On indefinite quadratic forms

By Tsuneo TAMAGAWA

(Received April 16, 1976)

Let V be a vector space of dimension n over the real field. A lattice $M \subset V$ is a subgroup of V generated by n linearly independent vectors. Let Λ denote the set of all lattices in V. The general linear group GL(V) acts transitively on Λ and the stabilizer GL(M) of a lattice M is a discrete subgroup of GL(V). We can introduce a topology in Λ so that the natural mapping of GL(V)/GL(M) onto Λ is a homeomorphism. Let dx be the Lebesgue measure on V. We define D(M) by

$$D(M) = \int_{V/M} dx$$

where the integral is over a fundamental domain of M. We have the following:

MAHLER'S CRITERION: If C is a closed subset of Λ , then C is compact if and only if D(M) is bounded on C and there exists a neighborhood U of 0 such that $U \cap M = \{0\}$ for all $M \in C$.

Let q be a non-degenerate quadratic form on V. We denote the bilinear form q(x+y)-q(x)-q(y) by b(x, y). We also fix a Euclidean inner product (x, y) on $V \times V$ such that

$$|q(x)| \leq ||x||^2 = (x, x)$$

for all $x \in V$. A lattice *M* is called integral if q(x) is an integer for every $x \in M$. Let *G* denote the group of all $\rho \in GL(V)$ such that $q(\rho x) = q(x)$, $x \in V$. We have the following:

PROPOSITION 1. If M is an integral lattice, then the orbit $O(M) = \{\rho M : \rho \in G\}$ $\subset \Lambda$ is closed.

PROOF. Our assertion is proved in general form in Mostow and Tamagawa [3]. We give a sketch of the proof in this case. Let x_1, \dots, x_n be a base of M. For every $\sigma \in GL(V)$ put $S(\sigma) = (b(\sigma x_i, \sigma x_j))$. $S(\sigma)$ is a $n \times n$ symmetric matrix and if $\sigma \in G \cdot GL(M)$, $S(\sigma)$ is integral. Hence the set $\{S(\sigma); \sigma \in G \cdot GL(M)\}$ is closed and the set $G \cdot GL(M)$ is also closed.

If M is an integral lattice, then q induces a quadratic form q_q on the rational vector space $QM \subset V$. We denote the Witt index of q_q by $\nu(M)$. It is obvious that ρM is integral for all $\rho \in G$ and $\nu(\rho M) = \nu(M)$. If $\nu(M) = 0$ then

Partially supported by NSF Grant MPS71-03469.

T. TAMAGAWA

by Mahler's criterion, the orbit O(M) is compact (Mostow and Tamagawa [3]).

Let dL denote a Haar measure on the orbit $O(M) = G/G \cap GL(M)$. C. L. Siegel proved that the volume

$$\operatorname{Vol}\left(O(M)\right) = \int_{o(M)} dL$$

is finite except in the case where n=2 and $\nu(M)=1$. Usually the proof calls for the reduction theory (cf. C. L. Siegel [2]). The purpose of this note is to give a proof using the reduction theory as little as possible. If n=3 and $\nu(M)$ =1 or n=4 and $\nu(M)=2$, the finiteness of Vol(O(M)) follows from the finiteness of Vol(SL(2, R)/SL(2, Z)). Hence we consider the case where $n \ge 5$ or n=4 and $\nu(M)=1$, and assume that the finiteness is already proved in the case where the dimension is n-2 and the index is $\nu(M)-1$. In the following lines, c_1, c_2, \cdots are positive constants.

For every $M \in \Lambda$, put

$$h(M) = Min \{ \|x\|, x \in M, x \neq 0 \}$$
.

We will prove the following:

THEOREM 1. If $0 < \varepsilon < 1$, then

$$\int_{\substack{O(M)\\h(M)\leq\varepsilon}} dL = O(\varepsilon^{n-2}) \, .$$

Since $D(\rho M) = D(M)$ for $\rho \in G$, by Mahler's criterion, the set $O(M)_{\varepsilon} = \{L; L \in O(M), h(L) \ge \varepsilon\}$ is compact. Therefore the finiteness of Vol(O(M)) follows immediately.

We denote by G(M) the group $G \cap GL(M)$. A vector $x \in M$ is called primitive if M/Zx is torsion free. Let Ω denote the set of all primitive isotropic (with respect to q) vectors in M. The following Proposition is stated without proof.

PROPOSITION 2. The set Ω decomposes into a finite number of G(M)-orbits. Proposition 2 follows easily from Witt's theorem. Let x_1, \dots, x_t be a set of representatives of orbits of G(M) in Ω . For $x, y \in M$, $x \sim y$ means $y \in G(M)x$.

Let C denote the cone of all isotropic vectors in V. The group G operates on C transitively and there exists an invariant measure d_0x on C. We will give an explicit form of d_0x . Let $u, v, z_1, \dots, z_{n-2}$ be a base of V such that $q(u)=q(v)=0, b(u, v)=1, b(u, z_i)=b(v, z_i)=0$ for $i=1, \dots, n-2$. If $x \in C$, we have $x=\xi u+\eta v+\zeta_1 z_1+\dots+\zeta_{n-2} z_{n-2}$ and $q(x)=\xi \eta+f(\zeta_1,\dots,\zeta_{n-2})=0$. Hence we may regard $\{\eta, \zeta_1, \dots, \zeta_{n-2}\}$ as a coordinate system on C (except for points where $\eta=0$). We have

$$d\xi \, d\eta \, d\zeta_1 \cdots d\zeta_{n-2} = \frac{1}{\eta} \, dt \, d\eta \, d\zeta_1 \cdots d\zeta_{n-2}$$

356

in V where $t=q(x)=\xi\eta+f(\zeta_1,\dots,\zeta_{n-2})$. Since dt and $d\xi \,d\eta \,d\zeta_1\dots d\zeta_{n-2}$ are G-invariant, $d_0x=\frac{d\eta}{\eta}d\zeta_1\dots d\zeta_{n-2}$ is invariant on C. From this explicit form of d_0x , we have the following:

PROPOSITION 3. Let d_0x be a G-invariant measure on C. We have

$$d_0(tx) = t^{n-2} d_0(x) \qquad t > 0$$

COROLLARY. Let ε be a positive number. If n>2, we have

$$\int_{\|x\|\leq\varepsilon}d_0x=c_1\varepsilon^{n-2}.$$

Let $\varphi(x)$ be a smooth non-negative function on V such that

$$\varphi(x) = \begin{cases} 1 & \|x\| \leq 1 \\ 0 & \|x\| \geq 2 \end{cases}$$

Put $\varphi_{\varepsilon}(x) = \varphi(\varepsilon^{-1}x)$.

PROOF OF THEOREM 1. We consider the integral

$$\int_{O(M)} \sum_{x \in \mathcal{Q}} \varphi_{\varepsilon}(\rho x) d(\rho M) = I(\varphi, \varepsilon) .$$

If $h(\rho M) \leq \varepsilon$, then there exists a primitive $x \in M$ such that $||\rho x|| \leq \varepsilon$ and $|q(x)| \leq ||\rho x||^2 < 1$, q(x)=0. Therefore we have the inequality

$$I(\varphi, \varepsilon) > \int_{O(M)\atop h(L) \leq \varepsilon} dL \, .$$

By Proposition 2 we have $I(\varphi, \varepsilon) = \sum_{i=1}^{t} I_i(\varphi, \varepsilon)$ where

$$I_i(\varphi, \varepsilon) = \int_{O(M)} \left(\sum_{x \sim x_i} \varphi_{\varepsilon}(\rho x) \right) d(\rho M) \, .$$

Let $G(x_1)$ denote the group of all $\rho \in G$ such that $\rho x_1 = x_1$. By a simple transformation of the integral (cf. A. Weil [5]), we have

$$I_i(\varphi, \varepsilon) = c_2 \int_{G/G(x_i)} \varphi_{\varepsilon}(\rho x_1) d\bar{\rho} \int_{G(x_1)/G(x_1, M)} d\rho_1$$

where $G(x_1, M)$ is the group $G(x_1) \cap G(M)$, $d\bar{\rho}$ is a Haar measure on $G/G(x_1)$, and $d\rho_1$ is a Haar measure on $G(x_1)$. The integral $\int_{G/G(x_1)} \varphi_{\varepsilon}(\rho x_1) d\bar{\rho}$ is equal to

$$c_3 \int_c \varphi_{\varepsilon}(x) d_0 x$$
 ,

which is equal to $c_4 \varepsilon^{n-2}$ by Proposition 3.

The group $G(x_1)$ is a subgroup of G and the nilpotent radical H_{x_1} of $G(x_1)$ is a vector group of dimension n-2 (cf. Tamagawa [4]). Let y_1 be an isotropic

vector in M such that $b(x_1, y_1) \neq 0$, and G_1 the orthogonal group of the restriction q_U of q to $U = \{Fx_1 + Fy_1\}^{\perp}$. Then we have

$$G(x_1) = H_{x_1}G_1 = G_1H_{x_1}$$

Now $H_{x_1}/H_{x_1} \cap G(x_1, M)$ is compact. On the other hand, $M_U = M \cap U$ is a lattice in U, q_U is non-degenerate and M_U is integral. We also have $\nu(M_U) = \nu(M) - 1$. Now the group $G_1(M_U)$ and $G_1 \cap G(M)$ are commensurable. Using the finiteness assumption, the volume of $G_1/G_1(M_U)$ is finite, hence the volume of $G(x_1)/G(x_1, M)$ is also finite. Now we have

and

$$I(\varphi, \varepsilon) = \sum_{i} I_{i}(\varphi, \varepsilon) = c_{\varepsilon} \varepsilon^{n-2}$$

 $I_i(\varphi, \varepsilon) = c_5 \varepsilon^{n-2}$

The estimate given in Theorem 1 is good enough for many purposes. As an example, we will prove the following.

PROPOSITION 4. We have

$$\int_{\substack{O(M)\\h(\rho M) \leq \varepsilon}} \sum_{x \in M} \varphi(\rho x) d(\rho M) = O(\varepsilon^{n-\nu-2}),$$

if $n \ge 5$ or n=4 and $\nu=1$, where $\nu=\nu(M)$.

PROOF. Put

$$\sum_{\alpha \in M} \varphi(\rho x) = f(\rho M) \, .$$

By the simplest reduction theory, we can find a base y_1, \dots, y_n of ρM such that

$$c_{7}(\xi_{1}^{2} \|y_{1}\|^{2} + \dots + \xi_{n}^{2} \|y_{n}\|^{2}) < \|\xi_{1}y_{1} + \dots + \xi_{n}y_{n}\|^{2}$$
$$< c_{8}(\xi_{1}^{2} \|y_{1}\|^{2} + \dots + \xi_{n}^{2} \|y_{n}\|^{2}).$$

Put $||y_i|| = \kappa_i$, $\kappa_1 \leq \kappa_2 \leq \cdots \leq \kappa_n$. We have the following estimate of $f(\rho M)$:

$$f(\rho M) = O(\prod_{i=1}^{n} (\kappa_i^{-1} + 1)).$$

There exists $c_9 > 0$ such that $|b(y_i, y_j)| < c_9 ||y_i|| ||y_j||$. Therefore there exists $c_{10} > 0$ such that if $\kappa_{\mu} \leq c_{10}$, we have

$$b(y_i, y_j) = 0$$
, $q(y_i) = 0$

for $i=1, \dots, \mu$ because they are all integers. We now have $\kappa_{\nu+1} \ge c_{10} > 0$, and the estimate

$$f(\rho M) = O(\varepsilon^{-\nu})$$

if $h(\rho M) \ge \frac{1}{2} \varepsilon$. By Theorem 1, the volume of the set

On indefinite quadratic forms

$$\left\{ \rho M ; \frac{\mathbf{\varepsilon}}{2} \leq h(\rho M) \leq \mathbf{\varepsilon} \right\}$$

is $O(\varepsilon^{n-2})$. Using $n-\nu-2 \ge n-\frac{n}{2}-2>0$ if $n \ge 5$ or 4-1-2=1>0 if n=4 and $\nu=1$, we have

$$\begin{split} \int_{h(\rho M) \leq \varepsilon} f(\rho M) d(\rho M) &= \sum_{l=1}^{\infty} \int_{\varepsilon/2^{l} \leq h(\rho M) \leq \varepsilon/2^{l-1}} f(\rho M) d(\rho M) \\ &= O(\varepsilon^{n-\nu-2}) \,. \end{split}$$

THEOREM 2. Let f be a smooth function on V with compact support. If $n \ge 5$ or n=4, $\nu(M)=1$, we have

$$\lim_{\delta \to 0} \delta^n \int_{O(M)} \sum_{x \in M} f(\delta \rho x) d(\rho M) = D(M)^{-1} \operatorname{Vol} (O(M)) \int f(x) dx \,. \tag{1}$$

PROOF. By Proposition 4, we have

$$\int_{\substack{O(M)\\h(\rho M)<\varepsilon}} \sum_{x\in M} f(\delta\rho x) d(\rho M) = O(\delta^{-n}\varepsilon^{n-\nu-2})$$

and

$$\delta^n \int_{h(\rho M) \leq \varepsilon} = O(\varepsilon^{n-\nu-2}) \, .$$

Clearly we can exchange the order of $\lim_{\delta \to 0}$ and \int in the following

$$\lim_{\delta \to 0} \delta^n \int_{\hbar(\rho M) \ge \varepsilon} \sum_{x \in M} f(\delta \rho x) d\rho M$$

because the set $\{\rho M; h(\rho M) \ge \varepsilon\}$ is compact. Therefore the left side of (1) is equal to

$$\int_{O(M)} \lim_{\delta \to 0} \delta^n \sum_{x \in M} f(\delta \rho x) d(\rho M) = D(M)^{-1} \int f(x) dx \cdot \int_{O(M)} d(\rho M) \,.$$

Q. E. D.

By the same method, we can prove the following:

THEOREM 3. Under the same assumption as in Theorem 2, the following integral converges for any function f in the Schwartz class S(V):

$$\int_{O(M)} \sum_{x \in M} f(\rho x) d(\rho M) \, .$$

Let C_1 denote the quadric $\{x; q(x)=1\}$. If $\psi(x)$ is a continuous function with compact support on C_1 , the invariant integral of ψ on C_1 is defined by

$$\int_{0 \le q(x) \le 1} \hat{\psi}(x) dx = \int_{\mathcal{C}_1} \psi(x) d_1 x$$

where $\hat{\psi}(x)$ is defined by

359

T. TAMAGAWA

$$\hat{\psi}(x) = \begin{cases} \psi(q(x)^{-1/2}x) & q(x) > 0\\ 0 & q(x) \leq 0 \end{cases}.$$

If $x_1 \in M$, $q(x_1) = t > 0$, we consider the integral

$$\int_{O(M)} \left(\sum_{x \sim x_1} \hat{\psi}(\rho x) \right) d(\rho M) = I(\phi, x_1) \, .$$

By the Weil transformation of $I(\phi, x_i)$, we have

$$I(\psi, x_1) = \mu(M, x_1) \int_{c_1} \psi(x) d_1 x$$
,

where $\mu(M, x_1)$ is independent of $\dot{\psi}$. For a given integer t>0, put

$$\mu(M, t) = \sum \mu(M, x_i)$$

where x_i runs through a complete set of representatives of G(M)-orbits in the set $\Omega_i = \{x; x \in M, q(x) = t\}$. By the reduction theory, the number of x_i is finite. Now let T be a large positive integer, and consider the integral

$$\int_{O(M)} \sum_{\substack{x \in M \\ q(x) \leq T}} \hat{\psi}(\rho x) d(\rho M) \\= \int_{O(M)} \sum_{\substack{x \in M \\ q(x) \leq T}} \hat{\psi}(T^{-1/2} \rho x) d\rho d\rho$$

By the definition, the integral is equal to

$$\sum_{t=1}^{T} \mu(M, t) \cdot \int_{C_1} \psi(x) dx \, .$$

By Theorem 2, we have

$$\sum_{t=1}^{T} \mu(M, t) \sim D(M)^{-1} \operatorname{Vol} (O(M)) T^{n/2}.$$

It is now easy to see the convergence of the Siegel Z-function

$$\sum_{t=1}^{\infty} \frac{\mu(M, t)}{t^s} = Z^+(M, s)$$

if the real part of s is $>\frac{n}{2}$ (cf. C. L. Siegel [1]). Siegel did not give a proof of the convergence in his paper. He just wrote "Die Konvergentz der Reihe entnimmt man der Reduktiontheorie".

References

 C.L. Siegel, Über der Zetafunktionen indefiniter quadratische Formen II, Nath. Z., 44 (1939), 398-426.

360

- [2] C.L. Siegel, Einheiten quadratische Formen, Abh. Math. Sem. Univ. Hamburg, 13 (1940), 209-239.
- [3] G.D. Mostow and T. Tamagawa, On the compactness of arithmetically defined homogeneous spaces, Ann. of Math., 76 (1963), 446-463.
- [4] T. Tamagawa, On the structure of orthogonal groups, Amer. J. Math., 80 (1958), 191-197.
- [5] A. Weil, Sur quelques résultats de Siegel, Summa Brasil, 1 (1946), 21-38.

Tsuneo TAMAGAWA Department of Mathematic: Yale University New Haven, Conn. 06520 U.S.A.