, there exists a C^{∞} plurisubharmonic function ψ on D such that

$$D_c := \{ p \in D ; \phi(p) < c \} \Subset D$$

for every $c \in \mathbf{R}$. Then for every $c \in \mathbf{R}$, D_c is a Stein space by Proposition. We have $D = \bigcup_{k=1}^{\infty} D_k$. Moreover by Narasimhan [8] we see that D_k is a Runge domain in D_{k+1} . Therefore D is a Stein space by Stein [10]. Q. E. D.

References

- [1] A. Andreotti and R. Narasimhan, Oka's heftungslemma and the Levi problem for complex spaces, Trans. Amer. Math. Soc., 111 (1964), 345-366.
- [2] A. Fujiki, On the blowing down of analytic spaces, Publ. Res. Inst. Math. Sci., 10 (1975), 473-507.
- [3] H. Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann., 146 (1962), 331-368.
- [4] H. Hironaka, Bimeromorphic smoothing of a complex-analytic space, Preprint, University of Warwick, 1970.
- [5] P. Lelong, Domaines convexes par rapport aux fonctions plurisousharmoniques, J. Analyse Math., 2 (1952), 178-208.
- [6] Y. Matsugu, The Levi problem for a product manifold, Pacific J. Math., 46 (1973), 231-233.
- [7] S. Nakano, Vanishing theorems for weakly 1-complete manifolds, Number Theory, Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya, Tokyo, 1973, 169-179.
- [8] R. Narasimhan, The Levi problem for complex spaces, Math. Ann., 142 (1961), 355-365.
- [9] K. Oka, Sur les fonctions analytiques de plusieurs variables: IX Domains finis sans point critique intérieur, Japan. J. Math., 23 (1953), 97-155.
- [10] K. Stein, Überlagerung holomorph-vollständiger komplex Räume, Arch. Math., 7 (1956), 354-361.
- [11] S. Sternberg, Lectures on Differential Geometry, Prentice-Hall, New Jersey, 1964.

K. WATANABE

K. Watanabe, The Levi problem for the product manifold of an open Riemann surface and a compact Riemann surface, Mem. Fac. Sci. Kyushu Univ. Ser. A., 29 (1975), 211-222.

Kiyoshi WATANABE

Department of Mathematics Faculty of Science Kyushu University Hakozaki-cho, Higashi-ku Fukuoka, Japan