On the automorphism of C^2 with invariant axes

By Hironori SHIGA

(Received June 21, 1976) (Revised Aug. 20, 1976)

0. Statement of results.

In this paper we study the biholomorphic automorphism of C^2 which leaves two coordinate axes invariant. E. Peschl investigated the automorphism of this type in [1]. We say such an automorphism is of axial type. If F=(f(x, y), g(x, y)) is an automorphism of axial type, then F takes the form;

$$F: \left\{ \begin{array}{c} f = xe^{\phi(x,y)} \\ g = ye^{\phi(x,y)}, \end{array} \right.$$

where ϕ and ψ are holomorphic functions. We say that a function f(x, y) is a component of an automorphism (of axial type) if there is a function g(x, y)such that

$$T: \begin{cases} x'=f(x, y) \\ y'=g(x, y) \end{cases}$$

is an automorphism (of axial type).

Our results are as follows.

THEOREM. (1) Let $\phi(x, y)$ be a polynomial and set $f(x, y) = xe^{\phi(x,y)}$. Then f(x, y) is a component of an automorphism of axial type if and only if $\phi(x, y)$ takes the form $A(x^m y^{n+1})$, where m and n are non-negative integers and A is a polynomial of one variable.

(2) The transformation

$$T: \begin{cases} x' = xe^{A(x^m y^{n+1})} \\ y' = g(x, y) \end{cases}$$

is an automorphism of axial type if and only if g takes the form

$$y \cdot \exp\left[-\frac{m}{n+1}A(x^m y^{n+1}) + H(x')\right]$$
,

where H is a holomorphic function of one variable.

§ 1. Discriminant D(t).

Let $\phi(x, y)$ be a polynomial, and set $f=x \cdot \exp[\phi(x, y)]$. We discuss the necessary condition for f becomes a component of an automorphism of axial type.

We consider the analytic set $S_c = \{(x, y) : f(x, y) = c\}$. This is the inverse image of the line x'=c. Then S_c is non-singular and is biholomorphically equivalent to the complex plane C. And S_c does not intersect the y-axis for every c, except 0.

Set $x=e^t$. The analytic set $\tilde{S}_c = \{(t, y) : f(e^t, y)=c\}$ is given by the equation $\phi(e^t, y)+t=\log c$. And every branch of $\log c$ gives an irreducible component of \tilde{S}_c . On the other hand, the mapping

$$\pi: \left\{ \begin{array}{c} x = e^t \\ y = y \end{array} \right.$$

gives the universal covering space of $C^2-(y\text{-axis})$. Then \tilde{S}_c is a covering Riemann surface of S_c and this covering has no ramifying point and has no relative boundary. Then every component of \tilde{S}_c is biholomorphically equivalent to C. In particular $S = \{(t, y) : \phi(e^t, y) + t = 0\}$ is equivalent to C.

Set

$$\phi(x, y) = \phi_0(x)y^n + \phi_1(x)y^{n-1} + \cdots + \phi_{n-1}(x)y + \phi_n(x),$$

where $\phi_i(x)$ is a polynomial $(i=0, 1, \dots, n)$.

LEMMA 1. (1) $\phi_0(x)$ is a monomial ax^h .

(2) $\phi_n(x)$ is a constant.

PROOF. (1) We consider S as a covering Riemann surface over t-space. S is equivalent to C, and S has no relative boundary over any point t. This implies that $\phi_0(e^t)$ is zero-free. Consequently $\phi_0(x)$ is a monomial.

(2) If the transformation

$$F: \left\{ \begin{array}{c} x' = xe^{\phi(x,y)} \\ y' = ye^{\phi(x,y)} \end{array} \right.$$

is an automorphism, it maps x-axis biholomorphically onto x'-axis. Then $x'=x \cdot \exp [\phi(x, 0)]$ is a linear function of x. Hence $\phi_n(x)$ is constant. This implies our assertion.

Now we consider the transformation

$$T: \left\{ \begin{array}{l} x' = x \cdot \exp\left[-\phi_n\right] \\ y' = y \, , \end{array} \right.$$

then $F \circ T$ takes the form

Automorphism of C^2

$$\begin{cases} x' = x \cdot \exp\left[\phi'_0(x)y^n + \cdots + \phi'_{n-1}(x)y + 0\right] \\ y' = y \cdot \exp\left[\phi'(x, y)\right]. \end{cases}$$

Hence we may suppose that the constant $\phi_n(x)$ is equal to 0.

Let D(t) be a discriminant of $\phi(e^t, y) + t = 0$ as an algebraic equation for y. Namely;

$$D(t) = \begin{vmatrix} aX^{h}, \phi_{1}(X), \dots, \phi_{n-1}(X), t \\ aX^{h}, \phi_{1}(X), \dots, \phi_{n-1}(X), t \\ \dots, \dots, \phi_{n-1}(X), t \\ naX^{h}, (n-1)\phi_{1}(X), \dots, \phi_{n-1}(X) \\ naX^{h}, \dots, \phi_{n-1}(X) \\ \dots, \dots, \dots, \dots \\ naX^{h}, \dots, \phi_{n-1}(X) \end{vmatrix}$$

where we used the symbolical notation $X=e^t$. It is apparent that D(t) is a polynomial of t and X. And D(t) is not identically zero.

PROPOSITION 1. D(t) is a monomial of X.

PROOF. We regard S as an *n*-fold covering Riemann surface over the *t*-space. Because S is non-singular in (t, y)-space, there is a ramifying point over every zero of D(t). According to the relation of Riemann-Hurwitz, there must be only finitely many ramifying points, because the genus of S is finite. Set

$$D(t) = \alpha_{k}(t)e^{kt} + \alpha_{k-1}(t)e^{(k-1)t} + \dots + \alpha_{1}(t)e^{t} + \alpha_{0}(t),$$

where $\alpha_i(t)$ $(i=0, 1, \dots, k)$ is a polynomial of t. From the above argument D(t) has only finitely many zeros. Then D(t) takes the form $Q(t) \cdot \exp[\beta(t)]$, where Q(t) is a polynomial of t and $\beta(t)$ is an entire function of t. Consequently we have the equality

$$\alpha_{k}(t)e^{kt} + \alpha_{k-1}(t)e^{(k-1)t} + \dots + \alpha_{0}(t) = Q(t)e^{\beta(t)}$$
.(*)

The function of left hand side is of increasing order one. Then the function $\exp[\beta(t)]$ is of increasing order one also. According to the theorem of Polya in the theory of entire function, $\beta(t)$ is a linear function.

Then $\beta(t)$ takes the simple form pt. From the equality (*) we have

$$\lim_{t\to\infty}\frac{\alpha_k(t)e^{kt}+\alpha_{k-1}(t)e^{(k-1)t}+\cdots+\alpha_0(t)}{Q(t)e^{pt}}=1,$$

H. SHIGA

for positive real value t. Then we have $\operatorname{Re} p = k$. When t is a purely imaginary value we have

$$|\alpha_k(t)e^{kt} + \alpha_{k-1}(t)e^{(k-1)t} + \cdots + \alpha_0(t)| \leq M \cdot t^N,$$

for some integer N and a positive constant value M. Then we have Im p=0. Consequently $\beta(t)$ is equal to kt. This completes the proof.

§ 2. Necessary condition.

We consider the polynomial of two variables

$$\psi(x, y) = ax^{h}y^{n} + \psi_{1}(x)y^{n-1} + \dots + \psi_{n-1}(x)y,$$

where a is a constant. And we put the following condition (A).

(A) The discriminant D(x, t) of the equation $\psi(x, y)-t=0$, as an algebraic equation for y, is a monomial of x.

This condition is equivalent to the following condition (B).

(B) When we regard $C_t = \{\phi(x, y)=t\}$ as a covering Riemann surface over x-plane, the ramifying point and the equivalent point (namely; the reducible point of C_t as an analytic set in (x, y)-space) of C_t are situated over x=0 for every t, with a finite number of exception.

LEMMA 2. Suppose there are a polynomial of two variables F(x, y) and a polynomial of one variable G such teat $\phi(x, y)=G(F(x, y))$. If ϕ satisfies the condition (A), then F satisfies the condition (A) also.

PROOF. Assume that ψ satisfies the condition (B). Let $\rho_1, \rho_2, \dots, \rho_k$ be the totality of the roots of G(z)-t=0. Then we have

$$C_t = \bigcup_{i=1}^k \{F(x, y) = \rho_i\}.$$

Consequently F(x, y) satisfies the condition (B).

If $\phi(x, y)$ has no above decomposition, we say ϕ is primitive. If $\phi(x, y)$ is primitive, every C_t is irreducible and nonsingular in (x, y)-space except finite values of t.

PROPOSITION 2. Suppose $\psi(x, y)$ satisfies the condition (A). Then $\psi(x, y)$ is decomposed to a polynomial of one variable and a monomial $x^m y^n$.

To prove this proposition we need the following lemma.

LEMMA 3. Let $y=\xi(x)$ be an algebraic function. Suppose this function has exactly n values $\xi_1(x), \dots, \xi_n(x)$ in $C^*=C-\{0\}$ for every x in C^* . Then we have

$$\xi(x) = cx^{m/n}$$

where c is a complex constant and m is an integer relatively prime to n.

PROOF. Set $D_1 = x$ -plane $\{0\}$. And set $D_2 = y$ -plane $\{0\}$. Then $x = e^t$

532

realizes the universal covering of D_1 . And $\xi(e^t)$ is a single valued function according to the monodromy theorem, then this function realizes the universal covering of D_2 . (Because the inverse mapping ξ^{-1} gives an unramified covering D_2 over D_1 according to the assumption for ξ .) On the other hand, the universal covering of D_2 is given by the mapping $y=e^s$. Because the s-space and the *t*-space are biholomorphically equivalent, then we have s=at+b. Consequently $\xi(e^t)$ takes the form e^{at+b} . The assumption that $\xi(x)$ is an *n*valued algebraic function indicates the equality a=m/n. This is our assertion.

PROOF OF THE PROPOSITION 2. We may assume that $\psi(x, y)$ is primitive. Let \hat{C}_t be the compactification of the covering Riemann surface C_t over Riemann sphere P. Let v be the sum of the degrees of ramifications of \hat{C}_t . Then the Euler characteristic ρ of \hat{C}_t is given by $-\rho = -2n+v$. Since C_t is irreducible, we have $\rho \leq 2$. Consequently we have $v \geq 2n-2$. Because the ramifying point and the equivalent point of \hat{C}_t are situated only over the points x=0 and $x=\infty$, v is at most 2n-2. Then we have v=2n-2 and $\rho=2$. This implies that \hat{C}_t is biholomorphically equivalent to P and that \hat{C}_t has ramifying points of the degree of ramification n-1 over x=0 and $x=\infty$. Since the coefficient function of y^n in $\psi(x, y)$ is a monomial, C_t has a relative boundary over x=0. And every C_t , except finite, does not intersect the y-axis, then ψ is constant there. And ψ is constant zero on the x-axis, then ψ is constant zero.

We consider $\psi(x, y) - t = 0$ as an algebraic function $y = \zeta_t(x)$. Let \tilde{C}_t be the Riemann surface of this algebraic function over $|x| < \infty$. Then the following properties are satisfied.

(1) C_t is irreducible, nonsingular, of order of multiplicity 1 and equal to \tilde{C}_t for every t, except finite.

(2) $\psi(x, y) = 0$ on $\{(x, y) : xy = 0\}$.

(3) $\zeta_t(x)$ has exact *n* values over every *x* except x=0 and $x=\infty$.

These properties ensure the assumption of Lemma 3 for $\zeta(x)$. From (2) $\psi(x, y)$ takes the form $x^{m'}y^{n'}Q(x, y)$, where m' and n' are positive integers and Q(x, y) is a polynomial. By Lemma 3 we have the equality of the sets;

$$\{(x, y): x^{m'}y^{n'}Q(x, y) - t = 0\} = \{(x, y): x^{m}y^{n} - c(t) = 0\},\$$

for general values of t. Consequently we have m'=m, n'=n and Q(x, y)= constant. This completes the proof.

§ 3. Conjugate function.

From the results of preceding arguments we know the necessary condition. Namely; if a function $f(x, y) = x \cdot \exp[\phi(x, y)]$ becomes a component of an automorphism of axial type then $\phi(x, y)$ is decomposed to a polynomial of one variable and a monomial $x^m y^n$.

In the remainder of this paper we discuss about the conjugate function q(x, y) of this f(x, y) such that

$$T: \begin{cases} x'=f(x, y) \\ y'=g(x, y) \end{cases}$$

becomes an automorphism of axial type. Set

$$f(x, y) = x \cdot \exp[c_0 + c_1 x^m y^n + c_2 (x^m y^n)^2 + \dots + c_{\mu} (x^m y^n)^{\mu}],$$

where $m \ge 0$ and n > 0. We consider the following automorphisms.

$$T_{k}: \begin{cases} x' = x \cdot \exp\left[-c_{k}(x^{m}y^{n})^{k}\right] \\ y' = y \cdot \exp\left[(m/n)c_{k}(x^{m}y^{n})^{k}\right], \quad k = 0, 1, \cdots, \mu$$

Then f(x, y) is reduced to the function x by the transformation $T_0 \cdot T_1 \cdot \cdots \cdot T_{\mu}$. Hence the conjugate function g(x, y) is given by

$$g(x, y) = T_{\mu}^{-1} \cdot T_{\mu-1}^{-1} \cdots T_{0}^{-1}(K(x, y)),$$

where K(x, y) is a conjugate function of x. If the transformation

$$T: \begin{cases} x'=f(x, y) \\ y'=g(x, y) \end{cases}$$

becomes an automorphism of axial type then the transformation

$$S: \left\{ \begin{array}{c} \xi' = \xi \\ \eta' = K(\xi, \eta) \end{array} \right.$$

is an automorphism of axial type, because every T_k is an automorphism of axial type.

LEMMA 4. The transformation

$$S: \begin{cases} \xi' = \xi \\ \eta' = K(\xi, \eta) \end{cases}$$

is an automorphism if and only if K takes the form $(\eta + A(\xi)) \cdot \exp[H(\xi)]$, where $A(\xi)$ and $H(\xi)$ are entire functions. And in particular S is an automorphism of axial type if and only if K takes the form $\eta \exp[H(\xi)]$.

PROOF. The sufficiency is trivial. Then we show the necessity. Because $K(\xi', \eta) - \eta' = 0$ defines only one η for given ξ' and η' , this equality is transformed to the form $\eta = G(\xi', \eta')$. And the former is linear in η' , then $G(\xi', \eta') = B(\xi')\eta' - A(\xi')$. Consequently we have

Automorphism of C^2

$$\eta' = \frac{\eta + A(\xi)}{B(\xi)}$$

Since $B(\xi)$ must be zero free, we have $B(\xi) = \exp[-H(\xi)]$. This implicates our assertion.

PROPOSITION 3. Let f(x, y) be a function of the form $x \cdot \exp[\phi(x, y)]$, where

$$\phi(x, y) = c_0 + c_1(x^m y^n) + c_2(x^m y^n)^2 + \cdots + c_{\mu}(x^m y^n)^{\mu}.$$

Then the transformation

$$T: \begin{cases} x'=f(x, y) \\ y'=g(x, y) \end{cases}$$

is an automorphism of axial type if and only if

$$g(x, y) = y \cdot \exp\left[-(m/n)\phi(x, y) + H(x')\right],$$

where H is an entire function.

PROOF. From the above argument, g is given by

$$g(x, y) = T_{\mu}^{-1} \cdot T_{\mu-1}^{-1} \cdots T_{0}^{-1}(ye^{H(x)}).$$

By an elementary calculation we have the required result.

By these propositions we have the theorem stated at the beginning.

Bibliography

 [1] E. Peschl, Automorphismes holomorphes de l'éspace à n dimensions complexes, C. R. Acad. Sci. Paris, 242 (1956), 1836-1838.

> Hironori SHIGA Department of Mathematics Chiba University Yayoi-cho, Chiba Japan