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It is well known that the X-harmonic dimension (the cardinal number of
normalized X-minimal harmonic functions) of any subsurface $S$ of an open
Riemann surface $R$ of X-harmonic dimension one is at most one for $X=B$ and
$D$ . Since $D^{\sim}$ is, in a sense, an intermediate property between $B$ and $D$ , one
might feel that the same is true of $D^{\sim}$ . The purpose of this paper is, contrary
to the above intuition, to prove the following

MAIN THEOREM. There exists an open Riemann surface $R$ of $D^{\sim}$-harmonic
dimension one such that the $D^{\sim}$-harmonic dimension of every subsurface $S$ of $R$

covers every countable cardinal number.
The surface $R$ we are going to construct bears a sharper property than

$D^{\sim}$-harmonic dimension one; $R$ is actually in the null class $O_{HD}-O_{HB}$ and thus
$R$ is closely related to the so called T\^oki surface. For the purpose we first
discuss in nos. 3-14 a method of forming a new Riemann surface by welding
from a given family of Riemann surfaces. The X-harmonic dimension of the
resulting surface will be calculated in no. 17. The required surface $R$ will be
sought in nos. 19-23 among, which we call, generalized T\^oki surfaces. The
proof of the above theorem will be completed in no. 24. A short comment on
the existence of surfaces with given X-harmonic dimensions will be added in
no. 25.

Classes of harmonic functions.

1. Consider an end $W$ of an open Riemann surface $R,$ $i$ . $e$ . there exists a
regular subregion $\Omega$ such that $W=R-\overline{\Omega}$. We do not exclude the case $\Omega=\emptyset$ ,
$i$ . $e$ . the case $W=R$ . We denote by $H(W;\partial W)$ the class of harmonic functions
$u$ on $W$ with boundary values zero on the relative boundary $\partial W$ of $W$. We
also denote by $H(R)$ the class of harmonic functions $u$ on $R$ and thus $H(W;\partial W)$

$\subset H(W)$ . We consider the subclass $HX(W;\partial W)$ ($HX(W)$ , resp.) consisting $u$

in $H(W;\partial W)$ ($H(W)$ , resp.) with a Property $X$. As for $X$ we consider $P$

meaning the nonnegativeness $u\geqq 0,$ $B$ meaning the finiteness of the supremum
norm

$\Vert u\Vert_{W}=\sup_{W}|u|$ ,
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and $D$ meaning the finiteness of the Dirichlet integral

$D_{W}(u)=\int_{W}du\wedge*du$ .
We also consider a property $D^{\sim}$ which is slightly different from $P,$ $B$ , and $D$

in nature. We say that a function $u$ has the property $D^{\sim}$ on $W$ if there exists
a decreasing sequence $\{u_{n}\}(n=1,2, \cdots)$ of nonnegative harmonic functions $u_{n}$

on $W$ with $ D_{W}(u_{n})<\infty$ such that $u=\lim_{n-\infty}u_{n}$ . For two properties $X$ and $Y$ we
mean by $XY$ the property both of $X$ and $Y$ .

We denote by $O_{HX}$ the class of Riemann surfaces $R$ such that the class
$HX(R)$ consists of only constants. We also denote by $O_{G}$ the class of parabolic
Riemann surfaces $R,$ $i$ . $e$ . there does not exist the harmonic Green function on
$R$ . The basic relation of the classification theory of Riemann surfaces is the
following strict inclusion relations (cf. $e$ . $g$ . Sario-Nakai [11]):

$0_{G}<0_{HP}<0_{HB}<0_{HD}=O_{HBD}$ .

2.

Riemann surfaces formed by welding.

3. Consider an open Riemann surface $\hat{W}$ and a parametric ‘ disk ‘

$ U:0<\tau<|z-\zeta|\leqq\infty$ in $\hat{W}$. We denote by $U(t)$ the concentric parametic disk
$\tau\leqq t<|z-\zeta|\leqq\infty$ . Let $\{\Omega\}$ be the directed net of regular subregions $\Omega$ of $\hat{W}$

and $w_{\Omega}(\cdot, t)$ be the harmonic function on $\Omega-\overline{U(t)}$ for $\Omega$ containing $\overline{U(t)}$ with
boundary values 1 on $\partial\Omega$ and $0$ on $\partial U(t)$ . We extend $w_{\Omega}(\cdot, t)$ to the whole $\hat{W}$

by setting 1 on $\hat{W}-\Omega$ and $0$ on $\overline{U(t)}$ . The maximum principle assures that
$\{w_{\Omega}(\cdot, t)\}$ is a decreasing net as $\Omega$ exhausts $\hat{W}$. As a consequence we deduce
the existence of

(1)
$w(\cdot, t)=\lim_{\Omega\rightarrow\hat{W}}w_{\Omega}(\cdot, t)$

uniformly on each compact subset of $\hat{W}$. The function $w(\cdot, t)$ , referred to as
the harmonic measure of the ideal boundary of $\hat{W}$ with respect to $\hat{W}-\overline{U(t)}$ , is
continuous on $\hat{W}$, harmonic on $\hat{W}-\overline{U(t)}$, and $0$ on $\overline{U(t)}$ . By the Green formula

(2) $D_{\hat{W}}(w_{\Omega}(\cdot, t)-w_{\Omega^{\prime}}(\cdot, i))=D_{\hat{W}}(w_{\Omega}(\cdot, t))-D_{\hat{W}}(w_{\Omega}(\cdot, t))$

for $\Omega\subset\Omega^{\prime}$ and a fortiori

(3)
$\lim_{\Omega\rightarrow\hat{W}}D_{\hat{W}}(w(\cdot, t)-w_{\Omega}(\cdot, t))=0$

and in particular

(4)
$ D_{W^{\backslash }}(w(\cdot, t))=\vec{\lim_{Q\hat{W}}}D_{\hat{W}}(w_{\Omega}(\cdot, t))<\infty$ .

By the maximum principle, the property $w(\cdot, t)\equiv 0$ on $\hat{W}$ does not depend
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4.

on the choice of $U$ and $U(t)$ . A Riemann surface $W$ with this property is
nothing but a surface being Parabolic. Hereafter we assume that $\hat{W}$ is hyper-
bolic, $i$ . $e.\hat{W}\not\in O_{G}$ . Then $1-w(\cdot, t)$ is a potential on $W,$ $i$ . $e$ . $1-w(\cdot, t)$ is super-
harmonic on $\hat{W}$ with vanishing greatest harmonic minorant (cf. $e$ . $g$ . Sario-Nakai
[11]). Hence in particular $\inf_{\hat{W}}(1-w(\cdot, t))=0$ or equivalently

(5)
$\sup_{\dot{W}}w(\cdot, t)=1$ .

We compare $w(\cdot, t)$ for different choices of $t$ . Let $\tau\leqq s<t$ . By the
maximum principle, $w_{\Omega}(\cdot, s)\leqq w_{\Omega}(\cdot, t)$ on $\hat{W}$ and thus

(6) $0\leqq w(\cdot, s)\leqq w(\cdot, t)<1$

on ffl $i$ . $e$ . $\{w(\cdot, t)\}(t\geqq\tau)$ is an increasing net as $ t\rightarrow\infty$ . A fortiori $h=\lim_{t\rightarrow\infty}w(\cdot, t)$

is a bounded harmonic function on $\hat{W}$ less the center of $U$ , and then on $\hat{W}$.
By (6), $0\leqq 1-w(\cdot, t)\leqq 1-w(\cdot, s)$ on $\hat{W}$ and therefore $0\leqq 1-h\leqq 1-w(\cdot, t)$ on $W$.
Since $1-w(\cdot, t)$ is a Potential on $W,$ $1-h\equiv 0$ on $W,$ $i$ . $e$ .

(7) $\lim_{t\rightarrow\infty}w(\cdot, t)=1$

uniformly on each compact subset of $\hat{W}$ less the center of $U$ . By the Green
formula

$D_{W}(w_{\Omega}(\cdot, s)-w_{Qr}(\cdot\prime t))=D_{W}(w_{\Omega}(\cdot, s))-D_{W}(w_{\Omega}(\cdot, t))$ .

By (3) we deduce
$D_{W^{\wedge}}(w(\cdot, s)-w(\cdot, t))=D_{W}(w(\cdot, s))-D_{W}(w(\cdot, t))$ .

This with (4) and (7) implies that

(8) $\lim_{t\rightarrow\infty}D_{\hat{W}}(w(\cdot, t))=0$ .

Let $N$ be a countable cardinal number greater than 1, $i$ . $e$ . $N$ is a posi-
tive integer $>1$ or $ N=\infty$ . Consider a family $\{W_{k}\}(1\leqq k<N)$ of hyperbolic
Riemann surfaces $\hat{W}_{k}$ . For each $k$ we fix a parametric ‘ disk ‘

$U_{k}$ ; $0<\tau<|z-\zeta_{k}|$

$\leqq\infty$ and set $ O_{k}(t):\tau\leqq t<|z-\zeta_{k}|\leqq\infty$ . We fix an analytic Jordan curve $\alpha_{k}$ in
$\Psi_{k}-\overline{O}_{k}$ homologous to $-\partial O_{k}$ . Let $w_{k}(\cdot, t)$ be the harmonic measure of the
ideal boundary of $\hat{W}_{k}$ with respect to $\hat{W}_{k}-\overline{U_{k}(t)}$ . By (7) and (8) we can find
$ t_{k}>\tau$ such that

(9) $D_{W_{k}}(w_{k})<1/2^{k}$

and also

(10)
$\inf_{\alpha_{k}}w_{k}>1/2$

where $W_{k}=\hat{W}_{k}-\overline{U}_{k}$ with $U_{k}=U_{k}(t_{k})$ and $w_{k}(z)=w_{k}(z, t_{k})$ . We may rechoose

5.
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$\{\zeta_{k}\}(1\leqq k<N)$ so as to satisfy the condition that $\zeta_{k}(1\leqq k<N)$ are positive
real numbers and

(11) $\zeta_{k}-\zeta_{k- 1}>t_{k}+t_{k- 1}$

for every $k$ with $2\leqq k<N$. We denote by $\beta_{k}$ the circle $|z-\zeta_{k}|=t_{k}$ in the ex-
tended complex plane $\hat{C}$ oriented anticlockwise. We also denote by $C$ the
surface

(12) $\hat{C}-\overline{\bigcup_{1^{\prime}=k<V}.\{|z-\zeta_{k}|\leqq t_{k}\}}$ .

From the surfaces $C$ and $\{W_{k}\}(1\leqq k<N)$ we form a new open Riemann surface

(13) $R=[C, \{W_{k}\}]$

as follows: Weld each $W_{k}(1\leqq k<\Lambda^{\tau})$ to $C$ by identifying $\partial W_{k}$ with $\beta_{k}$ . We
will describe $HX(R)$ in terms of $HX(W_{k} ; \partial W_{k})(1\leqq k<N)$ for $X=B,$ $BD$ and
$BD^{\sim}$ .

6. For each $k$ we define an operator $L_{k}$ : $C(\beta_{k})\rightarrow HB(W_{k})\cap C(\overline{W}_{k})$ as follows.
Let $f\in C(\beta_{k})$ and $\Omega$ any regular subregion of $W_{k}$ with $\Omega\supset\overline{U}_{k}$ . We denote by

$f_{\Omega}$ the harmonic function on $ W_{k(}\gamma\Omega$ with boundary values $f$ on $\beta_{k}=\partial W_{k}$ and
zero on $\partial\Omega$ . It is readily seen that the net $\{f_{\Omega}\}$ converges to a bounded
harmonic function uniformly on each compact subset of $\overline{W}_{k}$ . We define

(14)
$L_{h}f=\lim_{\Omega-\hat{W}_{k}}f_{\Omega}$

.

Then $L_{k}$ is a linear operator from $C(\beta_{k})$ into $HB(W_{k})\cap C(\overline{W}_{k})$ such that $L_{k}f|\beta_{k}$

$=f$ and $\Vert L_{k}f\Vert_{W_{k}}\leqq\Vert f\Vert_{\beta_{k}}$ for every $f\in C(\beta_{k})$ where $\Vert\cdot||_{E}$ is the supremum norm
taken over $E$ . The latter follows from the sharper inequality

(15) $|L_{k}f|\leqq\Vert f\Vert_{\beta_{k}}(1-w_{k})$

on $\overline{W}_{k}$ . We denote by

(16) $\prod_{1\leqq k<N}*HB(W_{k} ; \partial W_{k})$

the subspace of the product space $\prod_{1\leqq k<N}HB(W_{k} ; \partial W_{k})$ consisting of those
$v=(v_{1}, v_{2}, \cdots)(v_{k}\in HB(W_{k} ; \partial W_{k}))$ with

$\Vert v\Vert=\sup_{1\leqq k<N}\Vert v_{k}\Vert_{W_{k}}<\infty$ .

The subspace (16) coincides with the whole product space if and only if $ N<\infty$ .
We define the order $u\leqq v$ by $u_{k}\leqq v_{k}$ for every $k(1\leqq k<N)$ where $u=(u_{1}, u_{2}, \cdots)$ .
Then (16) is an ordered Banach space and so is the space $HB(R)$ where
$R=[C, \{W_{k}\}]$ . Using $L_{k}$ we define an operator

$\tau$ ; $HB(R)\rightarrow\prod_{1\leqq k<N}*HB(W_{k} ; \partial W_{k})$
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given by $\tau u=(u_{1}, u_{2}, \cdots)$ with

(17) $u_{k}=u|W_{k}-L_{k}(u|\beta_{k})$

for every $k(1\leqq k<N)$ . The basic relation in our study is the following
THEOREM. The operat0r $\tau$ is order preserving, linear, isometric, and bijective,

$i$ . $e$ . as ordered Banach spaces

(18) $HB(R)\cong\prod_{1\leqq k<N}*HB(W_{k} ; \partial W_{k})$ .

7. From the definition of $\tau$ it instantly follows that $\tau$ is a linear operator
from $HB(R)$ into (16) such that $\Vert\tau u\Vert\leqq\Vert u\Vert_{R}$ for every $u\in HB(R)$ and $u\geqq 0$ on
$R$ implies $\tau u\geqq 0=(O, 0, \cdots)$ . First we prove that $\tau$ is surjective. We denote by
$Z_{k}$ the annular part of $W_{k}$ bounded by $\alpha_{k}$ and $\beta_{k}$ and set

$Z=C\cup(V(\alpha_{k}\cup Z_{k}))1_{=}^{\prime}\prime N$

Then $Z$ is a subregion of $R$ with $\partial Z=\bigcup_{1\leqq k<N}\alpha_{k}$ . The region $Z$ can also be

viewed as a subregion of $\hat{C}$ bounded by Jordan curves $\alpha_{k}(1\leqq k<N)$ if $ N<\infty$

and as a subregion of $\hat{C}$ whose boundary consists of $\alpha_{k}(1\leqq k<N)$ and the
point at infinity if $ N=\infty$ . We denote by $X$ the subspace of the product space
$\prod_{1\leqq k<N}C(\alpha_{k})$ consisting of those $f=(f_{1}, f_{2}, \cdots)$ with $\Vert f\Vert=\sup_{1\leqq kN}\Vert f_{k}\Vert_{\alpha_{k}}<\infty$ . The

order in Xis given by $f_{k}\geqq g_{k}$ on $\alpha_{k}(1\leqq k<N)$ for $(f_{1}, f_{2}, \cdots)\geqq(g_{1}, g_{2}, \cdots)$ . Then
$X$ is an ordered Banach space. For any $f=(f_{1}, f_{2}, \cdots)\in X$ we consider the class
$\{s\}$ of superharmonic functions $s$ on $Z$ such that

$\lim_{\in Z}\inf_{\rightarrow\zeta}s(z)\geqq f_{k}(\zeta)$

for every $\zeta\in\alpha_{k}(1\leqq k<N)$ , and moreover if $ N=\infty$ ,

$\lim_{z\in Z}\inf_{z\rightarrow\infty}s(z)\geqq\lim_{k\rightarrow\infty}\sup(\sup_{\alpha_{k}}f_{k})$ ,

where we consider $Z$ being embedded in $\hat{C}$. Set

$\kappa f=\inf_{s\in\{s\}}s$

pointwise on $Z$. By the Perron-Brelot method (cf. $e$ . $g$ . $[11]$ ) we see that $\kappa$ is
an isometric positive linear operator from $X$ into $HB(Z)\cap C(Z\cup\partial Z)$ with $\kappa f|\alpha_{k}$

$=f_{k}(1\leqq k<N)$ . For any bounded continuous function $g$ on $1\leq k<N\cup\beta_{k}$ we set

$\lambda g=(L_{1}(g|\beta_{1}), L_{2}(g|\beta_{2}),$ ).

Finally we define an operator $\gamma:X\rightarrow X$ by

$\gamma f=\lambda(\kappa f)$ ,

which is clearly a bounded positive linear operator. By (15) and (10)
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$\Vert L_{k}(g|\beta_{k})\Vert_{\alpha_{k}}\leqq 2^{-1}\Vert g\Vert_{\beta_{k}}$ $(1\leqq k<N)$

and therefore
$\Vert\gamma f\Vert=\Vert\lambda(\kappa f)\Vert\leqq 2^{-1}\sup_{1\leqq k<N}\Vert\kappa f\Vert_{\beta_{k}}\leqq 2^{-1}\Vert f\Vert$ ,

$i$ . $e$ . the operator norm $\Vert\gamma\Vert\leqq 2^{-1}$ .
8. Given an arbitrary $v=(v_{1}, v_{2},\cdots)$ in (16). We need to find a $u\in HB(R)$

such that $\tau u=v$ . Considering the restriction on $\alpha_{k}(1\leqq k<N)$ we may view as
$v$ being in $X$. Then the Fredholm equation

$(\iota-\gamma)f=v$

has a unique solution $f\in X$ given by the Neumann series

(19) $f=\sum_{n=0}^{\infty}\gamma^{n}v$

(cf. $e$ . $g$ . Dunford-Schwartz [4]) where $\iota$ is the identity operator on $X$. We set

(20) $u(z)=\{$

$(\kappa f)(z)$ $(z\in Z)$ :
$(L_{k}(\kappa f)+v_{k})(z)$ $(z\in W_{k})$

for $1\leqq k<N$. We maintain that $u\in HB(R)$ . For this purpose we only have to
show that $\kappa f=L_{k}(\kappa f)+v_{k}$ on $Z\cap W_{k}$ for $1\leqq k<N$. On $\beta_{k},$ $L_{k}(\kappa f)+v_{k}=\kappa f+0=\kappa f$,
and on $\alpha_{k},$ $L_{k}(\kappa f)+v_{k}=(\gamma f+v)_{k}=(f)_{k}=(\kappa f)|\alpha_{k}$ where $(\cdot)_{k}$ indicates the $k^{th}$-com-
ponent. Thus the required identity holds on $\partial(W_{k}\cap Z)$ and hence on $W_{k}\cap Z$.
In view of (20), $u=\kappa f$ on $\beta_{k}(1\leqq k<N)$ and then $u-L_{k}u=v_{k}$ on $W_{k}(1\leqq k<N)$ ,
$i$ . $e$ . $(\tau u)_{k}=v_{k}(1\leqq k<N)$ , or $\tau u=v$ . Therefore we have proven that $\tau$ is surjective.

Next we prove that $\tau$ is order preserving. By the definition of $\tau$ (and
$L_{k})$ it is easily seen that $u\geqq 0$ implies $\tau u\geqq 0$ . Conversely let $v$ be in (16) with
$v\geqq 0=(O, 0,--)$ and $\tau u=v$ . Since $\kappa$ and $\lambda$ are positive operators, $\gamma$ and then
$\gamma^{n}(n=1,2,\cdots)$ are also positive operators. Hence by (19) $v\geqq 0$ implies that
$f\geqq 0$ . By (20) we must conclude $u\geqq 0$ .

To prove the isometry of $\tau$ , let $e=(1-w_{1},1-w_{2},\cdots)$ . Then clearly $\tau 1=e$ .
Take an arbitrary $u\in HB(R)$ and set $v=\tau u$ . Observe that

$\tau(\Vert v\Vert\pm u)=\Vert v\Vert e\pm v\geqq 0$ ,

and therefore $\Vert v\Vert\pm u\geqq 0$ , $i$ . $e$ . $\Vert\tau u\Vert\geqq\Vert u\Vert_{R}$ . This with the trivial inequality
$\Vert\tau u\Vert\leqq\Vert u\Vert_{R}$ assures that $\Vert\tau u\Vert=\Vert u\Vert_{R}$ . In particular, $\tau$ is injective and thus $\tau$

is bijective.

9.

10. We proceed to the description of the class $HBD(R)$ in terms of
$HBD(W_{k} ; \partial W_{k})(1\leqq k<N)$ . For the purpose we consider

(21) $\prod_{1\leqq k<N}*HBD(W_{k} ; \partial W_{k})$
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the subspace of the product space $\prod_{1\leqq k<N}HBD(W_{k} ; \partial W_{k})$ consisting of $v=$

$(v_{1}, v_{2},\cdots)(v_{k}\in HBD(W_{k} ; \partial W_{k}), 1\leqq k<N)$ such that

$\Vert v\Vert=\sup_{1\leqq k<N}\Vert v_{k}\Vert_{W_{k}}<\infty$

and moreover
$ D(v)=\sum_{1\leqq k<N}D_{W_{k}}(v_{k})<\infty$ .

The subspace (21) coincides with the whole product space $\prod_{1\leqq k<N}HBD(W_{k} ; \partial W_{k})$

if and only if $ N<\infty$ . Observe that the space (21) is a subspace of (16).
Since $HBD(R)$ is a subspace of $HB(R)$ , we can consider

$\tau_{D}=\tau|HBD(R)$ ,

which is an operator from $HBD(R)$ into (16). As a counter part to Theorem
6 we will prove the following

THEOREM. The restriction $\tau_{D}$ is a bijective linear order-preserving operat0r
from $HBD(R)$ to (21), $i$ . $e$ . as ordered linear spaces
(22) $HBD(R)\cong\prod_{1\leqq k\swarrow_{\backslash }N}*HBD(W_{k} ; \partial W_{k})$ .

11. In view of Theorem 6 we only have to show that $\tau$ maps $HBD(R)$

surjectively to (21). Take an arbitrary $u\in HBD(R)$ and let $\tau u=(v_{1}, v_{2},\cdots)$ which
is in (16). First we show that $\tau u$ really belongs to (21). For this purpose we
only have to prove that $ D(\tau u)<\infty$ . Recall that $w_{k}=w_{k}(\cdot, t_{k})$ is the limit of
$w_{\Omega}(\cdot, t_{k})$ as regular subregions $\Omega$ of $\hat{W}_{k}$ with $\overline{U}_{k}\subset\Omega$ exhaust $\hat{W}_{k}$ (cf. nos. 3
and 4). Let $v_{\rho}$ be the harmonic function on $ W_{k}\cap\Omega$ with boundary values zero
on $\partial W_{k}$ and $u$ on $\partial\Omega$ . We extend $v_{\Omega}$ to $W_{k}$ by setting $v_{\Omega}=u$ on $ W_{k}-\Omega$ . Then

$v_{k}=u|W_{k}-L_{k}(u|\beta_{k})=\lim_{\Omega\rightarrow\hat{W}_{k}}v_{\Omega}$
.

By the Dirichlet principle and the Fatou lemma

$D_{W_{k}}(v_{k})\leqq\lim_{\Omega\rightarrow}\inf_{\hat{W}_{k}}D_{W_{k}}(v_{\Omega})\leqq\lim_{\Omega\rightarrow\hat{W}}\inf_{k}D_{W_{k}}(uw_{\rho})$
.

By the Schwarz inequality

$D_{W_{k}}(uw_{\Omega})^{1/2}\leqq\Vert u\Vert_{W_{k}}D_{W_{k}}(w_{\Omega})^{1/2}+\Vert w_{\Omega}\Vert_{W_{k}}D_{W_{k}}(u)^{1/2}$

By (4) we deduce

$\lim_{\Omega\rightarrow\hat{W}}\inf_{k}D_{W_{k}}(uw_{\Omega})^{1/2}\leqq\Vert u\Vert_{R}D_{W_{k}}(w_{k})^{1/2}+D_{W_{k}}(u)^{1/2}$
.

Therefore we obtain

$D_{W_{k}}(v_{k})\leqq 2\Vert u\Vert_{R}^{2}D_{W_{k}}(w_{k})+2D_{W_{k}}(u)$ .
By (9) we deduce that
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$D(\tau u)=\sum_{1\leqq k<N}D_{W_{k}}(v_{k})$

$\leqq 2\Vert u\Vert_{R}^{2}\sum_{1\leqq k<N}D_{W_{k}}(w_{k})+2\sum_{1\leqq k<N}D_{W_{k}}(u)$

$\leqq 2\Vert u\Vert_{R}^{2}+2D_{R}(u)<\infty$ ,

$i$ . $e$ . $\tau_{D}$ maps $HBD(R)$ into (21).
12. Conversely let $v=(v_{1}, v_{2}, )$ be in (21). Since $v$ is also in (16) there

exists a unique $u\in HB(R)$ such that $\tau u=v$ . We will show that $u\in HBD(R)$ .
We consider a function $s$ on $R$ such that $s=1-w_{k}$ on $W_{k}(1\leqq k<N)$ and $s=1$

on $\overline{C}$. Then $s$ is a superharmonic function on $R$ . Take an arbitrary $h\in H(R)$

with $0\leqq h\leqq s$ on $R$ . Observe that $h\in HB(R)$ . Clearly $h_{k}\leqq 1-w_{k}=s$ on $W_{k}$ ,

where $\tau h=(h_{1}, h_{2}, )$ , and then $h_{k}\leqq(1-w_{k})-(1-w_{\Omega})$ on $ W_{k}\cap\Omega$ , where $w_{\Omega}=$

$w_{\Omega}(\cdot, t_{k})$ . Since $w_{\Omega}\rightarrow w_{k}$ , we have $h_{k}=0,$ $i$ . $e$ . $\tau h=0$ , and a fortiori $h=0$ . This
shows that $s$ is a potential on $R$ . Next we consider a function $v$ on $R$ defined
by $v=v_{k}$ on $W_{k}$ and $v=0$ on $\overline{C}$. The definition of $\tau$ assures that $|u-v|\leqq cs$

on $R$ with a suitable constant $c$ . Since $ D_{R}(v)=D(v)<\infty$ , the harmonic decom-
position can be applied to $v$ (cf. $e$ . $g$ . $[11]$):

$v=\phi+g$

where $\phi\in HBD(R)$ and $|g|$ is dominated by a potential. Then

$|u-\phi|\leqq|u-v|+|v-\phi|\leqq cs+|g|$

and therefore the subharmonic function $|u-\phi|$ on $R$ is dominated by a poten-
tial. Hence $|u-\phi|=0$ on $R,$ $i$ . $e$ . $u=\phi\in HBD(R)$ .

13.
For the purpose we consider the half linear space

(23) $\prod_{1\leqq k<N}*HBD^{\sim}(W_{k} ; \partial W_{k})$

consisting of the elements $v=(v_{1}, v_{2}, \cdots)\in\prod_{1\leqq k<N}HBD^{\sim}(W_{k} ; \partial W_{k})$ such that

Based on (22) we finally study $HBD^{\sim}(R)$ in terms of $HBD^{\sim}(W_{k} ; \partial W_{k})$ .

$\Vert v\Vert=\sup_{1\leqq k<N}\Vert v_{k}\Vert_{W_{k}}<\infty$ .

As before (23) coincides with the whole product space if and only if $ N<\infty$ ,
and (23) is a subset of (16). Since $HBD^{\sim}(R)\subset HB(R)$ , we can consider

$\tau_{D}\sim=\tau|HBD^{\sim}(R)$ .
As a consequence of Theorem 6 and 10 we maintain the following

THEOREM. The mapping $\tau_{D}\sim is$ a bijective half-linear order-preservjng op-
erator from $HBD^{\sim}(R)$ to (23), $i$ . $e$ . as ordered half-linear spaces

(24) $HBD^{\sim}(R)\cong\prod_{1\leq k<N}*HBD^{\sim}(W_{k} ; \partial W_{k})$ .
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14. We only have to show that $\tau$ maps $HBD^{\sim}(R)$ surjectively to (23).
First we take an arbitrary $u$ in $HBD^{\sim}(R)$ and will show that $\tau u$ belongs to
(23). There exists a decreasing sequence $\{u_{m}\}(m=1, 2, )$ in $HBD(R)$ such
that $u=\lim_{m\rightarrow\infty}u_{m}$ on $R$ . Let $\tau u_{m}=(v_{m1}, v_{m2}, \cdots)$ . By Theorem 10, $\{v_{mj}\}(m=1,2, \cdots)$

is a decreasing sequence in $HBD(W_{j} ; \partial W_{j})$ and a fortiori $ v_{j}=\lim_{m\rightarrow\infty}v_{mj}\in$

$HBD^{\sim}(W_{j} ; \partial W_{j})$ with $\Vert v_{j}\Vert_{W_{j}}\leqq\Vert u\Vert_{R}$ . Therefore $v=(v_{1}, v_{2}, \cdots)$ belongs to (23).
Since $\tau u_{m}\geqq\tau u$ , we deduce $v\geqq\tau u$ . By Theorem 6, there exists a $u_{0}\in HB(R)$

with $v=\tau u_{0}$ . Then $\tau u_{0}=v\leqq\tau u_{m}$ implies that $u_{0}\leqq u_{m}$ and then $u_{0}\leqq u$ . Thus
$v\leqq\tau u$ as a consequence of $\tau u_{0}\leqq\tau u$ . Hence we conclude that $\tau u=v$ belongs
to (23). Next we take an arbitrary $v=(v_{1}, v_{2}, )$ in (23) and let $v=\tau u$ with
$u\in HB(R)$ . We will prove that $u\in HBD^{\sim}(R)$ . Since $v_{j}\in HBD^{\sim}(W_{j} ; \partial W_{j})$ , there
exists a decreasing sequence $\{v_{mj}\}(m=1, 2, )$ in $HBD^{\sim}(W_{j} ; \partial W_{j})$ such that
$\lim_{m\rightarrow\infty}v_{mj}=v_{j}$ . Here by considering $v_{mj}\wedge\Vert v\Vert w_{j}$ (the greatest harmonic minorant

of $v_{mj}$ and $\Vert v\Vert w_{j}$ ) instead of $v_{mj}$ , we may assume that $v_{mj}\leqq\Vert v\Vert w_{j}$ . Let

$v_{m}=(v_{m1}, v_{m2}, v_{m,N- 1})$

if $ N<\infty$ and
$v_{m}=$ ( $v_{m1},$ $v_{m2},$ $v_{mm},$ $\Vert v\Vert w_{m+1}$ , I $v\Vert w_{m+2},$ )

if $ N=\infty$ . By (9), $v_{m}$ belongs to (21). By (22) there exists a $u_{m}\in HBD(R)$ such
that $v_{m}=\tau u_{m}$ . It is easy to see that $\{v_{m}\}(m=1, 2, )$ is decreasing. Therefore
$\{u_{m}\}$ is decreasing and $u_{0}=\lim_{m\rightarrow\infty}u_{m}\in HBD^{\sim}(R)$ . From $v_{m}\geqq v,$ $u_{m}\geqq u$ follows and

a fortiori $u_{0}\geqq u$ . On the other hand, $u_{m}\geqq u_{0}$ implies that $v_{m}=\tau u_{m}\geqq\tau u_{0}$ , which
implies that $v=\tau u\geqq\tau u_{0}$ . Thus $u\geqq u_{0}$ . We thus conclude that $u=u_{0}\in HBD^{\sim}(R)$ .

Harmonic dimensions.

15. A function $u$ in $HX(W;\partial W)$ ($HX(W)$ , resp.) is said to be X-minimal
on $(W:\partial W)$ ( $W$, resp.) if $u>0$ and $u\geqq v\geqq 0$ implies the constancy of $v/u$ for
any $v$ in $HX(W;\partial W)$ ($HX(W)$ , resp.). Two X-minimal functions $u_{1}$ and $u_{2}$ are
said to be equivalent if $u_{1}/u_{2}$ is a constant. Let $W_{1}$ and $W_{2}$ be two ends of
$R$ such that $R-W_{j}\neq\emptyset(j=1,2)$ . It is well known that there exists a bijective
homogeneous additive order-preserving mapping between $HX(W_{1} ; \partial W_{1})$ and
$HX(W_{2} ; \partial W_{2})$ and, if $R\not\in O_{G}$ , between $HX(R)$ and $HX(W;\partial W)$ for any end $W$

of $R$ where $X=P,$ $B,$ $D,$ $D^{\sim},$ $BD$ , and $BD^{\sim}(cf$ . $e$ . $g$ . $[11]$ , Ozawa [9], Rodin-Sario
[10]). The cardinal number of the set of equivalence classes of X-minimal
functions on $(W;\partial W)$ , where $W$ is an end of $R$ with $ R-W\neq\emptyset$ , is referred to
as the X-harmonic dimension of $R$ for $X=P,$ $B,$ $D,$ $D^{\sim},$ $BD$ , and $BD^{\sim}$ . We will
denote by $x(R)$ the X-harmonic dimension of $R$ , where $x=p,$ $b,$ $d,$ $d^{\sim},$ $bd$ , and
$bd^{\sim}$ , respectively and $X=P,$ $B,$ $D,$ $D^{\sim},$ $BD$ , and $BD^{\sim}$ , respectively. By the above,
$x(R)$ does not depend on the choice of $W$. The P-harmonic dimension, usually



116 M. NAKAI and S. SEGAWA

simply called just harmonic dimension, was studied by many authors such as
Heins, Ozawa, Kuramochi, among others. We are especially interested in the
existence of $R$ with a single ideal boundary component with any integral $p(R)$

shown by Heins [5], with countably infinite $p(R)$ by Kuramochi [6], with
uncountably infinite $P(R)$ by Constantinescu-Cornea [2]. In this paper we do
not discuss $p(R)$ .

16. An X-minimal function ($X=D$ and $D^{\sim}$ ) is automatically bounded (cf.
$e$ . $g$ . $[11]$ ) and therefore

(25) $bd(R)=d(R)$ , $bd^{\sim}(R)=d^{\sim}(R)$ .
Another basic fact is that $x(R)$ is at most countably infinite and $x(R)=0$ for
$R\in O_{G}(cf. e. g. [11])$ where $x=b,$ $d$ , and $d^{\sim}$ . As a consequence of the study of
$b(R)$ and $d(R)$ in terms of the Wiener and Royden compactiPcations (cf. $e$ . $g$ .
[11]) we have

(26) $b(S)\leqq b(R)$ , $d(S)\leqq d(R)$

for any subsurface $S$ of $R$ . That this is no longer true for $d^{\sim}$ will be the
main conclusion of this paper. The first systematic study of the B-, $D_{-}$ , and
$D^{\sim}$-harmonic dimensions was carried by Constantinescu-Cornea [1] (see also
[3]) developing the earlier works by many authors such as Sario, Kuroda,
T\^oki, Mori, among others, and especially by Kuramochi. For subsequent and
related works we refer to the reference of the monograph [11] and also the
one at the end of this paper.

17. Let $R=[C, \{W_{k}\}]$ be a Riemann surface formed by a welding as in
no. 5 from $\{W_{k}\}(1\leqq k<N)$ . Observe that $x(\pi_{k})=x(W_{k})$ ($x=b,$ $d$ , and $d^{\sim}$ ). We
maintain

THEOREM. The X-harmonic dimension $x(R)$ of $R$ is related to the X-harmonic
dimensions $x(W_{k})$ of $W_{k}(1\leqq k<N)$ as follows:
(27) $x(R)=\sum_{1\leqq k<N}x(W_{k})$

where $X=B,$ $D$ , and $D^{\sim}$ , respectively and $x=b,$ $d$ , and $d^{\sim}$ , respectively.
18. We prove (27) for $x=d$ . The other cases can be shown by exactly

the same fashion. We say an element $v$ in (21) is minimal if $v\geqq O,$ $v\neq O$ , and
$v\geqq w\geqq O$ implies the existence of a constant $c$ such that $w=cv$ for every $w$ in
(21). By (22) and (25), $d(R)$ is nothing but the cardinal number of minimal
elements $v$ in (21) with the normalization $\Vert v\Vert=1$ . Let $v$ be a minimal element
with $v_{j}>0$ where $v=(v_{1}, v_{2}, \cdots)$ . Let $v_{j}=(v_{j1}, v_{j2}, )$ be such that $v_{jj}=v_{j}$ and
$v_{jk}=0(k\neq j)$ . Since $v_{k}\geqq 0(1\leqq k<N),$ $v\geqq v_{j}$ . Therefore $v_{k}=0(k\neq j)$ and $\Vert v_{j}\Vert_{W_{j}}=1$ .
Let $v$ be any element in $HBD(W_{j} ; \partial W_{j})$ with $v_{j}\geqq v\geqq 0$ . Then $\overline{v}=(\overline{v}_{1},\overline{v}_{2}, )$

with $\overline{v}_{j}=v$ and $\overline{v}_{k}=0(k\neq j)$ is dominated by $v$ and a fortiori there exists a
constant $c$ such that $\overline{v}=cv,$

$i$ . $e$ . $v=cv_{j}$ . Then a minimal element $v$ in (21) has
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the form: there exists a component $v_{j}$ of $v=(v_{1}, v_{2}, )$ such that $v_{j}$ is D-minimal
on $W_{j}$ with $\Vert v_{j}\Vert_{W_{j}}=1$ and $v_{k}=0(k\neq j)$ . Conversely, such a $v$ is clearly a nor-
malized minimal function. From these observation the desired conclusion (27)
follows.

T\^oki surfaces.

19. In our former paper [8] we introduced a notion of T\^oki surfaces: A
Riemann surface $T$ is referred to as a T\^oki surface if the following three con-
ditions are satisfied:

$\alpha)$ $T$ is an infinite unbounded (unlimited) covering surface $(T, U, \pi)$ with
the unit disk $U:|z|<1$ as its base surface and $\pi$ the projection of $T$ onto $U$ ;

$\beta)$ There exists a radial slits disk $V=U-\bigcup_{\nu}\sigma_{\nu}$ with $\sigma_{v}$ ihe radial slits in $U$

accumulating only to the circumference of $U$ such that $T-\pi^{-1}(\bigcup_{\nu}\sigma_{\nu})=\sum_{n=1}^{\infty}V_{n}$

(disjoint union) where $V_{n}(n=1, 2, )$ are copies of $V$ ;
$\gamma)$ There exists a bounded harmonic function $\hat{h}$ on $U$ for any given bounded

harmonic function $h$ on $T$ such that $ h=\hat{h}\circ\pi$ .
A typical example of T\^oki surfaces is the one constructed by T\^oki [12],

in which the condition

(28) $0\in V$

can also be assumed where $0$ is the origin of $C$. Hereafter we consider only
those T\^oki surfaces $T$ with (28). Let $K$ be a concentric closed disk $|z|\leqq\rho$

$(0<\rho<1)$ contained in $V$, and consider the subsurface

$S=T-\pi^{-1}(K)$

of $T$ , which is one of the admissible subsurfaces of $T$ in the terminology of
[8]. We have shown in [8], as a localization of the property $\gamma$ ), the following
relation

(29) $ HB(S;\partial S)=HB(U-K;\partial(U-K))\circ\pi$

where $\partial(U-K)$ is the relative boundary of $U-K$ relative to $U$ . Another result
in [8] which we will repeatedly make use of is the following

(30) $d(S)=0$ , $d^{\sim}(S)=1$ .

20. For our present setting it is convenient to take the base surface $U$

of $T$ as the ‘unit disk’ about the point at infinity $\infty,$
$i$ . $e$ . $ U:1<|z|\leqq\infty$ . The

condition $\alpha$ ), $\beta$ ), and $\gamma$ ) of T\^oki surfaces are modified accordingly in an obvious
manner. As a counter part to (28) we always assume that

(31) $\infty\in V$ .
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We fix such a (modified) T\^oki surface $T$ . Let $K_{t}$ : $ t\leqq|z|\leqq\infty$ with $ t\in[\tau, \infty$ )

where $\tau>1$ is chosen so large that $K_{\tau}\subset V$, and set $K_{t,n}=V_{n}\cap\pi^{-1}(K_{t})(n=1,2, \cdots)$ .
Let $w_{t}$ be the harmonic measure of the ideal boundary of $T$ relative to the
region $T-K_{t,1}$ . By no. 5, there exists an increasing divergent sequence $\{t_{k}\}$

$(k=1, 2, )$ in $(\tau, \infty)$ such that

(32) $\sup_{\in\alpha}w_{t_{k}}(z)>1/2$

where $\alpha=V_{1}\cap\pi^{-1}(|z|=\tau)$ and

(33) $D_{T- K_{t_{k}},1}(w_{t_{k}})<1/2^{k}$

for every $k=1,2,$ $\cdots$

Let $N$ be an at most countably infinite cardinal number with $N>1$ and
$\{c_{k}\}(1\leqq k<N)$ be a sequence of positive real numbers such that

(34) $c_{k}-c_{k- 1}>t_{k}+t_{k- 1}$ $(2\leqq k<N)$ .
We denote by $(T^{k}, U^{k}, \pi^{k})$ the translation of $(T, U, \pi)$ by $z\rightarrow z+c_{k}(1\leqq k<N),$ $i.e$ .
$T^{k}$ is the covering surface of $U^{k}$ : $ 1<|z-c_{k}|\leqq\infty$ and $\pi^{k}(\cdot)=\pi(\cdot)+c_{k}$ ; the images
of $V,$ $V_{n},$ $K_{t},$ $K_{t,n},$ $\sigma_{\nu},$

$\alpha$ , etc. in $(T^{k}, U^{k}, \pi^{k})$ under this translation are denoted
by $V^{k},$ $V_{n}^{k},$ $K_{t}^{k},$ $K_{t.n}^{k},$ $\sigma_{\nu}^{k},$

$\alpha^{k}$ , etc., respectively. We denote by $B_{N}$ the extended
plane $\hat{C}:|z|\leqq\infty$ less the closed disks $|z-c_{k}|\leqq 1(1\leqq k<N)$ , and the point at
infinity $\infty$ if $ N=\infty$ . We consider a Riemann surface $T_{N}$ constructed as follows:

a) $T_{N}$ is an infinite unbounded (unlimited) covering surface $(T_{N}, B_{N}, \pi_{N})$

with the base surface $B_{N}$ and $\pi_{N}$ the projection of $T_{N}$ onto $B_{N}$ ;

b) $\pi_{N}^{-1}(1<|z-c_{k}|<\tau)$ is identical with $(\pi^{k})^{-1}(1<|z-c_{k}|<\tau)$ so that there

exists a slits region $ A=B_{N}-\bigcup_{1\leqq k<N}U\sigma_{\nu}^{k}\nu$ such that $T_{N}-\pi_{N}^{-1}(\bigcup_{1\leqq k<N}\bigcup_{\nu}\sigma_{\nu}^{k})=\sum_{n=1}^{\infty}A_{n}$ (disjoint

union) where $A_{n}(n=1, 2, )$ are copies of $A$ .
These two properties a) and b) may be considered as counter parts to $\alpha$ )

and $\beta$ ) in no. 19. We will prove that the following condition c) is satisfied by
$T_{N}$ which is a counter part to $\gamma$ ), and thus we may call $T_{N}$ a generalized T\^oki

surface. Namely
c) There exists a bounded harmonic function $\hat{h}$ on $B_{N}$ for any given bounded

harmonic function $h$ on $T_{N}$ such that $h=\hat{h}\circ\pi_{N},$ $i$ . $e$ .
(35) $HB(T_{N})=HB(B_{N})\circ\pi_{N}$ .

21. To prove c) we may assume that $h>0$ . Let $a=\sup_{\tau_{N}}h$ and $\hat{s}_{k}$ be

harmonic on $ 1<|z-c_{k}|<\tau$ with boundary values $0$ on $|z-c_{k}|=1$ and $a$ on
$|z-c_{k}|=\tau$ . Let $\hat{s}=\hat{s}_{k}$ on $1<|z-c_{k}|<\tau(1\leqq k<N)$ and $\hat{s}=a$ elsewhere on $B_{N}$ .
Set $s=\hat{s}\circ\pi_{N}$ and $s_{k}=\hat{s}_{k}\circ\pi_{N}$ . By the Perron-Brelot method we can construct
a harmonic function $b_{m}$ on $\pi_{N}^{-1}(1+1/m<|z-c_{k}|<\tau)$ for integral $m>1/(\tau-1)$

such that $b_{m}=0$ on $\tau_{N}^{-1}(|z-c_{k}|=1+1/m)$ and $b_{m}=h$ on $\pi_{N}^{-1}(|z-c_{k}|=\tau)$ for
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$1\leqq k<N$. By the Perron-Brelot procedure we have $0\leqq b_{m}\leqq b_{m+1}\leqq\max(h, s_{k})$

and thus the limit $f_{k}=\lim_{m\rightarrow\infty}b_{m}$ exists and $0\leqq f_{k}\leqq\max(h, s_{k})$ on $\pi_{N}^{-1}(1<|z-c_{k}|<\tau)$

and $f_{k}=h$ on $\pi_{N}^{-1}(1<|z-c_{k}|<\tau)$ . Therefore $h-f_{k}\in HB(S^{k} ; \partial S^{k})$ where $S^{k}=$

$\pi_{N}^{-1}(1<|z-c_{k}|<\tau)$ . By (20) we can find a bounded harmonic function $\text{{\it \^{u}}}_{k}$ on
$ 1<|z-c_{k}|<\tau$ with vanishing boundary values on $|z-c_{k}|=\tau$ such that $h-f_{k}$

$=\hat{u}_{k}\circ\pi_{N}(1\leqq k<N)$ . Let \^u be defined on $B_{N}$ such that $\hat{u}=\text{{\it \^{u}}}_{k}$ on $ 1<|z-c_{k}|<\tau$

$(1\leqq k<N)$ and $\hat{u}=0$ elsewhere on $B_{N}$ . Finally let $\hat{h}$ be the least harmonic
majorant of \^u on $B_{N}$ . Then $\hat{g}=\hat{h}-\hat{u}$ is a potential on $B_{N}$ . Let $f=f_{k}$ on $S^{k}$

$(1\leqq k<N)$ and $f=h$ elsewhere on $T_{N}$ . Then $f\leqq s=\hat{s}\circ\pi_{N}$ and $h-f=\text{{\it \^{u}}}\circ\pi_{N}$ .
Therefore

(36) $|h-\hat{h}\circ\pi_{N}|\leqq(\hat{g}+\hat{s})\circ\pi_{N}$ .
Clearly $\hat{s}$ is a potential on $B_{N}$ and hence $\hat{p}=\hat{g}+\hat{s}$ is a potential on $B_{N}$ . Let $v$

be harmonic on $T_{N}$ such that $0\leqq v\leqq\hat{P}\circ\pi_{N}$ on $T_{N}$ . Observe that except at most

countable number of points $c$ in $B_{N},$ $\pi_{N}^{-1}(|z-c|<\epsilon_{c})=\sum_{n=1}^{\infty}D_{n}$ (disjoint union) with

$D_{n}(n=1, 2, )$ copies of $|z-c|<\epsilon_{c}$ for a suitable $\epsilon_{c}>0$ for any given $c\in B_{N}$ .
Then it is easy to check that

$v_{0}(z)=spv(\zeta)\zeta\in\pi^{\frac{u}{N}1}(z)$

is subharmonic on $B_{N}$ , and $0\leqq v_{0}\leqq\hat{p}$ on $B_{N}$ . Therefore $v_{0}=0$ on $B_{N}$ and a
fortiori $v=0$ on $T_{N}$ . This means that $(\hat{g}+\hat{s})\circ\pi_{N}=\hat{p}\circ\pi_{N}$ is a potential on $T_{N}$ .
By (36), since the subharmonic function $|h-\hat{h}\circ\pi_{N}|$ is dominated by a potential,
we conclude that $h=\hat{h}\circ\pi_{N}$ on $T_{N}$ .

22. As a direct consequence of (35) we obtain the following:

(37) $T_{N}\in O_{HD}-O_{HB}$ .
In view of $B_{N}\not\in O_{HB}$ , we clearly have $T_{N}\not\in O_{HB}$ . Let $u\in HBD(T_{N})$ . By b) and
c), or (35),

$\infty>D_{T_{N}}(u)=D_{\pi^{-1}(A)}(u)=\sum_{n=1}^{\infty}D_{A_{n}}(u|A_{n})=\infty\cdot D_{A}(\text{{\it \^{u}}})$

where $u=\hat{u}\circ\pi_{N}$ . Thus $\hat{u}$ and hence $u$ is constant on $T_{N}$ . Since $O_{HD}=O_{HBD}$ ,
we conclude that $T_{N}\in O_{HD}$ .

23. Consider a subsurface $S_{N}$ of $T_{N}$ defined as follows:

(38) $S_{N}=T_{N}-\pi_{N}^{-1}(B_{N,\tau})\cap(\sum_{n=2}^{\infty}A_{n})$

where $B_{N,\tau}$ is the extended plane $\hat{C}$ less the closed disks $|z-c_{k}|\leqq\tau(1\leqq k<N)$ ,

and the point at infinity $\infty$ if $ N=\infty$ . We represent $S_{N}$ as a welding of con-
venient surfaces. As in no. 20 let $K_{t_{k}}^{k}$ be the closed disk $ t_{k}\leqq|z-c_{k}|\leqq\infty$ and
set
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(39) $C_{N}=\hat{C}-\overline{\bigcup_{1\leqq k<N}(C-K_{t_{k}}^{k})}$ .
We also set

(40) $\hat{W}_{k}=T^{k}-(\pi^{k})^{-1}(\tau\leqq|z-c_{k}|\leqq\infty)\cap(\sum_{n=2}^{\infty}V_{n}^{k})$

$(1\leqq k<N)$ . Observe that $Z_{k}=(\pi^{k})^{-1}(t_{k}<|z-c_{k}|\leqq\infty)\cap V_{1}^{k}$ is a parametric ‘disk’
in $\hat{W}_{k}$ . Finally set

(41) $W_{k}=\hat{W}_{k}-\overline{Z}_{k}$

$(1\leqq k<N)$ . Then, as in no. 5, we have

(42) $S_{N}=[C_{N}, \{W_{k}\}]$

where $\partial W_{k}=-\partial Z_{k}$ is identified with $-\partial K_{t_{k}}^{k}$ for every $k$ with $1\leqq k<N$. By
(30) and (27) we deduce

(43) $d^{\sim}(S_{N})=N-1$

where $\infty-1=\infty$ .
24. PROOF OF THE MAIN THEOREM. We take the $T_{\infty},$ $i$ . $e$ . $T_{N}$ with $ N=\infty$ ,

as the required $R$ . Since $R\in O_{HD}-O_{HB}$ (cf. (37)), $d^{\sim}(R)=d(R)=1$ . For each
integer $m\geqq 1$ let $d_{m}\in(c_{m}+t_{m}, c_{m+1}-t_{m+1})$ and $Y_{m}$ be the ‘disk’ $ d_{m}<|z|\leqq\infty$ .
Considering $\overline{Y}_{m}\subset C_{m+1}$ , $Y_{m}$ can be viewed as a parametric ‘disk’ in $S_{m+1}=$

$[C_{m+1}, \{W_{k}\}]$ . Let $S^{m}=S_{m+1}-\overline{Y}_{m}$ . Then by (43)

(44) $d^{\sim}(S^{m})=d^{\sim}(S_{m+1})=m$ .
It can also be viewed that $S^{m}$ is a subsurface of $R$ . Clearly

(45) $ d^{\sim}(S^{\infty})=\infty$ ,

the countably infinite cardinal number, where $S^{\infty}=S_{\infty},$ $i$ . $e$ . $S_{N}$ with $ N=\infty$ , is a
subsurface of $R$ . Any compact subsurface $S^{0}$ of $R$ satisfies

(46) $d^{\sim}(S^{0})=0$ .
This completes the proof of the main theorem.

Riemann surfaces with given harmonic dimensions.

25. We denote by $ R_{bdd}\sim$ a Riemann surface such that $x(R_{bdd}\sim)=x$ for
$x=b,$ $d$ , and $d^{\sim}$ . We have seen in [8] that $R_{000},$ $R_{001},$ $R_{011},$ $R_{101},$ $R_{111}$ exist.
For $\hat{W}_{1}=R_{lmn}$ and $\hat{W}_{2}=R_{l^{\prime}m^{u}n^{\prime}}$ , (27) assures that $[C_{3}, \{W_{1}, W_{2}\}]$ is an
$R_{l+l^{\prime},m+m^{\prime},n+n^{\prime}}$ : By this, we can define an operation

(47) $R_{lmn}\oplus R_{l^{\prime}m^{\prime}n^{\prime}}=R_{l+l^{\prime},m+m^{\prime},n+n^{\prime}}$ .
More generally, for $\hat{W}_{k}=R_{\iota_{k^{m}k^{n}k}}(1\leqq k<N),$ (27) implies that $[C_{N}, \{W_{k}\}]$ is an
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$R_{\sum_{1\leqq k<N}\iota_{k’\xi^{jm_{k},\sum_{1\leqq k<N}n_{k}}}}1\leqq<N$ and we can write this as

(48)
$\bigoplus_{1\leqq k<N}R_{\iota_{kk^{n}k}}=Rm\sum_{1\leqq k<_{\backslash }^{\prime}N}l_{k},\sum_{1\leqq k<N}m_{k},\sum_{1\leqq k<N}n_{k}$ .

Using (47), (48), and surfaces $R_{000},$ $R_{001},$ $R_{011},$ $R_{101},$ $R_{111}$ , the following conclusion
can be instantly derived (cf. [8]):

THEOREM. For any triple $(b, d, d^{\sim})$ of countable cardinal numbers with
max $(b, d)\leqq d^{\sim}$ , there exists a Riemann surface $ R_{bdd}\sim$ .
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