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0. Statement of results.

In this paper we study the biholomorphic automorphism of $C^{2}$ which leaves
two coordinate axes invariant. E. Peschl investigated the automorphism of this
type in [1]. We say such an automorphism is of axial type. If $F=(f(x, y)$ ,
$g(x, y))$ is an automorphism of axial type, then $F$ takes the form;

$F:\{$

$f=xe^{\phi(x,y)}$

$g=ye^{\psi(x,y)}$ ,

where $\phi$ and $\psi$ are holomorphic functions. We say that a function $f(x, y)$ is
a component of an automorphism (of axial type) if there is a function $g(x, y)$

such that

$T:\{$

$x^{\prime}=f(x, y)$

$y^{\prime}=g(x, y)$

is an automorphism (of axial type).
Our results are as follows.
THEOREM. (1) Let $\phi(x, y)$ be a polynomial and set $f(x, y)=xe^{\phi(x,y)}$ . Then

$f(x, y)$ is a compOnent of an automorphim of axial type if and only if $\phi(x, y)$

takes the form $A(x^{m}y^{n+1})$ , where $m$ and $n$ are non-negative integers and $A$ is a
Polynomial of one variable.

(2) The transformation

$T:\{$

$x^{\prime}=xe^{A(x^{m}y^{n+1}})$

$y^{\prime}=g(x, y)$

is an automorphism of axial type if and only if $g$ takes the form

$y$ . exp $[-\frac{m}{n+1}A(x^{m}y^{n+1})+H(x^{\prime})]$ ,

where $H$ is a holomorphic function of one variable.
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\S 1. Discriminant $D(t)$ .
Let $\phi(x, y)$ be a polynomial, and set $f=x$ . exp $[\phi(x, y)]$ . We discuss the

necessary condition for $f$ becomes a component of an automorphism of axial
type.

We consider the analytic set $S_{c}=\{(x, y):f(x, y)=c\}$ . This is the inverse
image of the line $x^{\prime}=c$ . Then $S_{c}$ is non-singular and is biholomorphically
equivalent to the complex plane $C$. And $S_{c}$ does not intersect the y-axis for
every $c$ , except $0$ .

Set $x=e^{t}$ . The analytic set $\tilde{S}_{c}=\{(t, y):f(e^{t}, y)=c\}$ is given by the equation
$\phi(e^{t}, y)+f=\log c$ . And every branch of log $c$ gives an irreducible component
of $\tilde{S}_{c}$ . On the other hand, the mapping

$\pi;\{$

$x=e^{t}$

$y=y$

gives the universal covering space of $C^{2}-$ ( $y$-axis). Then $\tilde{S}_{c}$ is a covering Rie-
mann surface of $S_{c}$ and this covering has no ramifying point and has no rela-
tive boundary. Then every component of $\tilde{S}_{c}$ is biholomorphically equivalent
to $C$. In particular $S=\{(t, y):\phi(e^{t}, y)+t=0\}$ is equivalent to $C$.

Set
$\phi(x, y)=\phi_{0}(x)y^{n}+\phi_{1}(x)y^{n- 1}+\cdots+\phi_{n- 1}(x)y+\phi_{n}(x)$ ,

where $\phi_{i}(x)$ is a polynomial $(i=0,1, \cdots, n)$ .
LEMMA 1. (1) $\phi_{0}(x)$ is a monomial $ax^{h}$ .
(2) $\phi_{n}(x)$ is a constant.
PROOF. (1) We consider $S$ as a covering Riemann surface over t-space.

$S$ is equivalent to $C$, and $S$ has no relative boundary over any point $t$ . This
implies that $\phi_{0}(e^{t})$ is zero-free. Consequently $\phi_{0}(x)$ is a monomial.

(2) If the transformation

$F:\{$

$x^{\prime}=xe^{\phi(x,y)}$

$y^{\prime}=ye^{\psi(x,y)}$

is an automorphism, it maps x-axis biholomorphically onto x’-axis. Then $x^{\prime}=$

$x$ . exp $[\phi(x, 0)]$ is a linear function of $x$. Hence $\phi_{n}(x)$ is constant. This implies
our assertion.

Now we consider the transformation

$T:\{$

$x^{\prime}=x$ . exp $[-\phi_{n}]$

$y^{\prime}=y$ ,

then $F\circ T$ takes the form
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$\{$

$x^{\prime}=x$ . exp $[\phi_{0}^{\prime}(x)y^{n}+\cdots+\phi_{n- 1}^{f}(x)y+0$

$y^{\prime}=y$ . exp $[\psi^{\prime}(x, y)]$ .

Hence we may suppose that the constant $\phi_{n}(x)$ is equal to $0$ .
Let $D(t)$ be a discriminant of $\phi(e^{t}, y)+t=0$ as an algebraic equation fo $\gamma$ .

Namely;

where we used the symbolical notation $X=e^{t}$ . It is apparent that $D(t)$ is a
polynomial of $t$ and $X$. And $D(t)$ is not identically zero.

PROPOSITION 1. $D(t)$ is a monomial of $X$.
PROOF. We regard $S$ as an n-fold covering Riemann surface over the t-

space. Because $S$ is non-singular in $(t, y)$ -space, there is a ramifying point
over every zero of $D(t)$ . According to the relation of Riemann-Hurwitz, there
must be only finitely many ramifying points, because the genus of $S$ is finite.
Set

$D(t)=\alpha_{k}(t)e^{kt}+\alpha_{k- 1}(t)e^{(k- 1)t}+\cdots+\alpha_{1}(t)e^{t}+\alpha_{0}(t)$ ,

where ($\alpha_{i}(t)$ ($i=0,1,$ $\cdots$ , k) is a polynomial of $t$ . From the above argument $D(t)$

has only finitely many zeros. Then $D(t)$ takes the form $Q(t)$ . exp $[\beta(t)]$ , where
$Q(t)$ is a polynomial of $t$ and $\beta(t)$ is an entire function of $t$ . Consequently we
have the equality

$\alpha_{k}(t)e^{kt}+\alpha_{k- 1}(t)e^{(k- 1)t}+\cdots+\alpha_{0}(t)=Q(t)e^{\beta(t)}$ . $(^{*})$

The function of left hand side is of increasing order one. Then the function
$\exp[\beta(t)]$ is of increasing order one also. According to the theorem of Polya
in the theory of entire function, $\beta(t)$ is a linear function.

Then $\beta(t)$ takes the simple form $pr$ . From the equality $(^{*})$ we have

$\varliminf_{t}\frac{\alpha_{k}(t)e^{kt}+\alpha_{k- 1}(t)e^{(k- 1)t}+\cdots+\alpha_{0}(t)}{Q(t)e^{pt}}=1$ ,
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for positive real value $t$ . Then we have ${\rm Re} P=k$ . When $t$ is a purely imaginary
value we have

$|\alpha_{k}(t)e^{kt}+\alpha_{k-1}(t)e^{(k-1)t}+\cdots+\alpha_{0}(t)|\leqq M\cdot t^{N}$

for some integer $N$ and a positive constant value $M$. Then we have ${\rm Im} P=0$ .
Consequently $\beta(t)$ is equal to $kt$ . This completes the proof.

\S 2. Necessary condition.

We consider the polynomial of two variables

$\psi(x, y)=ax^{\hslash}y^{n}+\psi_{1}(x)y^{n-1}+\cdots+\psi_{n-1}(x)y$ ,

where $a$ is a constant. And we put the following condition (A).
(A) The discriminant $D(x, t)$ of the equation $\psi(x, y)-t=0$ , as an algebraic

equation for $y$ , is a monomial of $x$ .
This condition is equivalent to the following condition (B).

(B) When we regard $C_{t}=\{\psi(x, y)=t\}$ as a covering Riemann surface over
$x$-plane, the ramifying pOint and the equivalent point (namely; the reducible
Point of $C_{t}$ as an analytic set in $(x, y)- space)$ of $C_{t}$ are situated over $x=0$ for
every $t$ , with a finite number of exception.

LEMMA 2. SuppOse there are a polynomial of two variables $F(x, y)$ and a
Polynomial of one variable $G$ such teat $\psi(x, y)=G(F(x, y))$ . If $\psi$ satisfies the
condition (A), then $F$ satisfies the condition (A) also.

PROOF. Assume that $\psi$ satisfies the condition (B). Let $\rho_{1},$ $\rho_{2},$ $\cdots,$ $\rho_{k}$ be the
totality of the roots of $G(z)-t=0$ . Then we have

$C_{t}=\bigcup_{i=1}^{k}\{F(x, y)=\rho_{i}\}$ .

Consequently $F(x, y)$ satisfies the condition (B).
If $\psi(x, y)$ has no above decomposition, we say $\psi$ is primitive. If $\psi(x, y)$ is

primitive, every $C_{t}$ is irreducible and nonsingular in $(x, y)$ -space except finite
values of $t$ .

PROPOSITION 2. SuPpose $\psi(x, y)$ satisfies the condition (A). Then $\psi(x, y)$ is
decomPosed to a Polynomial of one variable and a monomial $x^{m}y^{n}$ .

To prove this proposition we need the following lemma.
LEMMA 3. Let $y=\xi(x)$ be an algebraic function. SuppOse this function has

exactly $n$ values $\xi_{1}(x),$ $\xi_{n}(x)$ in $C^{*}=C-\{0\}$ for every $x$ in $c*$ . Then we have

$\xi(x)=cx^{m/n}$

where $c$ is a complex constant and $m$ is an integer relatively prime to $n$ .
PROOF. Set $D_{1}=x- plane-\{0\}$ . And set $D_{2}=y- plane-\{0\}$ . Then $x=e^{t}$
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realizes the universal covering of $D_{1}$ . And $\xi(e^{t})$ is a single valued function
according to the monodromy theorem, then this function realizes the universal
covering of $D_{2}$ . (Because the inverse mapping $\xi^{-1}$ gives an unramified cover-
ing $D_{2}$ over $D_{1}$ according to the assumption for $\xi.$ ) On the other hand, the
universal covering of $D_{2}$ is given by the mapping $y=e^{s}$ . Because the s-space
and the $t$-space are biholomorphically equivalent, then we have $s=at+b$ .
Consequently $\xi(e^{t})$ takes the form $e^{at+b}$ . The assumption that $\xi(x)$ is an n-
valued algebraic function indicates the equality $a=m/n$ . This is our assertion.

PROOF OF THE PROPOSITION 2. We may assume that $\psi(x, y)$ is primitive.
Let $\hat{C}_{t}$ be the compactification of the covering Riemann surface $C_{t}$ over Rie-
mann sphere $P$. Let $v$ be the sum of the degrees of ramifications of $\hat{C}_{t}$ . Then
the Euler characteristic $\rho$ of $\hat{C}_{t}$ is given by $-\rho=-2n+v$ . Since $C_{t}$ is irre-
ducible, we have $\rho\leqq 2$ . Consequently we have $v\geqq 2n-2$ . Because the ramify-
ing point and the equivalent point of $\hat{C}_{t}$ are situated only over the points
$x=0$ and $x=\infty,$ $v$ is at most $2n-2$ . Then we have $v=2n-2$ and $\rho=2$ . This
implies that $\hat{C}_{t}$ is biholomorphically equivalent to $P$ and that $\hat{C}_{t}$ has ramifying
points of the degree of ramiPcation $n-1$ over $x=0$ and $ x=\infty$ . Since the co-
efficient function of $y^{n}$ in $\psi(x, y)$ is a monomial, $C_{t}$ has a relative boundary
over $x=0$ . And every $C_{t}$ , except finite, does not intersect the y-axis, then $\psi$

is constant there. And $\psi$ is constant zero on the x-axis, then $\psi$ is constant
zero on the y-axis.

We consider $\psi(x, y)-t=0$ as an algebraic function $y=\zeta_{t}(x)$ . Let $\tilde{C}_{t}$ be the
Riemann surface of this algebraic function over $|x|<\infty$ . Then the following
properties are satisfied.

(1) $C_{t}$ is irreducible, nonsingular, of order of multiplicity 1 and equal to
$\tilde{C}_{t}$ for every $t$, except finite.

(2) $\psi(x, y)=0$ on $\{(x, y):xy=0\}$ .
(3) $\zeta_{t}(x)$ has exact $n$ values over every $X$ except $x=0$ and $ x=\infty$ .
These properties ensure the assumption of Lemma 3 for $\zeta(x)$ . From (2)

$\psi(x, y)$ takes the form $x^{m^{\prime}}y^{n^{}}Q(x, y)$ , where $m^{\prime}$ and $n^{\prime}$ are positive integers and
$Q(x, y)$ is a polynomial. By Lemma 3 we have the equality of the sets;

$\{(x, y):x^{m^{\prime}}y^{n^{\prime}}Q(x, y)-t=0\}=\{(x, y):x^{m}y^{n}-c(t)=0\}$ ,

for general values of $t$ . Consequently we have $m^{\prime}=m,$ $n^{\prime}=n$ and $Q(x, y)=$

constant. This completes the proof.

\S 3. Conjugate function.

From the results of preceding arguments we know the necessary condi-
tion. Namely; if a function $f(x, y)=x$ . exp $[\phi(x, y)]$ becomes a component of
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an automorphism of axial type then $\phi(x, y)$ is decomposed to a polynomial of
one variable and a monomial $x^{m}y^{n}$ .

In the remainder of this paper we discuss about the conjugate function
$\sigma(x, y)$ of this $f(x, y)$ such that

$T:\{$

$x^{\prime}=f(x, y)$

$y^{f}=g(x, y)$

becomes an automorphism of axial type. Set

$f(x, y)=x$ . exp $[c_{0}+c_{1}x^{m}y^{n}+c_{2}(x^{m}y^{n})^{2}+\cdots+c_{\mu}(x^{m}y^{n})^{l^{t}}]$ ,

where $m\geqq 0$ and $n>0$ . We consider the following automorphisms.

$T_{k}$ : $\{$

$x^{\prime}=x$ . exp $[-c_{k}(x^{m}y^{n})^{k}]$

$y^{\prime}=y$ . exp $[(m/n)c_{k}(x^{m}y^{n})^{k}]$ , $k=0,1,$ $\cdots$ , $\mu$ .
Then $f(x, y)$ is reduced to the function $x$ by the transformation $T_{0}\cdot T_{1}\cdots\cdot\cdot T_{\mu}$ .
Hence the conjugate function $g(x, y)$ is given by

$g(x, y)=T_{\mu}^{-1}\cdot T_{\mu-1}^{-1}\cdots T_{0}^{-1}(K(x, y))$ ,

where $K(x, y)$ is a conjugate function of $x$ . If the transformation

$T:\{$

$x^{\prime}=f(x, y)$

$y^{\prime}=g(x, y)$

becomes an automorphism of axial type then the transformation

$S:\{$

$\xi^{\prime}=\xi$

$\eta^{\prime}=K(\xi, \eta)$

is an automorphism of axial type, because every $T_{k}$ is an automorphism of
axial type.

LEMMA 4. The transformation

$S:\{$

$\xi^{\prime}=\xi$

$\eta^{\prime}=K(\xi, \eta)$

is an automorPhism if and only if $K$ takes the form $(\eta+A(\xi))$ . exp $[H(\xi)]$ , where
$A(\xi)$ and $H(\xi)$ are entire functions. And in particular $S$ is an automorphism of
axial tyPe if and only if $K$ takes the form $\eta$ exp $[H(\xi)]$ .

PROOF. The sufficiency is trivial. Then we show the necessity. Because
$K(\xi^{\prime}, \eta)-\eta^{\prime}=0$ defines only one $\eta$ for given $\xi^{\prime}$ and $\eta^{\prime}$ , this equality is trans-
formed to the form $\eta=G(\xi^{\prime}, \eta^{\prime})$ . And the former is linear in $\eta^{\prime}$ , then $G(\xi^{\prime}, \eta^{\prime})$

$=B(\xi^{f})\eta^{\prime}-A(\xi^{\prime})$ . Consequently we have
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$\eta^{\prime}=\frac{\eta+A(\xi)}{B(\xi)}$

Since $B(\xi)$ must be zero free, we have $B(\xi)=\exp[-H(\xi)]$ . This implicates
our assertion.

PROPOSITION 3. Let $f(x, y)$ be a function of the form $x$ . exp $[\phi(x, y)]$ , where

$\phi(x, y)=c_{0}+c_{1}(x^{m}y^{n})+c_{2}(x^{m}y^{n})^{2}+\cdots+c_{\mu}(x^{m}y^{n})^{\mu}$ .
Then the transformation

$T:\{$

$x^{\prime}=f(x, y)$

$y^{\prime}=g(x, y)$

is an automorphism of axial type if and only if
$g(x, y)=y$ . exp $[-(m/n)\phi(x, y)+H(x^{\prime})]$ ,

where $H$ is an entire function.
PROOF. From the above argument, $g$ is given by

$g(x, y)=T_{\mu}^{-1}\cdot T_{\mu-1}^{-1}\cdots T_{0}^{-1}(ye^{H(x)})$ .
By an elementary calculation we have the required result.

By these propositions we have the theorem stated at the beginning.
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