On the automorphism of C^{2} with invariant axes

By Hironori SHIGA

(Received June 21, 1976)
(Revised Aug. 20, 1976)

0. Statement of results.

In this paper we study the biholomorphic automorphism of \boldsymbol{C}^{2} which leaves two coordinate axes invariant. E. Peschl investigated the automorphism of this type in [1]. We say such an automorphism is of axial type. If $F=(f(x, y)$, $g(x, y)$) is an automorphism of axial type, then F takes the form;

$$
F:\left\{\begin{array}{l}
f=x e^{\phi(x, y)} \\
g=y e^{\psi(x, y)}
\end{array}\right.
$$

where ϕ and ψ are holomorphic functions. We say that a function $f(x, y)$ is a component of an automorphism (of axial type) if there is a function $g(x, y)$ such that

$$
T:\left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

is an automorphism (of axial type).
Our results are as follows.
Theorem. (1) Let $\phi(x, y)$ be a polynomial and set $f(x, y)=x e^{\phi(x, y)}$. Then $f(x, y)$ is a component of an automorphism of axial type if and only if $\phi(x, y)$ takes the form $A\left(x^{m} y^{n+1}\right)$, where m and n are non-negative integers and A is a polynomial of one variable.
(2) The transformation

$$
T:\left\{\begin{array}{l}
x^{\prime}=x e^{A\left(x x_{y} n+1\right)} \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

is an automorphism of axial type if and only if g takes the form

$$
y \cdot \exp \left[-\frac{m}{n+1} A\left(x^{m} y^{n+1}\right)+H\left(x^{\prime}\right)\right]
$$

where H is a holomorphic function of one variable.

§ 1. Discriminant $D(t)$.

Let $\phi(x, y)$ be a polynomial, and set $f=x \cdot \exp [\phi(x, y)]$. We discuss the necessary condition for f becomes a component of an automorphism of axial type.

We consider the analytic set $S_{c}=\{(x, y): f(x, y)=c\}$. This is the inverse image of the line $x^{\prime}=c$. Then S_{c} is non-singular and is biholomorphically equivalent to the complex plane \boldsymbol{C}. And S_{c} does not intersect the y-axis for every c, except 0 .

Set $x=e^{t}$. The analytic set $\widetilde{S}_{c}=\left\{(t, y): f\left(e^{t}, y\right)=c\right\}$ is given by the equation $\phi\left(e^{t}, y\right)+t=\log c$. And every branch of $\log c$ gives an irreducible component of \tilde{S}_{c}. On the other hand, the mapping

$$
\pi:\left\{\begin{array}{l}
x=e^{t} \\
y=y
\end{array}\right.
$$

gives the universal covering space of $\boldsymbol{C}^{2}-\left(y\right.$-axis). Then \widetilde{S}_{c} is a covering Riemann surface of S_{c} and this covering has no ramifying point and has no relative boundary. Then every component of \widetilde{S}_{c} is biholomorphically equivalent to \boldsymbol{C}. In particular $S=\left\{(t, y): \phi\left(e^{t}, y\right)+t=0\right\}$ is equivalent to \boldsymbol{C}.

Set

$$
\phi(x, y)=\phi_{0}(x) y^{n}+\phi_{1}(x) y^{n-1}+\cdots+\phi_{n-1}(x) y+\phi_{n}(x)
$$

where $\phi_{i}(x)$ is a polynomial $(i=0,1, \cdots, n)$.
Lemma 1. (1) $\phi_{0}(x)$ is a monomial $a x^{h}$.
(2) $\phi_{n}(x)$ is a constant.

Proof. (1) We consider S as a covering Riemann surface over t-space. S is equivalent to \boldsymbol{C}, and S has no relative boundary over any point t. This implies that $\phi_{0}\left(e^{t}\right)$ is zero-free. Consequently $\phi_{0}(x)$ is a monomial.
(2) If the transformation

$$
F:\left\{\begin{array}{l}
x^{\prime}=x e^{\phi(x, y)} \\
y^{\prime}=y e^{\phi(x, y)}
\end{array}\right.
$$

is an automorphism, it maps x-axis biholomorphically onto x^{\prime}-axis. Then $x^{\prime}=$ $x \cdot \exp [\phi(x, 0)]$ is a linear function of x. Hence $\phi_{n}(x)$ is constant. This implies our assertion.

Now we consider the transformation

$$
T:\left\{\begin{array}{l}
x^{\prime}=x \cdot \exp \left[-\phi_{n}\right] \\
y^{\prime}=y,
\end{array}\right.
$$

then $F \circ T$ takes the form

$$
\left\{\begin{array}{l}
x^{\prime}=x \cdot \exp \left[\phi_{0}^{\prime}(x) y^{n}+\cdots+\phi_{n-1}^{\prime}(x) y+0\right. \\
y^{\prime}=y \cdot \exp \left[\phi^{\prime}(x, y)\right]
\end{array}\right.
$$

Hence we may suppose that the constant $\phi_{n}(x)$ is equal to 0 .
Let $D(t)$ be a discriminant of $\phi\left(e^{t}, y\right)+t=0$ as an algebraic equation fo y. Namely;

$$
D(t)=\left|\begin{array}{c}
a X^{h}, \phi_{1}(X), \cdots \cdots \cdots, \phi_{n-1}(X), t \\
a X^{h}, \phi_{1}(X), \cdots \cdots \cdots, \phi_{n-1}(X), t \\
\cdots \cdots \cdots \cdots \cdots \cdots \cdots \\
a X^{h}, \phi_{1}(X), \cdots \cdots \cdots, t \\
n a X^{h},(n-1) \phi_{1}(X), \cdots \cdots, \phi_{n-1}(X) \\
n a X^{h}, \cdots \cdots \cdots \cdots \cdots \cdots, \phi_{n-1}(X) \\
\cdots \cdots, \phi_{n-1}(X) \\
\cdots \cdots \cdots X^{h}, \cdots \cdots \cdots
\end{array}\right|,
$$

where we used the symbolical notation $X=e^{t}$. It is apparent that $D(t)$ is a polynomial of t and X. And $D(t)$ is not identically zero.

Proposition 1. $D(t)$ is a monomial of X.
Proof. We regard S as an n-fold covering Riemann surface over the t space. Because S is non-singular in (t, y)-space, there is a ramifying point over every zero of $D(t)$. According to the relation of Riemann-Hurwitz, there must be only finitely many ramifying points, because the genus of S is finite. Set

$$
D(t)=\alpha_{k}(t) e^{k t}+\alpha_{k-1}(t) e^{(k-1) t}+\cdots+\alpha_{1}(t) e^{t}+\alpha_{0}(t)
$$

where $\alpha_{i}(t)(i=0,1, \cdots, k)$ is a polynomial of t. From the above argument $D(t)$ has only finitely many zeros. Then $D(t)$ takes the form $Q(t) \cdot \exp [\beta(t)]$, where $Q(t)$ is a polynomial of t and $\beta(t)$ is an entire function of t. Consequently we have the equality

$$
\begin{equation*}
\alpha_{k}(t) e^{k t}+\alpha_{k-1}(t) e^{(k-1) t}+\cdots+\alpha_{0}(t)=Q(t) e^{\beta(t)} \tag{*}
\end{equation*}
$$

The function of left hand side is of increasing order one. Then the function $\exp [\beta(t)]$ is of increasing order one also. According to the theorem of Polya in the theory of entire function, $\beta(t)$ is a linear function.

Then $\beta(t)$ takes the simple form $p t$. From the equality (*) we have

$$
\lim _{t \rightarrow \infty} \frac{\alpha_{k}(t) e^{k t}+\alpha_{k-1}(t) e^{(k-1) t}+\cdots+\alpha_{0}(t)}{Q(t) e^{p t}}=1
$$

for positive real value t. Then we have $\operatorname{Re} p=k$. When t is a purely imaginary value we have

$$
\left|\alpha_{k}(t) e^{k t}+\alpha_{k-1}(t) e^{(k-1) t}+\cdots+\alpha_{0}(t)\right| \leqq M \cdot t^{N},
$$

for some integer N and a positive constant value M. Then we have $\operatorname{Im} p=0$. Consequently $\beta(t)$ is equal to $k t$. This completes the proof.

§ 2. Necessary condition.

We consider the polynomial of two variables

$$
\psi(x, y)=a x^{h} y^{n}+\psi_{1}(x) y^{n-1}+\cdots+\psi_{n-1}(x) y,
$$

where a is a constant. And we put the following condition (A).
(A) The discriminant $D(x, t)$ of the equation $\psi(x, y)-t=0$, as an algebraic equation for y, is a monomial of x.
This condition is equivalent to the following condition (B).
(B) When we regard $C_{t}=\{\psi(x, y)=t\}$ as a covering Riemann surface over x-plane, the ramifying point and the equivalent point (namely; the reducible point of C_{t} as an analytic set in (x, y)-space) of C_{t} are situated over $x=0$ for every t, with a finite number of exception.

Lemma 2. Suppose there are a polynomial of two variables $F(x, y)$ and a polynomial of one variable G such teat $\psi(x, y)=G(F(x, y))$. If ψ satisfies the condition (A), then F satisfies the condition (A) also.

Proof. Assume that ψ satisfies the condition (B). Let $\rho_{1}, \rho_{2}, \cdots, \rho_{k}$ be the totality of the roots of $G(z)-t=0$. Then we have

$$
C_{t}=\bigcup_{i=1}^{k}\left\{F(x, y)=\rho_{i}\right\} .
$$

Consequently $F(x, y)$ satisfies the condition (B).
If $\psi(x, y)$ has no above decomposition, we say ψ is primitive. If $\psi(x, y)$ is primitive, every C_{t} is irreducible and nonsingular in (x, y)-space except finite values of t.

Proposition 2. Suppose $\psi(x, y)$ satisfies the condition (A). Then $\psi(x, y)$ is decomposed to a polynomial of one variable and a monomial $x^{m} y^{n}$.

To prove this proposition we need the following lemma.
Lemma 3. Let $y=\xi(x)$ be an algebraic function. Suppose this function has exactly n values $\xi_{1}(x), \cdots, \xi_{n}(x)$ in $C^{*}=C-\{0\}$ for every x in C^{*}. Then we have

$$
\xi(x)=c x^{m / n},
$$

where c is a complex constant and m is an integer relatively prime to n.
Proof. Set $D_{1}=x$-plane- $\{0\}$. And set $D_{2}=y$-plane- $\{0\}$. Then $x=e^{t}$
realizes the universal covering of D_{1}. And $\xi\left(e^{t}\right)$ is a single valued function according to the monodromy theorem, then this function realizes the universal covering of D_{2}. (Because the inverse mapping ξ^{-1} gives an unramified covering D_{2} over D_{1} according to the assumption for ξ.) On the other hand, the universal covering of D_{2} is given by the mapping $y=e^{s}$. Because the s-space and the t-space are biholomorphically equivalent, then we have $s=a t+b$. Consequently $\xi\left(e^{t}\right)$ takes the form $e^{a t+b}$. The assumption that $\xi(x)$ is an $n-$ valued algebraic function indicates the equality $a=m / n$. This is our assertion.

Proof of the Proposition 2. We may assume that $\psi(x, y)$ is primitive. Let \hat{C}_{t} be the compactification of the covering Riemann surface C_{t} over Riemann sphere \boldsymbol{P}. Let v be the sum of the degrees of ramifications of \hat{C}_{t}. Then the Euler characteristic ρ of \hat{C}_{t} is given by $-\rho=-2 n+v$. Since C_{t} is irreducible, we have $\rho \leqq 2$. Consequently we have $v \geqq 2 n-2$. Because the ramifying point and the equivalent point of \hat{C}_{t} are situated only over the points $x=0$ and $x=\infty, v$ is at most $2 n-2$. Then we have $v=2 n-2$ and $\rho=2$. This implies that \hat{C}_{t} is biholomorphically equivalent to \boldsymbol{P} and that \hat{C}_{t} has ramifying points of the degree of ramification $n-1$ over $x=0$ and $x=\infty$. Since the coefficient function of y^{n} in $\psi(x, y)$ is a monomial, C_{t} has a relative boundary over $x=0$. And every C_{t}, except finite, does not intersect the y-axis, then ψ is constant there. And ψ is constant zero on the x-axis, then ψ is constant zero on the y-axis.

We consider $\psi(x, y)-t=0$ as an algebraic function $y=\zeta_{t}(x)$. Let \tilde{C}_{t} be the Riemann surface of this algebraic function over $|x|<\infty$. Then the following properties are satisfied.
(1) C_{t} is irreducible, nonsingular, of order of multiplicity 1 and equal to \tilde{C}_{t} for every t, except finite.
(2) $\psi(x, y)=0$ on $\{(x, y): x y=0\}$.
(3) $\zeta_{t}(x)$ has exact n values over every x except $x=0$ and $x=\infty$.

These properties ensure the assumption of Lemma 3 for $\zeta(x)$. From (2) $\psi(x, y)$ takes the form $x^{m^{\prime}} y^{n^{\prime}} Q(x, y)$, where m^{\prime} and n^{\prime} are positive integers and $Q(x, y)$ is a polynomial. By Lemma 3 we have the equality of the sets;

$$
\left\{(x, y): x^{m^{\prime}} y^{n^{\prime}} Q(x, y)-t=0\right\}=\left\{(x, y): x^{m} y^{n}-c(t)=0\right\},
$$

for general values of t. Consequently we have $m^{\prime}=m, n^{\prime}=n$ and $Q(x, y)=$ constant. This completes the proof.

§ 3. Conjugate function.

From the results of preceding arguments we know the necessary condition. Namely; if a function $f(x, y)=x \cdot \exp [\phi(x, y)]$ becomes a component of
an automorphism of axial type then $\phi(x, y)$ is decomposed to a polynomial of one variable and a monomial $x^{m} y^{n}$.

In the remainder of this paper we discuss about the conjugate function $r(x, y)$ of this $f(x, y)$ such that

$$
T:\left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

becomes an automorphism of axial type. Set

$$
f(x, y)=x \cdot \exp \left[c_{0}+c_{1} x^{m} y^{n}+c_{2}\left(x^{m} y^{n}\right)^{2}+\cdots+c_{\mu}\left(x^{m} y^{n}\right)^{\mu}\right],
$$

where $m \geqq 0$ and $n>0$. We consider the following automorphisms.

$$
T_{k}:\left\{\begin{array}{l}
x^{\prime}=x \cdot \exp \left[-c_{k}\left(x^{m} y^{n}\right)^{k}\right] \\
y^{\prime}=y \cdot \exp \left[(m / n) c_{k}\left(x^{m} y^{n}\right)^{k}\right], \quad k=0,1, \cdots, \mu .
\end{array}\right.
$$

Then $f(x, y)$ is reduced to the function x by the transformation $T_{0} \cdot T_{1} \cdots \cdot T_{\mu}$. Hence the conjugate function $g(x, y)$ is given by

$$
g(x, y)=T_{\mu}^{-1} \cdot T_{\mu-1}^{-1} \cdots T_{0}^{-1}(K(x, y)),
$$

where $K(x, y)$ is a conjugate function of x. If the transformation

$$
T:\left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

becomes an automorphism of axial type then the transformation

$$
S:\left\{\begin{array}{l}
\xi^{\prime}=\xi \\
\eta^{\prime}=K(\xi, \eta)
\end{array}\right.
$$

is an automorphism of axial type, because every T_{k} is an automorphism of axial type.

Lemma 4. The transformation

$$
S:\left\{\begin{array}{l}
\xi^{\prime}=\xi \\
\eta^{\prime}=K(\xi, \eta)
\end{array}\right.
$$

is an automorphism if and only if K takes the form $(\eta+A(\xi)) \cdot \exp [H(\xi)]$, where $A(\xi)$ and $H(\xi)$ are entire functions. And in particular S is an automorphism of axial type if and only if K takes the form $\eta \exp [H(\xi)]$.

Proof. The sufficiency is trivial. Then we show the necessity. Because $K\left(\xi^{\prime}, \eta\right)-\eta^{\prime}=0$ defines only one η for given ξ^{\prime} and η^{\prime}, this equality is transformed to the form $\eta=G\left(\xi^{\prime}, \eta^{\prime}\right)$. And the former is linear in η^{\prime}, then $G\left(\xi^{\prime}, \eta^{\prime}\right)$ $=B\left(\xi^{\prime}\right) \eta^{\prime}-A\left(\xi^{\prime}\right)$. Consequently we have

$$
\eta^{\prime}=\frac{\eta+A(\xi)}{B(\xi)} .
$$

Since $B(\xi)$ must be zero free, we have $B(\xi)=\exp [-H(\xi)]$. This implicates our assertion.

Proposition 3. Let $f(x, y)$ be a function of the form $x \cdot \exp [\phi(x, y)]$, where

$$
\phi(x, y)=c_{0}+c_{1}\left(x^{m} y^{n}\right)+c_{2}\left(x^{m} y^{n}\right)^{2}+\cdots+c_{\mu}\left(x^{m} y^{n}\right)^{\mu} .
$$

Then the transformation

$$
T:\left\{\begin{array}{l}
x^{\prime}=f(x, y) \\
y^{\prime}=g(x, y)
\end{array}\right.
$$

is an automorphism of axial type if and only if

$$
g(x, y)=y \cdot \exp \left[-(m / n) \phi(x, y)+H\left(x^{\prime}\right)\right],
$$

where H is an entire function.
Proof. From the above argument, g is given by

$$
g(x, y)=T_{\mu}^{-1} \cdot T_{\mu-1}^{-1} \cdots T_{0}^{-1}\left(y e^{H(x)}\right)
$$

By an elementary calculation we have the required result.
By these propositions we have the theorem stated at the beginning.

Bibliography

[1] E. Peschl, Automorphismes holomorphes de l'éspace à n dimensions complexes, C. R. Acad. Sci. Paris, 242 (1956), 1836-1838.

Hironori Shiga
Department of Mathematics
Chiba University
Yayoi-cho, Chiba
Japan

