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\S 1. Introduction.

Let $\mathfrak{G}$ be a connected (real or complex) Lie group with Lie algebra $G$ . In
general, the exponential map $exp:G\rightarrow \mathfrak{G}$ is not onto. But, as is well known,

for any element $g$ in $SL(n, R),$ $g^{2}$ lies on some l-parameter subgroup. We
want to consider the analogous problem for an arbitrary connected Lie group
$\mathfrak{G}$ : Does there exist some positive integer $p$ such that for any $g$ in $\mathfrak{G},$ $g^{p}$ lies
on some 1-parameter subgroup of $\mathfrak{G}$ ? As was shown by an example in Markus
[6], this may not be true for some (even simply connected) solvable Lie
groups. The main result we will prove in this paper is the following theorem.

THEOREM. Let $\mathfrak{G}$ be a connected (real or complex) semisimple Lie group
with finite center. Then we can find a positive integer $p$ such that $g^{p}\in\exp G$

for any $g\in \mathfrak{G}$ .
This result has been generalized by M. Goto (see [4]) for any algebraic

groups over algebraically closed fields.
In section 2, we will consider the complex cases. First, we will prove the

main theorem for a connected complex semisimple Lie group with trivial center;
the general case can then be proved from this one as a corollary. Then we
will find the smallest such numbers for some complex simple Lie groups. The
results can be listed as follows. The first row indicates the type of Lie alge-
bras, the second row gives the smallest numbers for the corresponding adjoint
groups, and the third row gives the smallest numbers for the corresponding
classical simple Lie groups.

$A_{l}$ $B_{l}$ $C_{l}$ $D_{l}$ $G_{2}$ $F_{4}$

1 2 2 2 6 12
1+1 2 2 2

1 This Paper is a portion of the author’s Ph. D. thesis. The thesis was written
under the direction of Professor Morikuni Goto at the University of Pennsylvania. The
author would like to take this opportunity to thank Professor Goto for his help and
guidance.
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For cases $E_{6},$ $E_{7},$ $E_{8}$ , my method becomes too complicated to compute the
best possible numbers, but we will give some lower bounds.

In section 3, we will prove the main theorem for a connected real semi-
simple Lie group without center. For the adjoint groups of real noncompact
semisimple Lie algebras of the first category (in the sense of Gantmacher [2]),

the number we need is the same as that for the corresponding complex case.
For those in the second category, twice the number for the corresponding
complex case is enough. Also, we will prove that this number is the best
possible for $AI_{n}$ . Whether it is also best possible for other cases remains an
open question.

At the end of section 3, we will give an example in which $\mathfrak{G}$ has infinite
center and such a positive integer does not exist.

\S 2. Complex cases.

Let $G$ be a complex semisimple Lie algebra with a (fixed) Cartan subalge-
bra $H$. Let $G=H+\sum_{\alpha\in\Delta}Ce_{\alpha}$ be the corresponding root space decomposition,

where $\Delta$ is the root system of $G$ with respect to $H$. Let $\Pi=\{\alpha_{1}, \cdots , \alpha_{l}\}$ be a
fundamental root system of $\Delta$ .

Denote by $H_{0}^{*}$ the subspace generated by $\Delta$ (over the field $Q$ of rational
numbers) in the space $H^{*}$ dual to $H$. Let $B$ be the Killing form on $G$ . As
was shown in Goto & Grosshans [3], we can find $h_{\alpha}\in H(\alpha\in\Delta)$ such that
$B(h, h_{\alpha})=\alpha(h)$ for all $h\in H$, and such that $h_{\alpha},$ $e_{\alpha}’ s$ satisfy the following:

$[h, e_{\alpha}]=\alpha(h)e_{\alpha}$ , $[e_{\alpha}, e_{\beta}]=N_{\alpha,\beta}e_{\alpha+\beta}$ if $\alpha+\beta\neq 0$ is in $\Delta$ ,

$[e_{\alpha}, e_{-\alpha}]=-h_{\alpha}$ , $[e_{\alpha}, e_{\beta}]=0$ if $\alpha+\beta\not\in\Delta$ .

Since $\Pi\subset H_{0}^{*}$ is linearly independent, we can choose $h_{1},$ $\cdots$ , $h_{\iota}\in H$, such that
$\alpha_{i}(h_{j})=\delta_{ij},$ $1\leqq i,$ $j\leqq l$ . The lattice $\Omega=Z2\pi\sqrt{-1}h_{1}+\cdots+Z2\pi\sqrt{-1}h_{l}$ is the
kernel of expl $H:H\rightarrow AdG$ .

THEOREM 1. Let $\mathfrak{G}$ be a connected complex semisimple Lie group with Lie
algebra G. Assume that the center $Z(\mathfrak{G})$ of $\mathfrak{G}$ is trivial. Then there exists a
Positive integer $p$ , such that for any $g\in \mathfrak{G},$ $g^{p}$ lies on some $1$ -parameter subgroup.

PROOF. Any element $g\in \mathfrak{G}$ can be written uniquely as $g=g_{0}$ . exp $N$, such
that $g_{0}\cdot\exp N=\exp N\cdot g_{0}$ , and where $g_{0}$ is semisimple and $N$ is nilpotent. By
Gantmacher [1], any semisimple element is conjugate to some element in
exp $H$. Therefore it suffices to consider elements $g$ such that $g_{0}\in\exp H$.

For $g_{0}=\exp h_{0},$ $h_{0}\in H$. The choice of $h_{0}$ is not unique. In fact, exp $(h_{0}+\Omega)$

$=g_{0}$ . Our problem is: given $g_{0}$ and $N$ as above, is it possible to choose some
$h$ in $ h_{0}+\Omega$ , such that $[h, N]=0$ ?
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Assume $h_{0}=x_{1}h_{1}+\cdots+x_{l}h_{l}$ . The l-eigenspace $G(1, Adg_{0})$ of $Adg_{0}$ is a
subalgebra of G. $G$(1, Ad $g_{0}$)

$=H+\sum_{\alpha\in\Delta_{1}}Ce_{\alpha}$
, where $\Delta_{1}\subset\Delta\subset H_{0}^{*}$ . Since $\Delta_{1}$ gener-

ates an r-dimensional subspace of $H_{0}^{*}$ , we may choose a generating system
$\beta_{1},$ $\cdots$ , $\beta_{r}\in\Delta_{1}$ for this subspace. In other words, $G$(1, Ad $g_{0}$) is generated (as

an algebra) by $H$ and $e_{\pm\beta_{j}},$
$j=1,$ $\cdots$ , $r$. The linearly independent subset

$\{\beta_{1}, \cdots , \beta_{r}\}\subset\Delta$ can be extended to a maximal linearly independent subset, $i$ . $e$ .
we can find $\beta_{r+1},$ $\cdots$ , $\beta_{l}\in\Delta$ such that $\{\beta_{1}, \cdots , \beta_{l}\}$ is a linearly independent
subset (over $Q$). Clearly, we may assume all $\beta_{i}’ s$ are positive roots. There
exists nonnegative integers $m_{ij}(1\leqq i, j\leqq l)$ such that

$\beta_{i}=m_{i1}\alpha_{1}+\cdots+m_{il}\alpha_{l}$ $i=1,$ $1$ .

By assumption, $e_{\beta_{i}}\in G$(1, Ad $g_{0}$) for $i=1,$ $\cdots$ , $r$ implies $\beta_{i}(h_{0})\in 2\pi\sqrt{-1}Z,$ $i.e$ .
$m_{i1}x_{1}+\cdots+m_{il}x_{l}=2\pi\sqrt{-1}k_{i}$ $(1 \leqq i\leqq r)$

for some integer $k_{i}$ . The problem is to choose $ 2\pi\sqrt{-1}(n_{1}h_{1}+\cdots+n_{l}h_{l})\in\Omega$

$(n_{1}, \cdots , n_{l}\in Z)$ such that

$m_{i1}(x_{1}+2\pi\sqrt{-1}n_{1})+$ $+m_{il}(x_{l}+2\pi\sqrt{-1}n_{l})=0$ ,
$i$ . $e$ .

$m_{i1}n_{1}+\cdots+m_{il}n_{l}=-k_{i}$ $i=1,$ $\cdots$ , $r$ .
The problem is thus reduced to solving the following system of linear equa-
tions for $(n_{1}, \cdots , n_{l})$ :

$m_{i1}n_{1}+\cdots+m_{il}n_{l}=-k_{i}$ $i=1,$ $r$ .

$m_{i1}n_{1}+\cdots+m_{il}n_{l}=0$ $i=r+1,$ $\cdots$ , 1.

This is a linearly independent system with integral coefficients, so we can find
a rational solution for $(n_{1}, \cdots , n_{l})$ . If $d=|$ det $(m_{ij})|$ , which is nonzero, then we
can find integral solutions for the following:

$m_{i1}n_{1}+\cdots+m_{il}n_{l}=-dk_{i}$ $i=1,$ $\cdots$ , $r$ .
$m_{i1}n_{1}+\cdots+m_{il}n_{l}=0$ $i=r+1,$ $\cdots$ , $l$ .

This means, we can find $ h\in dh_{0}+\Omega$ such that [ $h,$ $G$(1, Ad $g_{0})$] $=0$ . In particular,
$[h, N]=0$ because the fact that $g_{0}$ . exp $N=\exp N\cdot g_{0}$ implies that $N\in G$ (1, Ad $g_{0}$).

Therefore
$g^{d}=$ $(g_{0}$ . exp $ N)^{d}=(\exp h_{0}\cdot$ exp $N)^{d}=\exp dh_{0}\cdot\exp dN$

$=\exp(h+dN)\in\exp G$ .
Since $\Delta$ is a finite set, there can be only Pnitely many choices of the



306 H. L. LAI

linearly independent subsets $\{\beta_{1}, \cdots , \beta_{l}\}\subset\Delta$ . So the positive integer $P$ defined
to be the least common multiple of the set { $|\det(m_{ij})|$ : $\beta_{i}=\sum_{j}m_{ij}\alpha_{j}(1\leqq i\leqq l)$

form a linearly independent subset in $\Delta$ } is finite, and clearly, for any $g\in \mathfrak{G}$ ,
$g^{p}$ lies on some l-parameter subgroup. Q. E. D.

COROLLARY. The theorem is true without the assumption $Z(\mathfrak{G})=1$ .
PROOF. Note that $Z(\mathfrak{G})$ is finite, consider Ad $\mathfrak{G}$ , which has trivial center.

By Theorem, we can find $q$ such that for any $g\in \mathfrak{G}$ , $($Ad $g)^{q}=Ad$ exp $x$ , for
some $x\in G$ . This means $g^{q}=\exp x\cdot c$ for some $c\in Z(\mathfrak{G})$ . Let $r$ be the smallest
number such that $c^{r}=1$ for any $c\in Z(\mathfrak{G})$ . Then $P=qr$ satisfies the require-
ment. Q. E. D.

In the following, we want to Pnd the smallest such numbers for certain
complex simple Lie groups. We choose a root space decomposition for each
classical simple Lie algebra as in Goto &Grosshans [3].

As usual, denote by $E_{ij}$ the matrix with 1 for the $(ij)th$ entry and $0$ else-
where, let $1_{k}$ be the $k$ by $k$ identity matrix, and denote by ${}^{t}X$ the transpose
of matrix $X$.

2.1. The special linear Lie algebra: $sl(n+1, C)=A_{n},$ $n\geqq 1$ .
Recall that $sl(n+1, C)=$ { $X\in gl(n+1,$ $C)$ : trace $X=0$ }. We choose a Cartan

subalgebra: $H=\{\Sigma_{j}x_{j}E_{jj} : \Sigma x_{j}=0\}$ , and we define weights $\lambda_{i}\in H*by\lambda_{i}(\Sigma_{j}x_{j}E_{jj})$

$=x_{i},$ $i=1,$ $\cdots$ , $n+1$ . Then the root system is $\Delta=\{\lambda_{i}-\lambda_{j} : i\neq j\}$ , and we have a
fundamental root system

$\Pi=\{\alpha_{i}=\lambda_{i}-\lambda_{i+1} : i=1, \cdots\prime n\}$ .

Note that any positive root $\lambda_{i}-\lambda_{j}(i<])$ can be written as $\alpha_{i}+\cdots+\alpha_{j- 1}$ .

(2.1.1) $exp:G=sl(n+1, C)\rightarrow AdG$ is surjective.

PROOF. If $\beta_{i}=m_{i1}\alpha_{1}+\cdots+m_{in}\alpha_{n}(1\leqq i\leqq n)$ is a linearly independent subset
in $\Delta$ , then the matrix $(m_{ij})_{1\leqq i,j\leqq n}$ has row vectors of the form $(0,$ $0,1,$ $\cdots,$

$1$ ,
$0,$ $\cdots$ , $0$). We want to prove det $(m_{ij})=\pm 1$ by induction on $n$ .

When $n=1$ , it is trivial.
In general, since $(m_{ij})$ is non-singular, there must be at least one 1 in each

column, $i$ . $e$ . each $\alpha_{j}$ appears in some $\beta_{i}$ . Choose the biggest root among $\beta_{i}’ s$

which involve $\alpha_{1}$ . By changing the ordering if necessary, we may assume
that this root is $\beta_{1}=\alpha_{1}+\cdots+\alpha_{k}$ . Then, if $\beta_{2}=\alpha_{1}+\cdots+\alpha_{r}(r<k)$ , say, we may
replace $\beta_{2}$ by $\beta_{1}-\beta_{2}=\alpha_{r+1}+\cdots+\alpha_{k}$ . Continuing this process will reduce the
matrix $(m_{ij})$ to

$(001$ $m_{tj}^{\prime}*)$
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where $(m_{ij}^{\prime})_{1\leqq i,j\leqq n-1}$ is an $(n-1)$ by $(n-1)$ matrix which is of the same form
as $(m_{ij})$ . So det $(m_{ij})=\pm\det(m_{ij}^{\prime})=\pm 1$ by induction. Hence, $exp:G\rightarrow AdG$ is
onto. Q. E. D.

For the simply connected Lie group $\mathfrak{G}=SL(n+1, C)$ , we have $Z(\mathfrak{G})=$

$\{aI:a\in C, a^{n+1}=1\}$ which is cyclic of order $n+1$ , so (2.1.1) implies that for any
$g\in \mathfrak{G},$ $g^{n+1}$ lies on some l-parameter subgroup of G.

(2.1.2) $p=n+1$ is the smallest number such that, for all
$g\in SL(n+1, C),$ $g^{p}$ lies on some l-parameter subgroup.

PROOF. It suffices to prove $p=n+1$ is necessary by considering the fol-
lowing example (which is also given in Markus [6]).

EXAMPLE. Let $N_{1}=\sum_{i=1}^{n}E_{ii+1}\in sl(n+1, C)$ . Then the centralizer $c(N_{1})of_{i}^{v}N_{1}$

in $sl(n+1, C)$ is $\{a_{1}N_{1}+\cdots+a_{n}N_{n} : a_{j}\in C\}$ , where $N_{j}=\sum_{i=1}^{n-j+1}E_{ii+j}$ . Let $a$ be an
$(n+1)^{st}$ primitive root of 1. Let $g_{0}=aI,$ $g=g_{0}$ . exp $N_{1}$ . Suppose that $g_{0^{r}}\cdot\exp N_{1}$

$=\exp x$ for some $x\in sl(n+1, C)$ . Gantmacher [1] has shown that in the decom-
position of any element in a semisimple Lie algebra, the semisimple and nil-
potent parts commute with each other. Since the exponential map is injective
on the nilpotent part, $x$ can be decomposed as $x=x_{0}+N_{1}$ , where $[x_{0}, N_{1}]=0$

and $x_{0}$ is semisimple. But the only semisimple element in $c(N_{1})$ is $0$ . This
implies that $I=g_{0^{r}}$ , so $a^{r}=1$ , which is impossible if $r<n+1$ . Therefore $g^{r}$ does
not lie on any l-parameter subgroup of $SL(n+1, C)$ if $r<n+1$ . Q. E. D.

COROLLARY. $SuPPose\mathfrak{G}$ is a connected complex simple Lie group with Lie
algebra $G=sl(n+1, C)$ . Let $r=order$ of the center $Z(\mathfrak{G})$ . Then $p=r$ is the smallest
number such that, for any $g\in \mathfrak{G},$ $g^{p}\in\exp G$ .

PROOF. By (2.1.1.) $g^{r}$ lies on some l-parameter subgroup of $\mathfrak{G}$ , for any
$g\in \mathfrak{G}$ . On the other hand, $SL(n+1, C)$ is the universal covering group of $\mathfrak{G}$ .
It is easy to see that this is a $n+1/r$-fold covering. If $g^{p}\in\exp G$ for any
$g\in \mathfrak{G}$ , then $p(n+1)/r$ will be a sufficiently large number for $SL(n+1, C)$ . By
(2.1.2) $p(n+1)/r$ is at least $n+1$ , so $P$ must be multiple of $r$. Q. E. D.

2.2. The symplectic Lie algebra: $sP(n, C)=C_{n},$ $n\geqq 3$ .
Recall that

$sP(n, C)=\{X\in gl(2n, C):{}^{t}X\left(\begin{array}{ll}0 & 1_{n}\\-1_{n} & 0\end{array}\right)+(-1_{n}0$ $01_{n)X=0\}}$

$=\{\left(\begin{array}{ll}A & B\\C & -{}^{t}A\end{array}\right)$ : $A,$ $B,$ $C\in gl(n, C),$ $B,$ $C$ symmetric}.
Choose a Cartan subalgebra

$H=\{(x_{1}, x_{n})=\sum_{1}^{\gamma 1}x_{i}(E_{ii}-E_{n+in+i}):x_{i}\in C\}$ ,
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and let weights $\lambda_{i}\in H*$ be defined by $\lambda_{i}(x_{1}, \cdots , x_{n})=x_{i},$ $1\leqq i\leqq n$ . The root sys-
tem will be $\Delta=\{\lambda_{i}-\lambda_{j}(i\neq j), \pm(\lambda_{i}+\lambda_{j})(i\leqq j)\}$ , and we have a fundamental
root system

$\Pi=\{\alpha_{i}=\lambda_{i}-\lambda_{i+1}(1\leqq i\leqq n-1), \alpha_{n}=2\lambda_{n}\}$ .
The root vector corresponding to $\alpha=\lambda_{i}-\lambda_{j}(i<j)$ is $e_{a}=E_{ij}-E_{n+jn+i}$ , that cor-
responding to $\alpha=\lambda_{i}+\lambda_{j}(i\leqq j)$ is $e_{\alpha}=E_{in+j}+E_{jn+i}$ .

Recall that the symplectic Lie group $Sp(n, C)$ is simply connected with
center $Z_{2}$ .
(2.2.1) Let $g\in Sp(n, C)$ , then $g^{2}$ lies on some l-parameter subgroup.

PROOF. In this case, exp H $=$ {diag ( $\beta_{1},$ $\cdots$ , $\beta_{n},$ $\beta_{1}^{-1},$ $\cdots$ , $\beta_{n}^{-1}$ ) $:\beta_{i}\neq 0$ in $C$ }.
For $g_{0}=diag$ $(\beta_{1}, \cdots , \beta_{n}, \beta_{1}^{-1}, \cdots , \beta_{n}^{-1})$ , choose $x_{i}\in C$ such that $e^{x_{i}}=\beta_{i}$ and
$-\pi<{\rm Im} x_{i}\leqq\pi$ . Then $x=$ $(x_{1}, \cdots , x_{n})\in H$ and clearly exp x $=g_{0}$ . For $\alpha=\lambda_{i}-\lambda_{j}$

$(i<j)$

Ad $g_{0}\cdot e_{a}=\beta_{i}\beta_{j}^{-1}E_{ij}-(\beta_{j}^{-1})(\beta_{i}^{-1})^{-1}E_{n+jn+i}=\beta_{i}\beta_{j}^{-1}e_{\alpha}$ ,

so $Adg_{0}\cdot e_{\alpha}=e_{\alpha}$ if and only if $\beta_{i}=\beta_{j}$ . By choice of $x_{i}’ s$ , this is true if and
only if $x_{i}=x_{j}$ , in which case $\alpha(x)=0$ .

On the other hand, for $\alpha=\lambda_{i}+\lambda_{j}(i\leqq j)$ ,

Ad $g_{0}\cdot e_{\alpha}=\beta_{i}(\beta_{j}^{-1})^{-1}E_{in+j}+\beta_{j}(\beta_{i}^{-1})^{-1}E_{jn+t}=\beta_{\ell}\beta_{j}e_{\alpha}$ ,

so Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ if and only if $\beta_{i}\beta_{j}=1,$ $\beta_{i}\beta_{j}=1$ if and only if $e^{x_{i}+x_{j}}=1$ , and this
happens when and only when either $x_{i}+x_{j}=0$ or $x_{i}+x_{j}=2\pi\sqrt{-1}$ . In the first
case, $\alpha(x)=0$ , and we are done. So suppose $x_{i}+x_{j}=2\pi\sqrt{-1}$ . This will happen

only if $x_{i}=x_{j}=\pi\sqrt{-1}$.
Define y $=$ $(y_{1}, \cdots , y_{n})\in Has:y_{i}=2x_{i}ifx_{i}\neq\pi\sqrt{-1},$ $y_{i}=0ifx_{i}=\pi\sqrt{-1}$. Then

$\exp y=\exp 2x=g_{0}^{2}$ , and Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ when and only when $\alpha(y)=0$ , because in
case $\beta_{i}=\beta_{j}=-1$ we have $\alpha(y)=0$ , while otherwise $\alpha(y)=2\alpha(x)=0$ . In parti-
cular, given $g=g_{0}$ . exp $N\in Sp(n, C)$ as usual, choose $y$ for $g_{0}$ as above, then
we have $[y, N]=0$ . So

$g^{2}=\exp 2x$ . exp $2N=\exp y$ . exp $2N=\exp(y+2N)$ .
Hence, for any $g\in SP(n, C),$ $g^{2}$ lies on some l-parameter subgroup. Q. E. D.

Next, we want to prove $p=2$ is necessary for the adjoint group. This
will imply $p=2$ is the smallest number which works for both the adjoint group
and $Sp(n, C)$ . We will prove this by proving

(2.2.2) $exp:G=sp(n, C)\rightarrow AdG$ is not onto.

PROOF. Put $h_{0}=h_{1}+\cdots+h_{n-2}+\pi\sqrt{-1}h_{n-1}\in H(h_{i}$ has the same meaning
as in the beginning of section 2), $g_{0}=\exp h_{0}$ , and $N=e_{\alpha_{n}}+e_{\beta}$ where $\beta=2\alpha_{n-1}+\alpha_{n}$
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$=2\lambda_{n-1}$ . It is easy to prove $G$ (1, Ad $g_{0}$) is generated by $H,$
$e_{\alpha_{n}},$ $e_{-\alpha_{n}},$ $e_{\beta},$ $e_{-\beta}$ .

If $x=h+c_{\alpha_{n}}e_{\alpha_{n}}+c_{-\alpha_{n}}e_{-\alpha_{n}}+c_{\beta}e_{\beta}+c_{-\beta}e_{-\beta}\in G$(1, Ad $g_{0}$) commutes with $N$, then

$0=[x, N]=[x, e_{\alpha_{n}}]+[x, e_{\beta}]$

$=\alpha_{n}(h)e_{\alpha_{n}}+c_{-a_{n}}h_{\alpha_{n}}+\beta(h)e_{\beta}+c_{-\beta}h_{\beta}$ ,

so that $c_{-\alpha_{n}}=c_{-\beta}=0$ (because $h_{\alpha_{n}}$ and $h_{\beta}$ are linearly independent) and $\alpha_{n}(h)$

$=\beta(h)=0,$ $i$ . $e$ . $[h, c_{\alpha_{n}}e_{\alpha_{n}}+c_{\beta}e_{\beta}]=0$ . This means that any $x\in G(1, Adg_{0})$ which
commutes with $N$ can be written as $x=h+c_{\alpha_{n}}e_{\alpha_{n}}+c_{\beta}e_{\beta}$ with $[h, c_{\alpha_{n}}e_{\alpha_{n}}+c_{\beta}e_{\beta}]=0$ .
Therefore, if we decompose any element in $G$ as the sum of its semisimple
part and its nilpotent part, then any $x\in G$(1, Ad $g_{0}$) which commutes with $N$

has its semisimple part in $H$. In particular, the only such semisimple element
lies in $H$.

Consider $g=g_{0}$ . exp $N$ ( $g_{0},$ $N$ as above). If $g=\exp x$ for some $x$ , then
$Adg\cdot x=x$ , so $x\in G$ (1, Ad g) $=G(1, Adg_{0})$ . Now, Gantmacher [1] has shown
that in the decomposition of any element in a semisimple Lie algebra, the
semisimple and nilpotent parts commute with each other. Since the exponential
map is injective on the nilpotent part, $x$ can be decomposed as $x=x_{0}+N$,
where $[x_{0}, N]=0,$ $x_{0}$ is semisimple, and $x_{0}$ lies in $G$(1, Ad $g_{0}$) (because $N$ does).

The above argument implies that $x_{0}\in H$. Since $g_{0}=\exp x_{0}$ , then $ x_{0}\in h_{0}+\Omega$ .
But $\alpha_{n}(x_{0})=0$ , which forces $x_{0}$ to be independent from $h_{n}$ . For such $x_{0},$ $\beta(x_{0})$

$=\beta(h_{0})+4\pi\sqrt{-1}k\neq 0$ . Thus such $x_{0}$ and $x$ do not exist, $i$ . $e$ . exp is not surjec-
tive. Q. E. D.

COROLLARY. For any connected complex simple Lie group $\mathfrak{G}$ with Lie alge-
bra $G$ of type $C,$ $P=2$ is the smallest number such that $g^{p}\in\exp G$ for any $g\in \mathfrak{G}$ .

2.3. The orthogonal Lie algebra: $o(2n, C)=D_{n}n\geqq 4$ .
Recall that $o(2n, C)=\{X\in gl(2n, C):X+{}^{t}X=0\}$ . In the following, we write

$A\in gl(2n, C)$ as $A=(A_{ij})_{1\leqq i,j\leqq n}$ , where each $A_{ij}$ is a 2 by 2 matrix. Choose a
Cartan subalgebra

$H=\{(A_{ij}):A_{ij}=\delta_{ij}\left(\begin{array}{ll}0 & x_{i}\\-x_{i} & 0\end{array}\right);x_{i}\in C\}$

$=\{(x_{1},$ , ;

define weights $\lambda_{i}\in H^{*}$ by $\lambda_{i}(x_{1}, \cdots , x_{n})=x_{i}$ . The root system is $\Delta=$

$t\pm\sqrt{-1}(\lambda_{i}\pm\lambda_{j}):i<j\}$ , and a fundamental root system will be $\Pi=\{\alpha_{i}$

$=\sqrt{-1}(\lambda_{t}-\lambda_{i+1})$ with $1\leqq i\leqq n-1$ and $\alpha_{n}=\sqrt{-1}(\lambda_{n- 1}+\lambda_{n})$ }. For a root vector
corresponding to $\alpha=\sqrt{-1}(\lambda_{i}-\lambda_{j})(i<j)$ , we take the matrix $e_{\alpha}$ defined by

$(e_{\alpha})_{ij}=(1\sqrt{-1}-\sqrt{-1}1)(i<j),$ $(e_{\alpha})_{ji}=(\sqrt{-1}-\sqrt{-1}-1),$ $0$ elsewhere; for that

corresponding to $\alpha=\sqrt{-1}(\lambda_{i}+\lambda_{j})(i<j)$ , we take the matrix $e_{\alpha}$ defined by
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$(e_{\alpha})_{ij}=-(e_{\alpha})_{ji}=(\sqrt{-1}1$ $\sqrt{-1}1),$ $0$ elsewhere.

Recall that the special orthogonal Lie group $SO(2n, C)$ has center $Z_{2}$ .

(2.3.1) $P=2$ is sufficient for $SO(2n, C)$ .

PROOF. In this case,

exp $H=\{(A_{ij})_{1\leqq i,j\leqq n}$ : $A_{ij}=\delta_{ij}\left(\begin{array}{ll}cosx_{i} & sinx_{i}\\-sinx_{i} & cosx_{i}\end{array}\right),$ $x_{i}\in C\}$ ,

where

cos $x_{i}=(’-1x_{i}+e^{-\bigwedge_{-1x_{i}}})/2$ , sin $x_{i}=(e^{\sqrt{-1}}x_{i}-e^{-\bigwedge_{-1x_{i}}})/2\sqrt{-1}$ .

Note that exp maps the subset $\{(x_{1}, \cdots , x_{n}):-\pi<{\rm Re} x_{i}\leqq\pi\}\subset H$ onto $\exp H$.
So any $g_{0}\in\exp H$ can be written as $g_{0}=\exp x$ with $x$ lying in this subset.

For $\alpha=\sqrt{-1}(\lambda_{i}-\lambda_{j})$ , Ad $g_{0}\cdot e_{\alpha}=(A_{rs})_{1\leqq r,s\leqq n}$ , where

$A_{if}=-A_{ji}=$ ( $i$

$\sin(x_{i}-x_{j})-\sqrt{-1}\cos(x_{i}-x_{j})\cos(x_{i}-x_{j})+\sqrt{-1}\sin(x_{i}-x_{j})$ ),
and $0$ elsewhere.

So, Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ if and only if cos $(x_{i}-x_{j})+\sqrt{-1}$ sin $(x_{i}-x_{j})=1$ , this is true
when and only when $e^{\sqrt{-1}}j=1$ . By our choice of $x_{i}’ s,$ $e^{\sqrt{-1}}j=1$ if and
only if $x_{i}-x_{j}=0$ , and this happens if and only if $\alpha(x)=0$ .

Similarly, for $\alpha=\sqrt{-1}(\lambda_{i}+\lambda_{j})$ , Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ if and only if cos $(x_{i}+x_{j})$

$+\sqrt{-1}$ sin $(x_{i}+x_{j})=1$ , and this condition is equivalent to $\wedge-1(x_{i^{+x}j)}=1$ ; hence
either $x_{i}+x_{j}=0$ or $ x_{i}+x_{j}=2\pi$ . In the first case, $x_{i}+x_{j}=0$ , so $\alpha(x)=0$ and we
are done. In the second case, the only possibility is $ x_{i}=x_{j}=\pi$ , so $\alpha(x)$

$=2\pi\sqrt{-1}$.
Consider $g_{0}^{2}=\exp 2x$ , and dePne $y=$ $(y_{1}, \cdots , y_{n})\in H$ as $y_{i}=2x_{i}$ if $ x_{i}\neq\pi$ , and

$y_{i}=0$ if $ x_{i}=\pi$ . Then $\cos y_{i}=\cos 2x_{i}$ , and $\sin y_{i}=\sin 2x_{i}$ . So exp y$=\exp 2x$.
Moreover, Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ if and only if $\alpha(y)=0$ .

If we consider $g=g_{0}$ . exp $N\in \mathfrak{G}$ as usual and choose $y$ for $g_{0}$ as above, then
$[y, N]=0$ . So $g^{2}=\exp y$ . exp2N$=\exp(y+2N)$ . This proves (2.3.1). Q. E. D.
(2.3.2) $p=2$ is necessary for the adjoint group Ad $G$ , where $G=o(2n, C)$ .

REMARK. (2.3.1) and (2.3.2) imply that $P=2$ is the smallest number which
works for both AdG and $SO(2n, C)$ .

PROOF. It suffices to prove exp is not onto for Ad $G$ .
Let $h_{0}=h_{1}+\cdots+h_{n-4}+\pi\sqrt{-1}h_{n-2}\in H,$ $g_{0}=\exp h_{0},$ $N=e_{\alpha_{n-3}}+e_{\alpha_{n-1}}+e_{\alpha_{n}}+e_{\beta}$ ,

where $\beta=2\alpha_{n-2}+\alpha_{n-1}+\alpha_{n}$ . It is not hard to prove that $G$(1, Ad $g_{0}$) is spanned
by $H$ together with $e_{\pm\alpha_{n-3}},$ $e_{\pm\alpha_{n-1}},$ $e_{\pm\alpha_{n}}$ and $e_{\pm\beta}$ .

If $x=h+c_{\alpha_{n}-a}e_{\alpha_{n}-3}+\cdots\in G(1, Adg_{0})$ commutes with $N$, then
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$0=[x, N]=[x, e_{\alpha_{n-3}}]+[x, e_{\alpha_{n}-1}]+[x, e_{\alpha_{n}}]+[x, e_{\beta}]$

$=\alpha_{n- 3}(h)e_{\alpha_{n}-3}+c_{-\alpha_{n-3}}h_{\alpha_{n-3}}+\alpha_{n- 1}(h)e_{\sigma_{n-1}}+c_{-\alpha_{n}-1}h_{\alpha_{n}-1}$

$+\alpha_{n}(h)e_{\alpha_{n}}+c_{-\alpha_{n}}h_{\alpha_{n}}+\beta(h)e_{\beta}+c_{-\beta}h_{\beta}$

which implies that $c_{-\alpha_{n-3}}=c_{-\alpha_{n}-1}=c_{-\alpha_{n}}=c_{-\beta}=0$ and that $\alpha_{n- 3}(h)=\alpha_{n- 1}(h)=\alpha_{n}(h)$

$=\beta(h)=0,$ $i$ . $e$ . any $x\in G$( $1$ , Ad $g_{0}$ ) which commutes with $N$ can be written as
$x=h+c\alpha_{n}e_{\alpha}+c_{\alpha_{n-1}}e_{\alpha_{n-1}}+c_{\alpha_{n}}e_{\alpha_{n}}+c_{\beta}e_{\beta}$ with $[h,$ $c_{\alpha_{n}-3}e_{\alpha_{n-3}}+c_{\alpha_{n-1}}e_{\alpha_{n-1}}+c_{\alpha_{n}}e_{\alpha_{n}}$

$+c_{\beta}e_{\beta}]=0$ .
Consider $g=g_{0}$ . exp $N$ ( $g_{0},$ $N$ as above). If $g=\exp x$ for some $x$ , then $x$

can be written as $x=x_{0}+N$, where $[x_{0}, N]=0$ and $x_{0}$ is semisimple. Clearly,
both $x$ and $x_{0}$ lie in $G$(1, Ad $g_{0}$). The above argument implies that $x_{0}\in H$ and
$\alpha_{n- 3}(x_{0})=\ldots=\beta(x_{0})=0$ . Since $g_{0}=\exp x_{0}$ , we have $ x_{0}\in h_{0}+\Omega$ . But $\alpha_{n- 3}(x_{0})$

$=\alpha_{n-1}(x_{0})=\alpha_{n}(x_{0})=0$ , which forces $x_{0}$ to be independent from $h_{\alpha_{j}}s(j=n-3$ ,
$n-1,$ $n$). For such $x_{0},$ $\beta(x_{0})=\beta(h_{0})+4\pi\sqrt{-1}k\neq 0$ . Thus such $x_{0}$ and $x$ do not
exist, $i$ . $e$ . exp is not onto. Q. E. D.

2.4. The orthogonal Lie algebra: $o(2n+1, C)=B_{n}n\geqq 2$ .
Choose a Cartan subalgebra $H=\{(x_{1}, \cdots , x_{n}):x_{i}\in C\}$ where $(x_{1}, \cdots , x_{n})$ is a

matrix $\left(\begin{array}{lll} & A & 0\\ & & \vdots\\ 0 & \cdots & 0\end{array}\right)\in gl(2n+1, C)$ , with $A=(A_{i_{J}})\in gl(2n, C),$ $A_{ij}=\delta_{ij}(-x_{i}0$ $x_{0}i)$ .
Weights are defined, as before by $\lambda_{t}(x_{1}, \cdots , x_{n})=x_{i}$ . Then the root system is
$\Delta=$ { $\pm\sqrt{-1}(\lambda_{i}\pm\lambda_{j}),$ $(i<j)$ and $\pm\sqrt{-1}\lambda_{i}$ }. A fundamental root system will be

$\Pi=$ { $\alpha_{i}=\sqrt{-1}(\lambda_{i}-\lambda_{i+1})$ , $(1\leqq i\leqq n-1)$ and $\alpha_{n}=\sqrt{-1}\lambda_{n}$ }.

Root vectors corresponding to $\sqrt{-1}(\lambda_{i}\pm\lambda_{j})(i<j)$ will be the same as those in
the $D_{n}$ case; the root vector corresponding to $\alpha=\sqrt{-1}\lambda_{i}$ is the matrix

$e_{\alpha}=(E_{2i- 12n+1}-E_{2n+12i- 1})+\sqrt{-1}(E_{2i2n+1}-E_{2n+12i})$ ,

(2.4.1) $p=2$ is sufficient for the special orthogonal Lie group
$SO(2n+1, C)$ , which has trivial center.

PROOF. expH is similar to that in the $D_{n}$ case, so we can choose a sub-
set of $H$ as before. If $ g_{0}=\exp$ $(x_{1}, \cdots , x_{n})\in\exp H$, then, for $\alpha=\sqrt{-1}\lambda_{i}$ , we
have Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ if and only if cos $x_{i}+\sqrt{-1}$ sin $x_{i}=1$ , which is the same as
saying $e^{\prime_{-1x_{i}}}=1$ . By choice of the $x_{i}’ s$ , this happens if and only if $x_{i}=0$ . In
the other two cases, Ad $g_{0}\cdot e_{\alpha}=e_{\alpha}$ when and only when $\alpha(y)=0$ , where $y$ is
gotten from $2x$ as before. Therefore $(g_{0}$ . exp $N)^{2}=\exp(y+2N)$ . Q. E. D.
(2.4.2) $p=2$ is necessary for the adjoint group.

REMARK. This and (2.4.1) imply $p=2$ is the smallest number which works
for the adjoint group (which is isomorphic to $SO(2n+1,$ $C)$). (Note that $n\geqq 2.$)
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PROOF. Again, if suffices to show that exp is not onto.
Put $h_{0}=h_{1}+\cdots+h_{n-2}+\pi\sqrt{-1}h_{n}\in H,$ $g_{0}=\exp h_{0}$ , and $N=e_{\alpha_{n}-1}+e_{\beta}$ where

$\beta=\alpha_{n-1}+2\alpha_{n}$ . It is easy to see that $G$(1, Ad $g_{0}$) is generated by $H,$
$e_{\alpha_{n}-1}$ ,

$e_{-\alpha_{n}-1},$ $e_{\beta},$ $e_{-\beta}$ .
If $x=h+c_{\alpha_{n}-1}e_{\alpha_{n}-1}+\cdots\in G$(1, Ad $g_{0}$) commutes with $N$, then

$0=[x, N]=[x, e_{\alpha_{n-1}}]+[x, e_{\beta}]$

$=\alpha_{n-1}(h)e_{a_{n}-1}+c_{-\alpha_{n}-1}h_{a_{n}-1}+\beta(h)e_{\beta}+c_{-\beta}h_{\beta}$

so that $c_{-\alpha_{n-1}}=c_{-\beta}=0$ and $\alpha_{n-1}(h)=\beta(h)=0$ . Therefore any element in $G$ ( $1$ , Ad $g_{0}$)

which commutes with $N$ has its semisimple part in $H$.
Consider $g=g_{0}\cdot\exp N$ ( $g_{0},$ $N$ as above). If $g=\exp x$ for some $x$ , then $x=$

$x_{0}+N$ with $[x_{0}, N]=0$ and $x_{0}$ semisimple, $x_{0}$ lies in $G(1, Adg_{0})$ . The above
argument implies that $x_{0}\in H$. Since $g_{0}=\exp x_{0}$ , this implies that $ x_{0}\in h_{0}+\Omega$ .
But $\alpha_{n-1}(x_{0})=0$ forces $x_{0}$ to be independent from $h_{n-1}$ . For such $x_{0}$ , clearly
$\beta(x_{0})\neq 0$ . Thus $x_{0}$ and $x$ do not exist, exp is not onto. Q. E. D.

2.5. The simple Lie algebra of type $G_{2}$ .
Let $G$ be of type $G_{2}$ ; then the corresponding simply connected Lie group

$\mathfrak{G}$ has trivial center. We know (Jacobson [5]) that $G$ has a subalgebra $G_{0}$

$\cong sl(3, C)$ . Moreover, a Cartan subalgebra $H$ of $G_{0}$ is a Cartan subalgebra of
$G$ . Let $H=\{(x_{1}, x_{2}):x_{1}, x_{2}\in C\}$ . Weights are defined by $\lambda_{i}(x_{1}, x_{2})=x_{i}(i=1,2)$ .
The root system is

$\Delta=\{\pm\lambda_{1}, \pm\lambda_{2}, \pm(\lambda_{1}\pm\lambda_{2}), \pm(2\lambda_{1}+\lambda_{2}), \pm(\lambda_{1}+2\lambda_{2})\}$ .

We have a fundamental root system

$\Pi=\{\alpha_{1}=\lambda_{1}-\lambda_{2}, \alpha_{2}=\lambda_{2}\}$ .
In the following, we put

$\beta=\alpha_{1}+3\alpha_{2}=\lambda_{1}+2\lambda_{2}$ , $\gamma=\beta+\alpha_{1}=2\lambda_{1}+\lambda_{2}$ .
Computation shows that $h_{1}=(1,0),$ $h_{2}=(1,1)$ . Thus

$\Omega=Z2\pi\sqrt{-1}h_{1}+Z2\pi\sqrt{-1}h_{2}=2\pi\sqrt{-1}(Z\times Z)$ .
(2.5.1) Notice that for $g_{0}\in\exp H$, we can choose $h_{0}=(x_{1}, x_{2})$ with $-\pi<{\rm Im} x_{1},$ $X_{2}$

$\leqq\pi$ such that $g_{0}=\exp h_{0}$ . Therefore:

(i) If Ad $g_{0}\cdot e_{\lambda_{j}}=e_{\lambda_{j}}$ , then $\lambda_{j}(h_{0})=0$ by choice of $x_{j},$ $j=1,2$ .
(ii) Ad $g_{0}\cdot e_{\lambda_{1}-\lambda_{2}}=e_{\lambda_{1}-\lambda_{2}}$ implies $(\lambda_{1}-\lambda_{2})(h_{0})=x_{1}-x_{2}=0$ .

(iii) Ad $g_{0}\cdot e_{\lambda_{1}+\lambda_{2}}=e_{\lambda_{1}+\lambda_{2}}$ implies that either $x_{1}+x_{2}=0$ or $x_{1}+x_{2}=2\pi\sqrt{-1}$.
In the second case, $(\lambda_{1}+\lambda_{2})(2h_{0}-2\pi\sqrt{-1}h_{2})=0$ .
(iv) Ad $g_{0}\cdot e_{\beta}=e_{\beta}$ implies $x_{1}+2x_{2}=0$ or $2\pi\sqrt{-1}$.
(v) Ad $g_{0}\cdot e_{\gamma}=e_{\gamma}$ implies $2x_{1}+x_{2}=0$ or $2\pi\sqrt{-1}$.
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Suppose that $G$(1, Ad $g_{0}$) contains $e_{\beta}$ (with $\beta(x)=x_{1}+2x_{2}=2\pi\sqrt{-1}$) but not
$e_{\gamma}$ . Then it is not hard to prove there are only two cases:

Case 1. $G(1, Adg_{0})$ contains only $e_{\lambda_{1}}$ and $e_{\beta}$ . In this case, $x_{1}=0$ and $x_{2}$

$=\pi\sqrt{-1}$ , so $\beta(2h_{0}-2\pi\sqrt{-1}(0,1))=0$ .
Case 2. $G$(1, Ad $g_{0}$) contains only $e_{\beta}$ . In this case, we have $\beta(h_{0}-2\pi\sqrt{-1}h_{1})$

$=0$ .
If $G$(1, Ad $g_{0}$) contains $e_{\gamma}$ but not $e_{\beta}$ , then we have similar results.

Finally, if $e_{\beta},$
$e_{\gamma}\in G(1, Adg_{0})$ , then $x_{1}=x_{2}=\frac{2\pi}{3}\sqrt{-1}$ , and $e_{\alpha_{1}}\in G(1, Adg_{0})$

as well. In this case, for $h=3h_{0}-2\pi\sqrt{-1}h_{2}$ , we have $\beta(h)=\gamma(h)=\alpha_{1}(h)=0$ .
From the above discussion, it follows that $p=6=2\times 3$ is sufficient for $\mathfrak{G}$ .

Q. E. D.
(2.5.2) $p$ must be a multiple of 2.

PROOF. Let $h_{0}=(\pi\sqrt{-1}, \pi\sqrt{-1})$ , $g_{0}=\exp h_{0}$ , and $N=e_{\alpha_{1}}+e_{\alpha_{1}+2a_{2}}$ . Then
$G$(1, Ad $g_{0}$) is spanned by $H,$

$e_{\pm\alpha_{1}},$ $e_{\pm(\alpha_{1}+2\alpha_{2})}$ .
If $x=h+c_{\alpha_{1}}e_{\alpha_{1}}+\cdots\in G$ (1, Ad $g_{0}$) commutes with $N$, then

$0=\alpha_{1}(h)e_{a_{1}}+c_{-\alpha_{1}}h_{\alpha_{1}}+(\alpha_{1}+2\alpha_{2})(h)e_{\alpha_{1}+2\alpha_{2}}+c_{-(\alpha_{1}+2\alpha_{2})}h_{\alpha_{1}+2\alpha_{2}}$ ,

so that $c_{-\alpha_{1}}=c_{-(\alpha_{1}+2\alpha_{2})}=0$ and $\alpha_{1}(h)=\alpha_{1}+2\alpha_{2}(h)=0$ . It follows that the only
such semisimple element lies in $H$.

If $g=g_{0}$ . exp $N=\exp x$ for some $X$ , then $x=x_{0}+N$ with $x_{0}\in H$, and therefore
$ x_{0}\in h_{0}+\Omega$ . Any $ x_{0}\in h_{0}+\Omega$ clearly cannot satisfy $\alpha_{1}(x_{0})=0$ and $\alpha_{1}+2\alpha_{2}(x_{0})=0$

simultaneously. But clearly $g_{0}^{2}=1$ .
Therefore $p$ must be a multiple of 2. Q. E. D.

(2.5.3) $p$ must be a multiple of 3.

PROOF. Let $h_{0}=\frac{2\pi}{3}\sqrt{-1}(1,1),$ $g_{0}=\exp h_{0}$ , and $N=e_{\alpha_{1}}+e_{\beta}$ . Then

$G$(1, Ad $g_{0}$) $=H+Ce_{\pm\alpha_{1}}+Ce_{\pm\beta}+Ce_{\pm\gamma}$ .

If $x=h+c_{\alpha_{1}}e_{\alpha_{1}}+\cdots\in G(1, Adg_{0})$ commutes with $N$, then

$0=\alpha_{1}(h)e_{\alpha_{1}}+c_{-\alpha_{1}}h_{\alpha_{1}}+c_{\beta}N_{\alpha_{1},\beta}e_{\gamma}+c_{-\gamma}N_{\alpha_{1},-\gamma}e_{-\beta}$

$+\beta(h)e_{\beta}+c_{-\beta}h_{\beta}+c_{\alpha_{1}}N_{\beta,\alpha_{1}}e_{\gamma}+c_{-\gamma}N_{\beta,-\gamma}e_{-\alpha_{1}}$ ,

so that $c_{-\alpha_{1}}=c_{-\beta}=c_{-\gamma}=0$ and $\alpha_{1}(h)=\beta(h)=0$ (so $\gamma(h)=0$ also). Thus the only
such semisimple element lies in $H$.

Let $\mathfrak{G}_{1}$ be the connected subgroup of Ad $G$ with Lie algebra $G$(1, Ad $g_{0}$ ),

then $g_{0},$ $\exp N\in \mathfrak{G}_{1}$ . Hence $g=g_{0}\cdot\exp N$ and $g^{2}$ lie in $\mathfrak{G}_{1}$ . If $g^{m}=\exp y$ , then
$y\in G$(1, Ad $g_{0}$).

Since any element $x_{0}$ in $ h_{0}+\Omega$ or in $ 2h_{0}+\Omega$ cannot satisfy $\alpha_{1}(x_{0})=0$ and
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$\beta(x_{0})=0$ simultaneously, we conclude that $g=g_{0}$ . exp $N$ and that $g^{2}$ cannot lie
on any l-parameter subgroups. So $p$ must be a multiple of 3. Q. E. D.

CONCLUSION: $p=6$ is the smallest number which works for the connected
complex Lie group with Lie algebra of type $G_{2}$ .

REMARK. From the discussion in (2.5.1), it is immediate that, although 6
is the smallest number which works at once for all $g\in \mathfrak{G}$ , nevertheless, for any
fixed $g\not\in\exp G$ , either $g^{2}\in\exp G$ or $g^{3}\in\exp G$ .

2.6. The simPle Lie algebra of type $F_{4}$ .
Let $G$ be of type $F_{4}$ . Then the corresponding simply connected Lie group

$\mathfrak{G}$ has trivial center.
From [5], we know that $G$ has a Cartan subalgebra

$H=\{(x_{1}, x_{2}, x_{3}, x_{4}) : x_{i}\in C\}$

such that if $\lambda_{i}(x_{1}, x_{2}, x_{3}, x_{4})=x_{i}(i=1,2,3,4)$ , then the root system $\Delta$ has a
fundamental system of roots

$\Pi=\{\alpha_{1}=_{2}^{1}--(\lambda_{1}-\lambda_{2}-\lambda_{3}-\lambda_{4}),$ $\alpha_{2}=\lambda_{4},$ $\alpha_{3}=\lambda_{3}-\lambda_{4},$ $\alpha_{4}=\lambda_{2}-\lambda_{3}\}$ .

The positive roots can be expressed as $n_{1}\alpha_{1}+n_{2}\alpha_{2}+n_{3}\alpha_{3}+n_{4}\alpha_{4}$ , where $(n_{1},$
$n_{2}$ ,

$n_{3},$ $n_{4}$ ) are ranged from the following:

$(0,0,0,1)$ $(0,0,1,0)$ $(0,0,1,1)$ $(0,1,0,0)$ $(0,1,1,0)$ $(0,1,1,1)$

$(0,2,1,0)$ $(0,2,1,1)$ $(0,2,2,1)$ $(1, 0,0,0)$ $(1, 1, 0,0)$ $(1, 1, 1, 0)$

(1, 1, 1, 1) $(1, 2, 1, 0)$ (1, 2, 1, 1) (1, 2, 2, 1) (1, 3, 2, 1) $(2, 2, 1, 0)$

(2, 2, 1, 1) (2, 2, 2, 1) (2, 3, 2, 1) (2, 4, 2, 1) (2, 4, 3, 1) (2, 4, 3, 2)

(2.6.1) Finding a sufficiently large $p$ such that $g^{p}$ lies in exp $G$

for any $g$ in G.

We cannot attack this case as we did the previous cases, but we can do
the following. As in the proof of Theorem 1, choose any four linearly inde-
pendent positive roots and compute the determinant of the coefficient matrix.
Then the least common multiple over all possible such choices of all these
determinants is a sufficiently large power. We used a computer to compute
all these determinants; the values obtained were $\pm 1$ , $\pm 2$ , $\pm 3,$ $\pm 4$ or $\pm 8$ .
Moreover, we get a determinant of $\pm 8$ only in the following three cases:

(a) $\alpha_{3}+\alpha_{4},2\alpha_{2}+\alpha_{3}+\alpha_{4},2\alpha_{1}+2\alpha_{2}+\alpha_{3}+\alpha_{4},2\alpha_{1}+4\alpha_{2}+3\alpha_{3}+\alpha_{4}$ .

(b) $\alpha_{3},2\alpha_{2}+\alpha_{3},2\alpha_{1}+2\alpha_{2}+\alpha_{3},2\alpha_{1}+4\alpha_{2}+3\alpha_{3}+2\alpha_{4}$ .
(c) $\alpha_{4},2\alpha_{2}+2\alpha_{3}+\alpha_{4},2\alpha_{1}+2\alpha_{2}+2\alpha_{3}+\alpha_{4},2\alpha_{1}+4\alpha_{2}+2\alpha_{3}+\alpha_{4}$ .
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In the notation in the proof of Theorem 1, given any integers $k_{1},$ $k_{2},$ $k_{3},$ $k_{4}$ , the

rational solutions $(n_{1}, n_{2}, n_{3}, n_{4})$ of the equations $\sum_{j=1}^{4}m_{ij}n_{j}=-k_{i}(1\leqq i\leqq 4)$ for
these three cases are:

(a) $n_{1}=\frac{k_{2}-k_{3}}{2},$ $n_{2}=\frac{k_{1}-k_{2}}{2},$ $n_{3}=\underline{k_{2}+k_{3}}-\underline{k_{1}-k_{4}}2$ $n_{4}=\underline{k_{4}-k_{1}}-\underline{k_{2}-k_{3}}2$ .
(b) $n_{1}=\frac{k_{2}-k_{3}}{2},$ $n_{2}=\frac{k_{1}-k_{2}}{2},$ $n_{3}=-k_{1},$ $n_{4}=\frac{k_{1}+k_{2}+k_{3}-k_{4}}{2}$ .
(c) $n_{1}=\frac{k_{2}-k_{3}}{2},$ $n_{2}=\frac{k_{3}-k_{4}}{2},$ $n_{3}=\frac{k_{1}+k_{4}-k_{2}-k_{3}}{2},$ $n_{4}=-k_{1}$ .

This shows that we can find integral solutions for $\sum_{J=1}^{4}m_{ij}n_{j}=-2k_{i}$ in these

cases. The least common multiple of {1, 2, 3, 4} is 12. We conclude that $P=12$

is a sufficiently large number for our purpose.

(2.6.2) $p=12$ is best possible.

PROOF. We divide the proof into two steps, which together will imply
that $p$ must be a multiple of 12.

(a) $p$ must be a multiple of 3.

Let $h_{0}=\frac{2\pi}{3}\sqrt{-1}h_{2}$ , and consider $g_{0}=\exp h_{0}$ . It is not hard to prove that
$G$(1, Ad $g_{0}$ ) is spanned by $H,$

$e_{\pm\alpha_{1}},$ $e_{\pm\alpha_{3}},$ $e_{\pm\alpha_{4}},$ $e_{\pm(\alpha_{3}+\alpha 4)},$ $e_{\pm\beta},$ $e_{\pm(\sigma_{1}+\beta)}$ , where $\beta=$

$\alpha_{1}+3\alpha_{2}+2\alpha_{3}+\alpha_{4}$ .
Let $N=e_{\alpha_{1}}+e_{\alpha_{3}}+e_{\alpha 4}+e_{\beta}$ . If $x=h+c_{\alpha_{1}}e_{\alpha_{1}}+$ – is an element in $G$ ( $1$ , Ad $g_{0}$)

which commutes with $N$, then

$0=\alpha_{1}(h)e_{\alpha_{1}}+c_{-\alpha_{1}}h_{\alpha_{1}}+c_{\beta}N_{*}e_{\alpha_{1}+\beta}+c_{-(\beta+\alpha_{1})}N_{*}e_{-\beta}$

$+\alpha_{3}(h)e_{\alpha_{3}}+c_{-\alpha_{3}}h_{\alpha_{3}}+c_{\alpha 4}N_{*}e_{\alpha_{3}+\alpha 4}+c_{-(\alpha_{3}+\alpha 4)}N_{*}e_{-\alpha 4}$

$+\alpha_{4}(h)e_{\alpha 4}+c_{-\alpha 4}h_{\alpha 4}+c_{\alpha_{3}}N_{*}e_{\alpha_{3}+\alpha 4}+c_{-(\alpha_{3}+\alpha 4)}N_{*}e_{-\alpha_{3}}$

$+\beta(h)e_{\beta}+c_{-\beta}h_{\beta}+c_{\alpha_{1}}N_{*}e_{\alpha_{1}+\beta}+c_{-(\alpha_{1}+\beta)}N_{*}e_{-\alpha_{1}}$ .
Since $\alpha_{1},$ $\alpha_{3},$ $\alpha_{4}$ and $\beta$ are linearly independent in $H^{*}$ , then $c_{-\alpha_{1}}=c_{-\alpha_{3}}=c_{-\mathcal{O}4}$

$=c_{-\beta}=0$ ; and $c_{-(\alpha_{3}+\alpha 4)}=c_{-(\beta+\alpha_{1})}=0$ because $e_{-\alpha_{1}},$ $e_{-\alpha_{3}},$ $e_{-\alpha 4},$ $e_{-\beta}$ are linearly inde-
pendent. Similarly, $\alpha_{1}(h)=\alpha_{3}(h)=\alpha_{4}(h)=\beta(h)=0$ , and so $(\alpha_{3}+\alpha_{4})(h)=(\alpha_{1}+\beta)(h)$

$=0$ . Thus the only semisimple elements in $G$(1, Ad $g_{0}$ ) which commute with
$N$ are in $H$.

Since any element $h$ in $ h_{0}+\Omega$ or in $ 2h_{0}+\Omega$ cannot satisfy $\alpha_{1}(h)=\alpha_{3}(h)$

$=\alpha_{4}(h)=\beta(h)=0$ , we by the same discussion as in (2.5.3), conclude that for
$g=g_{0}\cdot\exp N,$ $g^{2}$ and $g^{3}$ do not lie on any l-parameter subgroups. Since $ 3h_{0}\in\Omega$ ,
exp $3h_{0}=1$ , so $(g_{0}\cdot\exp N)^{3}=\exp 3N$.

Thus $p$ must be divisible by 3.
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(b) $p$ must be a multiple of 4.

Let $h_{0}=_{2}^{1}--\pi\sqrt{-1}h_{2},$ $g_{0}=\exp h_{0}$ . It is not hard to prove that $G(1, Adg_{0})$ is

generated by $H$ and by $e_{\pm\alpha}$ as $\alpha$ ranges over
$S=\{\alpha_{1}, \alpha_{3}, \alpha_{4}, \alpha_{3}+\alpha_{4}, \beta, \beta+\alpha_{3}, \beta+\alpha_{3}+\alpha_{4}\}$ ,

where $\beta=2\alpha_{1}+4\alpha_{2}+2\alpha_{3}+\alpha_{4}$ .
Let $N=e_{\alpha_{1}}+e_{\alpha_{3}}+e_{\alpha 4}+e_{\beta}$ .
If $x=h+c_{\alpha_{1}}e_{\alpha_{1}}+\cdots\in G$(1, Ad $g_{0}$) commutes with $N$, then

$0=\alpha_{1}(h)e_{\alpha_{1}}+c_{-\alpha_{1}}h_{\alpha_{1}}$

$+\alpha_{3}(h)e_{\alpha_{3}}+c_{-\alpha_{3}}h_{\alpha_{3}}+c_{\alpha_{4}}N_{*}e_{\alpha_{3}+\alpha 4}+c_{-(\alpha_{3}+\alpha 4)}N_{*}e_{-\alpha 4}$

$+c_{\beta}N_{*}e_{\beta+\alpha_{3}}+c_{-(\beta+\alpha_{3})}N_{*}e_{-\beta}$

$+\alpha_{4}(h)e_{\alpha_{4}}+c_{-\alpha 4}h_{\alpha 4}+c_{\alpha 3}N_{*}e_{\alpha_{3}+\alpha 4}+c_{-(\alpha_{S}+\alpha 4)}N_{*}e_{-\alpha_{3}}$

$+c_{\beta+\alpha_{3}}N_{*}e_{\beta+\alpha_{3}+\alpha 4}+c_{-(\beta+\alpha_{3}+\alpha 4)}N_{*}e_{-(\beta+\alpha_{3})}$

$+\beta(h)e_{\beta}+c_{-\beta}h_{\beta}+c_{\alpha_{3}}N_{*}e_{\beta+\alpha_{3}}+c_{\alpha_{3}+\alpha 4}N_{*}e_{\beta+\alpha_{3}+\alpha 4}$

$+c_{-(\beta+\alpha_{3})}N_{*}e_{-\alpha_{3}}+c_{-(\beta+\alpha_{3}+\alpha 4)}N_{*}e_{-(\alpha_{3}+\alpha 4)}$ .
We then have:

(i) The coefficients of $h_{\alpha}’ s$ being zero implies $c_{-\alpha_{1}}=c_{-\alpha_{3}}=c_{-\alpha 4}=c_{-\beta}=0$ ;
(ii) The coefficient of $e_{-\alpha 4}$ being zero implies $c_{-(\alpha_{3}+\alpha 4)}=0$ ;

(iii) The coefficient of $e_{-\beta}$ being zero implies $c_{-(\beta+\alpha_{3})}=0$ ;
(iv) The coefficient of $e_{-(\beta+\alpha_{3})}$ being zero implies $c_{-(\beta+\alpha_{3}+\alpha 4)}=0$ ;
(v) Similarly $\alpha_{1}(h)=\alpha_{3}(h)=\alpha_{4}(h)=\beta(h)=0$ , and so $\alpha_{3}+\alpha_{4}(h)=0$ etc.

It follows that the only semisimple elements in $G$(1, Ad $g_{0}$) which commute
with $N$ are in $H$.

Using again the argument used in (2.5.3) and in (a), we can prove that for
$g=g_{0}$ . exp $N;g,$ $g^{2},$ $g^{3}\not\in\exp G$ because any element $h$ in $ h_{0}+\Omega$ or in $ 2h_{0}+\Omega$ or
in $ 3h_{0}+\Omega$ cannot satisfy $\alpha_{1}(h)=\alpha_{3}(h)=\alpha_{4}(h)=\beta(h)=0$ . But clearly, $g^{4}=\exp 4N$.

Therefore $p$ must be divisible by 4. Q. E. D.
REMARKS. (1) Clearly (2.6.1) and (2.6.2) prove that $P=12$ is the smallest

number such that $g^{p}\in\exp G$ for any $g\in \mathfrak{G}$ .
(2) From the discussions in (2.6.1), given any four positive roots with

coefficient matrix $(m_{ij})$ , the linear equations $\sum_{j=1}^{4}m_{ij}n_{j}=-pk_{i}(i=1,2,3,4)$ has

an integral solution for some $p\in\{1,2,3,4\}$ . Therefore, given any (fixed) ele-
ment $g$ in Ad $G,$ $g^{p}\in\exp G$ for some $p\in\{1,2,3,4\}$ .

2.7. The simple Lie algebra of type $E_{n}(n=6,7,8)$ .
For the adjoint group, as in the $F_{4}$ case, we could use a computer to com-
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pute the determinants of the coefficient matrices of all possible maximal linearly
independent system of positive roots, the least common multiple of all these
determinants, as we have seen, is a sufficiently large number for our purposes.
However, this computation is too complicated even for a computer.

To find a lower bound for the adjoint group in $E$ case, we need some
more notation:

Let $G$ be any semisimple (complex) Lie algebra, $H$ be a Cartan subalgebra,
$-\alpha_{0}=m_{1}\alpha_{1}+\cdots+m_{l}\alpha_{l}$ be the maximal root expressed in terms of a simple
root system $\{\alpha_{1}, \cdots , \alpha_{l}\},\tilde{\Pi}=\Pi\cup\{\alpha_{0}\}$ the extended simple root system.

Consider $h_{0}=2\pi\sqrt{-1}h_{j}/m_{j}\in H$, then $G$(1, Ad exp $h_{0}$)
$=H+\sum_{\alpha\in\Delta(h_{0})}Ce_{\alpha}$. It is not

hard to prove that the subsystem $\Delta(h_{0})$ is generated by $\tilde{\Pi}-\{\alpha_{j}\}$ . To simplify
the notation, we denote by ind $(g)$ the smallest integer $P$ for which $g^{p}\in\exp G$

$(g\in AdG)$ .
LEMMA. Let $h_{0}=2\pi\sqrt{-1}h_{j}/m_{j}$ (for some j) be such that the Dynkin dia-

gram of $\Pi(h_{0})=\tilde{\Pi}-\{\alpha_{j}\}$ is a $\pi$ -system consisting of several homogeneous chains.
(Cf. Goto-Grosshans [3].) Assume that $\pi(h_{0})=\{\gamma_{1}, \cdots , \gamma_{l}\}$ with Dynkin diagram

$\circ-\circ-\cdots-0$ $\circ-\circ-\cdots-O\cdots O-\circ-\cdots-0$

$\gamma_{1}$ $\gamma_{p}$ $\gamma_{q+1}$ $\gamma_{l}$

Let $N=\sum_{j=1}^{\iota}e_{\gamma_{j}},$ $ g=\exp h_{0}\cdot\exp$ N. Then ind $(g)=m_{j}$ .
PROOF. In the following, for any root $\beta=b_{1}\alpha_{1}+\cdots+b_{l}\alpha_{l}$ , we denote by

$|\beta|=|b_{1}+\cdots+b_{l}|$ the length of $\beta$ .
We have $G$(1, Ad exp $h_{0}$)

$=H+\sum_{\delta\in\Delta(h_{0})}Ce_{\delta}$ . Assume that $ X=h+\sum_{\delta\in\angle(h_{0})}c_{\delta}e_{\delta}\in$

$G$(1, Ad $\exp h_{0}$) commutes with $N$, then

$(^{*})$ $0=\sum_{i=1}^{\iota}-(\gamma_{i}(h)e_{\gamma_{i}}+c_{-\gamma_{i}}h_{-\gamma_{i}})+\sum_{i=1}^{\iota}\sum_{\delta\in\Delta(h_{0})}c_{\delta}N_{r_{i,\delta}}e_{\gamma_{i+\delta}}$ .

By linear independence, $\gamma_{i}(h)=0$ and $c_{-\gamma_{i}}=0$ for all $i=1,$ $\cdots$ , $l$ . We want to
prove that $c_{\delta}=0$ for all negative $\delta$ in $\Delta(h_{0})$ .

From the diagram, $\gamma_{1}$ can only connect with $\gamma_{2}$ , so the coefficient of $e_{-\gamma_{1}}$

term in $(^{*})$ is $c_{-r_{1}-\gamma_{2}}N_{r_{2},-\gamma_{1}-\gamma_{2}}$ , therefore $c_{-(\gamma_{1}+\gamma_{2})}=0$ .
$\gamma_{2}$ can only connect with $\gamma_{1}$ and $\gamma_{3}$ , so the coefficient of $e_{-\gamma_{2}}$ in $(*)$ will be

$c_{-\gamma_{1}- r_{2}}N_{\gamma_{1},-\gamma_{1^{-}}\gamma_{2}}+c_{-\gamma_{2^{-}}\gamma_{3}}N_{r_{3},-\gamma_{2}- r_{3}}$ , which has to be zero by linear independence,
so $c_{-(\gamma_{2}+\gamma_{3})}=0$ because $c_{-(\gamma_{1}+\gamma_{2})}=0$ .

Continuing this process, we get $c_{\delta}=0$ for all negative $\delta$ with $|\delta|=2$ .
Next, note that all positive root must have the form $\gamma_{i}+\gamma_{i+1}+\cdots+\gamma_{i+r}$

such that $t\gamma_{i},$
$\gamma_{i+1},$

$\cdots$ , $\gamma_{i+r}$ } is a connected subset of the Dynkin diagram. Let
$\gamma=\gamma_{i}+$ $+\gamma_{i+r}$ , consider $\{\gamma_{1}, \gamma_{i-1}, \gamma, \gamma_{i+r+1}, \cdots , \gamma_{l}\}$ where $\gamma_{i-1}$ is connected
with $\gamma$ in case $\gamma_{i-1}$ is connected with $\gamma_{i}$ , and $\gamma_{i+r+1}$ is connected with $\gamma$ in case
$\gamma_{i+r+1}$ is connected with $\gamma_{i+r}$ . Clearly, $\{\gamma_{1}, \cdots , \gamma_{i-1}, \gamma, \gamma_{i+r+1}, \cdots , \gamma_{l}\}$ forms a $\pi-$
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system consisting of several homogeneous chains (cf. section 2.5 of Goto-
Grosshans [3]), so the only possible positive roots containing $\gamma$ will be $\gamma_{i-1}+\gamma$ ,
$\gamma+\gamma_{i+r+1}$ . If we start with $i=1$ , this say that the coefficient of $e_{-\gamma}$ will either
be $0$ or $c_{-\gamma_{-}\gamma_{r+2}}N_{\gamma_{r+2,-}\gamma_{-}\gamma_{r+2}}$ , so $c_{-\gamma-\gamma_{r+2}}=0,$ $i$ . $e$ . $c_{-\gamma_{1}--\gamma_{r+2}}=0$ . Consider $i=2$ ,

using the same argument as in case $i=1$ , we will get $c_{-r_{2}-\cdots- r_{r+3}}=0$ . Continu-
ing this process, we can prove that $c_{\delta}=0$ for all negative $\delta$ with length $r+2$ .
Therefore $c_{\delta}=0$ for all negative $\delta$ .

In particular, the only element in $G$(1, Ad exp $h_{0}$) which commutes with $N$

has its semisimple part lying in $H$ and $\gamma_{i}(h)=0$ for all $i$ .
Assume that $g=\exp X$, then the above implies that $X=h+N$ with $\gamma_{i}(h)=0$

for all $i$ , but this will imply that $ h\in\Omega$ . On the other hand, exp h $=\exp h_{0}\neq 1$ ,

so $ h_{0}\not\in\Omega$ , this contradiction shows that $g\not\in\exp G$ .
Let $\mathfrak{G}_{1}$ be the connected subgroup of Ad $G$ with Lie algebra $G$(1, Ad exp $h_{0}$ ).

Then $g\in \mathfrak{G}_{1}$ , so that $g^{p}\in \mathfrak{G}_{1}$ for any positive integer $p$ . If $g^{p}=\exp y$ , then
$y\in G$(1, Ad exp $h_{0}$ ). So the above argument implies that $ g^{p}\not\in$ exp $G$ if $p<m_{j}$ .

Therefore, ind $(g)=m_{j}$ . Q. E. D.
Now we consider $E$ cases.
(a) $G$ is of type $E_{6}$ .
The extended Dynkin diagram has the following form

$\circ\alpha_{0}$

$1$

$o\alpha_{6}$

$\circ-\circ-\lfloor_{-0-0}$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$

The maximal root is $-\alpha_{0}=\alpha_{1}+2\alpha_{2}+3\alpha_{3}+2\alpha_{4}+\alpha_{5}+2\alpha_{6}$ .
Considering $j=2$ or 3 and applying the above lemma, we can get

$g_{2}=\exp(2\pi\sqrt{-1}h_{2}/2)\cdot\exp(\sum_{J\neq 2}e_{\alpha_{j}})$ ( $j$ runs from $0$ to 6) with ind $(g_{2})=2$ ;

$g_{3}=\exp(2\pi\sqrt{-1}h_{3}/3)$ . exp $(\sum_{J\neq 3}e_{\alpha_{j}})$
( $j$ runs from $0$ to 6) with ind $(g_{3})=3$ .

(b) $G$ is of type $E_{7}$ .
The extended Dynkin diagram has the form

$\circ-\circ-\circ-\circ-\circ-\circ-oo\alpha_{7}|$

$\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ $\alpha_{0}$

The maximal root is $-\alpha_{0}=\alpha_{1}+2\alpha_{2}+3\alpha_{3}+4\alpha_{4}+3\alpha_{5}+2\alpha_{6}+2\alpha_{7}$ .
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Considering $j=3,4,7$ , applying the above lemma for each case, we can get
the following elements (where $j$ runs from $0$ to 7).

$ g_{3}=\exp(2\pi\sqrt{-1}h_{3}/3)\cdot\exp$
$( \sum_{J\neq 3}e_{\alpha_{j}})$ with ind $(g_{3})=3$ ;

$g_{4}=\exp(2\pi\sqrt{-1}h_{4}/4)\cdot\exp(\sum_{J\neq 4}e_{\alpha_{j}})$ with ind $(g_{4})=4$ ;

$g_{7}=\exp(2\pi\sqrt{-1}h_{7}/2)$ . exp $(\sum_{j\neq 7}e_{\alpha_{j}})$ with ind $(g_{7})=2$ .
(c) $G$ is of type $E_{8}$ .
The extended Dynkin diagram has the following form

$\circ\alpha_{8}$

$\circ-\circ-\circ-\circ-\circ-\circ-\circ-o|$

$\alpha_{0}$ $\alpha_{1}$ $\alpha_{2}$ $\alpha_{3}$ $\alpha_{4}$ $\alpha_{5}$ $\alpha_{6}$ $\alpha_{7}$

The maximal root is $-\alpha_{0}=2\alpha_{1}+3\alpha_{2}+4\alpha_{3}+5\alpha_{4}+6\alpha_{5}+4\alpha_{6}+2\alpha_{7}+3\alpha_{8}$ .
Considering $j=4,5,6,8$ and applying the above lemma, we can get

$g_{4}=\exp(2\pi\sqrt{-1}h_{4}/5)$ . exp $(\sum_{J\neq 4}e_{\alpha_{j}})$ with ind $(g_{4})=5$ ;

$g_{5}=\exp(2\pi\sqrt{-1}h_{5}/6)$ . exp $(\sum_{j\neq 5}e_{\alpha_{j}})$ with ind $(g_{5})=6$ ;

$g_{6}=\exp(2\pi\sqrt{-1}h_{6}/4)\cdot\exp(\sum_{j\neq 6}e_{\alpha_{j}})$ with ind $(g_{6})=4$ ;

$g_{8}=\exp(2\pi\sqrt{-1}h_{8}/3)$ . exp $(\sum_{j\neq 8}e_{\alpha_{j}})$ with ind $(g_{8})=3$ .

(In the above four equations, $j$ runs from $0$ to 8.)

Clearly, ind $(g_{6}^{2})=2$ . Q. E. D.
If we denote by $p$ the smallest positive integer such that $g^{p}\in\exp G$ for

any $g\in AdG$ , then we have shown the following:
$p$ must be a multiple of 6 if $G$ is of type $E_{6}$ .
$p$ must be a multiple of 12 if $G$ is of type $E_{7}$ .
$p$ must be a multiple of 60 if $G$ is of type $E_{8}$ .
It is my conjecture that these are the smallest numbers which works.

\S 3. Real cases.

Let $G$ be a real semisimple Lie algebra, and let $G_{C}=G\otimes_{R}C$ be the com-
plexification of $G$ . For $z=x+\sqrt{-1}y\in G_{c}$ with $x,$ $y\in G$ , we denote $x-\sqrt{-1}y$

by $\overline{z}$.
Given any automorphism $\sigma$ of $G$ , we can consider $\sigma$ as an automorphism

on $G_{c}$ . The decomposition of $\sigma$ into semisimple part $\sigma_{0}$ and unipotent part $\sigma_{u}$
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can be taken such that $\sigma_{0},$ $\sigma_{u}\in AutG$ .
The eigenvalues of $\sigma_{0}$ are either real or appear in complex conjugate pairs

$re^{\prime_{-1\theta}},$ $re^{-\bigwedge_{-1\theta}}$ , where $r>0,$ $-\pi<\theta<\pi$ and $\theta\neq 0$ . It is easy to see that

$G_{c}(re^{-\wedge-1\theta}, \sigma_{0})=\{\overline{z};z\in G_{c}(re^{\sqrt{}}\overline{-1}\theta\sigma_{0})\}$ .
In fact, for $x+\sqrt{-1}y\in G_{c}(re^{\prime_{-1\theta}}, \sigma_{0})$ with $x,$ $y\in G$ , we have

$\sigma_{0}\cdot x=(r\cos\theta)x-(r\sin\theta)y$ , $\sigma_{0}\cdot y=(r\sin\theta)x+(r\cos\theta)y$ .
If $re^{\pm\prime_{-1\theta}}$ is a pair of complex eigenvalues of $\sigma_{0}$ , and if we denote by $G(r, \theta;\sigma_{0})$

the subspace
{ $x\in G$ :( $(\sigma_{0})^{2}-(2r$ cos $\theta)\sigma_{0}+r^{2}\cdot 1$ )$x=0$ }

of $G$ , then $G(r, \theta;\sigma_{0})_{c}=G_{c}(re^{\prime_{-1\theta}}, \sigma_{0})+G_{c}(re^{-\sqrt{}}\overline{-1}\theta\sigma_{0})$ . On the other hand, if $s$

is a real eigenvalue of $\sigma_{0}$ , then $G_{c}(s, \sigma_{0})=G(s, \sigma_{0})_{c}$ .
DePne the “real” part $\sigma_{1}$ of $\sigma_{0}$ as: $\sigma_{1}x=|a|x$ whenever $x\in G_{c}(a, \sigma_{0})$ (a is

complex number).

LEMMA 1. $\sigma_{1}$ is an inner automorphism on $G$ .
PROOF. For $x\in G_{c}(a, \sigma_{0})$ and $y\in G_{c}(b, \sigma_{0})$ , we have $[x, y]\in G_{c}(ab, \sigma_{0})$ . So

$[\sigma_{1}\cdot x, \sigma_{1}\cdot y]=[|a|x, |b|y]=|a||b|[x, y]=|ab|[x, y]$ .
Hence $\sigma_{1}\in AutG_{c}$ . Moreover, if $ re^{\sqrt{-1}}\theta re^{-\sqrt{-1}}\theta$ are eigenvalues of $\sigma_{0}$ as above,

then for $z\in G_{c}(re^{\prime_{-1\theta}}, \sigma_{0})$ , we have $r_{1}\cdot z=|re^{\prime_{-1\theta}}|z=rz$, and $\sigma_{1}\cdot\overline{z}=|re^{\sqrt{-1}}\theta|\overline{z}=r\overline{z}$,
$i$ . $e$ . $\sigma_{1}$ is just $r\cdot 1$ on $G(r, \theta;\sigma_{0})_{c}$ . In particular, $\sigma_{1}$ maps $G(r, \theta;\sigma_{0})$ into itself.
Clearly also, $\sigma_{1}$ maps $G(s, \sigma_{0})$ into itself for any real eigenvalue $s$ . Therefore,
$\sigma_{1}\in AutG$ . But all of the eigenvalues of $\sigma_{1}$ are positive real. We can dePne
$\delta_{1}\cdot x=(lnt)x$ whenever $x\in G(t, \sigma_{1})$ . Then $\delta_{1}$ is a derivation on $G$ because
$[G(s, \sigma_{1}), G(t, \sigma_{1})]\subset G(st, \sigma_{1})$ . By the semisimplicity of $G,$ $\delta_{1}$ must be an inner
derivation. So $\sigma_{1}=Exp\delta_{1}$ is an inner automorphism on $G$ . Q. E. D.

From the definition, it is easy to see that $\sigma_{0}\sigma_{1}=\sigma_{1}\sigma_{0}$ . If we define the
“imaginary“ part $\sigma_{2}$ of $\sigma_{0}$ to be $\sigma_{2}=\sigma_{0}\sigma_{1}^{-1}$ . Then $\sigma_{2}$ is also an automorphism
of $G$ , and $\sigma_{0},$ $\sigma_{1},$ $\sigma_{2}$ commute with each other. This proves

LEMMA 2. The “real” and ”imaginary” parts of any semisimPle inner auto-
morPhism of a real semisimPle Lie algebra $G$ are again semisimPle inner auto-
morphisms of $G$ .

THEOREM 2. Let $\mathfrak{G}$ be a connected real semisimPle Lie group with trivial
center. Then there exists a pOsjtjve integer $P$ such that for any $g\in \mathfrak{G},$ $g^{p}$ lies on
some l-parameter subgroup of G.

PROOF. If $G$ is the Lie algebra of $\mathfrak{G}$ , then $\mathfrak{G}$ can be identified with Ad $G$ .
The decomposition of any element $g:g=g_{0}$ . exp $N$ has the property that $g_{0}\in \mathfrak{G}$ ,
$N\in G$ . DePne the real and imaginary parts $\sigma_{1},$ $\sigma_{2}$ of Ad $g_{0}$ as above. By
Lemma 2, both $\sigma_{1},$ $\sigma_{2}$ are semisimple inner automorphisms of $G,$ $i$ . $e$ . $\sigma_{1}=Adg_{1}$ ,
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$\sigma_{2}=Adg_{2}$ for some semisimple elements $g_{1},$ $g_{2}$ of G. Since we assume $\mathfrak{G}$ has
trivial center, $g_{0}=g_{1}g_{2}$ , and $g_{0},$ $g_{1},$ $g_{2}$ all commute with each other.

The proof of Lemma 1 implies that $g_{1}=\exp x_{1}$ for some $x_{1}$ such that
[ $x_{1},$

$G$(1, Ad $g_{1})$] $=0$ . In particular, [ $x_{1},$ $G(1$ , Ad $g_{0})$] $=0$ and $[x_{1}, N]=0$ . Since
Ad $g_{0}$ is a semisimple inner automorphism, $G$ (1, Ad $g_{0}$) contains a Cartan sub-
algebra of $G$ . The semisimplicity of $x_{1}$ and the equation [ $x_{1},$

$G$(1, Ad $g_{0})$] $=0$

imply that $x_{1}$ lies in that Cartan subalgebra. In particular, $x_{1}\in G$ (1, Ad $g_{0}$).

Consider now the imaginary part $\sigma_{2}=Adg_{2}$ of Ad $g_{0}$ ; clearly $G$ ( $1$ , Ad $g_{0}$)
$\subset G$ (1, Ad $g_{2}$), so the above discussion proves that $x_{1},$ $N\in G$ ( $1$ , Ad $g_{2}$).

Since any eigenvalue of Ad $g_{2}$ has absolute value 1, $g_{2}$ lies in some maximal
compact subgroup $\mathfrak{K}$ of G. The compactness of $\mathfrak{K}$ guarantees that $g_{2}=\exp x_{2}$

for some $x_{2}\in K$ ($=Lie$ subalgebra of $G$ corresponding to the Lie subgroup $\mathfrak{K}$).

Note that since $x_{2}$ is semisimple, we can choose a Cartan subalgebra $H_{c}$ of $G_{c}$

containing $x_{2}$ such that the corresponding root space decomposition $G_{c}=$

$H_{c}+\sum_{\alpha\in\Delta}Ce_{\alpha}$ has the property that each $e_{\alpha}$ is an eigenvector of Ad $g_{2}$ .

For each $\alpha\in\Delta$ , define $\overline{\alpha}$ as: $\overline{\alpha}(h)=\overline{\alpha(\overline{h})}$ for all $h\in H_{c}$ , where $\overline{\alpha(\overline{h})}$ means
the complex conjugate of $\alpha(\overline{h})$ . Then $\overline{\alpha}$ is also a root in $\Delta$ . Furthermore, if
$\Pi=\{\alpha_{1}, \cdots , \alpha_{l}\}$ is a fundamental root system, then $\overline{\Pi}=\{\overline{\alpha}_{1}, \cdots , \overline{\alpha}_{l}\}$ is also a
fundamental root system (see for example, Goto &Grosshans [3]). For $\Pi$ ,

we can choose $h_{1},$ $\cdots$ , $h_{l}\in H_{c}$ such that $\alpha_{i}(h_{j})=\delta_{ij}$ , then $\overline{\alpha}_{i}(\overline{h}_{j})=\overline{\alpha_{i}(h_{j})}=\delta_{lj}$ .
Assume $G_{c}$ (1, Ad $g_{2}$)

$=H_{c}+\sum_{\alpha\in\Delta_{1}}Ce_{\alpha}$ where $\Delta_{1}$ is a subsystem of $\Delta$ . (We may

assume this because $G_{c}$ (1, Ad $g_{2}$) is a subalgebra of $G_{c}.$) Note that $\overline{\alpha}\in\Delta_{1}$ when-
ever $\alpha\in\Delta_{1}$ . As in the proof of Theorem 1, choose $\beta_{1},$ $\cdots$ , $\beta_{r}\in\Delta_{1}$ as generating
system for the subspace in $H_{c}^{*}$ spanned by $\Delta_{1}$ and extend it to a maximal
linearly independent subset $\{\beta_{1}, \cdots , \beta_{r}, \beta_{r+1}, \cdots , \beta_{l}\}$ of $\Delta$ . Then $\{\overline{\beta}_{1}, \cdots , \overline{\beta}_{r}\}\subset\Delta_{1}$

is also a generating system for the same subspace and $\{\overline{\beta}_{1}, \cdots , \overline{\beta}_{l}\}$ is a maximal
linearly independent subset. The subalgebra $G_{c}$ (1, Ad $g_{2}$) is generated (as an
algebra) by $H_{c}$ and $e_{\pm\beta_{j}}(j=1, \cdots , r)$ , as well as by $H_{c}$ and $e_{\pm\overline{\beta}_{j}}(j=1, \cdots , r)$ .

If $\beta_{i}=\sum_{=J1}^{\iota}m_{ij}\alpha_{j}$ , then clearly $\overline{\beta}_{i}=\sum_{=J1}^{\iota}m_{ij}\overline{\alpha}_{j}$ with $m_{ij}\in Z$. Since we may

assume that $\beta_{i}(x_{2})=2\pi\sqrt{-1}k_{i}$ for $i=1,$ $\cdots$ , $r$, where $k_{i}\in Z$, and since $x_{2}\in G$ , we
have $\overline{\beta}_{i}(x_{2})=-2\pi\sqrt{-1}k_{i}$ . As was proved in Theorem 1, if we let $d=|$ det $(m_{ij})|$ ,
then we can find integers $n_{1},$

$\cdots$ , $n_{l}$ such that

$\beta_{i}(dx_{2}+\sum_{j=1}^{l}2\pi\sqrt{-1}n_{j}h_{j})=0$ for $i=1,$ $\cdots$ , $r$ .

This implies $\beta(dx_{2}+\sum_{j=1}^{l}2\pi\sqrt{-1}n_{j}h_{j})=0$ for all $\beta$ in $\Delta_{1}$ . On the other hand,

$\beta_{i}(dx_{2}-\sum_{j=1}^{\iota}2\pi\sqrt{-1}n_{j}\overline{h}_{j})=\beta_{i}(dx_{2}+\sum_{j=1}^{\iota}2\pi\sqrt{-1}n_{j}h_{j})=0$ ,
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so that $\beta(dx_{2}-\sum_{j=1}^{\iota}2\pi\sqrt{-1}n_{j}\overline{h}_{j})=0$ for all $\beta$ in $\Delta_{1}$ (because $\overline{\beta}_{1},$ $\cdots$ , $\overline{\beta}_{r}$ generate $\Delta_{1}$).

Therefore, for

$y_{2}=(dx_{2}+\sum_{j=1}^{l}2\pi\sqrt{-1}n_{j}h_{j})+(dx_{2}-\sum_{j=1}^{l}2\pi\sqrt{-1}n_{j}\overline{h}_{j})$ ,

we have $\beta(y_{2})=0$ for all $\beta$ in $\Delta_{1},$ $i$ . $e$ . [ $y_{2},$ $G(1$ , Ad $g_{2})$] $=0$ . But

$y_{2}=2dx_{2}+\sum_{j=1}^{l}(2\pi\sqrt{-\perp}n_{j}h_{j}-2\pi\sqrt{-1}n_{j}\overline{h}_{j})$

$=2dx_{2}+\sum_{j=1}^{l}(2\pi\sqrt{-1}n_{j}h_{j}+2\pi\sqrt{-1}n_{j}h_{j})$

lies in $G$ . Clearly $\exp y_{2}=\exp 2dx_{2}=g_{2}^{2d}$ .
We have proved already that $x_{1},$ $N\in G(1, Adg_{0})\subset G(1, Adg_{2})$ and $[x_{1}, N]$

$=0$ . So $[y_{2}, x_{1}]=0,$ $[y_{2}, N]=0$ . Therefore

$g^{2d}=g_{0^{2d}}$ . exp $2dN=g_{1}^{2Z}\cdot g_{2}^{2d}\cdot\exp$
(

$2dN=\exp 2dx_{1}\cdot\exp 2dx_{2}\cdot\exp$ 2dN

$=\exp 2dx_{1}$ . exp $y_{2}$ . exp $2dN=\exp(2dx_{1}+y_{2}+2dN)$ .
Again, if we let $p$ be the least common multiple of all such $2d$ , then for

any $g\in \mathfrak{G},$ $g^{p}$ lies on some l-parameter subgroup. Q. E. D.
REMARK. In the above proof, the number obtained is twice the number

we got for the corresponding complex case. The question arises: Is this
number best possible? If the given real semisimple Lie algebra $G$ is com-
pact, then, as is well known, $exp:G\rightarrow AdG$ is onto, and there is nothing need
to discuss. If the given $G$ is a non-compact real form of its complexification,
then there are two cases:

1. $G$ is of the first category in the sense of Gantmacher [2].

In this case, for the compact subalgebra $K$ containing $x_{2}$ obtained in the
above proof, we have a Cartan decomposition $G=K+P$. Then for the Cartan
subalgebra $H_{c}$ in the proof, we have: $\sqrt{-1}h_{\alpha}\in K$ for all $\alpha$ in $\Delta$ . ( $h_{\alpha}$ is defined
as usual by $B(h_{\alpha}, h)=\alpha(h)$ , for all $h$ in $H_{c}.$) Thus $\sqrt{-1}h_{j}\in K(j=1, \cdots , l)$ ,

$dx_{2}+\sum_{=J1}^{l}2\pi\sqrt{-1}n_{j}h_{j}\in K\subset G$ , and for $d=|$ det $(m_{ij})|,$ $ g^{f}\in$
( exp $G$ . The smallest

number which works is the same as that for the complexification. In parti-
cular, for each real simple Lie algebra of the first category, the smallest such
number is the same as that in the corresponding complex case.

2. $G$ is of the second category.

In this case, we may actually have to use twice the number we get for
its complexification. For example, in case $G_{c}$ is of tyPe $A_{n}$ , we know
$exp:G_{c}\rightarrow AdG_{c}$ is onto, but for real simple Lie algebra of tyPe $AI_{n}$ , as the
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following example shows, we need $p=2$ .
EXAMPLE. If $n$ is an odd number, the $SL(n, R)$ has trivial center, so

$SL(n, R)\cong Adsl(n, R)$ . In this case, we already know $exp:sl(n, R)\rightarrow SL(n, R)$

is not onto. For example, for $n=3$ , let $g=diag(-2,$ $-\frac{1}{2},1)$ . Then $g$ is a
semisimple regular element (in the Lie group sense, $i$ . $e$ . $G_{c}$ ( $1$ , Ad $g$) has dimen-
sion 2, which is the same as the rank of $G$) in $AdG_{c}$ . So if $g=\exp x$ for some
$x$ in $G_{c}$ , then $x$ must lie in the Cartan subalgebra containing diag $(ln2+\pi\sqrt{-1}$,
$-ln2-\pi\sqrt{-1},0),$ $i$ . $e$ . $x$ must lie in the lattice

{diag$(ln2+(2k+1)\pi V-1,$ $-ln2+(2m-1)\pi\sqrt{-1},$ $-2(k+m)\pi\sqrt{-1}):k,$ $m\in Z$ },

but clearly, this lattice has no intersection with $sl(3, R)$ .
If $n$ is even, $SL(n, R)$ has center of order 2. In case $n=2,$ $exp:sl(2, R)\rightarrow$

Ad $sl(2, R)$ is clearly onto. But when $n\geqq 4$ , this is no longer true. We con-
sider $n=4$ as an example, the discussion for general case is exactly the same.

Let $g=diag(-2,$ $--21-,$ $2,$ $\frac{1}{2})\in SL(4, R)$ , so that $g$ is semisimple and regular

in $SL(4, C)$ . Let $\Omega$ be the lattice

{diag $(2\pi\sqrt{-1}k,$ $2\pi\sqrt{-1}m,$ $2\pi\sqrt{-1}p,$ $-2\pi\sqrt{-1}(k+m+P)):k,$ $m,$ $p\in Z$}.

If $g=\exp x$ for some $x$ in $sl(4, C)$ , then

$ x\in(ln2+\pi\sqrt{-1}, -ln2-\pi\sqrt{-1}, ln2, -ln2)+\Omega$ .
Clearly, then, if Ad g$=Ad\exp x$ for some $x$ in $sl(4, C)$ , then $x$ lies either in

$(ln2+\pi\sqrt{-1}, -ln2-\pi\sqrt{-1}, ln2, -ln2)+\Omega$

or in
$(ln2, -ln2, ln2+\pi\sqrt{-1}, -ln2-\pi\sqrt{-1})+\Omega$ .

Neither of these two lattices has any intersection with $sl(4, R)$ . Thus Ad $g$

does not lie on any l-parameter subgroup of Ad $sl(4, R)$ .
This example shows that $p=2$ is the best possible number which works

for Ad $G$ when $G$ is of type $AI$ . We already know that $P=2$ (respectively,

$P=4)$ is a sufficiently large number for Ad $G$ in case $G$ is of type AII (respec-

tively, of type $BDI$), but whether it is also best possible remains an open
question. Finally if $G$ is of type $E$ (either of first category or of second cate-
gory), we can only give some lower bounds, which is similar to those listed
in 2.7.

The following is an immediate consequence of Theorem 2.
COROLLARY. Let $\mathfrak{G}$ be a connected real semisimPle Lie group with finite

center. Then we can find a positive integer $p$ such that $g^{p}$ lies on some l-para-

meter subgroup of $\mathfrak{G}$ for any $g$ in G.
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REMARKS. (1) Let $q$ be the smallest number which works for Ad $\mathfrak{G},$ $r$ be
the smallest number such that $c^{r}=1$ for any $c\in Z(\mathfrak{G})$ (such a number $r$ exists
because we assume that $Z(\mathfrak{G})$ is Pnite), then $p=qr$ is a sufficiently large num-
ber which works for $\mathfrak{G}$ , but it may not be the smallest such number. For
example, when $\mathfrak{G}=SL(n, R)$ ( $n$ is even), then $q=2,$ $r=2$ , but $p=2$ works.

(2) When $\mathfrak{G}$ has infinite center, the following example shows that there
may not exist such a $p$ at all.

EXAMPLE. Let $\mathfrak{G}$ be the universal covering group of $SL(2, R)$ , so that
$G=sl(2, R)$ ; let $\pi:\mathfrak{G}\rightarrow SL(2, R)$ be the canonical map, so that $\pi$ . exp gives the
exponential map on $SL(2, R)$ . Choose a generator $a$ of the center $Z(\mathfrak{G})\cong Z$.
First note that if $A$ is a l-parameter subgroup of $\mathfrak{G}$ passing through some
nontrivial element in $Z(\mathfrak{G})$ , then $Z(\mathfrak{G})\subset A$ (reason: $\pi(A)$ is compact, hence
conjugate to $SO(2, R),$ $i$ . $e.$ $A$ is the lifting of a maximal compact subgroup).

In particular, then, since the lifting of $SO(2, R)$ is a l-parameter subgroup
which has intersection with $Z(\mathfrak{G})$ , we can choose $x_{0}\in G$ such that $a=\exp x_{0}$ .

Let $N=(00$ $-10)\in G$ . Consider $g=a^{\tau}\cdot\exp N=\exp rx_{0}$ . exp $N$, where $r$ is a
positive integer. Suppose then that we had $g=\exp y$ for some $y\in G$ . Since $y$

can be decomposed as $y=y_{0}+N$ such that $[y_{0}, N]=0$ and $y_{0}$ is semisimple, we
would have $a^{r}=\exp y_{0}$ . The previous remark implies that $a=\exp t_{0}y_{0}$ for some
$t_{0}\in R$ . Therefore $a$ . exp $N=\exp(t_{0}y_{0}+N)$ . But it is easy to see that $\pi$ ( $ a\cdot$ exp $N$ )

$=(-10$ $-11$) does not lie on any l-parameter subgroup of $SL(2, R)$ . This

contradiction implies that, for $g_{0}=a$ .exp $N,$ $g_{0^{r}}$ does not lie on any l-parameter
subgroup of $\mathfrak{G}$ for any positive integer $r$. Q. E. D.

\S 4. A generalization.

Let $\mathfrak{G}$ be a (not necessarily connected) real or complex linear group such
that the connected component $\mathfrak{G}^{0}$ (containing the identity element) is a semi-
simple Lie group and $\mathfrak{G}/\mathfrak{G}^{0}$ is of finite order (for example, any real or com-
plex semisimple algebraic group). Then the center $Z(\mathfrak{G}^{0})$ of $\mathfrak{G}^{0}$ is finite. By
the results of sections 2 and 3, there is a positive integer $m$ such that for
any $g\in \mathfrak{G}^{0},$ $g^{m}$ lies on some l-parameter subgroup. On the other hand, since
$\mathfrak{G}/\mathfrak{G}^{0}$ is finite, we can find $k$ such that $g^{k}\in \mathfrak{G}^{0}$ for $anyg\in \mathfrak{G}$ . For $p=mk$ , then,

we have: $g^{p}$ lies on some l-parameter subgroup of $\mathfrak{G}$ for any $g\in \mathfrak{G}$ . This
also follows immediately from Goto [4] when $\mathfrak{G}$ is a complex semisimple alge-
braic group.
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Added in Proof: After this paper was submitted, the author found that
the results in section 2 can be generalized and simplified, which will appear
in a paper with title “Index of the exponential map on a complex simple Lie
group.”
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