Unbounded representations of symmetric *-algebras

By Atsushi INOUE

(Received July 8, 1975) (Revised July 7, 1976)

§1. Introduction.

In [16], R. T. Powers began studying a representation of a *-algebra as an algebra of unbounded operators on a Hilbert space. A class of symmetric unbounded operator algebras (called symmetric #-algebras, EC^* -algebras, EW^* algebras, EC^* -algebras and EW^* -algebras) have been studied by P.G. Dixon [3, 4], the author [9, 10, 11, 12] and others.

In this paper we shall study unbounded representations of symmetric *algebras. Let A be a symmetric *-algebra and let π be a representation of A on a Hilbert space \mathfrak{H} . Then we divide π into the following three types. If $\pi(x)$ is a bounded operator for all $x \in A$, then π is called a bounded representation. If π is unitarily equivalent to the direct sum of bounded representations of A, then π is called a weakly unbounded representation of A. If π has not any bounded subrepresentation of π , then π is called a strictly unbounded representation. In § 3 we obtain the following theorems.

THEOREM 3.11. If π is closed, then it is unitarily equivalent to the direct sum of strongly cyclic closed representations.

THEOREM 3.13. If π is closed, then there are a weakly unbounded closed representation π_1 of A and a strictly unbounded closed representation π_2 of A such that π is unitarily equivalent to the direct sum of π_1 and π_2 .

In §4, we shall consider the relation of positive linear functionals and representations. Let f be a positive linear functional on A. By Gelfand-Segal construction there is a strongly cyclic closed representation π_f of A on a Hilbert space \mathfrak{H}_f with a strongly cyclic vector ξ_f such that $f(x) = (\pi_f(x)\xi_f|\xi_f)$ for all $x \in A$. We divide f into the following three types. An f is said to be relatively bounded if π_f is bounded. An f is said to be approximately relatively bounded if an f is contained in the weak closure of $\{g; f \ge g \ge 0 \text{ and } g \text{ is relatively bounded}\}$. An f is said to be strictly relatively unbounded if there is not any non-zero positive linear functional g such that $f \ge g$ and g is relatively bounded. The primary purpose of this section is to show the following two theorems.

• THEOREM 4.4. There exists a decomposition of f such that $f=f_1+f_2, f_1$ is

approximately relatively bounded and f_2 is strictly relatively unbounded.

THEOREM 4.5. f is relatively bounded (resp. approximately relatively bounded, strictly relatively unbounded) if and only if π_f is bounded (resp. weakly unbounded, strictly unbounded).

The author would like to thank Prof. Dr. R. T. Powers for giving him the basic ideas in [16].

§ 2. Preliminaries.

We begin with some basic terminology.

A *-algebra is an algebra A over the complex field \mathfrak{E} with an involution * satisfying the usual axioms;

- (1) $(\lambda x + \mu y)^* = \overline{\lambda} x^* + \overline{\mu} y^* \quad (x, y \in A; \lambda, \mu \in \mathfrak{G}),$
- (2) $(xy)^* = y^*x^* \quad (x, y \in A),$

$$(3) x^{**} = x (x \in A).$$

An element x of A is called hermitian if $x^*=x$. The set of all hermitian elements of A is denoted by A_h .

DEFINITION 2.1. Let A be a *-algebra with identity e. If, for every $x \in A$, $(e+x^*x)^{-1}$ exists in A, then A is said to be symmetric.

If S and T are linear operators on a Hilbert space \mathfrak{F} with domains $\mathfrak{D}(S)$ and $\mathfrak{D}(T)$ we say S is an extension of T, denoted by $S \supset T$, if $\mathfrak{D}(S) \supset \mathfrak{D}(T)$ and $S\xi = T\xi$ for all $\xi \in \mathfrak{D}(T)$. If S is a closable operator we denote by \overline{S} the smallest closed extension of S. Let \mathfrak{A} be a set of closable operators on \mathfrak{F} . Then we set

$$\bar{\mathfrak{A}} = \{ \bar{S} ; S \in \mathfrak{A} \} .$$

If S is a linear operator with dense domain $\mathfrak{D}(S) \subset \mathfrak{H}$ we denote by S^* the hermitian adjoint of S. S^* is always a closed operator. However, the domain $\mathfrak{D}(S^*)$ may not be dense in \mathfrak{H} . In fact, S is closable if and only if $\mathfrak{D}(S^*)$ is dense in \mathfrak{H} and if $\mathfrak{D}(S^*)$ is dense in \mathfrak{H} then $\overline{S}=S^{**}$. Let S, T be closed operators on \mathfrak{H} . If S+T is closable, then $\overline{S+T}$ is called the strong sum of S and T, and is denoted S+T. The strong product is likewise defined to be \overline{ST} if it exists, and is denoted $S \cdot T$. The strong scalar multiplication $\lambda \in \mathfrak{E}$ and S is defined by $\lambda \cdot S = \lambda S$ if $\lambda \neq 0$, and $\lambda \cdot S = 0$ if $\lambda = 0$.

Let \mathfrak{D} be a pre-Hilbert space with an inner product (|) and let \mathfrak{H} be the completion of \mathfrak{D} . We denote by $\mathfrak{L}(\mathfrak{D})$ the set of all linear operators on \mathfrak{D} . A subalgebra \mathfrak{A} of $\mathfrak{L}(\mathfrak{D})$ is called a #-algebra on \mathfrak{D} if there exists an involution $S \rightarrow S^{*}$ on \mathfrak{A} satisfying

$$(S\xi|\eta) = (\xi|S^*\eta)$$

for all $S \in \mathfrak{A}$ and $\xi, \eta \in \mathfrak{D}$. Let \mathfrak{A} be a #-algebra on \mathfrak{D} and let $\mathfrak{B}(\mathfrak{H})$ be the set

of all bounded linear operators on \mathfrak{H} . We set

$$\mathfrak{A}_b = \{S \in \mathfrak{A}; \overline{S} \in \mathfrak{B}(\mathfrak{H})\}$$
.

DEFINITION 2.2. Let \mathfrak{A} be a \sharp -algebra on \mathfrak{D} with an identity operator I. If $(I+S^*S)^{-1}$ exists and lies in \mathfrak{A}_b for all $S \in \mathfrak{A}$, then \mathfrak{A} is called a symmetric \sharp -algebra on \mathfrak{D} . Let \mathfrak{A} be a symmetric \sharp -algebra on \mathfrak{D} . If \mathfrak{A}_b is a C^* -algebra (resp. W^* -algebra), then \mathfrak{A} is said to be an EC^* -algebra (resp. EW^* -algebra). In particular, a symmetric \sharp -algebra (resp. EC^* -algebra, EW^* -algebra) \mathfrak{A} is said to be pure if $\mathfrak{A} \neq \mathfrak{A}_b$.

These algebras are examples of symmetric *-algebras and are of frequent occurrence in functional analysis. In fact, in [11] we have showed that if a maximal Hilbert algebra is not a Hilbert space then there necessarily exist pure EW^* -algebras.

For a more complete discussion of the basic properties of unbounded operator algebras the reader is referred to [9, 10, 11, 12].

§ 3. Representations of symmetric *-algebras.

In this paper let A be a symmetric *-algebra with identity e.

DEFINITION 3.1. We call π a representation of A on a Hilbert space \mathfrak{F} with domain $\mathfrak{D}(\pi)$ if $\mathfrak{D}(\pi)$ is a dense subspace of \mathfrak{F} and π is a homomorphism of A onto a #-algebra on $\mathfrak{D}(\pi)$. That is,

(1)
$$\pi(A) \subset \mathfrak{L}(\mathfrak{D}(\pi)),$$

(2)
$$\pi(\lambda x + \mu y) = \lambda \pi(x) + \mu \pi(y) \quad (x, y \in A; \lambda, \mu \in \mathfrak{G}),$$

(3)
$$\pi(xy) = \pi(x)\pi(y) \quad (x, y \in A),$$

(4)
$$\pi(x^*) = \pi(x)^* \quad (x \in A).$$

LEMMA 3.2. Let π be a representation of A on a Hilbert space §. Then $\pi(A)$ is a symmetric #-algebra on $\mathfrak{D}(\pi)$.

PROOF. For every $x \in A$ we have $I + \pi(x)^* \pi(x) = \pi(e + x^*x)$ and since A is symmetric, $(I + \pi(x)^* \pi(x))^{-1}$ exists and equals $\pi((e + x^*x)^{-1})$. Hence we have only to show $(\overline{I + \pi(x)^* \pi(x)})^{-1} \in \mathfrak{B}(\mathfrak{H})$. In fact, $\overline{\pi(x)}$ is a closed operator, and so $(\overline{I + \pi(x)^* \pi(x)})^{-1} \in \mathfrak{B}(\mathfrak{H})$. It is easy to show

$$(\overline{I} + \overline{\pi(x)} * \overline{\pi(x)})^{-1} / \mathfrak{D}(\pi) = (I + \pi(x) * \pi(x))^{-1},$$

where $S/\mathfrak{D}(\pi)$ denotes the restriction of an operator S onto $\mathfrak{D}(\pi)$. Therefore we have $(\overline{I+\pi(x)^*\pi(x)})^{-1} = (I+\overline{\pi(x)}^*\overline{\pi(x)})^{-1}$.

LEMMA 3.3. Let π be a representation of A on a Hilbert space \mathfrak{H} . Then

$$\overline{\pi(x)} + \overline{\pi(y)} = \overline{\pi(x+y)}, \quad \overline{\pi(x)} \cdot \overline{\pi(y)} = \overline{\pi(xy)},$$

A. INOUE

$$\lambda \cdot \overline{\pi(x)} = \overline{\pi(\lambda x)}, \quad \overline{\pi(x)}^* = \overline{\pi(x^*)},$$

for all $x, y \in A$ and $\lambda \in \mathfrak{E}$. Therefore $\overline{\pi(A)}$ is a *-algebra of closed operators under the operations of strong sum, strong product, adjoint and strong scalar multiplication. Furthermore, $(\overline{I} + \overline{\pi(x)} * \overline{\pi(x)})^{-1}$ exists and lies in $\overline{\pi(A)}_b$ for every $x \in A$.

PROOF. This follows from Lemma 3.2 and ([9] Theorem 2.3).

Let π be a representation of A on a Hilbert space \mathfrak{G} with domain $\mathfrak{D}(\pi)$. Then there is a natural induced topology τ_0 on $\mathfrak{D}(\pi)$. This topology is defined as follows. Suppose S is a finite subset of A. We define the seminorm $|| ||_S$ on $\mathfrak{D}(\pi)$ as

$$\|\xi\|_{S} = \sum_{x \in S} \|\pi(x)\xi\|$$
,

where $||\xi||$ is the Hilbert space norm of ξ . We define the induced topology on $\mathfrak{D}(\pi)$ as the topology generated by the seminorms $\{|| ||_{\mathcal{S}}; S \text{ is a finite subset of } A\}$.

DEFINITION 3.4. Let π be a representation of A on a Hilbert space \mathfrak{D} with domain $\mathfrak{D}(\pi)$. If $(\mathfrak{D}(\pi); \tau_0)$ is complete, then π is said to be closed.

LEMMA 3.5. If π is a closed representation of A on a Hilbert space \mathfrak{H} , then we have

$$\mathfrak{D}(\pi) = \bigcap_{x \in A} \mathfrak{D}(\overline{\pi(x)}) = \bigcap_{x \in A} \mathfrak{D}(\pi(x)^*).$$

PROOF. This follows from Lemma 3.3 and ([16] Lemma 2.6).

In this section let π be a closed representation of A on a Hilbert space $\mathfrak{D}(\pi)$.

DEFINITION 3.6. The commutant of $\pi(A)$, denoted by $\pi(A)'$, consists of all bounded operators C on \mathfrak{F} such that

$$(C\pi(x)\xi | \eta) = (C\xi | \pi(x^*)\eta)$$

for all ξ , $\eta \in \mathfrak{D}(\pi)$ and $x \in A$.

LEMMA 3.7. The commutant $\pi(A)'$ is a von Neumann algebra. Furthermore, for each $C \in \pi(A)'$ we have

 $C\mathfrak{D}(\pi) \subset \mathfrak{D}(\pi)$ and $C\pi(x)\xi = \pi(x)C\xi$

for all $x \in A$ and $\xi \in \mathfrak{D}(\pi)$.

PROOF. This follows from Lemma 3.5 and ([16] Lemma 4.6).

DEFINITION 3.8. A vector $\xi \in \mathfrak{D}(\pi)$ is said to be strongly cyclic if $\{\pi(A)\xi\}$ is dense in $(\mathfrak{D}(\pi); \tau_0)$. If π has a strongly cyclic vector, then it is said to be strongly cyclic.

Let \mathfrak{M} be a linear subspace of $\mathfrak{D}(\pi)$. If $\pi(x)\mathfrak{M}\subset\mathfrak{M}$ for all $x\in A$, then \mathfrak{M} is said to be π -invariant. We denote by $\overline{\mathfrak{M}}$ (resp. \mathfrak{M}^-) the closure of \mathfrak{M} under the Hilbert space norm (resp. the induced topology τ_0). If $\mathfrak{M}=\overline{\mathfrak{M}}$ (resp. $\mathfrak{M}=\mathfrak{M}^-$),

then \mathfrak{M} is said to be closed (resp. τ_0 -closed). We denote by π/\mathfrak{M} the representation π restricted to \mathfrak{M} . If \mathfrak{M} is a τ_0 -closed π -invariant subspace of $\mathfrak{D}(\pi)$, then

 π/\mathfrak{M} is a closed representation of A on \mathfrak{M} .

After a slight modification of Powers' ([16] Theorem 4.7), we have the following theorem.

THEOREM 3.9. Let $\pi(A)'_p$ denote the set of all projections in $\pi(A)'$.

- (1) Suppose $E \in \pi(A)'_p$. Then $\mathfrak{M} = E\mathfrak{D}(\pi)$ is a π -invariant τ_0 -closed subspace of $\mathfrak{D}(\pi)$.
- (2) Conversely suppose that \mathfrak{M} is a π -invariant τ_0 -closed subspace of $\mathfrak{D}(\pi)$. Then the projection $E_{\mathfrak{M}}$ onto \mathfrak{M} is in $\pi(A)'$.

Hence there is a one-to-one correspondence between projections in $\pi(A)'$ and π -invariant τ_0 -closed subspaces of $\mathfrak{D}(\pi)$.

DEFINITION 3.10. We call π_1 a subrepresentation of π if there is a π -invariant τ_0 -closed subspace \mathfrak{M} of $\mathfrak{D}(\pi)$ such that $\pi_1 = \pi/\mathfrak{M}$, and is denoted by $\pi_{\mathfrak{M}}$ or $\pi_{E_{\mathfrak{M}}}$.

It is easily showed that $\pi_{\mathfrak{M}}$ is a closed representation of A on \mathfrak{M} with domain \mathfrak{M} .

We define the direct sum of representations of A. Suppose that $\{\pi_{\alpha}; \alpha \in A\}$ is a collection of closed representations π_{α} of A on Hilbert spaces \mathfrak{H}_{α} . We denote the direct sum of these representations by $\rho = \bigoplus_{\alpha \in A} \pi_{\alpha}$ and define ρ as follows. Let $\mathfrak{H} = \bigoplus_{\alpha \in A} \mathfrak{H}_{\alpha}$ be the direct sum of \mathfrak{H}_{α} and let

$$\mathfrak{D}(\rho) = \{ \xi = \{ \xi_{\alpha} \} \in \mathfrak{H} ; \ \xi_{\alpha} \in \mathfrak{D}(\pi_{\alpha}) \quad \text{for all } \alpha \in \Lambda \\ \text{and} \sum_{\alpha \in \Lambda} \| \pi_{\alpha}(x) \xi_{\alpha} \|^{2} < \infty \quad \text{for all } x \in \Lambda \} .$$

We define $\rho(x)\xi = \rho(x)\{\xi_{\alpha}\} = \{\pi_{\alpha}(x)\xi_{\alpha}\}$ for all $\xi = \{\xi_{\alpha}\} \in \mathfrak{D}(\rho)$ and $x \in A$. It is easily seen that ρ is a closed representation of A on \mathfrak{H} with domain $\mathfrak{D}(\rho)$.

Let π' be a representation of A on a Hilbert space \mathfrak{H}' . If there exists a unitary transform U of \mathfrak{H}' onto \mathfrak{H} such that $U\mathfrak{D}(\pi')=\mathfrak{D}(\pi)$ and $\pi(x)U\xi=U\pi'(x)\xi$ for all $x \in A$ and $\xi \in \mathfrak{D}(\pi')$, then π and π' are said to be unitarily equivalent, and are denoted by $\pi \cong \pi'$.

THEOREM 3.11. The π is unitarily equivalent to the direct sum of strongly cyclic closed representation.

PROOF. Let ξ_0 be a non-zero vector in $\mathfrak{D}(\pi)$ and $\mathfrak{M}_0 = \{\pi(A)\xi_0\}$. Then $\mathfrak{M}_0^$ is a π -invariant τ_0 -closed subspace of $\mathfrak{D}(\pi)$. From Theorem 3.9, $E_0 = E_{\overline{\mathfrak{M}}_0} \in \pi(A)'$ and $\mathfrak{M}_0^- = E_0 \mathfrak{D}(\pi)$. If $E_0 = I$, then π is strongly cyclic. Suppose $E_0 \neq I$. Since $(I - E_0) \in \pi(A)'_p$ and Lemma 3.7, $(I - E_0)\mathfrak{D}(\pi) \subset \mathfrak{D}(\pi)$. From the density of $\mathfrak{D}(\pi)$ in \mathfrak{H} , there exists a non-zero vector $\xi_1 \in \mathfrak{D}(\pi)$ such that $\xi_1 \in \overline{\mathfrak{M}}_0^{*1} = \mathfrak{H} - \overline{\mathfrak{M}}_0$. Now we consider $\mathfrak{M}_1 = \{\pi(A)\xi_1\}$. Since $(\pi(x)\xi_0 | \pi(y)\xi_1) = (\pi(y^*x)\xi_0 | \xi_1) = 0$ for all $x, y \in A$, we have $\overline{\mathfrak{M}}_0 \perp \overline{\mathfrak{M}}_1$. Thus, by Zorn's lemma, there is a maximal family $\{\mathfrak{M}_{\alpha}\}_{\alpha \in A}$ $(\mathfrak{M}_{\alpha} = \{\pi(A)\xi_{\alpha}\}, \xi_{\alpha} \in \mathfrak{D}(\pi))$ such that $\overline{\mathfrak{M}}_{\alpha} \perp \overline{\mathfrak{M}}_{\beta}$ for $\alpha \neq \beta$. Putting $E_{\alpha} = E_{\overline{\mathfrak{M}}_{\alpha}}$ and $\pi_{\alpha} = \pi_{E_{\alpha}}, \pi_{\alpha}$ is a strongly cyclic closed representation of A on $\overline{\mathfrak{M}}_{\alpha}$ with $\mathfrak{D}(\pi_{\alpha}) = \mathfrak{M}_{\alpha}^-$. We set

$$\mathfrak{Y}' = \bigoplus_{\alpha \in \Lambda} \overline{\mathfrak{M}}_{\alpha} \quad \text{and} \quad \pi' = \bigoplus_{\alpha \in \Lambda} \pi_{\alpha}.$$

Since the subspaces \mathfrak{M}_{α} are pairwise orthogonal in \mathfrak{H} , the series $\sum_{\alpha} \zeta_{\alpha}$ converges to an element of \mathfrak{H} for each $\{\zeta_{\alpha}\} \in \mathfrak{H}'$. Therefore, $\{\zeta_{\alpha}\} \to \sum_{\alpha} \zeta_{\alpha}$ is a unitary transform U of \mathfrak{H}' into \mathfrak{H} . Furthermore, we have $U\mathfrak{D}(\pi') = \mathfrak{D}(\pi)$. In fact, from the definition of $\mathfrak{D}(\pi')$ we can easily show $U\mathfrak{D}(\pi') \subset \mathfrak{D}(\pi)$. On the other hand, by the maximality of $\{\mathfrak{M}_{\alpha}\}_{\alpha \in A}$ we have $\sum_{\alpha \in A} E_{\alpha} = I$. For each $\xi \in \mathfrak{D}(\pi)$ we have $\xi = \sum_{\alpha} E_{\alpha}\xi, E_{\alpha}\xi \in \mathfrak{M}_{\alpha}^{-} = \mathfrak{D}(\pi_{\alpha})$ and $\sum_{\alpha \in A} \|\pi_{\alpha}(x)E_{\alpha}\xi\|^{2} = \sum_{\alpha \in A} \|\pi(x)E_{\alpha}\xi\|^{2} = \|\pi(x)\xi\|^{2}$. Therefore, $\{E_{\alpha}\xi\} \in \mathfrak{D}(\pi')$ and $\xi = \sum_{\alpha} E_{\alpha}\xi = U\{E_{\alpha}\xi\}$. Hence, $\mathfrak{D}(\pi) \subset U\mathfrak{D}(\pi')$. Thus we have $\mathfrak{D}(\pi) = U\mathfrak{D}(\pi')$. Since $\mathfrak{D}(\pi)$ and $\mathfrak{D}(\pi')$ are dense in \mathfrak{H} and \mathfrak{H}' respectively, U is extended to a unitary transform of \mathfrak{H}' onto \mathfrak{H} . Furthermore, we have

$$U\pi'(x)\{\zeta_{\alpha}\} = U\{\pi_{\alpha}(x)\zeta_{\alpha}\} = \sum_{\alpha}\pi_{\alpha}(x)\zeta_{\alpha}$$

and

$$\pi(x)U\{\zeta_{\alpha}\} = \pi(x)\sum_{\alpha}\zeta_{\alpha} = \sum_{\alpha}\pi_{\alpha}(x)\zeta_{\alpha}$$

for all $x \in A$ and $\{\zeta_{\alpha}\} \in \mathfrak{D}(\pi')$. Hence π and π' are unitarily equivalent.

DEFINITION 3.12. If $\pi(x)$ is a bounded operator for all $x \in A$, then π is said to be bounded. If π is unitarily equivalent to the direct sum of bounded representations of A, then π is said to be weakly unbounded. If π has not any bounded subrepresentation of π , then π is said to be strictly unbounded.

If π is a bounded representation of A, then $\pi(A)$ is a Banach *-algebra under the uniform topology. If π is a weakly unbounded representation of A, then $\pi(A)$ is an LMC *-algebra defined by E. A. Michael [14]. (He defined an LMC *-algebra to be a *-algebra with a locally convex topology given by a family of seminorms $\{P_{\lambda}\}_{\lambda \in A}$ satisfying the conditions; $P_{\lambda}(xy) \leq P_{\lambda}(x)P_{\lambda}(y)$ and $P_{\lambda}(x^*) = P_{\lambda}(x)$.) In fact, let $\pi = \bigoplus_{\alpha \in A} \pi_{\alpha}$, where π_{α} is a bounded representation of A on \mathfrak{H}_{α} for every $\alpha \in \Lambda$. We set

$$\|\pi(x)\|_{\alpha} = \|\pi_{\alpha}(x)\|, \qquad x \in A,$$

where $||\pi_{\alpha}(x)||$ denotes the operator norm of $\pi_{\alpha}(x)$. Then $|| ||_{\alpha}$ is a seminorm on $\pi(A)$. It is not difficult to show that $(\pi(A); \{|| ||_{\alpha}\}_{\alpha \in A})$ is an LMC *-algebra.

THEOREM 3.13. The π is unitarily equivalent to the direct sum of a weakly unbounded representation of A and a strictly unbounded representation of A. PROOF. Let $\{E_{\alpha}\}_{\alpha \in \Lambda}$ be a maximal family of non-zero mutually orthogonal projections in $\pi(A)'$ such that $\pi_{E_{\alpha}}$ is a bounded representation for all $\alpha \in \Lambda$. We set

$$E_1 = \sum_{\alpha \in A} E_{\alpha}, E_2 = I - E_1, \pi_1 = \pi_{E_1} \text{ and } \pi_2 = \pi_{E_2}.$$

Then we have $\pi \cong \pi_1 \oplus \pi_2$ and $\pi_1 \cong \bigoplus_{\alpha \in A} \pi_{\alpha}$. Therefore π_1 is weakly unbounded. If $E_2 \neq 0$, then π_2 is strictly unbounded. In fact, suppose that π_2 is not strictly unbounded. Then there is a non-zero projection E_0 in $\pi_2(A)'$ such that $(\pi_2)_{E_0}$ is a bounded subrepresentation of π_2 . Clearly we can regard E_0 as an element of $\pi(A)'_p$. Hence π_{E_0} is a bounded subrepresentation of π and $0 \neq E_0 \leq E_2 = I - E_1$. This contradicts the maximality of $\{E_\alpha\}_{\alpha \in A}$. Therefore π_2 is strictly unbounded.

§4. Positive linear functionals and representations.

A linear functional f on A is said to be positive if $f(x^*x) \ge 0$ for every $x \in A$. If f is a positive linear functional on A, then $f(x^*) = \overline{f(x)}$, $x \in A$ and $|f(y^*x)|^2 \le f(y^*y)f(x^*x)$, $x, y \in A$ (the Cauchy-Schwartz inequality for positive functionals). Let f, g be linear functionals on A. We write $f \le g$ for $g - f \ge 0$. Let $A^*(+)$ denote the set of all positive linear functionals on A.

PROPOSITION 4.1. Define a positive linear functional f on A by

$$f(x) = (\pi(x)\xi | \xi), \qquad \xi \in \mathfrak{D}(\pi).$$

Then the following facts are satisfied.

(1) If $T \in \pi(A)'$ with $0 \leq T \leq I$, then the functional

 $x \longrightarrow (\pi(x)T\xi|\xi)$

on A is a positive linear functional f_T and $f_T \leq f$.

(2) If ξ is cyclic for π , then $T \rightarrow f_T$ is injective.

(3) Let $f' \in A^*(+)$. Then $f' \leq f$ if and only if there is a $T \in \pi(A)'$ such that $0 \leq T \leq I$ and $f' = f_T$.

PROOF. (1), (2); Obvious.

(3); Suppose $f' \leq f$. Define

$$\langle \pi(x)\xi, \pi(y)\xi \rangle = f'(y^*x)$$

for all $x, y \in A$. Then \langle , \rangle is a bilinear functional on $\mathfrak{M} = \{\pi(A)\xi\}$. Since

$$\begin{aligned} |\langle \pi(x)\xi, \, \pi(y)\xi \rangle|^2 &= |f'(y^*x)|^2 \leq f'(y^*y)f'(x^*x) \\ &\leq f(y^*y)f(x^*x) = \|\pi(x)\xi\|^2 \|\pi(y)\xi\|^2, \end{aligned}$$

the bilinear functional \langle , \rangle on $\mathfrak M$ is uniquely extended to the bounded bilinear

functional on \mathfrak{M} and

$$|\langle \eta, \zeta \rangle| \leq \|\eta\| \|\zeta\|$$

for all η , $\zeta \in \mathfrak{M}$. Therefore there exists a $T_0 \in \mathfrak{B}(\mathfrak{M})$ (the set of all bounded linear operators on \mathfrak{M}) such that $0 \leq T_0 \leq I$ and

$$f(y^*x) = (\pi(x)\xi | T_0\pi(y)\xi)$$

for all $x, y \in A$. Since \mathfrak{M} is a π -invariant subspace of $\mathfrak{D}(\pi)$, we have $E_{\overline{\mathfrak{M}}} \in \pi(A)'$. Define $T = T_0 E_{\mathfrak{M}}$. Clearly we have $T \in \mathfrak{B}(\mathfrak{H})$ and $0 \leq T \leq I$. We shall show $T \in \pi(A)'$. That is,

 $(T\pi(x)\eta | \zeta) = (T\eta | \pi(x^*)\zeta)$

for all $x \in A$ and η , $\zeta \in \mathfrak{D}(\pi)$. Since $E_{\overline{\mathfrak{M}}}\mathfrak{D}(\pi) = \mathfrak{M}^-$, we have only to show

$$(T_0\pi(x)\pi(y)\xi | \pi(z)\xi) = (T_0\pi(y)\xi | \pi(x^*)\pi(z)\xi)$$

for all x, y and z in A. We have

$$(T_0 \pi(x) \pi(y) \xi | \pi(z) \xi) = f'(z^* x y) = f'((x^* z)^* y)$$

= $(\pi(y) \xi | T_0 \pi(x^* z) \xi)$
= $(T_0 \pi(y) \xi | \pi(x^*) \pi(z) \xi)$.

Therefore we have $T \in \pi(A)'$. Furthermore, for each $x \in A$ we have

$$f'(x) = \langle \pi(x)\xi, \pi(e)\xi \rangle = (\pi(x)\xi | T\xi)$$
$$= (T\pi(x)\xi | \xi) = (\pi(x)T\xi | \xi)$$
$$= f_{\tau}(x).$$

By Gelfand-Segal construction, there is a strongly cyclic closed representation π_f of A on a Hilbert space \mathfrak{F}_f with a strongly cyclic vector ξ_f such that $f(x) = (\pi_f(x)\xi_f | \xi_f)$ for all $x \in A$.

DEFINITION 4.2. Let $f \in A^*(+)$. An f is said to be relatively bounded if π_f is a bounded representation of A on \mathfrak{H}_f . That is, there exists a constant M_x such that $f(a^*x^*xa) \leq M_x f(a^*a)$ for all $a \in A$. An f is said to be approximately relatively bounded if an f is contained in the weak closure of $\{g \in A^*(+); f \geq g \geq 0 \text{ and } g \text{ is relatively bounded}\}$. An f is said to be strictly relatively unbounded if there is not a non-zero element g of $A^*(+)$ such that $f \geq g \geq 0$ and g is relatively bounded.

THEOREM 4.3. If f_1 and f_2 are relatively bounded (resp. approximately relatively bounded, strictly relatively unbounded), then f_1+f_2 is relatively bounded (resp. approximately relatively bounded, strictly relatively unbounded).

PROOF. Let f_1 and f_2 be relatively bounded (resp. approximately relatively bounded). Then it is easy to show that f_1+f_2 is relatively bounded (resp. approximately relatively bounded).

Suppose that f_1 and f_2 are strictly relatively unbounded and there is a non-zero element g of $A^*(+)$ such that $f = f_1 + f_2 \ge g$ and g is relatively bounded. From Proposition 4.1 there are elements T, T_1 and T_2 of $\pi_f(A)'$ such that $0 \le T \le I$, $0 \le T_i \le I$ (i=1, 2) and for all $x \in A$

$$g(x) = (\pi_f(x)T\xi_f|\xi_f), \quad f_i(x) = (\pi_f(x)T_i\xi_f|\xi_f) \quad (i=1, 2).$$

Since g is relatively bounded, for all $x, a \in A$ we have

$$\begin{aligned} \|\pi_f(a)T^{1/2}\pi_f(x)\xi_f\|^2 &= g(x^*a^*ax) \\ &\leq r_a g(x^*x) \qquad (r_a \text{; constant}) \\ &= r_a \|T^{1/2}\pi_f(x)\xi_f\|^2 \leq r_a \|T^{1/2}\|^2 \|\pi_f(x)\xi_f\|^2 \,. \end{aligned}$$

Hence $\overline{\pi_f(a)T^{1/2}}$ is a bounded operator on \mathfrak{F}_f for all $a \in A$. Since $f=f_1+f_2$, we have $T_1+T_2=I$. Let

$$T = \int_0^1 \lambda dE(\lambda) , \qquad T_1 = \int_0^1 \lambda dE_1(\lambda) ,$$

where $E(\lambda)$ (resp. $E_1(\lambda)$) is the spectral resolution of T (resp. T_1). Since $T_1 + T_2 = I$, we have

$$T_2 = \int_0^1 (1-\lambda) dE_1(\lambda) \, .$$

(1); Suppose that there exists a λ_0 such that $0 < \lambda_0 < 1$,

 $0 < E_1(\lambda_0) < I$ and $E_1(\lambda_0) T E_1(\lambda_0) \neq 0$.

Then we have

$$T_2 \geq \int_0^{\lambda_0} (1-\lambda) dE_1(\lambda) \geq \lambda_0 E_1(\lambda_0) \neq 0.$$

From Proposition 4.1 we have $f_2 = f_{T_2} \ge (f)_{\lambda_0 E_1(\lambda_0)} \ne 0$. Since $E_1(\lambda_0) T E_1(\lambda_0) \ne 0$ and $T \ne 0$, there are the following two cases.

- 1) There is a μ_0 such that $0 < \mu_0 < 1$, $0 < E(\mu_0) < I$ and $E_1(\lambda_0)E(\mu_0)E_1(\lambda_0) \neq 0$.
- ② For each $\mu \in (0, 1)$ with $0 < E(\mu) < I$ we have $E_1(\lambda_0)E(\mu)E_1(\lambda_0)=0$.
- ①; For each $\mu \in (0, 1)$ with $0 < E(\mu) < I$ we have

$$T \geq \int_{\mu}^{1} \lambda dE(\lambda) \geq \mu E(1-\mu)$$
,

and so we get, for all $x \in A$,

$$\pi_f(x^*x)T \ge \mu \pi_f(x^*x)E(1-\mu).$$

Then, since $\overline{\pi_f(x^*x)T}$ is bounded, we have

$$\|\pi_{f}(x)E(1-\mu)\xi\|^{2} = (\pi_{f}(x^{*}x)E(1-\mu)\xi|\xi)$$
$$\leq \frac{1}{\mu}(\pi_{f}(x^{*}x)T\xi|\xi)$$

A. INOUE

$$\leq \frac{1}{\mu} \|\overline{\pi_f(x^*x)T}\| \|\xi\|^2$$

for all $\xi \in \mathfrak{D}(\pi_f)$. Therefore $\overline{\pi_f(x)E(1-\mu)}$ is bounded for all $x \in A$. In particular, $\overline{\pi_f(x)E(\mu_0)}$ is bounded for all $x \in A$. Since

$$\lambda_0 E_1(\lambda_0) \geq \lambda_0 E_1(\lambda_0) E(\mu_0) E_1(\lambda_0) \neq 0$$
,

we have

$$f_2 \ge (f)_{\lambda_0 E_1(\lambda_0)} \ge g' = (f)_{\lambda_0 E_1(\lambda_0) E(\mu_0) E_1(\lambda_0)} \neq 0.$$

We shall show that g' is relatively bounded. In fact, for all $x, a \in A$ we have

$$g'(x^*a^*ax) = (\pi_f(x^*a^*ax)\lambda_0E_1(\lambda_0)E(\mu_0)E_1(\lambda_0)\xi_f | \xi_f)$$

= $\lambda_0 \|\pi_f(a)E(\mu_0)E_1(\lambda_0)\pi_f(x)\xi_f\|^2$
 $\leq \|\overline{\pi_f(a)E(\mu_0)}\|^2\lambda_0 \|E(\mu_0)E_1(\lambda_0)\pi_f(x)\xi_f\|^2$
= $\|\overline{\pi_f(a)E(\mu_0)}\|^2g'(x^*x)$.

This contradicts that f_2 is strictly relatively unbounded. Therefore f is strictly relatively unbounded.

②; It is easy to show $E_1(\lambda_0)TE_1(\lambda_0) = ||T||E_1(\lambda_0)$. We define

$$g' = (f)_{\lambda_0 || T || E_1(\lambda_0)}.$$

Since $0 < ||T|| \le 1$, we have $f_2 \ge (f)_{\lambda_0 E_1(\lambda_0)} \ge g' \ne 0$. We shall show that g' is relatively bounded. For each $x, a \in A$ we have

$$g'(x^*a^*ax) = (\pi_f(x^*a^*ax)\lambda_0 E_1(\lambda_0)TE_1(\lambda_0)\xi_f | \xi_f))$$

= $\lambda_0 \|\pi_f(a)T^{1/2}E_1(\lambda_0)\pi_f(x)\xi_f\|^2$
 $\leq \|\overline{\pi_f(a)T^{1/2}}\|^2\lambda_0 \|E_1(\lambda_0)\pi_f(x)\xi_f\|^2$
= $\frac{1}{\|T\|} \|\overline{\pi_f(a)T^{1/2}}\|^2g'(x^*x).$

This contradicts that f_2 is strictly relatively unbounded. Therefore f is strictly relatively unbounded.

(2); Suppose that there is a λ_0 such that $0 < \lambda_0 < 1$,

$$0 < E_1(\lambda_0) < I$$
 and $E_1(1-\lambda_0)TE_1(1-\lambda_0) \neq 0$.

After a slight modification of (1), we can show that f is strictly relatively unbounded.

(3); Suppose that for each $\lambda \in (0, 1)$ with $0 < E_1(\lambda) < I$, we have

$$E_1(\lambda)TE_1(\lambda)=0$$
 and $(I-E_1(\lambda))T(I-E_1(\lambda))=0$.

Then we have $(I-E_1(\lambda))T=TE_1(\lambda)$, i.e., if $E_1(\lambda)\xi=\xi$ (resp. $E_1(1-\lambda)\xi=\xi$), then $T\xi \in E_1(1-\lambda)\mathfrak{H}_f$ (resp. $T\xi \in E_1(\lambda)\mathfrak{H}_f$). Therefore we have $E_1(\lambda)T^2E_1(\lambda)=T^2E_1(\lambda)$ and $E_1(1-\lambda)T^2E_1(1-\lambda)=T^2E_1(1-\lambda)$. Since $T \neq 0$, we have

 $T^{2}E_{1}(\lambda) = E_{1}(\lambda)T^{2}E_{1}(\lambda) \neq 0$ or $T^{2}E_{1}(1-\lambda) = E_{1}(1-\lambda)T^{2}E_{1}(1-\lambda) \neq 0$.

Therefore, after a slight modification of (1) we can show that f is strictly relatively unbounded.

THEOREM 4.4. Let $f \in A^*(+)$. Then there exists a decomposition of f such that $f=f_1+f_2$, f_1 is an approximately relatively bounded positive linear functional on A and f_2 is a strictly relatively unbounded positive linear functional on A.

PROOF. Let B(f) (resp. $B^a(f)$) be the set of all relatively bounded (resp. approximately relatively bounded) positive linear functionals on A. If $B(f) = \{0\}$, then f is strictly relatively unbounded. Suppose $B(f) \neq \{0\}$. $B^a(f)$ is clearly a partially ordered set by the relation \leq . Let B be each totally ordered subset of $B^a(f)$. For each $g \in B$, from Proposition 4.1, there exists a $T_g \in \pi_f(A)'$ such that $0 \leq T_g \leq I$ and $g(x) = (\pi_f(x)T_g\xi_f | \xi_f)$ for all $x \in A$. We can easily show that $g_1 \leq g_2$ if and only if $T_{g_1} \leq T_{g_2}$. Hence there exists an element T of $\pi_f(A)'$ such that $\{T_g; g \in B\}$ converges weakly to T and $0 \leq T_g \leq T$ for all $g \in B$. Then we can easily show that $f_T \in B^a(f)$ and $g \leq f_T$ for all $g \in B$. Therefore B has an upper bounded element f_T in $B^a(f)$. By Zorn's lemma $B^a(f)$ contains a maximal element f_1 . We set

 $f_2 = f - f_1$.

Then we shall show that f_2 is strictly relatively unbounded. If not, then there exists a non-zero element g of $A^*(+)$ such that $f_2 \ge g$ and g is relatively bounded. Therefore we have $g \in B(f)$, and so we have $f_1 + g \in B^a(f)$ from Theorem 4.3 and $f \ge f_1 + g > f_1$. This contradicts that f_1 is maximal. Therefore f_2 is strictly relatively unbounded.

THEOREM 4.5. Let $f \in A^*(+)$. Then the following facts are satisfied.

(1) f is relatively bounded if and only if π_f is bounded.

(2) f is approximately relatively bounded if and only if π_f is weakly unbounded.

(3) f is strictly relatively unbounded if and only if π_f is strictly unbounded. PROOF. (1); This follows from Definition 4.2.

(3); Suppose that f is strictly relatively unbounded and π_f is not strictly unbounded. Then there is a non-zero element E of $(\pi_f(A)')_p$ such that $(\pi_f)_E$ is bounded. Since

$$f_E(x) = (\pi_f(x) E \xi_f | \xi_f)$$

for all $x \in A$, we have

$$0 < f_E \leq f$$
 and $f_E(x*a*ax) \leq \|\overline{\pi_f(a)E}\|^2 f_E(x*x)$

for all x, $a \in A$. This contradicts that f is strictly relatively unbounded.

Conversely suppose that π_f is strictly unbounded. Let g be each non-zero element of $A^*(+)$ with $f \ge g$. From Proposition 4.1 there is a $T \in \pi_f(A)'$ such

A. INOUE

that $0 < T \leq I$ and $g(x) = (\pi_f(x)T\xi_f | \xi_f)$ for all $x \in A$. Suppose that g is relatively bounded. Then we have $f \neq g$, and so $T \neq I$. Since g is relatively bounded, $\pi_f(x)T$ is bounded for all $x \in A$. Let

$$T = \int_0^1 \lambda dE(\lambda)$$
 ,

where $E(\lambda)$ is the spectral resolution of T. Since 0 < T < I, there is a λ_0 such that $0 < \lambda_0 < 1$ and $0 < E(\lambda_0) < I$. We set

$$g_1(x) = f_{\lambda_0 E(1-\lambda_0)}(x) = (\pi_f(x)\lambda_0 E(1-\lambda_0)\xi_f | \xi_f).$$

Since $T \ge \lambda_0 E(1-\lambda_0)$, we have $g \ge g_1$. Clearly g_1 is relatively bounded. Therefore $(\pi_f)_{E(1-\lambda_0)}$ is a non-zero bounded subrepresentation of π_f . This contradicts that π_f is strictly unbounded. Therefore g is not relatively bounded, and so f is strictly relatively unbounded.

(2); Suppose that π_f is weakly unbounded. Then π_f is unitarily equivalent to $\bigoplus_{\alpha \in A} \pi_{\alpha}$ such that π_{α} is a bounded representation of A on a Hilbert space \mathfrak{H}_{α} . Let E_{α} denote the projection onto \mathfrak{H}_{α} . Clearly $E_{\alpha} \in (\pi_f(A)')_p$. From Theorem 4.4 there are $f_1, f_2 \in A^*(+)$ such that f_1 is approximately relatively bounded, f_2 is strictly relatively unbounded and $f=f_1+f_2$. Since

$$f_{E_{\alpha}}(x) = (\pi_f(x)E_{\alpha}\xi_f | \xi_f) = (\pi_{\alpha}(x)E_{\alpha}\xi_f | E_{\alpha}\xi_f),$$

we have $f_{E_{\alpha}}$ is relatively bounded, and so $f_1 \neq 0$. Suppose $f_2 \neq 0$. Then $f > f_2 \neq 0$, and so there is a $T_2 \in \pi_f(A)'$ such that $0 < T_2 < I$ and $f_2(x) = (\pi_f(x)T_2\xi_f|\xi_f)$ for all $x \in A$. Let

$$T_2 = \int_0^1 \lambda dE(\lambda)$$
,

where $E(\lambda)$ is the spectral resolution of T_2 . Then there is a λ_0 such that $0 < \lambda_0 < 1$ and $0 < E(\lambda_0) < I$. We set

$$g=f_{\lambda_0E(1-\lambda_0)}.$$

Since

$$T_{2} \geq \int_{\lambda_{0}}^{1} \lambda dE(\lambda) \geq \lambda_{0} E(1-\lambda_{0}) > 0,$$

we have $f_2 \ge g \ge 0$. Since f_2 is strictly relatively unbounded, g is not relatively bounded, and so $(\pi_f)_{E(1-\lambda_0)}$ is unbounded. Since $\sum_{\alpha \in A} E_{\alpha} = I$, there is an $\alpha_0 \in A$ such that $E(1-\lambda_0)E_{\alpha_0}E(1-\lambda_0) \ge 0$. We set

$$g' = f_{\lambda_0 E(1-\lambda_0) E \alpha_0 E(1-\lambda_0)}.$$

Then we have $f_2 \ge g \ge g' \ge 0$ and since $\pi_f(x) E_{\alpha_0}$ is bounded, for each $x, a \in A$ we have

$$g'(x^*a^*ax) \leq \|\overline{\pi_f(a)E_{\alpha_0}}\|^2 g'(x^*x),$$

and hence g' is relatively bounded. This contradicts that f_2 is strictly relatively unbounded. Therefore, $f_2=0$, and so $f=f_1$. That is, f is approximately relatively bounded.

Conversely suppose that f is approximately relatively bounded. From Theorem 3.13 there are a weakly unbounded representation π_1 of A on a Hilbert space \mathfrak{H}_1 and a strictly unbounded representation π_2 of A on a Hilbert space \mathfrak{H}_2 such that $\pi_f = \pi_1 \oplus \pi_2$. Putting

$$E_1 = E_{\mathfrak{P}_1}$$
 and $E_2 = E_{\mathfrak{P}_2}$,

 $E_1, E_2 \in \pi_f(A)'_p$ and $E_1 + E_2 = I$. We set

$$\xi_1 = E_1 \xi_f$$
 and $\xi_2 = E_2 \xi_f$.

Then it is not difficult to show that ξ_1 and ξ_2 are strongly cyclic vectors for π_1 and π_2 respectively. We define

$$f_1(x) = (\pi_1(x)\xi_1|\xi_1)$$
 and $f_2(x) = (\pi_2(x)\xi_2|\xi_2)$.

Then we have $f=f_1+f_2$, $\pi_1 \cong \pi_{f_1}$ and $\pi_2 \cong \pi_{f_2}$. Since π_1 is weakly unbounded, f_1 is approximately relatively bounded. Therefore $f-f_1$ is approximately relatively bounded. On the other hand, since π_2 is strictly unbounded, f_2 is strictly relatively unbounded. Therefore we have $f-f_1=f_2=0$. Hence, $\pi_2=0$, i. e., $\pi_f=\pi_1$. Hence π_f is weakly unbounded.

REMARKS. (1) In [3], P. G. Dixon has characterized a class of symmetric locally convex *-algebras called GB*-algebras as a certain class of closed operators on a Hilbert space. Hence, as representations of symmetric locally convex *-algebras it seems that we should consider unbounded representations. We note that we can obtain same results as those in this paper for unbounded representations of symmetric locally convex *-algebras. However, all arguments of this paper are algebraic. In order to investigate such representations in detail, it seems that we should begin by studying a class of unbounded operator algebras. In [9, 10, 11, 12], we have studied unbounded operator algebras.

(2) R. Godement [6] has obtained the integral representation for a unitary (relatively bounded in this paper) positive linear functional f of a commutative *-algebra. After that, A. E. Nussbaum [15] has extended Godement's theorem to positive linear functionals which satisfy certain growth conditions, but which are not necessarily unitary, By analogy of the Nussbaum's result, we obtain the following result:

Let A be a commutative symmetric *-algebra with identity e. We denote by \hat{A} the set of all homomorphisms of A onto \mathfrak{E} . If f is a positive linear functional on A satisfying the separability condition (d); there exists a countable subset D of A such that for every $x \in A$ there exists a $y \in A$ which is a polynomial with complex coefficients in finitely many elements of D such that $f(x*xzz*) \leq f(yy*zz*)$ for all $z \in A$, then there exists a finite positive Radon measure μ_f on a locally compact subset σ_f of \hat{A} such that

- (a) $\hat{x}(\varphi) = \varphi(x)$ belongs to $L^2(\mu_f)$ for every $x \in A$,
- (b) $f(x) = \int_{\sigma_f} \varphi(x) d\mu_f(\varphi)$

for all $x \in A$.

References

- G.R. Allan, On a class of locally convex algebras, Proc. London Math. Soc.,
 (3) 17 (1967), 91-114.
- [2] J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gausthier-Villars, Paris, 2é edition, 1969.
- [3] P.G. Dixon, Generalized B*-algebras, Proc. London Math. Soc., (3) 21 (1970), 693-715.
- [4] P.G. Dixon, Unbounded operator algebras, Proc. London Math. Soc., (3) 23 (1971), 53-69.
- [5] N. Dunford and J. Schwartz, Linear operators, vol. II, Interscience Pub., New York; 1963.
- [6] R. Godement, Sur la théorie des représentations unitaires, Ann. of Math., (2) 53 (1951), 68-124.
- [7] A. Inoue, Representations of GB*-algebras I, Fukuoka Univ. Sci. Reports, 5 (1975), 63-78.
- [8] A. Inoue, Representations of *GB**-algebras II, Fukuoka Univ. Sci. Reports, 5 (1975), 21-41.
- [9] A. Inoue, On a class of unbounded operator algebras, Pacific J. Math., 65 (1976), 77-95.
- [10] A. Inoue, On a class of unbounded operator algebras II, Pacific J. Math., (to appear).
- [11] A. Inoue, On a class of unbounded operator algebras III, Pacific J. Math., 69 (1977), 105-116.
- [12] A. Inoue, On a class of unbounded operator algebras IV, J. Math. Anal. Appl., (to appear).
- [13] A. Inoue, Unbounded Hilbert algebras as locally convex *-algebras, Math. Rep. Coll. General Edu. Kyushu Univ. X, (2) (1976), 114-129.
- [14] E.A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., 11 (1952).
- [15] A.E. Nussbaum, On the integral representation of positive linear functionals, Trans. Amer. Math. Soc., 128 (1967), 460-473.
 - [16] R.T. Powers, Self-adjoint algebras of unbounded operators, Commun. Math. Phys., 21 (1971), 85-124.
 - [17] C.E. Richart, General theory of Banach algebras, Van Nostrand, Princeton, 1960.

Atsushi INOUE Department of Applied Mathematics Fukuoka University Nanakuma, Fukuoka Japan