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\S 1. Introduction.

In [16], R. T. Powers began studying a representation of a $*$-algebra as
an algebra of unbounded operators on a Hilbert space. A class of symmetric
unbounded operator algebras (called symmetric #-algebras, $EC^{\#}$-algebras, $EW^{\#}-$

algebras, $EC*$-algebras and $EW^{*}$-algebras) have been studied by P. G. Dixon
$[3, 4]$ , the author [9, 10, 11, 12] and others.

In this paper we shall study unbounded representations of symmetric $*-$

algebras. Let $A$ be a symmetric $*$-algebra and let $\pi$ be a representation of $A$

on a Hilbert space $\mathfrak{H}$ . Then we divide $\pi$ into the following three types. If
$\pi(x)$ is a bounded operator for all $x\in A$ , then $\pi$ is called a bounded representa-

tion. If $\pi$ is unitarily equivalent to the direct sum of bounded representations
of $A$ , then $\pi$ is called a weakly unbounded representation of $A$ . If $\pi$ has not
any bounded subrepresentation of $\pi$ , then $\pi$ is called a strictly unbounded re-
presentaton. In \S 3 we obtain the following theorems.

THEOREM 3.11. If $\pi$ is closed, then it is unitarily equivalent to the direct
sum of strongly cyclic closed representations.

THEOREM 3.13. If $\pi$ is closed, then there are a weakly unbounded closed
representatiOn $\pi_{1}$ of $A$ and a strictly unbounded closed $rePresentalion\pi_{2}$ of $A$

such that $\pi$ is unitarily equivalent to the direct sum of $\pi_{1}$ and $\pi_{2}$ .
In \S 4, we shall consider the relation of positive linear functionals and re-

presentations. Let $f$ be a positive linear functional on $A$ . By Gelfand-Segal
construction there is a strongly cyclic closed representation $\pi_{f}$ of $A$ on a
Hilbert space $\mathfrak{H}_{f}$ with a strongly cyclic vector $\xi_{f}$ such that $f(x)=(\pi_{f}(x)\xi_{f}|\xi_{f})$

for all $x\in A$ . We divide $f$ into the following three types. An $f$ is said to
be relatively bounded if $\pi_{f}$ is bounded. An $f$ is said to be approximately re-
latively bounded if an $f$ is contained in the weak closure of {$g;f\geqq g\geqq 0$ and
$g$ is relatively bounded}. An $f$ is said to be strictly relatively unbounded if
there is not any non-zero positive linear functional $g$ such that $f\geqq g$ and $g$ is
relatively bounded. The primary purpose of this section is to show the follow-
ing two theorems.

THEOREM 4.4. There exists a decompOsitiOn of $f$ such that $f=f_{1}+f_{2},$ $f_{1}$ is
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approximately relatively bounded and $f_{2}$ is slrictly relatively unbounded.
THEOREM 4.5. $f$ is relatively bounded (resp. approxjmately relatively bounded,

strictly relatively unbounded) if and only if $\pi_{f}$ is bounded ( $ resp\cdot$ weakly un-
bounded, strictly unbounded).

The author would like to thank Prof. Dr. R. T. Powers for giving him the
basic ideas in [16].

\S 2. Preliminaries.

We begin with some basic terminology.
A $*$-algebra is an algebra $A$ over the complex field $\mathfrak{E}$ with an involution

$*satisfying$ the usual axioms;

(1) $(\lambda x+\mu y)^{*}=\overline{\lambda}x^{*}+\overline{\mu}y^{*}$ $(x, y\in A ; \lambda, \mu\in \mathfrak{E})$ ,

(2) $(xy)^{*}=y^{*\chi*}$ $(x, y\in A)$ ,

(3) $ x^{**}=\chi$ $(x\in A)$ .
An element $x$ of $A$ is called hermitian if $x^{*}=x$ . The set of all hermitian ele-
ments of $A$ is denoted by $A_{h}$ .

DEFINITION 2.1. Let $A$ be $a.*$-algebra with identity $e$ . If, for every $x\in A$ ,
$(e+x^{*}x)^{-1}$ exists in $A$ , then $A$ is said to be symmetric.

If $S$ and $T$ are linear operators on a Hilbert space $\mathfrak{H}$ with domains $\mathfrak{D}(S)$

and $\mathfrak{D}(T)$ we say $S$ is an extension of $T$, denoted by $S\supset T$, if $\mathfrak{D}(S)\supset \mathfrak{D}(T)$ and
$ S\xi=T\xi$ for all $\xi\in \mathfrak{D}(T)$ . If $S$ is a closable operator we denote by $\overline{S}$ the
smallest closed extension of $S$. Let $\mathfrak{A}$ be a set of closable operators on $\mathfrak{H}$.
Then we set

$\overline{\mathfrak{A}}=\{\overline{S};S\in \mathfrak{A}\}$ .
If $S$ is a linear oPerator with dense domain $\mathfrak{D}(S)\subset \mathfrak{H}$ we denote by $s*$ the
hermitian adjoint of S. $s*$ is always a closed operator. However, the domain
$\mathfrak{D}(S^{*})$ may not be dense in $\mathfrak{H}$. In fact, $S$ is closable if and only if $\mathfrak{D}(S^{*})$ is
dense in $\mathfrak{H}$ and if $\mathfrak{D}(S^{*})$ is dense in $\mathfrak{H}$ then $\overline{S}=S**$ . Let $S,$ $T$ be closed opera-

tors on $\mathfrak{H}$ . If $S+T$ is closable, then $\overline{S+T}$ is called the strong sum of $S$ and
$T$, and is denoted $S+T$. The strong product is likewise defined to be $\overline{ST}$ if
it exists, and is denoted $S\cdot T$. The strong scalar multiplication $\lambda\in \mathfrak{C}$ and $S$ is
defined by $\lambda\cdot S=\lambda S$ if $\lambda\neq 0$ , and $\lambda\cdot S=0$ if $\lambda=0$ .

Let $\mathfrak{D}$ be a pre-Hilbert space with an inner product $(|)$ and let $\mathfrak{H}$ be the
completion of $\mathfrak{D}$ . We denote by $\mathfrak{L}(\mathfrak{D})$ the set of all linear operators on $\mathfrak{D}$ . A
subalgebra $\mathfrak{A}$ of $\mathfrak{L}(\mathfrak{D})$ is called a #-algebra on $\mathfrak{D}$ if there exists an involution
$S\rightarrow S^{\#}$ on $\mathfrak{A}$ satisfying

$(S\xi|\eta)=(\xi|S^{\#}\eta)$

for all $S\in \mathfrak{U}$ and $\xi,$ $\eta\in \mathfrak{D}$ . Let $\mathfrak{A}$ be a #-algebra on $\mathfrak{D}$ and let $\mathfrak{B}(\mathfrak{H})$ be the Set
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of all bounded linear operators on $\mathfrak{H}$ . We set

$\mathfrak{A}_{b}=\{S\in \mathfrak{A};\overline{S}\in \mathfrak{B}(\mathfrak{H})\}$ .
DEFINITION 2.2. Let $\mathfrak{A}$ be a #-algebra on $\mathfrak{D}$ with an identity operator $I$.

If $(I+S^{\#}S)^{-1}$ exists and lies in $\mathfrak{A}_{b}$ for all $S\in \mathfrak{A}$ , then $\mathfrak{A}$ is called a symmetric
#-algebra on $\mathfrak{D}$. Let $\mathfrak{A}$ be a symmetric #-algebra on $\mathfrak{D}$ . If $\mathfrak{A}_{b}$ is a $c*$ -algebra
(resp. $W^{*}$ -algebra), then $\mathfrak{A}$ is said to be an $EC^{\#}$-algebra (resp. $EW^{*}$-algebra).

In particular, a symmetric #-algebra (resp. $EC^{\#}$ -algebra, $EW^{*}$ -algebra) $\mathfrak{A}$ is
said to be pure if $\mathfrak{A}\neq \mathfrak{U}_{b}$ .

These algebras are examples of symmetric $*$-algebras and are of frequent
occurrence in functional analysis. In fact, in [11] we have showed that if a
maximal Hilbert algebra is not a Hilbert space then there necessarily exist
pure $EW^{\#}$-algebras.

For a more complete discussion of the basic properties of unbounded
operator algebras the reader is referred to [9, 10, 11, 12].

\S 3. Representations of symmetric $*$-algebras.

In this paper let $A$ be a symmetric $*$-algebra with identity $e$ .
DEFINITION 3.1. We call $\pi$ a representation of $A$ on a Hilbert space $\mathfrak{H}$

with domain $\mathfrak{D}(\pi)$ if $\mathfrak{D}(\pi)$ is a dense subspace of $\mathfrak{H}$ and $\pi$ is a homomorphism
of $A$ onto a #-algebra on $\mathfrak{D}(\pi)$ . That is,

(1) $\pi(A)\subset \mathfrak{L}(\mathfrak{D}(\pi))$ ,

(2) $\pi(\lambda x+\mu y)=\lambda\pi(x)+\mu\pi(y)$ $(x, y\in A; \lambda, \mu\in \mathfrak{E})$ ,

(3) $\pi(xy)=\pi(x)\pi(y)$ $(x, y\in A)$ ,

(4) $\pi(x^{*})=\pi(x)^{\#}$ $(x\in A)$ .
LEMMA 3.2. Let $\pi$ be a representatiOn of $A$ on a Hilbert space $\mathfrak{H}$. Then

$\pi(A)$ is a symmetric #-algebra on $\mathfrak{D}(\pi)$ .
PROOF. For every $x\in A$ we have $I+\pi(x)^{\#}\pi(x)=\pi(e+x^{*}x)$ and since $A$ is

symmetric, $(I+\pi(x)^{*}\pi(x))^{-1}$ exists and equals $\pi((e+x^{*}x)^{-1})$ . Hence we have
only to show $(I+\pi(x)^{\#}\pi(x))^{-1}\in \mathfrak{B}(\mathfrak{H})$ . In fact, $\overline{\pi(x)}$ is a closed operator, and so
$(\overline{I}+\overline{\pi(x)}^{*}\pi\overline{(x)})^{-1}\in \mathfrak{B}(\mathfrak{H})$ . It is easy to show

$(\overline{I}+\overline{\pi(x)}^{*}\overline{\pi(x)})^{-1}/\mathfrak{D}(\pi)=(I+\pi(x)^{\#}\pi(x))^{-1}$

where $S/\mathfrak{D}(\pi)$ denotes the restriction of an operator $S$ onto $\mathfrak{D}(\pi)$ . Therefore
we have $(\overline{I+\pi(x)^{*}\pi(x))^{-1}}=(I+\overline{\pi(x})^{*}\overline{\pi(x)})^{-1}$ .

LEMMA 3.3. Let $\pi$ be a representatjOn of $A$ on a Hilbert space $\mathfrak{H}$ . Then

$\overline{\pi(x})+\overline{\pi(y})=\overline{\pi(x+y)}$ , $\overline{\pi(x)}\cdot\overline{\pi(y)}=\overline{\pi(xy)}$ ,
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$\lambda\cdot\overline{\pi(x})=\overline{\pi(\lambda x})$ , $\overline{\pi(x)}^{*}=\overline{\pi(x^{*})}$ ,

for all $x,$ $y\in A$ and $\lambda\in \mathfrak{E}$ . Therefore $\overline{\pi(A)}$ is a $*$ -algebra of closed operators
under the operati0ns of strong sum, strong product, adjoint and strong scalar
multiplication. Furthermore, $(\overline{I}+\overline{\pi(x)}^{*}\overline{\pi(x)})^{-1}$ exists and lies in $\overline{\pi(A})_{b}$ for every
$x\in A$ .

PROOF. This follows from Lemma 3.2 and ([9] Theorem 2.3).
Let $\pi$ be a representation of $A$ on a Hilbert space $\mathfrak{H}$ with domain $\mathfrak{D}(\pi)$ .

Then there is a natural induced topology $\tau_{0}$ on $\mathfrak{D}(\pi)$ . This topology is defined
as follows. Suppose $S$ is a finite subset of $A$ . We define the seminorm $\Vert\Vert_{S}$

on $\mathfrak{D}(\pi)$ as
I $\xi\Vert_{S}=\sum_{x\in S}\Vert\pi(x)\xi\Vert$ ,

where $\Vert\xi\Vert$ is the Hilbert space norm of $\xi$ . We define the induced topology
on $\mathfrak{D}(\pi)$ as the topology generated by the seminorms { $\Vert\Vert_{S}$ ; $S$ is a finite
subset of $A$ }.

DEFINITION 3.4. Let $\pi$ be a representation of $A$ on a Hilbert space $\mathfrak{H}$

with domain $\mathfrak{D}(\pi)$ . If $(\mathfrak{D}(\pi);\tau_{0})$ is complete, then $\pi$ is said to be closed.
LEMMA 3.5. If $\pi$ is a closed rePresentation of $A$ on a Hilbert sPace $\mathfrak{H}$ , then

we have

$\mathfrak{D}(\pi)=\bigcap_{x\in A}\mathfrak{D}\overline{(\pi(x)})=\bigcap_{x\in A}\mathfrak{D}(\pi(x)^{*})$ .
PROOF. This follows from Lemma 3.3 and ([16] Lemma 2.6).

In this section let $\pi$ be a closed representation of $A$ on a Hilbert space $\mathfrak{H}$

with domain $\mathfrak{D}(\pi)$ .
DEFINITION 3.6. The commutant of $\pi(A)$ , denoted by $\pi(A)^{\prime}$ , consists of

all bounded operators $C$ on $\mathfrak{H}$ such that

$(C\pi(x)\xi|\eta)=(C\xi|\pi(x^{*})\eta)$

for all $\xi,$ $\eta\in \mathfrak{D}(\pi)$ and $x\in A$ .
LEMMA 3.7. The commutant $\pi(A)^{\prime}$ is a von Neumann algebra. Furthermore,

for each $C\in\pi(A)^{\prime}$ we have

$C\mathfrak{D}(\pi)\subset \mathfrak{D}(\pi)$ and $ C\pi(x)\xi=\pi(x)C\xi$

for all $x\in A$ and $\xi\in \mathfrak{D}(\pi)$ .
PROOF. This follows from Lemma 3.5 and ([16] Lemma 4.6).

DEFINITION 3.8. A vector $\xi\in \mathfrak{D}(\pi)$ is said to be strongly cyclic if $\{\pi(A)\xi\}$

is dense in $(\mathfrak{D}(\pi);\tau_{0})$ . If $\pi$ has a strongly cyclic vector, then it is said to be
strongly cyclic.

Let $\mathfrak{M}$ be a linear subspace of $\mathfrak{D}(\pi)$ . If $\pi(x)\mathfrak{M}\subset \mathfrak{M}$ for all $x\in A$ , then $\mathfrak{M}$

is said to be $\pi$-invariant. We denote by $\overline{\mathfrak{M}}$ (resp. $\mathfrak{M}^{-}$ ) the closure of $\mathfrak{M}$ under
the Hilbert space norm (resp. the induced topology $\tau_{0}$). If $\mathfrak{M}=\overline{\mathfrak{M}}$ (resp. $\mathfrak{M}=\mathfrak{M}^{-}$ ),
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then $\mathfrak{M}$ is said to be closed (resp. $\tau_{0}$ -closed). We denote by $\pi/\mathfrak{M}$ the representa-
tion $\pi$ restricted to M. If $\mathfrak{M}$ is a $\tau_{()}$ -closed $\pi$-invariant subspace of $\mathfrak{D}(\pi)$ , then
$\pi/\mathfrak{M}$ is a closed representation of $A$ on $\overline{\mathfrak{M}}$ .

After a slight modification of Powers’ ([16] Theorem 4.7), we have the
following theorem.

THEOREM 3.9. Let $\pi(A)_{p}^{\prime}$ denote the set of all prOjectjOns in $\pi(A)^{\prime}$ .
(1) SuppOse $E\in\pi(A)_{p}^{\prime}$ . Then $\mathfrak{M}=.E\mathfrak{D}(\pi)def$ is a $\pi$ -invariant $\tau_{0}$ -closed subspace

of $\mathfrak{D}(\pi)$ .
(2) Conversely supp0se that $\mathfrak{M}$ is a $\pi$ -invarianl $\tau_{0}$ -closed subspace of $\mathfrak{D}(\pi)$ .

Then the projection $E_{\mathfrak{M}}$ onto $\overline{\mathfrak{M}}$ is in $\pi(A)^{\prime}$ .
Hence there is a one-to-one correspondence between projections in $\pi(A)^{\prime}$ and
$\pi$-invariant $\tau_{0}$-closed subspaces of $\mathfrak{D}(\pi)$ .

DEFINITION 3.10. We call $\pi_{1}$ a subrepresentation of $\pi$ if there is a $\pi-$

invariant $\tau_{0}$-closed subspace $\mathfrak{M}$ of $\mathfrak{D}(\pi)$ such that $\pi_{1}=\pi/\mathfrak{M}$ , and is denoted by
$\pi_{\mathfrak{M}}$ or $\pi_{E_{\overline{\mathfrak{M}}}}$ .

It is easily showed that $\pi_{\mathfrak{M}}$ is a closed representation of $A$ on $\overline{\mathfrak{M}}\mathfrak{c}$ with
domain $\mathfrak{M}$.

We define the direct sum of representations of $A$ . Suppose that { $\pi_{\alpha}$ ; $\alpha\in$

$\Lambda\}$ is a collection of closed representations $\pi_{\alpha}$ of $A$ on Hilbert spaces $\mathfrak{H}_{\alpha}$ . We
denote the direct sum of these representations by $\rho=\bigoplus_{\alpha\in\Lambda}\pi_{\alpha}$ and define $\rho$ as
follows. Let $\mathfrak{H}=\bigoplus_{\alpha\in\Lambda}\mathfrak{H}_{a}$ be the direct sum of $\mathfrak{H}_{\alpha}$ and let

$\mathfrak{D}(\rho)=\{\xi=\{\xi_{\alpha}\}\in \mathfrak{H};\xi_{\alpha}\in \mathfrak{D}(\pi_{\alpha})$ for all $\alpha\in\Lambda$

and $\sum_{\alpha\in\Lambda}\Vert\pi_{\alpha}(x)\xi_{\alpha}\Vert^{2}<\infty$ for all $x\in A$ }.

We define $\rho(x)\xi=\rho(x)\{\xi_{\alpha}\}=\{\pi_{o}(x)\xi_{\alpha}\}$ for all $\xi=\{\xi_{\alpha}\}\in \mathfrak{D}(\rho)$ and $x\in A$ . It is
easily seen that $\rho$ is a closed representation of $A$ on $\mathfrak{H}$ with domain $\mathfrak{D}(\rho)$ .

Let $\pi^{\prime}$ be a representation of $A$ on a Hilbert space $\mathfrak{H}^{\prime}$ . If there exists a
unitary transform $U$ of $\mathfrak{H}^{\prime}$ onto $\mathfrak{H}$ such that $U\mathfrak{D}(\pi^{\prime})=\mathfrak{D}(\pi)$ and $\pi(x)U\xi=U\pi^{\prime}(x)\xi$

for all $x\in A$ and $\xi\in \mathfrak{D}(\pi^{\prime})$ , then $\pi$ and $\pi^{\prime}$ are said to be unitarily equivalent,
and are denoted by $\pi\cong\pi^{\prime}$ .

THEOREM 3.11. The $\pi$ is unitarily equivalent to the direct sum of strongly
cyclic closed representation.

PROOF. Let $\xi_{0}$ be a non-zero vector in $\mathfrak{D}(\pi)$ and $\mathfrak{M}_{0}=\{\pi(A)\xi_{0}\}$ . Then $\mathfrak{M}_{0}^{-}$

is a $\pi$ -invariant $\tau_{0}$ -closed subspace of $\mathfrak{D}(\pi)$ . From Theorem 3.9, $E_{0_{de}}=_{f}$

.
$ E_{\overline{\mathfrak{M}}_{0}}\in$

$\pi(A)^{\prime}$ and $\Psi\pi=E_{0}\mathfrak{D}(\pi)$ . If $E_{0}=I$, then $\pi$ is strongly cyclic. Suppose $E_{0}\neq I$.
Since $(I-E_{0})\in\pi(A)_{p}^{\prime}$ and Lemma 3.7, $(I-E_{0})\mathfrak{D}(\pi)\subset \mathfrak{D}(\pi)$ . From the density of
$\mathfrak{D}(\pi)$ in $\mathfrak{H}$ , there exists a non-zero vector $\xi_{1}\in \mathfrak{D}(\pi)$ such that $\xi_{1}\in\overline{\Psi}i^{0\perp}=$

.
$\mathfrak{H}-\overline{\Psi}i_{0}def$
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Now we consider $\mathfrak{M}_{1}=def$

.
$\{\pi(A)\xi_{1}\}$ . Since $(\pi(x)\xi_{0}|\pi(y)\xi_{1})=(\pi(y^{*}x)\xi_{0}|\xi_{1})=0$ for

all $x,$ $y\in A$ , we have $\overline{\Psi}_{\dot{t}_{0}}\perp\overline{\mathfrak{M}}_{1}$ . Thus, by Zorn’s lemma, there is a maximal

family $\{\mathfrak{M}_{\alpha}\}_{\alpha\in\Lambda}(\mathfrak{M}_{\alpha}=\{\pi(A)\xi_{\alpha}\}, \xi_{a}\in \mathfrak{D}(\pi))$ such that $\overline{\mathfrak{M}}_{\alpha}\perp\overline{\mathfrak{M}}_{\beta}$ for $\alpha\neq\beta$ . Putting
$E_{\alpha}=E_{\overline{\mathfrak{M}}_{\alpha}}$ and $\pi_{\alpha}=\pi_{E_{\alpha}},$ $\pi_{\alpha}$ is a strongly cyclic closed representation of $A$ on

$\overline{\mathfrak{M}}_{\alpha}$ with $\mathfrak{D}(\pi_{\alpha})=\mathfrak{M}_{\overline{\alpha}}$ . We set

$\mathfrak{H}^{\prime}=\bigoplus_{\alpha\in\Lambda}\overline{\Psi}\mathfrak{c}_{\alpha}$ and $\pi^{\prime}=\bigoplus_{\alpha\in\Lambda}\pi_{\alpha}$ .

Since the subspaces $\overline{\mathfrak{M}}_{\alpha}$ are pairwise orthogonal in $\mathfrak{H}$ , the series $\sum_{\alpha}\zeta_{\alpha}$ converges

to an element of $\mathfrak{H}$ for each $\{\zeta_{\alpha}\}\in \mathfrak{H}^{\prime}$ . Therefore, $\{\zeta_{\alpha}\}\rightarrow\sum_{\alpha}\zeta_{\alpha}$ is a unitary

transform $U$ of $\mathfrak{H}^{\prime}$ into $\mathfrak{H}$. Furthermore, we have $U\mathfrak{D}(\pi^{\prime})=\mathfrak{D}(\pi)$ . In fact, from
the definition of $\mathfrak{D}(\pi^{\prime})$ we can easily show $U\mathfrak{D}(\pi^{\prime})\subset \mathfrak{D}(\pi)$ . On the other hand,
by the maximality of $\{\mathfrak{M}_{\alpha}\}_{\alpha\in\Lambda}$ we have $\sum_{\alpha\in\Lambda}E_{\alpha}=I$. For each $\xi\in \mathfrak{D}(\pi)$ we have

$\xi=\sum_{\alpha}E_{\alpha}\xi,$
$E_{\alpha}\xi\in \mathfrak{M}_{\overline{a}}=\mathfrak{D}(\pi_{\alpha})$ and $\sum_{\alpha\in\Lambda}\Vert\pi_{\alpha}(x)E_{\alpha}\xi\Vert^{2}=\sum_{\alpha\in\Lambda}\Vert\pi(x)E_{\alpha}\xi\Vert^{2}=\Vert\pi(x)\xi\Vert^{2}$ . There-

fore, $\{E_{\alpha}\xi\}\in \mathfrak{D}(\pi^{\prime})$ and $\xi=\sum_{\alpha}E_{\alpha}\xi=U\{E_{\alpha}\xi\}$ . Hence, $\mathfrak{D}(\pi)\subset U\mathfrak{D}(\pi^{\prime})$ . Thus we
have $\mathfrak{D}(\pi)=U\mathfrak{D}(\pi^{\prime})$ . Since $\mathfrak{D}(\pi)$ and $\mathfrak{D}(\pi^{\prime})$ are dense in $\mathfrak{H}$ and $\mathfrak{H}^{\prime}$ respectively,
$U$ is extended to a unitary transform of $\mathfrak{H}^{\prime}$ onto $\mathfrak{H}$. Furthermore, we have

$U\pi^{\prime}(x)\{\zeta_{\alpha}\}=U\{\pi_{\alpha}(x)\zeta_{\alpha}\}=\sum_{\alpha}\pi_{\alpha}(x)\zeta_{\alpha}$

and
$\pi(x)U\{\zeta_{\alpha}\}=\pi(x)\sum_{\alpha}\zeta_{\alpha}=\sum_{\alpha}\pi_{\alpha}(x)\zeta_{\alpha}$

for all $x\in A$ and $\{\zeta_{\alpha}\}\in \mathfrak{D}(\pi^{\prime})$ . Hence $\pi$ and $\pi^{\prime}$ are unitarily equivalent.
DEFINITION 3.12. If $\pi(x)$ is a bounded operator for all $x\in A$ , then $\pi$ is

said to be bounded. If $\pi$ is unitarily equivalent to the direct sum of bounded
representations of $A$ , then $\pi$ is said to be weakly unbounded. If $\pi$ has not
any bounded subrepresentation of $\pi$ , then $\pi$ is said to be strictly unbounded.

If $\pi$ is a bounded representation of $A$ , then $\pi(A)$ is a Banach $*$-algebra
under the uniform topology. If $\pi$ is a weakly unbounded representation of $A$ ,

then $\pi(A)$ is an LMC $*$-algebra defined by E. A. Michael [14]. (He dePned
an LMC $*$-algebra to be a $*$-algebra with a locally convex topology given by
a family of seminorms $\{P_{\lambda}\}_{\lambda\in\Lambda}$ satisfying the conditions; $P_{\lambda}(xy)\leqq P_{\lambda}(x)P_{\lambda}(y)$

and $P_{\lambda}(x^{*})=P_{\lambda}(x).)$ In fact, let $\pi=\bigoplus_{\alpha\in\Lambda}\pi_{\alpha}$, where $\pi_{\alpha}$ is a bounded representa-

tion of $A$ on $\mathfrak{H}_{\alpha}$ for every $\alpha\in\Lambda$ . We set

$\Vert\pi(x)\Vert_{\alpha}=\Vert\pi_{\alpha}(x)\Vert$ , $x\in A$ ,

where $\Vert\pi_{\alpha}(x)\Vert$ denotes the operator norm of $\pi_{\alpha}(x)$ . Then $\Vert\Vert_{\alpha}$ is a seminorm
on $\pi(A)$ . It is not difficult to show that $(\pi(A);\{\Vert\Vert_{\alpha}\}_{\alpha\in\Lambda})$ is an LMC $*$-algebra.

THEOREM 3.13. The $\pi$ is unitari $ly$ equivalent to the direct sum of a weakly
unbounded representatjOn of $A$ and a strictly unbounded representatiOn of $A$ .
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PROOF. Let $\{E_{\alpha}\}_{\alpha\equiv\Lambda}$ be a maximal family of non-zero mutually orthogonal
projections in $\pi(A)^{\prime}$ such that $\pi_{E_{\alpha}}$ is a bounded representation for all $\alpha\in\Lambda$ .
We set

$E_{1}=\sum_{\alpha\in\Lambda}E_{\alpha},$
$E_{2}=I-E_{1},$ $\pi_{1}=\pi_{E_{1}}$ and $\pi_{2}=\pi_{E_{2}}$ .

Then we have $\pi\cong\pi_{1}\oplus\pi_{2}$ and $\pi_{1}\cong\bigoplus_{\alpha\in\Lambda}\pi_{\alpha}$ . Therefore $\pi_{1}$ is weakly unbounded.

If $E_{2}\neq 0$ , then $\pi_{2}$ is strictly unbounded. In fact, suppose that $\pi_{2}$ is not strictly
unbounded. Then there is a non-zero projection $E_{0}$ in $\pi_{2}(A)^{\prime}$ such that $(\pi_{2})_{E_{0}}$

is a bounded subrepresentation of $\pi_{2}$ . Clearly we can regard $E_{0}$ as an element
of $\pi(A)_{p}^{\prime}$ . Hence $\pi_{E_{0}}$ is a bounded subrepresentation of $\pi$ and $0\neq E_{0}\leqq E_{2}=I-E_{1}$ .
This contradicts the maximality of $\{E_{\alpha}\}_{\alpha\in\Lambda}$ . Therefore $\pi_{2}$ is strictly unbounded.

\S 4. Positive linear functionals and representations.

A linear functional $f$ on $A$ is said to be positive if $f(x^{*}x)\geqq 0$ for every
$x\in A$ . If $f$ is a positive linear functional on $A$ , then $f(x^{*})=\overline{f(x}),$ $x\in A$ and

$|f(y^{*}x)|^{2}\leqq f(y^{*}y)f(x^{*}x),$ $x,$ $y\in A$ (the Cauchy-Schwartz inequality for positive
functionals). Let $f,$ $g$ be linear functionals on $A$ . We write $f\leqq g$ for $g-f\geqq 0$ .
Let $A^{*}(+)$ denote the set of all positive linear functionals on $A$ .

PROPOSITION 4.1. Define a positive linear functional $f$ on $A$ by

$f(x)=(\pi(x)\xi|\xi)$ , $\xi\in \mathfrak{D}(\pi)$ .
Then the following facts are satisfied.

(1) If $T\in\pi(A)^{\prime}$ with $0\leqq T\leqq I$, then the functional
$X\rightarrow(\pi(x)T\xi|\xi)$

on $A$ is a Positive linear functional $f_{T}$ and $f_{T}\leqq f$.
(2) If $\xi$ is cyclic for $\pi$ , then $T\rightarrow f_{T}$ is injective.
(3) Let $f^{\prime}\in A^{*}(+)$ . Then $f^{\prime}\leqq f$ if and only if there is al $T\in\pi(A)^{\prime}$ such

that $0\leqq T\leqq I$ and $f^{\prime}=f_{T}$ .
PROOF. (1), (2); Obvious.
(3); Suppose $f^{\prime}\leqq f$. Define

$\langle\pi(x)\xi, \pi(y)\xi\rangle=f^{\prime}(y^{*}x)$

for all $x,$ $y\in A$ . Then $\langle, \rangle$ is a bilinear functional on $\mathfrak{M}=\{\pi(A)\xi\}$ . Since

$|\langle\pi(x)\xi, \pi(y)\xi\rangle|^{2}=|f^{\prime}(y^{*}x)|^{2}\leqq f^{\prime}(y^{*}y)f^{\prime}(x^{*}x)$

$\leqq f(y^{*}y)f(x^{*}x)=\Vert\pi(x)\xi\Vert^{2}\Vert\pi(y)\xi\Vert^{2}$ ,

the bilinear functional $\langle, \rangle$ on $\mathfrak{M}$ is uniquely extended to the bounded bilinear
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functional on $\overline{\mathfrak{M}}$ and
$|\langle\eta, \zeta\rangle|\leqq\Vert\eta\Vert\Vert\zeta\Vert$

for all $\eta,$

$\zeta\in\overline{\mathfrak{M}}$ . Therefore there exists a $T_{0}\in \mathfrak{B}(\overline{\mathfrak{M}})$ (the set of all bounded

linear operators on $\overline{\mathfrak{M}}$ ) such that $0\leqq T_{0}\leqq I$ and
$f(y^{*}x)=(\pi(x)\xi|T_{0}\pi(y)\xi)$

for all $x,$ $y\in A$ . Since $\mathfrak{M}$ is a $\pi$-invariant subspace of $\mathfrak{D}(\pi)$ , we have $E_{\overline{\mathfrak{M}}}\in\pi(A)^{\prime}$ .
DePne $T=T_{0}E_{\mathfrak{M}}$ . Clearly we have $T\in \mathfrak{B}(\mathfrak{H})$ and $0\leqq T\leqq I$. We shall show $ T\in$

$\pi(A)^{\prime}$ . That is,
$(T\pi(x)\eta|\zeta)=(T\eta|\pi(x^{*})\zeta)$

for all $x\in A$ and $\eta,$
$\zeta\in \mathfrak{D}(\pi)$ . Since $E_{\overline{\mathfrak{M}}}\mathfrak{D}(\pi)=\mathfrak{M}^{-}$ , we have only to show

$(T_{0}\pi(x)\pi(y)\xi|\pi(z)\xi)=(T_{0}\pi(y)\xi|\pi(x^{*})\pi(z)\xi)$

for all $x,$ $y$ and $z$ in $A$ . We have
$(T_{0}\pi(x)\pi(y)\xi|\pi(z)\xi)=f^{\prime}(z^{*}xy)=f^{\prime}((x^{*}z)^{*}y)$

$=(\pi(y)\xi|T_{0}\pi(x^{*}z)\xi)$

$=(T_{0}\pi(y)\xi|\pi(x^{*})\pi(z)\xi)$ .
Therefore we have $T\in\pi(A)^{\prime}$ . Furthermore, for each $x\in A$ we have

$f^{\prime}(x)=\langle\pi(x)\xi, \pi(e)\xi\rangle=(\pi(x)\xi|T\xi)$

$=(T\pi(x)\xi|\xi)=(\pi(x)T\xi|\xi)$

$=f_{T}(x)$ .
By Gelfand-Segal construction, there is a strongly cyclic closed representa-

tion $\pi_{f}$ of $A$ on a Hilbert space $\mathfrak{H}_{f}$ with a strongly cyclic vector $\xi_{f}$ such that
$f(x)=(\pi_{f}(x)\xi_{f}|\xi_{f})$ for all $x\in A$ .

DEFINITION 4.2. Let $f\in A^{*}(+)$ . An $f$ is said to be relatively bounded if
$\pi_{f}$ is a bounded representation of $A$ on $\mathfrak{H}_{f}$ . That is, there exists a constant
$M_{x}$ such that $f(a^{*}x^{*}xa)\leqq M_{x}f(a^{*}a)$ for all $a\in A$ . An $f$ is said to be approxi-
mately relatively bounded if an $f$ is contained in the weak closure of {$g\in A^{*}(+)$ ;
$f\geqq g\geqq 0$ and $g$ is relatively bounded}. An $f$ is said to be strictly relatively
unbounded if there is not a non-zero element $g$ of $A^{*}(+)$ such that $f\geqq g\geqq 0$

and $g$ is relatively bounded.
THEOREM 4.3. If $f_{1}$ and $f_{2}$ are relatively bounded (resp. aPproximately re-

latively bounded, strictly relatively unbounded), then $f_{1}+f_{2}$ is relatively bounded
(resp. apprOXimately relatively bounded, strictly relatively unbounded).

PROOF. Let $f_{1}$ and $f_{2}$ be relatively bounded (resp. approximately relatively
bounded). Then it is easy to show that $f_{1}+f_{2}$ is relatively bounded (resp.

approximately relatively bounded).
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Suppose that $f_{1}$ and $f_{2}$ are strictly relatively unbounded and there is a
non-zero element $g$ of $A^{*}(+)$ such that $f=.f_{1}+f_{2}\geqq gdef$ and $g$ is relatively

bounded. From Proposition 4.1 there are elements $T,$ $T_{1}$ and $T_{2}$ of $\pi_{f}(A)^{\prime}$

such that $0\leqq T\leqq I,$ $0\leqq T_{i}\leqq I(i=1,2)$ and for all $x\in A$

$g(x)=(\pi_{f}(x)T\xi_{f}|\xi_{f})$ , $f_{i}(x)=(\pi_{f}(x)T_{i}\xi_{f}|\xi_{f})$ $(i=1,2)$ .
Since $g$ is relatively bounded, for all $X,$ $a\in A$ we have

$\Vert\pi_{f}(a)T^{1/2}\pi_{f}(x)\xi_{f}\Vert^{2}=g(x^{*}a^{*}ax)$

$\leqq r_{a}g(x^{*}x)$ ( $r_{a}$ ; constant)

$=r_{a}\Vert T^{1/2}\pi_{f}(x)\xi_{f}\Vert^{2}\leqq r_{a}\Vert T^{1/2}\Vert^{2}\Vert\pi_{f}(x)\xi_{f}\Vert^{2}$ .
Hence $\overline{\pi_{f}(a)T^{1f2}}$ is a bounded operator on $\mathfrak{H}_{f}$ for all $a\in A$ . Since $f=f_{1}+f_{2}$ , we
have $T_{1}+T_{2}=I$. Let

$T=\int_{0}^{1}\lambda dE(\lambda)$ , $T_{1}=\int_{0}^{1}\lambda dE_{1}(\lambda)$ ,

where $E(\lambda)$ (resp. $E_{1}(\lambda)$ ) is the spectral resolution of $T$ (resp. $T_{1}$ ). Since $T_{1}+$

$T_{2}=I$, we have

$T_{2}=\int_{0}^{1}(1-\lambda)dE_{1}(\lambda)$ .

(1); Suppose that there exists a $\lambda_{0}$ such that $0<\lambda_{0}<1$ ,

$0<E_{1}(\lambda_{0})<I$ and $E_{1}(\lambda_{0})TE_{1}(\lambda_{0})\neq 0$ .
Then we have

$T_{2}\geqq\int_{0}^{\lambda_{0}}(1-\lambda)dE_{1}(\lambda)\geqq\lambda_{0}E_{1}(\lambda_{0})\neq 0$ .
From Proposition 4.1 we have $f_{2}=f_{T_{2}}\geqq(f)_{\lambda_{0}E_{1}(\lambda_{0})}\neq 0$ . Since $E_{1}(\lambda_{0})TE_{1}(\lambda_{0})\neq 0$

and $T\neq 0$ , there are the following two cases.
C There is a $\mu_{0}$ such that $0<\mu_{0}<1,0<E(\mu_{0})<I$ and $E_{1}(\lambda_{0})E(\mu_{0})E_{1}(\lambda_{0})\neq.0$ .
\copyright For each $\mu\in(0,1)$ with $0<E(\mu)<I$ we have $E_{1}(\lambda_{0})E(\mu)E_{1}(\lambda_{0})=0$ .
$O1$ ; For each $\mu\in(0,1)$ with $0<E(\mu)<I$ we have

$T\geqq\int_{\mu}^{1}\lambda dE(\lambda)\geqq\mu E(1-\mu)$ ,

and so we get, for all $x\in A$ ,

$\pi_{f}(x^{*}x)T\geqq\mu\pi_{f}(x^{*}x)E(1-\mu)$ .
Then, since $\pi_{f}(x^{*}x)T$ is bounded, we have

$\Vert\pi_{f}(x)E(1-\mu)\xi\Vert^{2}=(\pi_{f}(x^{*}x)E(1-\mu)\xi|\xi)$

$\leqq\frac{1}{\mu}(\pi_{f}(x^{*}x)T\xi|\xi)$
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$\leqq\div\Vert\overline{\pi_{f}(x^{*}x)T}\Vert\Vert\xi\Vert^{2}$

for all $\xi\in \mathfrak{D}(\pi_{f})$ . Therefore $\pi_{f}(x)E(1-\mu)$ is bounded for all $x\in A$ . In par-
ticular, $\pi_{f}(x)E(\mu_{0})$ is bounded for all $x\in A$ . Since

$\lambda_{0}E_{1}(\lambda_{0})\geqq\lambda_{0}E_{1}(\lambda_{0})E(\mu_{0})E_{1}(\lambda_{0})\neq 0$ ,
we have

$f_{2}\geqq(f)_{\text{{\it \‘{A}}}_{0^{E_{1}(\lambda_{0})}}}\geqq g^{\prime}=$

.
$(f)_{\lambda_{0}E_{1}(\lambda_{0})E(\mu_{0})E_{1}(\lambda_{0})}\neq 0def$

We shall show that $g^{\prime}$ is relatively bounded. In fact, for all $x,$ $a\in A$ we have

$g^{\prime}(x^{*}a^{*}ax)=(\pi_{f}(xaax)\lambda_{0}E_{1}(\lambda_{0})E(\mu_{0})E_{1}(\lambda_{0})\xi_{f}|\xi_{f})$

$=\lambda_{0}\Vert\pi_{f}(a)E(\mu_{0})E_{1}(\lambda_{0})\pi_{f}(x)\xi_{f}\Vert^{2}$

$\leqq|\overline{|\pi_{f}(a)E(\mu_{0}})\Vert^{2}\lambda_{0}\Vert E(\mu_{0})E_{1}(\lambda_{0})\pi_{f}(x)\xi_{f}\Vert^{2}$

$=|\overline{|\pi_{f}(a)E(\mu_{0}})\Vert^{2}g^{\prime}(x^{*}x)$ .
This contradicts that $f_{2}$ is strictly relatively unbounded. Therefore $f$ is
strictly relatively unbounded.

\copyright ; It is easy to show $E_{1}(\lambda_{0})TE_{1}(\lambda_{0})=\Vert T\Vert E_{1}(\lambda_{0})$ . We define

$g^{\prime}=(f)_{\lambda_{0}\Uparrow TNE_{1}(\lambda_{0})}$ .
Since $0<\Vert T\Vert\leqq 1$ , we have $f_{2}\geqq(f)_{\lambda_{0}E_{1}(\lambda_{0})}\geqq g^{\prime}\neq 0$ . We shall show that $g^{\prime}$ is re-
latively bounded. For each $x,$ $a\in A$ we have

$g^{\prime}(x^{*}a^{*}ax)=(\pi_{f}(xaax)\lambda_{0}E_{1}(\lambda_{0})TE_{1}(\lambda_{0})\xi_{f}|\xi_{f})$

$=\lambda_{0}\Vert\pi_{f}(a)T^{1/2}E_{1}(\lambda_{0})\pi_{f}(x)\xi_{f}\Vert^{2}$

$\leqq\Vert\pi_{f}(a)T^{1/2}\Vert^{2}\lambda_{0}\Vert E_{1}(\lambda_{0})\pi_{f}(x)\xi_{f}\Vert^{2}$

$=\frac{1}{\Vert T\Vert}\Vert\overline{\pi_{f}(a)T^{1/2}}\Vert^{2}g^{\prime}(x^{*}x)$ .

This contradicts that $f_{2}$ is strictly relatively unbounded. Therefore $f$ is
strictly relatively unbounded.

(2); SuPpose that there is a $\lambda_{0}$ such that $0<\lambda_{0}<1$ ,

$0<E_{1}(\lambda_{0})<I$ and $E_{1}(1-\lambda_{0})TE_{1}(1-\lambda_{0})\neq 0$ .
After a slight modification of (1), we can show that $f$ is strictly relatively
unbounded.

(3); SuPpose that for each $\lambda\in(0,1)$ with $0<E_{1}(\lambda)<I$, we have

$E_{1}(\lambda)TE_{1}(\lambda)=0$ and $(I-E_{1}(\lambda))T(I-E_{1}(\lambda))=0$ .
Then we have $(I-E_{1}(\lambda))T=TE_{1}(\lambda)$ , i.e., if $ E_{1}(\lambda)\xi=\xi$ (resp. $ E_{1}(1-\lambda)\xi=\xi$), then
$T\xi\in E_{1}(1-\lambda)\mathfrak{H}_{j}$ (resp. $T\xi\in E_{1}(\lambda)\mathfrak{H}_{f}$). Therefore we have $E_{1}(\lambda)T^{2}E_{1}(\lambda)=T^{2}E_{1}(\lambda)$

and $E_{1}(1-\lambda)T^{2}E_{1}(1-\lambda)=T^{2}E_{1}(1-\lambda)$ . Since $T\neq 0$ , we have
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$T^{2}E_{1}(\lambda)=E_{1}(\lambda)T^{2}E_{1}(\lambda)\neq 0$ or $T^{2}E_{1}(1-\lambda)=E_{1}(1-\lambda)T^{2}E_{1}(1-\lambda)\neq 0$ .
Therefore, after a slight modification of (1) we can show that $f$ is strictly
relatively unbounded.

THEOREM 4.4. Let $f\in A^{*}(+)$ . Then there exists a decompOsitiOn of $f$ such
that $f=f_{1}+f_{2},$ $f_{1}$ is an apprOximately relatively bounded posilive linear func-
tional on $A$ and $f_{2}$ is a strictly relatively unbounded posiiive linear functional
on $A$ .

PROOF. Let $B(f)$ (resp. $B^{a}(f)$ ) be the set of all relatively bounded (resp.

approximately relatively bounded) positive linear functionals on $A$ . If $B(f)=$

$\{0\}$ , then $f$ is strictly relatively unbounded. Suppose $B(f)\neq\{0\}$ . $B^{a}(f)$ is
clearly a partially ordered set by the relation $\leqq$ . Let $B$ be each totally
ordered subset of $B^{a}(f)$ . For each $g\in B$ , from Proposition 4.1, there exists a
$T_{g}\in\pi_{f}(A)^{\prime}$ such that $0\leqq T_{g}\leqq I$ and $g(x)=(\pi_{f}(x)T_{g}\xi_{f}|\xi_{f})$ for all $x\in A$ . We can
easily show that $g_{1}\leqq g_{2}$ if and only if $T_{g_{1}}\leqq T_{g_{2}}$ . Hence there exists an element
$T$ of $\pi_{f}(A)$

‘ such that $\{T_{g} ; g\in B\}$ converges weakly to $T$ and $0\leqq T_{g}\leqq T$ for
all $g\in B$ . Then we can easily show that $f_{T}\in B^{a}(f)$ and $g\leqq f_{T}$ for all $g\in B$ .
Therefore $B$ has an upper bounded element $f_{T}$ in $B^{a}(f)$ . By Zorn’s lemma
$B^{a}(f)$ contains a maximal element $f_{1}$ . We set

$f_{z}=f-f_{1}$ .
Then we shall show that $f_{2}$ is strictly relatively unbounded. If not, then there
exists a non-zero element $g$ of $A^{*}(+)$ such that $f_{2}\geqq g$ and $g$ is relatively
bounded. Therefore we have $g\in B(f)$ , and so we have $f_{1}+g\in B^{a}(f)$ from
Theorem 4.3 and $f\geqq f_{1}+g>f_{1}$ . This contradicts that $f_{1}$ is maximal. Therefore
$f_{2}$ is strictly relatively unbounded.

THEOREM 4.5. Let $f\in A^{*}(+)$ . Then the following facts are satisfied.
(1) $f$ is relatively bounded if and only if $\pi_{f}$ is bounded.
(2) $f$ is apprOximately relatively bounded if and only if $\pi_{f}$ is weakly un-

bounded.
(3) $f$ is strictly relatively unbounded if and only if $\pi_{f}$ is strictly unbounded.
PROOF. (1); This follows from Definition 4.2.
(3); Suppose that $f$ is strictly relatively unbounded and $\pi_{f}$ is not strictly

unbounded. Then there is a non-zero element $E$ of $(\pi_{f}(A)^{\prime})_{p}$ such that $(\pi_{f})_{E}$

is bounded. Since
$f_{E}(x)=(\pi_{f}(x)E\xi_{f}|\xi_{f})$

for all $x\in A$ , we have
$0<f_{E}\leqq f$ and $f_{E}(x^{*}a^{*}ax)\leqq\Vert\overline{\pi_{f}(a)E\Vert}^{2}f_{E}(x^{*}x)$

for all $x,$ $a\in A$ . This contradicts that $f$ is strictly relatively unbounded.
Conversely suppose that $\pi_{f}$ is strictly unbounded. Let $g$ be each non-zero

element of $A^{*}(+)$ with $f\geqq g$. From Proposition4.1 there is a $T\in\pi_{f}(A)^{\prime}$ such
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that $0<T\leqq I$ and $g(x)=(\pi f(x)T\xi_{f}|\xi_{f})$ for all $x\in A$ . Suppose that $g$ is relatively
bounded. Then we have $f\neq g$, and so $T\neq I$. Since $g$ is relatively bounded,
$\pi_{f}(x)T$ is bounded for all $x\in A$ . Let

$T=\int_{0}^{1}\lambda dE(\lambda)$ ,

where $E(\lambda)$ is the spectral resolution of $T$. Since $0<T<I$, there is a $\lambda_{0}$ such
that $0<\lambda_{0}<1$ and $0<E(\lambda_{0})<I$. We set

$g_{1}(x)=f_{\lambda_{0}E(1-\lambda_{0})}(x)=(\pi_{f}(x)\lambda_{0}E(1-\lambda_{0})\xi_{f}|\xi_{f})$ .
Since $T\geqq\lambda_{0}E(1-\lambda_{0})$ , we have $g\geqq g_{1}$ . Clearly $g_{1}$ is relatively bounded. Ther -

fore $(\pi_{f})_{E(1-\lambda_{0})}$ is a non-zero bounded subrepresentation of $\pi_{f}$ . This contradicts
that $\pi_{f}$ is strictly unbounded. Therefore $g$ is not relatively bounded, and so
$f$ is strictly relatively unbounded.

(2); Suppose that $\pi_{f}$ is weakly unbounded. Then $\pi_{f}$ is unitarily equivalent
to $\bigoplus_{\alpha\in\Lambda}\pi_{\alpha}$ such that $\pi_{\alpha}$ is a bounded representation of $A$ on a Hilbert space $\mathfrak{H}_{\alpha}$.
Let $E_{\alpha}$ denote the projection onto $\mathfrak{H}_{\alpha}$ . Clearly $E_{\alpha}\in(\pi_{f}(A)^{\prime})_{p}$ . From Theorem
4.4 there are $f_{1},$ $f_{2}\in A^{*}(+)$ such that $f_{1}$ is approximately relatively bounded,
$f_{2}$ is strictly relatively unbounded and $f=f_{1}+f_{2}$ . Since

$f_{E_{\alpha}}(x)=(\pi_{f}(x)E_{\alpha}\xi_{f}|\xi_{f})=(\pi_{\alpha}(x)E_{\alpha}\xi_{f}|E\mathfrak{X}_{f})$ ,

we have $f_{E_{\alpha}}$ is relatively bounded, and so $f_{1}\neq 0$ . Suppose $f_{2}\neq 0$ . Then $f>f_{2}\neq 0$ ,

and so there is a $T_{2}\in\pi_{f}(A)^{\prime}$ such that $0<T_{2}<I$ and $f_{2}(x)=(\pi_{f}(x)T_{2}\xi_{f}|\xi_{f})$ for
all $x\in A$ . Let

$T_{2}=\int_{0}^{1}\lambda dE(\lambda)$ ,

where $E(\lambda)$ is the spectral resolution of $T_{2}$ . Then there is a $\lambda_{0}$ such that
$0<\lambda_{0}<1$ and $0<E(\lambda_{0})<I$. We set

$g=f_{\lambda_{0}E(1-\lambda_{0})}$ .
Since

$T_{2}\geqq\int_{\lambda_{0}}^{1}\lambda dE(\lambda)\geqq\lambda_{0}E(1-\lambda_{0})>0$ ,

we have $f_{2}\geqq g_{*}>0$ . Since $f_{2}$ is strictly relatively unbounded, $g$ is not relativelv
bounded, and so $(\pi_{f})_{E(1-\lambda_{0})}$ is unbounded. Since $\sum_{\alpha\in\Lambda}E_{\alpha}=I$, there is an $\alpha_{0}\in\Lambda$

such that $E(1-\lambda_{0})E_{\alpha_{0}}E(1-\lambda_{0})\neq 0$ . We set

$g^{\prime}=f_{\lambda_{0}E(1-\lambda_{0})E\alpha_{0}E(1-\lambda_{0})}$ .

Then we have $f_{2}\geqq g\geqq g^{\prime}>0$ and since $\pi_{f}(x)E_{\alpha_{0}}$ is bounded, for each $x,$ $a\in A$

we have
$g^{\prime}(x^{*}a^{*}ax)\leqq\Vert\pi_{f}\overline{(a)E_{\alpha_{0}}}\Vert^{2}g^{\prime}(x^{*}x)$ .
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and hence $g^{\prime}$ is relatively bounded. This contradicts that $f_{2}$ is strictly re-
latively unbounded. Therefore, $f_{2}=0$ , and so $f=f_{1}$ . That is, $f$ is approximately
relatively bounded.

Conversely suppose that $f$ is approximately relatively bounded. From
Theorem 3.13 there are a weakly unbounded representation $\pi_{1}$ of $A$ on a
Hilbert space $\mathfrak{H}_{1}$ and a strictly unbounded representation $\pi_{2}$ of $A$ on a Hilbert
space $\mathfrak{H}_{2}$ such that $\pi_{f}=\pi_{1}\oplus\pi_{2}$ . Putting

$E_{1}=E_{\mathfrak{H}_{1}}$ and $E_{2}=E_{\mathfrak{H}_{2}}$ ,

$E_{1},$ $E_{2}\in\pi_{f}(A)_{p}^{\prime}$ and $E_{1}+E_{2}=I$. We set

$\xi_{1}=E_{1}\xi_{f}$ and $\xi_{2}=E_{2}\xi_{f}$ .
Then it is not difficult to show that $\xi_{1}$ and $\xi_{2}$ are strongly cyclic vectors for
$\pi_{1}$ and $\pi_{2}$ respectively. We define

$f_{1}(x)=(\pi_{1}(x)\xi_{1}|\xi_{1})$ and $f_{2}(x)=(\pi_{2}(x)\xi_{2}|\xi_{2})$ .
Then we have $f=f_{1}+f_{2},$ $\pi_{1}\cong\pi_{f_{1}}$ and $\pi_{2}\cong\pi_{f_{2}}$ . Since $\pi_{1}$ is weakly unbounded,
$f_{1}$ is approximately relatively bounded. Therefore $f-f_{1}$ is approximately re-
latively bounded. On the other hand, since $\pi_{2}$ is strictly unbounded, $f_{2}$ is
strictly relatively unbounded. Therefore we have $f-f_{1}=f_{2}=0$ . Hence, $\pi_{2}=0$ ,
$i$ . $e.,$ $\pi_{f}=\pi_{1}$ . Hence $\pi_{f}$ is weakly unbounded.

REMARKS. (1) In [3], P. G. Dixon has characterized a class of symmetric
locally convex $*$-algebras called $GB^{*}$-algebras as a certain class of closed
operators on a Hilbert space. Hence, as representations of symmetric locally
convex $*$-algebras it seems that we should consider unbounded representations.
We note that we can obtain same results as those in this paper for unbounded
representations of symmetric locally convex $*$-algebras. However, all argu-
ments of this paper are algebraic. In order to investigate such representations
in detail, it seems that we should begin by studying a class of unbounded
operator algebras. In [9, 10, 11, 12], we have studied unbounded operator al-
gebras.

(2) R. Godement [6] has obtained the integral representation for a unitary
(relatively bounded in this paper) positive linear functional $f$ of a commuta-
tive $*$-algebra. After that, A. E. Nussbaum [15] has extended Godement’s
theorem to positive linear functionals which satisfy certain growth conditions,
but which are not necessarily unitary, By analogy of the Nussbaum’s result,

we obtain the following result:
Let $A$ be a commutative symmetric $*$-algebra with identity $e$ . We denote

by $\hat{A}$ the set of all homomorphisms of $A$ onto $\mathfrak{C}$ . If $f$ is a positive linear
functional on $A$ satisfying the separability condition (d); there exists a count-
able subset $D$ of $A$ such that for every $x\in A$ there exists a $y\in A$ which is a
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polynomial with complex coefficients in finitely many elements of $D$ such that
$f(x^{*}xzz^{*})\leqq f(yy^{*}zz^{*})$ for all $z\in A$ , then there exists a finite positive Radon
measure $\mu_{f}$ on a locally compact subset $\sigma_{f}$ of $\hat{A}$ such that

(a) $\hat{x}(\varphi)=\varphi(x)$ belongs to $L^{2}(\mu_{f})$ for every $x\in A$ ,

(b) $f(x)=\int_{\sigma_{f}}\varphi(x)d\mu_{f}(\varphi)$

for all $x\in A$ .
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