A note on Z-product

By Syōji SAN-OU

(Received Feb. 5, 1976) (Revised May 25, 1976)

§ 1. Introduction.

Let $\{X_{\alpha}\}_{\alpha\in A}$ be a family of topological spaces. We denote the box product space by $B_{\alpha}X_{\alpha}$. For $p\in B_{\alpha}X_{\alpha}$ let \mathcal{Z}_p be the subspace $\{x\in B_{\alpha}X_{\alpha}: x_{\alpha}\neq p_{\alpha} \text{ for at most finitely many } \alpha\}$ of $B_{\alpha}X_{\alpha}$.

Recently E. K. van Douwen [4] showed \mathcal{E}_p is stratifiable if each X_{α} is a metrizable space and p is any point of $B_{\alpha}X_{\alpha}$.

In this paper we shall show the followings.

- (A) Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of metrizable spaces and p be any point of $B_{\alpha}X_{\alpha}$. Then Ξ_p is an M_1 -space (Corollary 3.3).
- (B) Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of M_2 -spaces and p be any point of $B_{\alpha}X_{\alpha}$. Then Ξ_p is an M_2 -space (Corollary 3.4).
- (C) There exists an M_1 -space X and a closed subset A of X such that (X, A) is not semi-canonical (Example 4.1).

Both (A) and (B) strengthen the theorem of E. K. van Douwen [4]. (C) shows that the Lemma of M. R. Cauty [3] is false.

Throughout of this paper all topological space are ${\it T}_{\rm 1}$ and N denote the natural numbers.

The auther thanks the referee for pointing out that (B) follows from our original version.

§ 2. Preliminaries.

The symbol $\Pi_{\alpha}X_{\alpha}$ denotes the set product of the family of the sets $\{X_{\alpha}\}_{\alpha\in A}$.

LEMMA 2.1. Let $\{X_{\alpha}\}_{\alpha\in A}$ be a family of topological spaces and let \mathfrak{P}_{α} , $\alpha\in A$, be a cushioned collection (see [3]) consisting of ordered pairs of subsets $P_{\alpha}=(P_{\alpha}^{1},P_{\alpha}^{2})$ of X_{α} . Then for any subspace Y of $B_{\alpha}X_{\alpha}$ $\{(\Pi_{\alpha}P_{\alpha}^{1}\cap Y,\Pi_{\alpha}P_{\alpha}^{2}\cap Y): P=(P_{\alpha}^{1},P_{\alpha}^{2})\in \Pi_{\alpha}\mathfrak{P}_{\alpha}\}$ is a cushioned collection of Y.

PROOF. For a given arbitrary subfamily \mathfrak{P} of $\Pi_{\alpha}\mathfrak{P}_{\alpha}$, we have to show that

$$cl_{\mathcal{V}}(\bigcup \{\Pi_{\alpha}P_{\alpha}^{1} \cap Y : P \in \mathfrak{P}\}) \subset \bigcup \{\Pi_{\alpha}P_{\alpha}^{2} \cap Y : P \in \mathfrak{P}\}$$
.

Let p be any point of $Y - \bigcup \{ \prod_{\alpha} P_{\alpha}^2 \cap Y : P \in \mathfrak{P} \}$. For any $\alpha \in A$, let

$$\mathfrak{Q}_{\alpha} = \{ P \varepsilon \mathfrak{P} : p_{\alpha} \in P_{\alpha}^2 \}$$
.

Then clearly $\mathfrak{P}=\bigcup_{\alpha}\mathfrak{Q}_{\alpha}$. For every $\alpha\in A$, let $U_{\alpha}=X_{\alpha}-cl_{X_{\alpha}}(\bigcup\{P_{\alpha}^{1}:P\in\mathfrak{Q}_{\alpha}\})$. Then U_{α} is a neighborhood, because $p_{\alpha}\in X_{\alpha}-\bigcup\{P_{\alpha}^{2}:P\in\mathfrak{Q}_{\alpha}\}$ and $cl_{X_{\alpha}}(\bigcup\{P_{\alpha}^{1}:P\in\mathfrak{Q}_{\alpha}\})$ $\subset\bigcup\{P_{\alpha}^{2}:P\in\mathfrak{Q}_{\alpha}\}$.

So $U=\Pi_{\alpha}U_{\alpha}$ is a neighborhood of p. Since $\mathfrak{P}=\bigcup_{\alpha}\mathfrak{Q}_{\alpha}$, $U\cap\bigcup\{\Pi_{\alpha}P_{\alpha}^{1}\cap Y:P\in\mathfrak{P}\}=\emptyset$. This completes the proof.

For a *closure preserving* collection (see [3]), the lemma does not generally holded (see Example 2.3). We have to restrict to a subspace Y of the following special type.

Let $\{X_{\alpha}\}_{\alpha\in A}$ be a family of topological spaces, $p\in B_{\alpha}X_{\alpha}$ and λ any infinite cardinal number. We denote by $\mathcal{Z}_p(\lambda)$ the subspace $\{x\in B_{\alpha}X_{\alpha}: \text{ cardinality of } \{\alpha\in A: x_{\alpha}\neq p_{\alpha}\}$ is less than $\lambda\}$. Clearly $\mathcal{Z}_p=\mathcal{Z}_p(\aleph_0)$.

LEMMA 2.2. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of topological spaces and for all ${\alpha}\in A$ let \mathfrak{V}_{α} be a closure preserving collection of X_{α} . Then for any ${\mathfrak{p}}\in B_{\alpha}X_{\alpha}$ and any infinite cardinal number ${\lambda}$, $\{\Pi_{\alpha}V_{\alpha}\cap \Xi_p({\lambda}): (V_{\alpha})_{{\alpha}\in A}\in \Pi_{\alpha}\mathfrak{V}_{\alpha}\}$ is a closure preserving collection of $\Xi_p({\lambda})$.

PROOF. For all $V = (V_{\alpha})_{\alpha \in A} \in \Pi_{\alpha} \mathfrak{B}_{\alpha}$, let $A(V) = \{\alpha \in A : p_{\alpha} \in V_{\alpha}\}$.

Then it is easy to show the followings.

- (1) If $\Pi_{\alpha}V_{\alpha} \cap \Xi_{p}(\lambda) \neq \emptyset$, then cardinality of $A((V_{\alpha})_{\alpha \in A})$ is less than λ .
- (2) $\Xi_p(\lambda)$ is a closed subspace of $B_{\alpha}X_{\alpha}$.

Let $\mathfrak{B}_0 = \{ V = (V_\alpha)_{\alpha \in A} \in \Pi_\alpha V_\alpha : \Pi_\alpha V_\alpha \cap \Xi_p(\lambda) \neq 0 \}$. We have to show that

$$\{\Pi_{\alpha}V_{\alpha} \cap \Xi_{p}(\lambda) : V = (V_{\alpha})_{\alpha \in A} \in \mathfrak{Y}_{0}\}$$

is a closure preserving collection of $\mathcal{Z}_p(\lambda)$. For this end, we have to show

$$cl(\bigcup \{\Pi_{\alpha}V_{\alpha} \cap \Xi_{p}(\lambda) : V \in \mathfrak{V}\}) \subset \bigcup \{cl(\Pi_{\alpha}V_{\alpha} \cap \Xi_{p}(\lambda)) : V \in \mathfrak{V}\}$$

for any subcollection \mathfrak{V} of \mathfrak{V}_0 (by (2), we may consider that the closure is taken in $B_{\alpha}X_{\alpha}$).

Let q be any point of $\mathcal{Z}_p(\lambda) - \bigcup \{ cl(\Pi_\alpha V_\alpha \cap \mathcal{Z}_p(\lambda)) : V \in \mathfrak{B} \}$. For $\alpha \in A$, let

$$\mathfrak{W}_{\alpha} = \{ V \in \mathfrak{V} : q_{\alpha} \in clV_{\alpha} \}$$
.

Then we have $\mathfrak{V} = \bigcup_{\alpha} \mathfrak{W}_{\alpha}$. Because, assume $V \in \mathfrak{V} - \bigcup_{\alpha} \mathfrak{W}_{\alpha}$ and put

$$B = \{\alpha \in A : q_{\alpha} \neq p_{\alpha}\} \cup A(V)$$
.

By (1), cardinality of B is less than λ and hence

$$q \in \Pi_{\alpha \in B} clV_{\alpha} \times \Pi_{\alpha \in A-B} \{p_{\alpha}\} = cl(\Pi_{\alpha \in B} V_{\alpha} \times \Pi_{\alpha \in A-B} \{p_{\alpha}\}) \subset cl(\Pi_{\alpha} V_{\alpha} \cap \mathcal{Z}_{p}(\lambda)).$$

But this is absurd. Now, for each $\alpha \in A$, let $U_{\alpha} = X_{\alpha} - cl(\bigcup \{V_{\alpha} : V \in \mathfrak{B}_{\alpha}\})$. Then $U = \Pi_{\alpha}U_{\alpha}$ is a neighborhood of q and $U \cap \bigcup \{\Pi_{\alpha}V_{\alpha} \cap \Xi_{p}(\lambda) : V \in \mathfrak{B}\} = \emptyset$. This completes the proof.

Example 2.3. There is a space X and a closed subspace A of X and there

exists a closure preserving open collection \mathfrak{V} of X such that $\{V \cap A : V \in \mathfrak{V}\}$ is not a closure preserving collection of A.

Let I be the unit interval. We denote by X the quotient space obtained from the product $I \times N$ by identifying $\{0\} \times N$ to a point (denoted by *). Give X a natural metric topology. Finally let $A = \{*\} \cup \{1/n, n\} : n \in N\}$ and

$$\mathfrak{V} = \{ \{ x : 0 < x \le 1 \} \times \{ n \} : n \in \mathbb{N} \} .$$

Then A and \mathfrak{V} have desired properties.

§ 3. M_i -spaces (i=1, 2, 3).

We investigate the space \mathcal{E}_p in case each X_α is an M_i -space (i=1, 2, 3). See [1] and [2] for M_i -spaces, i=1, 2, 3, or stratifiable spaces.

THEOREM 3.1. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of M_1 (resp. M_2)-spaces and p be a point of $B_{\alpha}X_{\alpha}$. If for each ${\alpha}\in A$ p_{α} has a closure preserving local open neighborhood base (resp. local neighborhood base), then Ξ_p is an M_1 (resp. M_2)-space.

PROOF. \mathcal{Z}_p is clearly a regular space. We have to show that \mathcal{Z}_p has a σ -closure preserving base (resp. quasi-base).

From the hypothesis of the theorem, X_α has a σ -closure preserving base (resp. quasi-base) $\bigcup_{n\in N}\mathfrak{B}_n^\alpha$ such that

- (1) \mathfrak{B}_n^a is closure preserving for each $n \in \mathbb{N}$.
- (2) \mathfrak{B}_n^{α} contains a local open neighborhood base (resp. local neighborhood base) of p_{α} .

Furthermore we can assume

(3) $\mathfrak{B}_n^{\alpha} \subset \mathfrak{B}_{n+1}^{\alpha}$ for each $n \in \mathbb{N}$.

Now we let

$$\mathfrak{B}_n = \{ \Pi_{\alpha} V_{\alpha} \cap \Xi_p : (V_{\alpha})_{\alpha \in A} \in \Pi_{\alpha} \mathfrak{B}_n^{\alpha} \}$$
.

Then by (1) and the lemma 2.2, \mathfrak{B}_n is a closure preserving collection of \mathcal{Z}_p . By (2) and (3), it is easy to show that $\bigcup_{n\in N}\mathfrak{B}_n$ is a base (resp. quasi-base) of \mathcal{Z}_p . This completes the proof.

COROLLARY 3.2. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of first countable M_1 -spaces. Then Ξ_p is an M_1 -space for any $p\in B_{\alpha}X_{\alpha}$.

PROOF. Each point p_{α} has a decreasing countable open neighborhood base. This collection is clearly closure preserving. Hence the corollary follows from Theorem 3.1.

COROLLARY 3.3. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of metrizable spaces and p be any point of $B_{\alpha}X_{\alpha}$. Then Ξ_p is an M_1 -space.

COROLLARY 3.4. Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of M_2 -spaces and ${\beta}$ be any point of $B_{\alpha}X_{\alpha}$. Then ${\mathcal Z}_p$ is an M_2 -space.

PROOF. This follows from Theorem 3.1 and Lemma 7.3 of [3].

284 S. San-ou

It is open whether \mathcal{Z}_p is an M_1 -space if each X_α is M_1 , more precisely, whether each point of an M_1 -space has a closure preserving local open neighborhood base or not.

In the paper of [4], E. K. van Douwen questioned whether \mathcal{Z}_p is stratifiable if X_{α} 's are stratifiable. Quite recently, C. J. R. Borges has announced that this result is true in Notice Amer. Math. Soc. 22 (1975). We can give this proof by a similar way to the proof of (A) and (B) as follows.

Lemma 3.5. Let X be a stratifiable space and A be a closed subset of X. Then there exists a stratification ([1]) H of X such that

- (1) $H(O, n) \subset H(O, n+1)$ for each open subset O and each $n \in \mathbb{N}$.
- (2) $A \subset H(O, 1)$ if $A \subset O$.

PROOF. Let K be a stratification of X and by the Theorem 2.5 of [5], G be a monotone normality operator for X.

If
$$A \subset O$$
, let $H(O, n) = \bigcup_{i=1}^{n} K(O, i)$ for each $n \in N$.

If $A \subset O$, we define inductively as follows.

$$H(O, 1) = G(A \cup cl(K(O, 1), X - O))$$

and

$$H(O, n+1) = G(cl(H(O, n) \cup \bigcup_{i=1}^{n+1} K(O, i)), X-O)$$

for each $n \in \mathbb{N}$.

Then H is a stratification satisfying the required condition. This completes the proof.

THEOREM 3.6 (C. J. R. Borges). Let $\{X_{\alpha}\}_{{\alpha}\in A}$ be a family of stratifiable spaces and p be any point of $B_{\alpha}X_{\alpha}$. Then Ξ_p is a stratifiable space.

PROOF. We have to show that \mathcal{Z}_p has a σ -cushioned pair-base. For each $\alpha \in A$, by Lemma 3.5, choose a stratification H_{α} of X_{α} such that

- (1) $H_{\alpha}(O, n) \subset H_{\alpha}(O, n+1)$ for each open set O in X_{α} and $n \in \mathbb{N}$.
- (2) If $p_{\alpha} \in O$ then $p_{\alpha} \in H_{\alpha}(O, 1)$.

Let \mathfrak{T}_{α} be the set of all open subsets of X_{α} . For each $n \in N$ and each $O = (O_{\alpha})_{\alpha \in A} \in \Pi_{\alpha} \mathfrak{T}_{\alpha}$, let $P_n(O) = \Pi_{\alpha} H_{\alpha}(O_{\alpha}, n) \cap \mathcal{E}_p$, $P(O) = \Pi_{\alpha} O_{\alpha} \cap \mathcal{E}_p$ and

$$\mathfrak{P}_n(O) = (P_n(O), P(O))$$
.

Then, by Lemma 3.5. $\mathfrak{P}_n = {\{\mathfrak{P}_n(O) : O \in \Pi_{\alpha}\mathfrak{T}_o\}}$ forms a cushioned collection of \mathcal{E}_p . It is easy to show that $\bigcup_{n \in \mathbb{N}} \mathfrak{P}_n$ is a pair-base of \mathcal{E}_p . This completes the proof.

\S 4. Semi-canonical pair (X, A).

A pair (X, A) is said to be *semi-canonical* (see [3]) if A is a closed subset of X and there exists an open cover \mathfrak{W} of X-A satisfying the following

condition, for any point a of A and any neighborhood V of a in X, there is a neighborhood U in X such that if $U \cap W \neq \emptyset$ for $W \in \mathfrak{M}$, $W \subset V$.

Example 4.1. There exists an M_1 -space X and a closed subset A of X such that (X, A) is not semi-canonical.

Let $Y=B_{n\in\mathbb{N}}Q_n$ where $Q_n=\{\text{rationals}\}$ with usual topology.

Let $p \in Y$ be the point whose coordinates are 0 and let $X = \mathcal{Z}_p$ and $A = \{p\}$. We shall show that for any open cover \mathfrak{W} of X - A there is a neighborhood V of p such that for any neighborhood U of p, there exists $W \in \mathfrak{W}$ satisfying $U \cap W \neq \emptyset$ and $W \subseteq V$.

Since X-A is a countable set, we let

$$X-A=\{x(n)\}_{n\in\mathbb{N}}$$
 and $x(n)=(x_k(n))_{k\in\mathbb{N}}\in B_{n\in\mathbb{N}}Q_n$.

Let \mathfrak{W} be any open cover of X-A. Then we can choose a sequence $\{e_k(n)\}_{k\in\mathbb{N}}$ of positive numbers and an element $W_n\in\mathfrak{W}$ such that

$$x(n) \in \{x \in X : |x_k - x_k(n)| < e_k(n) \text{ for each } k \in N\} \subset W_n$$
.

Without loss of generality we can assume

(1) $e_n(n) < |x_n(n)|$ if $x_n(n) \neq 0$.

Let $V = \{x \in X : |x_k| < (1/2)e_k(k) \text{ for each } k \in N\}$, then V is a neighborhood of p, then there is an $n \in N$ such that

(2) $x(n) \in V \cap U$, since p is not an isolated point of X.

Let us show that $x_n(n)=0$. Because, assume $x_n(n)\neq 0$, then (2) implies $|x_n(n)|<(1/2)e_n(n)$, and (1) implies $|x_n(n)|>e_n(n)$. This is absurd. Now, we choose a rational number r such that $(1/2)e_n(n)< r< e_n(n)$ and let $z\in X$ be a point defined as follows

$$z_k = \begin{cases} x_k(n) & \text{if } k \neq n \\ r & \text{if } k = n. \end{cases}$$

Then, clearly $x_n(n) \in U \cap W_n$ and $z \in W_n - V$. This completes the proof.

References

- [1] C. J. R. Borges, On stratifiable spaces, Pacific J. Math., 17 (1966), 1-16.
- [2] M. R. Cauty, Une generalisation du theorem Borsuk-Whitehead-Hanner aux espaces stratifiables, C. R. Acad. Soc. Paris, t., 275 (24 jullet 1972), 271-274.
- [3] J.G. Ceder, Some generalizations of metric spaces, Pacific J. Math., 11 (1961), 105-126.
- [4] E.K. van Douwen, The box product of countably many metrizable spaces need not be normal, Fund. Math., 88 (1975), 127-132.
- [5] R.W. Heath, D.J. Lutzer and P.L. Zenor, Monotonically normal spaces, Trans. Amer. Math. Soc., 178 (1973), 481-493.

Syōji SAN-OU 4-4-26 Rakurakuen Itsukaichi-machi, Saiki-gun Hiroshima, Japan