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Inteoduction.

Since Oka [9] solved the Levi problem for unramified domains over $C^{n}$ ,

many mathematicians extended Oka’s theorem (cf. Andreotti-Narasimhan [1],

Narasimhan [8]). On the other hand, recently Nakano [7] obtained the
vanishing theorems for weakly l-complete manifolds. The aim of the present
paper is to give a solution of the following Levi problem for the product space
of a Stein space and a compact Riemann surface.

THEOREM. Let $S$ be a Stein space, $R$ be a compact Riemann surface and
$X$ be the prOduct sPace of $S$ and R. $\pi_{1}$ ; $X\rightarrow S$ denotes the projection of $Xo$nto
S. Let $D$ be a domain of X. Then the following assertions (1), (2) and (3) are
equivalent:

(1) $D$ is weakly l-comPlete.
(2) $D$ is holomorPhically convex.
(3) Either $D$ is a Stein space or $D=\pi_{1}(D)\times R,$ $\pi_{1}(D)$ being a Stein space.
This theorem is a generalization of the previous paper [12] and the result

of Matsugu [6].

The author expresses his sincere thanks to Professor Kajiwara for his
kind advice and encouragement.

\S 1. The Levi problem for relatively compact domains on a
weakly 1-complete space.

All complex analytic spaces considered in this paper are supposed count-
able at infinity.

DEFINITION [7]. Let $X$ be a complex analytic space and $\psi$ be a $ c\propto$ func-
tion on $X$ . We say that $X$ is complete with the exhausting function $\psi$ if and
only if

$X_{c}$ $:=\{x\in X ; \psi(x)<c\}$

is relatively compact for every $c\in R$ . Moreover if $\psi$ is plurisubharmonic on
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$X$ , we say that $X$ is weakly l-complete.
We remark that the proof of the following proposition is based on Nakano’s

vanishing theorein for weakly l-complete spaces, which is pointed out by
Hironaka and is proved by Fujiki [2]. It is mentioned as follows:

THEOREM. Let $X$ be a weakly $l$ -complete space, $B$ a positive line bundle on
$X$ and $S$ be a coherent analytic sheaf on X. Then for every $c\in R$ , there exists
a natural number $m_{0}$ such that

$H^{q}(X_{c}, S\otimes O(B^{m}))=0$

for $q\geqq 1,$ $m\geqq m_{0}$ .
The following lemma is used in the next proposition.
LEMMA 1. Let $S$ be an n-dimensional analytic space, $R$ be a compact Rie-

mann surface and $X$ be the Product space of $S$ and R. $\pi_{2}$ ; $X\rightarrow R$ denotes the
projection of $X$ onto R. SuPpose that $D$ is a comPlete domain with the exhaust-
ing function $\psi$ . Then for a Point $q$ of $R$ there exists a set $A_{q}$ of measure zero
such that if $c\in R-A_{q},$ $D_{c}\cap\pi_{2}^{-1}(q)$ consists of finitely many connected compOnents.

PROOF. Let $\pi$ : $\tilde{S}\rightarrow S$ be a resolution of singularities of an analytic space
$S$ (established by Hironaka [4]). If we put $\Pi:=\pi\times i:\tilde{S}\times R\rightarrow S\times R$ and $\tilde{D}$ :
$=\Pi^{-1}(D),$ $D$ is complete with exausting function $\psi^{*}:$ $=\psi\circ\Pi$ because $\Pi$ is
proper, where $i:R\rightarrow R$ is the identity map. We take a point $q$ of $R$ . Since
$\psi*is$ a $C^{\infty}$ function on $\tilde{D}\cap\pi_{2}^{-1}(q)$ , the set $A_{q}$ of the critical values of $\psi*is$ of
measure zero by Sard’s theorem (for example see [11]). Therefore for $ c\in$

$R-A_{q},$ $d\psi^{*}\neq 0$ on $\partial D_{c}\cap\pi_{2}^{-1}(q)$ , where $\partial\tilde{D}_{c}$ $:=\{x\in\tilde{D};\psi^{*}(x)=c\}$ . Now we take
a point $x$ of $\partial D_{c}\cap\pi_{2}^{-1}(q)$ for $c\in R-A_{q}$ . If we denote a local coordinate of $q$

of $R$ by $(y_{1}, y_{2})$ with $q=(O, 0)$ , we can take a coordinate neighbourhood $U$ of
$x$ whose local coordinates are denoted by $(x_{1}, \cdots , x_{2n- 1}, \psi^{*}-c, y_{1}, y_{2})$ with $x=$

$(0, \cdots , 0)$ as a differentiable manifold. We remark that $\partial D_{c}\cap\pi_{2}^{-1}(q)\cap U=$

$\{(x_{1}, \cdots , x_{2n-1}, \psi^{*}-c, y_{1}, y_{2})\in U;\psi^{*}=c, y_{1}=y_{2}=0\}$ consists of only one connected
component in U. $\partial D_{c}$ can be covered by such $U$ . Since $\partial\tilde{D}_{c}$ is compact, we
see that $\partial D_{c}\cap\pi_{2}^{-1}(q)$ consists of finitely many connected components. There-
fore for a point $q$ of $R$ , there exists a set $A_{q}$ of measure zero such that for
$c\in R-A_{q},$ $\partial D_{c}\cap\pi_{2}^{-1}(q)$ consists of finitely many connected components because
$\Pi$ is continuous. Q. E. D.

PROPOSITION. Let $S$ be a Stein space, $R$ be a compact Riemann surface
and $X$ be the product space of $S$ and R. $\pi_{1}$ : $X\rightarrow S$ and $\pi_{2}$ : $X\rightarrow R$ denote the
$pro]ections$ of $X$ onto $S$ and $R$ respectively. Let $D$ be a domain of $X$ with the
following conditions:

1) $D\cap\pi_{1}^{-1}(q_{1})\subsetneqq\{q_{1}\}\times R$ for every $q=(q_{1}, q_{2})\in D$ .
2) $D$ is weakly $1$ -comPlete with the exhausting function $\psi$ .

Then for every $c\in R,$ $D_{c}$ $:=\{x\in D;\psi(x)<c\}$ is a Stein space.
PROOF. $D_{c}$ is weakly l-complete with the exhausting function $(1-e^{\psi}/e^{c})^{-1}$ .
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So we have only to show that $D_{c}$ is K-complete because of Andreotti-Nara-
simhan [1]. Since $S$ is a Stein space, for any point $q=(q_{1}, q_{2})\in D_{c}$ , it suffices
to make a holomorphic function $G(x)$ on $D_{c}$ which is not constant on a neigh-
bourhood of $q$ in $D\cap\pi_{1}^{-1}(q_{1})$ . If $\pi_{2}(D_{C})\subsetneqq R,$ $D_{c}$ is an open set of the Stein space
$S\times\pi_{2}(D_{C})$ . So $D_{c}$ is K-complete. Therefore we may assume that $\pi_{2}(D_{C})=R$ .

Since $R$ is a compact Riemann surface, there exists a positive holomorphic
line bundle $F$ on $R$ which is determined by a divisor $\Gamma$ ;

$F=[\Gamma]$ , $\Gamma=\sum_{i=1}^{l}n_{i}P_{i}$ $(n_{i}\in Z, P_{i}\in R)$ .

We take an open covering $\{U_{i} ; i=0,1, \cdots , 1\}$ of $R$ such that $U_{i}$ is a neigh-
bourhood of $P_{i}$ with $U_{i}qU_{j}=\emptyset(i\neq j)$ and $U_{0}$ $:=R-\{P_{1}, \cdots P_{l}\}$ . Then the
system of transition functions $\{f_{ij}\}$ with respect to $\{U_{i}\}$ of $R$ which defines
$F$ is as follows:

(1) $f_{0i}(z):=z_{i}^{n}$ ’ on $U_{0}\cap U_{i}(i\neq 0)$

where $z_{i}$ denotes the local coordinate in $U_{i}(i\neq 0)$ . Since $S$ is a Stein space,
the pull-back bundle $\pi_{2}^{*}F$ of $F$ by the projection $\pi_{2}$ ; $X\rightarrow R$ is positive on $X$ .

We take an arbitrary but fixed point $q=(q_{1}, q_{2})\in D_{c}$ . We can assume that
$D_{c}\cap\pi_{2}^{-1}(P_{i})$ consists of finitely many connected components $\{\Delta_{ij} ; j=1, 2, k_{i}\}$

for $i=1,$ $\cdots$ , 1 by Lemma 1. If $\Delta_{ij}\cap\pi_{1}^{-1}(q_{1})\neq\emptyset$ , we pick up a point $Q_{ij}$ of
$\Delta_{ij}\cap\pi_{1}^{-}(q_{1})$ . If $\Delta_{ij}\cap\pi_{1}^{-}(q_{1})=\emptyset$ , we take a point $Q_{ij}$ of $\Delta_{ij}$ . We put

$ A:=D\cap$ $(\pi_{1}^{-1}(q_{1})\cup \cup\pi_{1}^{-1}\pi_{1}(Q_{tj}))$ .
$1\leqq t\leqq l$

$1\leqq j\leqq k_{t}$

Let $\mathcal{I}(A)$ be the sheaf of ideals of $A$ in the structure sheaf $\mathcal{O}_{D}$ of $D$ . There
exists the exact sequence

(2) $0\rightarrow \mathcal{I}(A)\rightarrow O_{D}\rightarrow O_{D}/\mathcal{I}(A)\rightarrow 0$ .

Since $\mathcal{I}(A)$ is a coherent analytic sheaf on $D$ , there exists a natural number
$m_{0}$ such that

$H^{1}(D_{c}, \mathcal{I}(A)\otimes O(\pi_{2}^{*}F^{m}))=0$

for $m\geqq m_{0}$ by Fujiki [2]. Therefore we obtain the exact sequence

(3) $H^{0}(D_{c}, O(\pi_{2}^{*}F^{m}))\rightarrow H^{0}(D_{c}, O_{D}/\mathcal{I}(A)\otimes O(\pi_{2}^{*}F^{m}))\rightarrow 0$

for $m\geqq m_{0}$ by (2).

Since the open Riemann surface $A^{\prime}$ $:=D_{c}\cap A$ is a Stein manifold, there
exists a holomorphic function $g(z)$ on $A^{\prime}$ which vanishes at $q$ and at each $Q_{ij}$

up to order $m_{0}N$ and which is not a constant on each connected component
of $q$ and $Q_{ij}$ in $A^{\prime}$ , where $N:=\max_{1\leqq i\leqq l}|n_{i}|$ . We put
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$\left\{\begin{array}{ll}\psi_{0}(z):=g(z) & on A^{\prime}\cap U_{0},\\\psi_{t}(z):=\frac{g(x)}{z_{l^{0^{n_{i}}}}^{m}} & on A^{\prime}\cap U_{i}(i=1, \cdots , l).\end{array}\right.$

Since $g(z)$ vanishes at $Q_{if}$ up to order $m_{0}\Lambda^{r},$ $\psi_{i}(z)$ is holomorphic on $A^{\prime}\cap U_{f}$

$(i=1, \cdots , 1)$ . Then we have $\psi:=\{\psi_{i}\}\in H^{0}(A^{\prime}, O(\pi_{2}^{*}F^{m_{0}}|A^{\prime}))$ . Here $\pi_{2}^{*}F^{m_{0}}|A^{\prime}$

denotes the restriction of $\pi_{2}^{*}F^{m_{0}}$ to $A^{\prime}$ . Since $H^{0}(A^{\prime}, O(\pi_{2}^{*}F^{m_{0}}|A^{\prime}))=$

$H^{0}(D_{c}, O_{D}/\mathcal{I}(A)\otimes C(\pi_{2}^{*}F^{m_{0}}))$ , there exists a holomorphic section $\tilde{\psi}=\{\tilde{\psi}_{i}\}\in$

$H^{0}(D_{c}, O(\pi_{2}^{*}F^{m_{0}}))$ such that
$\tilde{\psi}|A^{\prime}=\psi$

by (3). We put

$G(x):=\left\{\begin{array}{ll}\tilde{\psi}_{0}(x) & for x\in D_{c}\cap(S\times U_{0})\\z_{t}^{m_{0^{\eta}}}{}^{t}\tilde{\psi}_{l}(x) & for x\in D_{c}\cap(S\times U_{i}).\end{array}\right.$

Then considering the construction of $g$, we can check easily that $G(x)$ is a
holomorphic function on $D_{c}$ with $G(q)=0$ and is not a constant function on a
neighbourhood of $q$ in $A^{\prime}$ . Q. E. D.

\S 2. The proof of the main theorem.

LEMMA 2. Let $S,$ $R,$ $X$ and $\pi_{i}(i=1,2)$ be the same as in Previous Proposi-
tion. Let $D$ be a Pseudoconvex (in the sense of Lelong [5]) domain of $X(i$ . $e$ .
a domain convex with resPect to the family of plurisubharmonic functions). If
$\{p_{1}^{0}\}\times R$ is contained in $D$ for a point $p_{1}^{0}\in\pi_{1}(D)$ , then $D=\pi_{1}(D)\times R$ .

PROOF. Let $E$ be the set of all points $p=(p_{1}, p_{2})$ of $D$ such that $\pi_{1}^{-1}(p_{1})\cap D$

$=\{p_{1}\}\times R$ . By the assumption $E$ is a non-empty open subset of $D$ . We prove
that $E$ is closed. Let $\{p^{(n)}=(p_{1}(n)p_{2}^{(7?)})\}$ be a sequence of points in $E$ which
converges to a point $p^{\prime}=(p_{1}^{\prime}, p_{2}^{\prime})$ in $D$ . Then $\{p_{1}^{\prime}\}\times R$ is contained in the hull
the compact set $\{p^{(n)} ; n=1,2, \cdots\}\cup\{P^{\prime}\}$ of $D$ with respect to the family of
plurisubharmonic functions in $D$ . Since $D$ is pseudoconvex in the sense of
Lelong, {p\’i} $\times$ R is contained in $D$ . Hence we have $p^{\prime}\in E$ . So $E$ is closed.
Since $D$ is connected, we have $D=E$ . Therefore we have $D=\pi_{1}(D)\times R$ .

Q. E. D.
We now prove the main theorem which is stated in the introduction.
THEOREM. Let $S$ be a Stein space, $R$ be a compact Riemann surface and

$X$ be the Product $sPace$ of $S$ and R. $\pi_{1}$ : $X\rightarrow S$ denotes the prOjectiOn of $X$ onto
S. Let $D$ be a domain of X. Then the following assertions (1), (2) and (3) are
equivalent:

(1) $D$ is weakly 1-complete.
(2) $D$ is holomorphically convex.
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(3) Either $D$ is a Stein space or $D=\pi_{1}(D)\times R,$ $\pi_{1}(D)$ being a Stein space.
PROOF. (3) $\rightarrow(1)$ follows from Narasimhan [8]. (3) $\rightarrow(2)$ is valid by defini-

tion.
(2) $\rightarrow(1)$ . Since $D$ is holomorphically convex, it has the Remmert reduction

$\tau$

$D\rightarrow Y$ with proper modification $\tau$ and $Y$ is a Stein space (for instance, see
Grauert [3]). Since $Y$ is weakly l-complete by Narasimhan [8], $D$ is weakly
l-complete.

(1) $\rightarrow(3)$ . If $D$ is weakly l-complete, $D$ is pseudoconvex in the sense of
Lelong. So if $\{p_{1}\}\times R$ is contained in $D$ for a point $p_{1}\in\pi_{1}(D)$ , we have $D=$

$T_{1}(D)xR$ by Lemma2. Moreover we see that $\pi_{1}(D)$ isaStein space by Andreotti-
Narasimhan [1]. Hence we may assume that $\pi_{1}^{-1}(p_{1})\cap D\subsetneqq\{p_{1}\}\times R$ for every
$p=(p_{1}, p_{2})\in D$ . Since $D$ is weakly l-complete, there exists a $C^{\infty}$ plurisubhar-
monic function $\psi$ on $D$ such that

$D_{c}$ $:=\{P\in D ; \psi(P)<c\}\Subset D$

for every $c\in R$ . Then for every $c\in R,$ $D_{c}$ is a Stein space by Proposition.

We have $ D=_{k}U_{=1}D_{k}\infty$ . Moreover by Narasimhan [8] we see that $D_{k}$ is a Runge

domain in $D_{k+1}$ . Therefore $D$ is a Stein space by Stein [10]. Q. E. D.
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