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Introduction.

In this note we will try to extend the Reeb stability theorem for proper
leaves of codimension one foliations, using the concept of a locally infinite
holonomy pseudogroup which was defined by R. Sacksteder and A. J. Schwartz
[7] for the purpose of studying the limit sets of foliations.

Let $M$ be a smooth manifold with a transversely oriented, $C^{1}$ , codimension
one foliation $\mathcal{F}$ . We will assume throughout that a dimension one foliation $\mathcal{T}$

transverse to $\mathcal{F}$ has been fixed. If $x$ is a point of $M$, we let $L_{x}$ and $T_{x}$ denote
the leaves of $\mathcal{F}$ and $\mathcal{F}$ which contain $x$ respectively. We say that the holo-
nomy pseudogroup of $L_{x}$ at $x$ is locally infinite if for every neighborhood $N$

of $x$ on $T_{x}$ , there exists an element of the holonomy pseudogroup of $L_{x}$ at $x$

whose domain is contained in $N$ and which is not a restriction of the identity.
(See [7] for the definition of a holonomy pseudogroup.) We assume that $M$

has a Riemannian metric and define the r-neighborhood of $L_{x}$ to be $\{y\in M|$

$d(y, L_{x})<r\}$ , where $d$ is the distance function derived from the metric. A
subset of $M$ is called saturated if it is a union of leaves of $\mathcal{F}$ . The saturation
of a subset $X$ of $M$ is the smallest saturated subset of $M$ which contains $X$.

THEOREM 1. Let $L_{x}$ be a ProPer, relatively compact leaf of $\mathcal{F}$ . Then $L_{x}$

does not have a locally infinite holonomy pseudOgrOup if and only if for every
$r>0$, there exists a saturated neighborhood $N$ of $L_{x}$ contained in the r-neighbor-
hood of $L_{x}$ such that $\mathcal{F}|N$ is a product foliation.

THEOREM 2. SuPpose that $M$ is a compact 3-dimensional manifold and that
$L_{x}$ is a Proper, simPly connected leaf of $\mathcal{F}$ . Then for every $r>0,$ $L_{x}$ has a
saturated neighborhood $N$ contained in the r-neighborhood of $L_{x}$ such that $\mathcal{F}|N$

is a Product foliation.
These theorems can be viewed as generalizations of the Reeb stability

theorem for Proper leaves of codimension one foliations. The author does
not know whether Theorem 2 can be extended for compact manifolds of
dimension greater than three. On the other hand, we easily see that these
results cannot be generalized for foliations of codimension greater than one
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(See \S 4).
The author is grateful to I. Tamura and T. Nishimori for their advice

and encouragement during the research.

\S 1. Holonomy groups and locally infinite holonomy pseudogroups.

H. Imanishi [3] has constructed an example of a codimension one foliation
on a closed 3-dimensional manifold with a proper leaf which does not have
an infinite holonomy group, but has a locally infinite holonomy pseudogroup.
So in general there is a gap between an infinite holonomy group and a locally
infinite holonomy pseudogroup. However if we impose some particular con-
ditions upon $\mathcal{F}$ or $L_{x}$ , we can stop the gap.

PROPOSITION 1. Let $L_{x}$ be a compact leaf. Then $L_{x}$ has a locally infinite
holonomy PseudogrouP if and only if it has an infinite holonomy group

$\cdot$

PROOF. Immediate from the Reeb stability theorem for compact leaves
without holonomy [1].

PROPOSITION 2. Let the dimension of $L_{x}$ be one. Then $L_{x}$ has a locally

infinite holonomy pseudOgrOup if and only if it has an infinite holonomy group
PROOF. From the assumption, $L_{x}$ is homeomorphic either to $R^{1}$ or to $S^{1}$ .

Therefore the result follows from Proposition 1 above and Proposition 3.5 of
[7].

PROPOSITION 3. Let $\mathcal{F}$ be real analytic and let $L_{x}$ be a leaf of $\mathcal{F}$ . Then
$L_{x}$ has a locally infinite holonomy pseud0gr0up if and only if it has an infinite
holonomy group

$\cdot$

PROOF. Suppose $L_{x}$ has a trivial holonomy group. Then every element
of the holonomy pseudogroup of $L_{x}$ is a restriction of the identity, because
the element is a real analytic local diffeomorphism of $T_{x}$ whose germ at $x$

is a germ of the identity. Hence $L_{x}$ does not have a locally infinite holonomy
pseudogroup.

\S 2. Proof and corollaries of Theorem 1.

A continuous map $P:[0, b]\times[0, S]\rightarrow M,$ $(b>0, S>0)$ , is called a projector
if the following conditions are satisfied.

1) $P(t, s)\in L_{P(0,s)}\cap T_{P(t,0)}$ for $t\in[0, b]$ and $s\in[0, S]$ ,
2) $s-,P(0, s)$ is an isometry.

We need the following two lemmas which was proved by Sacksteder and
Schwartz in [7].

LEMMA 1. Let 1 be a Positive number and let $g:[0, b]\rightarrow M$ be a path con-
tained in a single leaf such that $g(t)$ is the midpOint of an interval of length
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21 in $T_{g(t)}$ for each $t\in[0, b]$ . Let $J$ be an interval in $T_{g(0)}$ with length $m(<l)$

with one end point at $g(O)$ . Let $c$ be the largest number in $[0, b]$ such that
there exists a projector $P:[0, c]\times[0, m]\rightarrow M$ satisfying

1) $P(t, O)=g(t)$ for $0\leqq t\leqq c$,
2) $P(0\times[0, m])=J$,
3) $P(t\times[0, m])$ has length less than or equal to 1.

Then either $c=b$ or $P(c\times[0, m])$ is of length 1.
LEMMA 2. Let $x\in M$ and let $L_{x}$ be a relatively compact leaf. Let $P_{t}$ :

$[0, b_{i}]\times[0, S_{i}]\rightarrow M$ be a sequence of projectors such that

1) $P_{i}(0, O)=x$ for all $i$ ,
2) $P_{i}(0\times(0, S_{i}$]) $\cap L_{x}=\emptyset$ ,
3) $\lim_{i\rightarrow\infty}S_{i}=0$ ,

4)
$\lim_{i\rightarrow\infty}$ (length of $P_{i}(b_{i}\times[0,$ $S_{t}])$ ) $=l>0$ .

Then $L_{x}$ has a locally infinite holonomy pseudogroup.
PROOF OF THEOREM 1. Since the “if” part of the theorem is obvious, we

prove the “only if” part.
Suppose that $L_{x}$ does not have a locally inPnite holonomy pseudogroup.

For each $y\in L_{x}$, let $h_{y}$ be an injective path which satisfies the following con-
ditions and which has the biggest image among all pathes: $[0,1$) $\rightarrow T_{y}$ satisfy-
ing the same conditions as those of $h_{y}$ .

1) $h_{y}$ starts from $y$ in the positive direction. (Remark that each $T_{y}$ has
been oriented by the transverse orientation of $\mathcal{F}.$ )

2) $S_{y}\cap L_{x}=\{y\}$ , where $S_{y}$ denotes $h_{y}([0,1))$ .

Such $h_{y}’ s$ exist because $L_{x}$ is proper. Let $J$ be $h_{x}([0, \epsilon))$ for some $0<\epsilon<1$ .
Note that $J$ is diffeomorphic to $R_{+}(=[0, \infty))$ . Since $L_{x}$ is compact, we can
take a positive number 1 sufficiently small that the length of $J$ is greater than
$l$ and that each $y\in\overline{L}_{x}$ is the midpoint of an interval in $T_{y}$ of length 21.

ASSERTION 1. There is a connected open neighborhood $N$ of $x$ in $J$ such
that for each leaf $L$ , if $ N\cap L\neq\emptyset$, then $S_{x}\cap L=one$ Point.

PROOF. Suppose that there are infinite sequences $\{x_{i}\},$ $\{y_{i}\}$ such that

1) $x_{i}\in J,$ $y_{i}\in L_{xt}\cap S_{x}$ , and $x_{i}\neq y_{i}$ for all $i$ ,
2) $\lim_{\rightarrow\infty}x_{i}=x$ and $\overline{xx}_{i}$ is of length less than $l$ , where $-xx_{t}$ is the unique inter-

val in $J$ with end points $x$ and $X_{i}$ .
Let $g_{i}$ : $[0,1]\rightarrow L_{x_{i}}$ be a sequence of paths satisfying $g_{i}(0)=x_{i},$ $g_{i}(1)=y_{i}$ .

By Lemma 1, there is a sequence of projectors satisfying the following condi-,

tion $C$ .
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$C\left\{\begin{array}{ll}1) & P_{i} : [0, t_{i}]\times[0, s_{i}]\rightarrow M where 0<t_{i}\leqq 1 ,\\2) & P_{t}(t, s_{i})=g_{\ell}(t) for 0\leqq t\leqq t_{i},\\3) & P_{i}(0,0)=x,\\4) & P_{i}(\{t\}\times[0, s_{i}]) has length less than 1 for 0\leqq t<t_{i} ,\end{array}\right.$

5) $P_{i}(\{t\}\times[0, s_{i}])$ has length equal to 1 if $t_{i}<1$ .
In the case where $t_{i}<1$ for all but a finite number of $i$ , by Lemma 2, $L_{x}$

has a locally infinite holonomy pseudogroup. This contradicts the supposition
on $L_{x}$ . In the case where $t_{i}=1$ for infinitely many $i$, taking a subsequence if
necessary, we can assume $t_{i}=1$ for all $i$ . Then the element of the holonomy
pseudogroup of $L_{x}$ at $x$ along the loop $t-,P_{i}(t, 0)$ whose domain contains
$P_{i}(0\times[0, s_{i}])$ is not a restriction of the identity because $x_{i}\neq y_{i}$ . This fact and
that $\lim_{i\rightarrow\infty}s_{i}=0$ imply that $L_{x}$ has a locally infinite holonomy pseudogroup, which

is also a contradiction. This proves Assertion 1.
The above method of proof is due to Sacksteder and Schwartz [7].

ASSERTION 2. There is a connected oPen neighborhood $N^{\prime}$ of $x$ in $N$ such
that for each leaf $L$ , if $ N^{\prime}\cap L\neq\emptyset$ , then $S_{y}\cap L=at$ most one point for each $y\in\dot{L}_{x}$ .

PROOF. Suppose that there is a sequence $\{x_{i}\}$ such that

1) $x_{i}\in N$ for all $i$ , and $\lim_{i\rightarrow\infty}x_{i}=x$ ,

2) there is a point $y_{i}$ in $L_{x}$ such that $L_{x_{i}}\cap S_{y_{i}}$ contains at least two points.

We take a point $a_{i}$ in $h_{y_{i}}^{-1}(L_{x_{i}}\cap S_{y_{i}})$ which is not the smallest point in it.
Let $g_{i}$ : $[0,1]\rightarrow L_{x_{i}}$ be a sequence of paths such that $g_{i}(0)=x_{i}$ and $g_{i}(1)=h_{y_{i}}(a_{i})$ .
By Lemma 1, there exists a sequence of projectors with the property $C$ . The
condition on $g_{i}$ implies that $t_{i}<1$ . Therefore by Lemma 2, $L_{x}$ has a locally
infinite holonomy pseudogroup. But this is a contradiction and Assertion 2 is
proved.

ASSERTION 3. There is a connected oPen neighborhood $N^{r}$ of $x$ in $N^{\prime}$ such
that for each leaf $L$ , if $ N^{\nu}\cap L\neq\emptyset$ , then $S_{y}\cap L=just$ one point for each $y\in L_{x}$ .

PROOF. Suppose that there is a sequence $\{x_{i}\}$ such that

1) $x_{i}\in N^{\prime}$ for all $i$ , and $\lim_{\rightarrow\infty}x_{i}=x$ ,

2) there is a point $y_{i}$ in $L_{x}$ such that $ L_{x_{i}}\cap S_{y_{i}}=\emptyset$ .
Let $g_{i}$ : $[0,1]\rightarrow L_{x}$ be a sequence of paths satisfying $g_{i}(0)=x,$ $g_{i}(1)=y_{i}$ . By

Lemma 1, there exists a sequence of projectors satisfying the following con-
ditions.

1) $P_{i}$ : $[0, t_{i}]\times[0, s_{i}]\rightarrow M$ where $0<t_{i}\leqq 1$ ,

2) $P_{i}(t, 0)=g_{i}(t)$ for $0\leqq t\leqq t_{i}$ ,
3) $P_{\ell}(0, s_{i})=x_{i}$ ,
4) $P_{i}(t\times[0, s_{i}])$ has length less than $l$ for $0\leqq t<t_{i}$ ,
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5) $P_{i}(t_{i}\times[0, s_{i}])$ has length $l$ if $t_{i}<1$ .
In the present case, the condition on $g_{i}$ implies that $t_{i}<1$ . Therefore by

Lemma 2, $L_{x}$ has a locally infinite holonomy pseudogroup. But this contradicts
the supposition on $L_{x}$ and Assertion 3 is proved.

ASSERTION 4. There is a connected open neighborhood $N^{m}$ of $x$ in $N^{l}$ such
that for each leaf $L$ , if $ N^{m}\cap L\neq\emptyset$ , then for each $z\in L$ , a path starting from $z$

in the negative direction on $T_{z}$ intersects $L_{x}$ and the first intersecting point
exists.

PROOF. Suppose that there is a sequence $\{x_{i}\}$ such that

1) $x_{i}\in N^{\nu}$ for all $i$ , and $\lim_{\rightarrow\infty}x_{i}=x$ ,

2) there is a point $z_{i}$ in $L_{x_{i}}$ such that a path starting from $z_{i}$ into the
negative direction on $T_{z_{i}}$ either doesn’t intersect $L_{x}$ or intersects $L_{x}$ but the
first intersection point doesn’t exist.

Let $g_{i}$ : $[0,1]\rightarrow L_{x_{i}}$ be a sequence of paths satisfying $g_{i}(0)=x_{i},$ $g_{i}(1)=z_{i}$ .
Then by Lemma 1, there is a sequence of projectors with the property $C$ .
The condition on $g_{i}$ implies that $t_{i}<1$ . Therefore by Lemma 2, $L_{x}$ has a lo-
cally infinite holonomy pseudogroup. This is a contradiction and Assertion 4
is proved.

We remark that $(N^{\prime\prime\prime}, x)$ is diffeomorphic to $(R_{+}, 0)$ . Let $ N^{\prime\prime}\wedge$ denote the
saturation of $N^{\prime\prime\prime}$ . If we define a foliation of $N^{\prime\prime\prime}\times L_{x}$ so that its leaves are
$\{t\}\times L_{x}(t\in N^{\prime\prime\prime})$ , then there exist foliation preserving homeomorphisms between

$ N^{\prime\prime}\wedge$ and $N^{\prime\prime/}\times L_{x}$ which are the inverses of each other. In fact the homeomor-
phisms $\varphi:N^{\prime\prime\prime}\times L_{x}\rightarrow N^{\prime\prime}\wedge,$ $\psi:N^{\prime\prime}\rightarrow N^{\prime\prime\prime}\wedge\times L_{x}$ are given by $\varphi(t, y)=S_{y}\cap L_{t},$ $\psi(z)=$

$(N^{\prime\prime\prime}\cap L_{z}, f(z))$ for $t\in N^{\prime\prime\prime},$ $y\in L_{x},$
$ z\in N^{\prime\prime}\wedge$ , where $f(z)$ is the first intersecting point

when a path starting from $z$ into the negative direction on $T_{z}$ intersects $L_{x}$ .
In the entirely same way, we can find a set homeomorphic (foliation-pre-

servingly) to $R_{+}\times L_{x}$ in the negative side of $L_{x}$ . If we choose both sets suf-
Pciently small that their intersection is $L_{x}$ , then their union is the saturated,
trivially foliated neighborhood of $L_{x}$ homeomorphic to $R\times L_{x}$ , as desired.

Finally, let $r>0$ and suppose that there is a sequence $\{x_{i}\}$ satisfying the
following conditions.

1) $x_{i}\in N$ “‘ for all $i$ , and $\lim_{\rightarrow\infty}x_{i}=x$ .
2) There is a point $y_{i}$ in the saturation of $\overline{xx}_{i}$ such that $d(y_{i}, L_{x})\geqq r$ .

Define $z_{i}$ by $z_{i}=L_{y_{i}}\cap x-x_{i}$ . Then $\lim_{i\rightarrow\infty}z_{i}=x$ . Let $g_{i}$ : $[0,1]\rightarrow L_{z_{i}}$ be a sequence

of paths satisfying $g_{i}(0)=z_{i},$ $g_{i}(1)=y_{i}$ . If we take $r$ instead of $l$ in Lemmas
1 and 2, we are led to the contradiction as in the proof of the preceding as-
sertions. Thus we can find a saturated trivial neighborhood in the r-neigh-
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borhood of $L_{x}$ . This completes the proof of Theorem 1.
The following corollary is Theorem 1 of [7].

COROLLARY 1. Let $L_{x}$ be a proper, relatively compact leaf. If there is a
leaf $L$ such that $L\neq L_{x}$ and $\overline{L}\supset L_{x}$ , then $L_{x}$ has a locally infinite holonomy
pseudogroup.

The following two corollaries are generalizations of the Reeb stability
theorem for proper leaves of codimension one foliations under some particular
conditions.

COROLLARY 2. Let $\mathcal{F}$ be a codimension one foliation of a 2-dimensional
manifold. Then every proper, relatively compact leaf of $\mathcal{F}$ with a trivial holo-
nomy group has a saturated tubular neighborhood with a pr0duct foliation.

PROOF. Immediate from Proposition 2 and Theorem 1.
COLOLLARY 3. Let $\mathcal{F}$ be a $C^{\omega}$ codimension one foliation. Then every pro-

per, relatively compact leaf of $\mathcal{F}$ with a trivial holonomy group has a saturated
tubular neighborhood with a pr0duct foliation.

PROOF. Immediate from Proposition 3 and Theorem 1.

\S 3. Proof of Theorem 2.

Theorem 2 is a direct corollary of Theorem 1 and the following lemma.
LEMMA 3. Let $\mathcal{F}$ be a C’ transversely oriented codimension one foliation of

a compact 3-dimensional manifold M. If a leaf of $\mathcal{F}$ is simply connected, $it$

does not have a locally infinite holonomy pseudogroup.
PROOF. Suppose that there exists a simply connected leaf $L_{x}$ of $\mathcal{F}$ which

has a locally infinite holonomy pseudogroup. Then for an arbitrary neigh-
borhood $N$ of $x$ on $T_{x}$ , there exists a non-trivial element $\gamma$ of the holonomy
Pseudogroup of $L_{x}$ at $x$ whose domain is contained in $N$. Let $D$ denote the
domain of $\gamma$ . We may assume that $D$ is diffeomorphic to the open interval
$(0,1)$ . Let $P:D\times[0,1]\rightarrow M$ be a projector which induces $\gamma$ .

Since $\gamma$ is non-trivial, there exists a point $y\in D$ such that $y\neq\gamma(y)$ , which,

we may assume without loss of generality, lies on the positive side of $x$ . If
we define $X$ by

$X=$ { $y\in D|y\neq\gamma(y)$ and $y$ lies on the positive side of $x$ },

$X$ is not empty and bounded below. Hence $\inf_{y\in X}y$ exists and we denote it by

$z$ . Then $z\neq x,$ $z=\gamma(z)$ , and the loop $g_{z}$ : $[0,1]\rightarrow L_{z}$ dePned by $g_{z}(t)=P(z, t)$ is
not hom\‘Otopic to zero on $L_{z}$ , because $g_{z}$ induces a non-trivial element of the
holonomy group of $L_{z}$ . If we define $Y$ by

$Y=\{y\in D|y=\gamma(y),y1iesthe1oopg_{y}isonthepositivesideofnothomotopictozeroonL_{y}x,$$and\}$
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$Y\ni z$ and $Y$ is bounded below. Hence $\inf_{y\in Y}y$ exists and we denote it by $w$ .
Then $w\neq x$ and the loop $g_{w}$ is not homotopic to zero on $L_{w}$ because of the
well-known holonomy lemma [2]. Therefore $g_{w}$ is a vanishing cycle in the
sense of S. P. Novikov [2], [5].

The following result is proved by Novikov [2], [5].

THEOREM 3. If $M$ is compact and of dimension 3, then every leaf that
contains a vanishing cycle is $C07npact$ .

By this theorem, $L_{w}$ is a compact leaf. Since $N$ can be chosen arbitrarily

small, there exists a family of compact leaves $L_{\lambda}(\lambda\in\Lambda)$ such that $\overline{\bigcup_{\lambda\in\Lambda}L}_{\lambda}\supset L_{x}$ .
The following theorem is well known ([2], [4], [6]).

THEOREM 4. Let $L_{\lambda}(\lambda\in\Lambda)$ be a family of compact leaves. Then every leaf
contained in $\overline{\bigcup_{\lambda\in\Lambda}L}_{\lambda}$ is compact.

By this theorem, $L_{x}$ itself is a compact leaf. But a simply connected
compact leaf does not have a locally infinite holonomy pseudogroup by Pro-
position 1. This is a contradiction and Lemma 3 is proved.

REMARK. A simply connected leaf in a 3-manifold is either $S^{2}$ or $R^{2}$ .

\S 4. An example of a codimension two foliation.

Here is an example of a codimension two foliation of $T^{3}$ ( $c$ . $f$ . $[1]$ , p. 113)

which shows that Theorem 2 cannot be generalized for foliations of codimen-
sion greater than one.

Let $T^{3}=\{(x, y, \varphi, \theta)\in R^{2}\times(R/2\pi Z)^{2}|x^{2}+y^{2}=1\}$ . $\mathcal{F}$ is defined by the dif-
ferential system $\omega_{1}=\omega_{2}=0$, where $\omega_{1}=d\theta$ and $\omega_{2}=$ {(1-- sin $\theta)^{2}+x^{2}$ } $d\varphi+\sin\theta dx$ .

Every leaf of $\mathcal{F}$ is proper. And every leaf diffeomorphic to $R^{1}$ does not
have any saturated tubular neighborhood with a product foliation, because the
union of all the compact leaves is dense in $T^{3}$ .

\S 5. Addendum.

Recently we have generalized Theorem 2 as follows.
THEOREM 2’. Let $M,$ $\mathcal{F}$ be as in Theorem 2 and let $L$ be a ProPer leaf of

$\mathcal{F}$ such that $\pi_{1}(L)$ is finitely generated and that the holonomy group of $L$ is
trivial. Then $L$ has a saturated tubular neighborhood with a product foliation.

From Corollary 3 and the result of W. Thurston [8], we have obtained
the following.

COROLLARY 3’. Let $M,$ $\mathcal{F}$ be as in Corollary 3 and let $L$ be a Proper, rela-
tively compact leaf of $\mathcal{F}$ such that $H^{1}(L;R)=0$ and that the holonomy group of
$L$ is finitely generated. Then the holonomy group of $L$ is trivial and $L$ has a
saturated tubular neighborhood with a product foliation.
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