On indefinite quadratic forms

By Tsuneo TAMAGAWA

(Received April 16, 1976)

Let V be a vector space of dimension n over the real field. A lattice $M \subset V$ is a subgroup of V generated by n linearly independent vectors. Let Λ denote the set of all lattices in V. The general linear group $G L(V)$ acts transitively on Λ and the stabilizer $G L(M)$ of a lattice M is a discrete subgroup of $G L(V)$. We can introduce a topology in Λ so that the natural mapping of $G L(V) / G L(M)$ onto Λ is a homeomorphism. Let $d x$ be the Lebesgue measure on V. We define $D(M)$ by

$$
D(M)=\int_{V / M} d x
$$

where the integral is over a fundamental domain of M. We have the following:
Mahler's criterion : If C is a closed subset of Λ, then C is compact if and only if $D(M)$ is bounded on C and there exists a neighborhood U of 0 such that $U \cap M=\{0\}$ for all $M \in C$.

Let q be a non-degenerate quadratic form on V. We denote the bilinear form $q(x+y)-q(x)-q(y)$ by $b(x, y)$. We also fix a Euclidean inner product (x, y) on $V \times V$ such that

$$
|q(x)| \leqq\|x\|^{2}=(x, x)
$$

for all $x \in V$. A lattice M is called integral if $q(x)$ is an integer for every $x \in M$. Let G denote the group of all $\rho \in G L(V)$ such that $q(\rho x)=q(x), x \in V$. We have the following:

Proposition 1. If M is an integral lattice, then the orbit $O(M)=\{\rho M: \rho \in G\}$ $\subset \Lambda$ is closed.

Proof. Our assertion is proved in general form in Mostow and Tamagawa [3]. We give a sketch of the proof in this case. Let x_{1}, \cdots, x_{n} be a base of M. For every $\sigma \in G L(V)$ put $S(\sigma)=\left(b\left(\sigma x_{i}, \sigma x_{j}\right)\right) . S(\sigma)$ is a $n \times n$ symmetric matrix and if $\sigma \in G \cdot G L(M), S(\sigma)$ is integral. Hence the set $\{S(\sigma) ; \sigma \in G \cdot G L(M)\}$ is closed and the set $G \cdot G L(M)$ is also closed.

If M is an integral lattice, then q induces a quadratic form q_{Q} on the rational vector space $Q M \subset V$. We denote the Witt index of q_{Q} by $\nu(M)$. It is obvious that ρM is integral for all $\rho \in G$ and $\nu(\rho M)=\nu(M)$. If $\nu(M)=0$ then

Partially supported by NSF Grant MPS71-03469.
by Mahler's criterion, the orbit $O(M)$ is compact (Mostow and Tamagawa [3]). Let $d L$ denote a Haar measure on the orbit $O(M)=G / G \cap G L(M)$.
C. L. Siegel proved that the volume

$$
\operatorname{Vol}(O(M))=\int_{O(M)} d L
$$

is finite except in the case where $n=2$ and $\nu(M)=1$. Usually the proof calls for the reduction theory (cf. C. L. Siegel [2]). The purpose of this note is to give a proof using the reduction theory as little as possible. If $n=3$ and $\nu(M)$ $=1$ or $n=4$ and $\nu(M)=2$, the finiteness of $\operatorname{Vol}(O(M))$ follows from the finiteness of $\operatorname{Vol}(S L(2, R) / S L(2, Z)$. Hence we consider the case where $n \geqq 5$ or $n=4$ and $\nu(M)=1$, and assume that the finiteness is already proved in the case where the dimension is $n-2$ and the index is $\nu(M)-1$. In the following lines, c_{1}, c_{2}, \cdots are positive constants.

For every $M \in \Lambda$, put

$$
h(M)=\operatorname{Min}\{\|x\|, x \in M, x \neq 0\} .
$$

We will prove the following:
Theorem 1. If $0<\varepsilon<1$, then

$$
\int_{\substack{O(M) \\ n(M) \leq \varepsilon}} d L=O\left(\varepsilon^{n-2}\right) .
$$

Since $D(\rho M)=D(M)$ for $\rho \in G$, by Mahler's criterion, the set $O(M)_{\varepsilon}=$ $\{L ; L \in O(M), h(L) \geqq \varepsilon\}$ is compact. Therefore the finiteness of $\operatorname{Vol}(O(M))$ follows immediately.

We denote by $G(M)$ the group $G \cap G L(M)$. A vector $x \in M$ is called primitive if $M / Z x$ is torsion free. Let Ω denote the set of all primitive isotropic (with respect to q) vectors in M. The following Proposition is stated without proof.

Proposition 2. The set Ω decomposes into a finite number of $G(M)$-orbits.
Proposition 2 follows easily from Witt's theorem. Let x_{1}, \cdots, x_{t} be a set of representatives of orbits of $G(M)$ in Ω. For $x, y \in M, x \sim y$ means $y \in G(M) x$.

Let C denote the cone of all isotropic vectors in V. The group G operates on \boldsymbol{C} transitively and there exists an invariant measure $d_{0} x$ on C. We will give an explicit form of $d_{0} x$. Let $u, v, z_{1}, \cdots, z_{n-2}$ be a base of V such that $q(u)=q(v)=0, b(u, v)=1, b\left(u, z_{i}\right)=b\left(v, z_{i}\right)=0$ for $i=1, \cdots, n-2$. If $x \in \boldsymbol{C}$, we have $x=\xi u+\eta v+\zeta_{1} z_{1}+\cdots+\zeta_{n-2} z_{n-2}$ and $q(x)=\xi \eta+f\left(\zeta_{1}, \cdots, \zeta_{n-2}\right)=0$. Hence we may regard $\left\{\eta, \zeta_{1}, \cdots, \zeta_{n-2}\right\}$ as a coordinate system on C (except for points where $\eta=0$). We have

$$
d \xi d \eta d \zeta_{1} \cdots d \zeta_{n-2}=\frac{1}{\eta} d t d \eta d \zeta_{1} \cdots d \zeta_{n-2}
$$

in V where $t=q(x)=\xi \eta+f\left(\zeta_{1}, \cdots, \zeta_{n-2}\right)$. Since $d t$ and $d \xi d \eta d \zeta_{1} \cdots d \zeta_{n-2}$ are G. invariant, $d_{0} x=\frac{d \eta}{\eta} d \zeta_{1} \cdots d \zeta_{n-2}$ is invariant on \boldsymbol{C}. From this explicit form of $d_{0} x$, we have the following :

Proposition 3. Let $d_{0} x$ be a G-invariant measure on \boldsymbol{C}. We have

$$
d_{0}(t x)=t^{n-2} d_{0}(x) \quad t>0 .
$$

Corollary. Let ε be a positive number. If $n>2$, we have

$$
\int_{\|x\| \leq \varepsilon} d_{0} x=c_{1} \varepsilon^{n-2} .
$$

Let $\varphi(x)$ be a smooth non-negative function on V such that

$$
\varphi(x)= \begin{cases}1 & \|x\| \leqq 1 \\ 0 & \|x\| \geqq 2 .\end{cases}
$$

Put $\varphi_{\varepsilon}(x)=\varphi\left(\varepsilon^{-1} x\right)$.
Proof of Theorem 1. We consider the integral

$$
\int_{O(M)} \sum_{x \in \Omega} \varphi_{\varepsilon}(\rho x) d(\rho M)=I(\varphi, \varepsilon) .
$$

If $h(\rho M) \leqq \varepsilon$, then there exists a primitive $x \in M$ such that $\|\rho x\| \leqq \varepsilon$ and $|q(x)|$ $\leqq\|\rho x\|^{2}<1, q(x)=0$. Therefore we have the inequality

$$
I(\varphi, \varepsilon)>\int_{\substack{O(M) \leq \\ h(L L \leq \varepsilon}} d L
$$

By Proposition 2 we have $I(\varphi, \varepsilon)=\sum_{i=1}^{t} I_{i}(\varphi, \varepsilon)$ where

$$
I_{i}(\varphi, \varepsilon)=\int_{o(M)}\left(\sum_{x \sim \sim_{i}} \varphi_{\varepsilon}(\rho x)\right) d(\rho M)
$$

Let $G\left(x_{1}\right)$ denote the group of all $\rho \in G$ such that $\rho x_{1}=x_{1}$. By a simple transformation of the integral (cf. A. Weil [5]), we have

$$
I_{i}(\varphi, \varepsilon)=c_{2} \int_{G / G(x i)} \varphi_{\varepsilon}\left(\rho x_{1}\right) d \bar{\rho} \int_{G\left(x_{1}\right) / G\left(x_{1}, M\right)} d \rho_{1}
$$

where $G\left(x_{1}, M\right)$ is the group $G\left(x_{1}\right) \cap G(M), d \bar{\rho}$ is a Haar measure on $G / G\left(x_{1}\right)$, and $d \rho_{1}$ is a Haar measure on $G\left(x_{1}\right)$. The integral $\int_{G / G\left(x_{1}\right)} \varphi_{\varepsilon}\left(\rho x_{1}\right) d \bar{\rho}$ is equal to

$$
c_{3} \int_{c} \varphi_{\varepsilon}(x) d_{0} x,
$$

which is equal to $c_{4} \varepsilon^{n-2}$ by Proposition 3.
The group $G\left(x_{1}\right)$ is a subgroup of G and the nilpotent radical $H_{x_{1}}$ of $G\left(x_{1}\right)$ is a vector group of dimension $n-2$ (cf. Tamagawa [4]). Let y_{1} be an isotropic
vector in M such that $b\left(x_{1}, y_{1}\right) \neq 0$, and G_{1} the orthogonal group of the restric. tion q_{U} of q to $U=\left\{F x_{1}+F y_{1}\right\}^{\perp}$. Then we have

$$
G\left(x_{1}\right)=H_{x_{1}} G_{1}=G_{1} H_{x_{1}} .
$$

Now $H_{x_{1}} / H_{x_{1}} \cap G\left(x_{1}, M\right)$ is compact. On the other hand, $M_{U}=M \cap U$ is a lattice in U, q_{U} is non-degenerate and M_{U} is integral. We also have $\nu\left(M_{U}\right)=\nu(M)-1$. Now the group $G_{1}\left(M_{U}\right)$ and $G_{1} \cap G(M)$ are commensurable. Using the finiteness assumption, the volume of $G_{1} / G_{1}\left(M_{U}\right)$ is finite, hence the volume of $G\left(x_{1}\right) / G\left(x_{1}, M\right)$ is also finite. Now we have

$$
I_{i}(\varphi, \varepsilon)=c_{5} \varepsilon^{n-2}
$$

and

$$
I(\varphi, \varepsilon)=\sum_{\imath} I_{i}(\varphi, \varepsilon)=c_{6} \varepsilon^{n-2} .
$$

The estimate given in Theorem 1 is good enough for many purposes. As an example, we will prove the following.

Proposition 4. We have

$$
\int_{\substack{o(M) \\ h(\rho M) \leq \varepsilon}} \sum_{x \in M} \varphi(\rho x) d(\rho M)=O\left(\varepsilon^{n-\nu-2}\right),
$$

if $n \geqq 5$ or $n=4$ and $\nu=1$, where $\nu=\nu(M)$.
Proof. Put

$$
\sum_{x \in M} \varphi(\rho x)=f(\rho M)
$$

By the simplest reduction theory, we can find a base y_{1}, \cdots, y_{n} of ρM such that

$$
\begin{aligned}
c_{7}\left(\xi_{1}^{2}\left\|y_{1}\right\|^{2}+\cdots+\xi_{n}{ }^{2}\left\|y_{n}\right\|^{2}\right) & <\left\|\xi_{1} y_{1}+\cdots+\xi_{n} y_{n}\right\|^{2} \\
& <c_{8}\left(\xi_{1}{ }^{2}\left\|y_{1}\right\|^{2}+\cdots+\xi_{n}{ }^{2}\left\|y_{n}\right\|^{2}\right) .
\end{aligned}
$$

Put $\left\|y_{i}\right\|=\kappa_{i}, \kappa_{1} \leqq \kappa_{2} \leqq \cdots \leqq \kappa_{n}$. We have the following estimate of $f(\rho M)$:

$$
f(\rho M)=O\left(\prod_{i=1}^{n}\left(\kappa_{i}^{-1}+1\right)\right)
$$

There exists $c_{9}>0$ such that $\left|b\left(y_{i}, y_{j}\right)\right|<c_{9}\left\|y_{i}\right\|\left\|y_{j}\right\|$. Therefore there exists $c_{10}>0$ such that if $\kappa_{\mu} \leqq c_{10}$, we have

$$
b\left(y_{i}, y_{j}\right)=0, \quad q\left(y_{i}\right)=0
$$

for $i=1, \cdots, \mu$ because they are all integers. We now have $\kappa_{\nu+1} \geqq c_{10}>0$, and the estimate

$$
f(\rho M)=O\left(\varepsilon^{-\nu}\right)
$$

if $h(\rho M) \geqq \frac{1}{2} \varepsilon$. By Theorem 1, the volume of the set

$$
\left\{\rho M ; \frac{\boldsymbol{\varepsilon}}{2} \leqq h(\rho M) \leqq \varepsilon\right\}
$$

is $O\left(\varepsilon^{n-2}\right)$. Using $n-\nu-2 \geqq n-\frac{n}{2}-2>0$ if $n \geqq 5$ or $4-1-2=1>0$ if $n=4$ and $\nu=1$, we have

$$
\begin{aligned}
\int_{\dot{n}(\rho M) \leqq \varepsilon} f(\rho M) d(\rho M) & =\sum_{l=1}^{\infty} \int_{\varepsilon / 2 l \leqq h(\rho M) \leqq \varepsilon / 2 l-1} f(\rho M) d(\rho M) \\
& =O\left(\varepsilon^{n-\nu-2}\right) .
\end{aligned}
$$

Theorem 2. Let f be a smooth function on V with compact support. If $n \geqq 5$ or $n=4, \nu(M)=1$, we have

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \delta^{n} \int_{O(M)} \sum_{x \in M} f(\delta \rho x) d(\rho M)=D(M)^{-1} \operatorname{Vol}(O(M)) \int f(x) d x \tag{1}
\end{equation*}
$$

Proof. By Proposition 4, we have

$$
\int_{\substack{O(M) \\ h(\rho M)<\varepsilon}} \sum_{x \in M} f(\delta \rho x) d(\rho M)=O\left(\delta^{-n} \varepsilon^{n-\nu-2}\right)
$$

and

$$
\delta^{n} \int_{n(\rho M) \leqq \varepsilon}=O\left(\varepsilon^{n-\nu-2}\right) .
$$

Clearly we can exchange the order of $\lim _{\dot{\delta} \rightarrow 0}$ and \int in the following

$$
\lim _{\delta \rightarrow 0} \delta^{n} \int_{h(\rho M) \geqq \varepsilon} \sum_{x \in M} f(\delta \rho x) d \rho M
$$

because the set $\{\rho M ; h(\rho M) \geqq \varepsilon\}$ is compact. Therefore the left side of (1) is equal to

$$
\int_{O(M)} \lim _{\delta \rightarrow 0} \delta^{n} \sum_{x \in M} f(\delta \rho x) d(\rho M)=D(M)^{-1} \int f(x) d x \cdot \int_{O(M)} d(\rho M)
$$

Q. E. D.

By the same method, we can prove the following :
Theorem 3. Under the same assumption as in Theorem 2, the following integral converges for any function f in the Schwartz class $\mathcal{S}(V)$:

$$
\int_{O(M)} \sum_{x \in M} f(\boldsymbol{\rho} x) d(\boldsymbol{\rho} M)
$$

Let \boldsymbol{C}_{1} denote the quadric $\{x ; q(x)=1\}$. If $\dot{\psi}(x)$ is a continuous function with compact support on \boldsymbol{C}_{1}, the invariant integral of ψ on \boldsymbol{C}_{1} is defined by

$$
\int_{0 \leqq q(x) \leqq 1} \hat{\psi}(x) d x=\int_{c_{1}} \psi(x) d_{1} x
$$

where $\hat{\psi}(x)$ is defined by

$$
\hat{\phi}(x)= \begin{cases}\psi\left(q(x)^{-1 / 2} x\right) & q(x)>0 \\ 0 & q(x) \leqq 0\end{cases}
$$

If $x_{1} \in M, q\left(x_{1}\right)=t>0$, we consider the integral

$$
\int_{o(M)}\left(\sum_{x \sim x_{1}} \hat{\psi}(\rho x)\right) d(\rho M)=I\left(\phi, x_{1}\right)
$$

By the Weil transformation of $I\left(\psi, x_{1}\right)$, we have

$$
I\left(\psi, x_{1}\right)=\mu\left(M, x_{1}\right) \int_{c_{1}} \psi(x) d_{1} x
$$

where $\mu\left(M, x_{1}\right)$ is independent of $\dot{\psi}$. For a given integer $t>0$, put

$$
\mu(M, t)=\sum \mu\left(M, x_{i}\right)
$$

where x_{i} runs through a complete set of representatives of $G(M)$-orbits in the set $\Omega_{t}=\{x ; x \in M, q(x)=t\}$. By the reduction theory, the number of x_{i} is finite. Now let T be a large positive integer, and consider the integral

$$
\begin{aligned}
& \int_{O(M)}\left(\sum_{\substack{x \in M M \\
q(x) \leqq T}} \hat{\phi}(\rho x)\right) d(\rho M) \\
& \quad=\int_{O(M)}\left(\sum_{\substack{x \in M \\
q(x) \leqq T}} \hat{\phi}\left(T^{-1 / 2} \rho x\right)\right) d \rho .
\end{aligned}
$$

By the definition, the integral is equal to

$$
\sum_{t=1}^{T} \mu(M, t) \cdot \int_{c_{1}} \psi(x) d x
$$

By Theorem 2, we have

$$
\sum_{i=1}^{T} \mu(M, t) \sim D(M)^{-1} \operatorname{Vol}(O(M)) T^{n / 2}
$$

It is now easy to see the convergence of the Siegel Z-function

$$
\sum_{t=1}^{\infty} \frac{\mu(M, t)}{t^{s}}=Z^{+}(M, s)
$$

if the real part of s is $>\frac{n}{2}$ (cf. C. L. Siegel [1]). Siegel did not give a proof of the convergence in his paper. He just wrote "Die Konvergentz der Reihe entnimmt man der Reduktiontheorie".

References

[1] C.L. Siegel, Über der Zetafunktionen indefiniter quadratische Formen II, Nath. Z., 44 (1939), 398-426.
[2] C.L. Siegel, Einheiten quadratische Formen, Abh. Math. Sem. Univ. Hamburg, 13 (1940), 209-239.
[3] G.D. Mostow and T. Tamagawa, On the compactness of arithmetically defined homogeneous spaces, Ann. of Math., 76 (1963), 446-463.
[4] T. Tamagawa, On the structure of orthogonal groups, Amer. J. Math., 80 (1958), 191-197.
[5] A. Weil, Sur quelques résultats de Siegel, Summa Brasil, 1 (1946), 21-38.

Tsuneo TAMAGAWA
Department of Mathematic:
Yale University
New Haven, Conn. 06520
U.S. A.

