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§1. Introduction.

The underlying logic of the ordinal number theory OA given in is a
weakened second order logic. Adopting the standard second order logic, we
can obtain a stronger theory. We shall denote it by OA*. In this paper we
first show the consistency of OA* by interpreting it in ZF. In fact, OA" is
interpretable in various theories which are much weaker than ZF. Roughly
speaking, OA* is interpretable in those theories that have the first uncountable
ordinal w, and all subsets of w;X®;. I do not know whether OA* is strictly
weaker than those theories. Next, we give a theory which is somewhat simple
and whose strength is equal to that of OA*.

§2. The theory OA*.

2.1. The language of OA* (denoted by L,).

(a) Individual variables: x,, x,, ---.

(b) Predicate variables: P,, P,, --- .

(¢) Predicate constants: =3, *<x*, Ox .

(d) Logical symbols: 7, A, 3.

2.2. The axioms and the inferences of OA*,

(a) The axioms and the inferences of the standard second order logic and
the equality axiom: a=beoVP[Pa—Pb].

(b) The following four:

OaNVx[x<aox<b]l—a=b;
Oanx<aNny<zx—y<a;
VPIVx[Ox—[(Vy<x)Py— Px]]—Vx[Ox— Px]]:
Oa, N -+ NOa  ANVX[A(x)—=Ox AN(Vy<x)A(Y)]—=3y[OyAVz[z<y A(2)]],

where A(x) contains neither the predicate constant O nor free variables except
(Zl b an, :r.
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§3. An interpretation of OA* in ZF.

There is a direct interpretation of OA* in ZF, but we show an indirect
one to imply that OA* is interpretable in theories that are weaker than ZF.
By Lz, we shall denote the language of ZF.

First, we add the new constant symbol a, 3 to Lzr and add the following
axioms to ZF':

(a) Ord(e) AOrd(P)Na<p,
(b) (Vay -+ a,<a)[(Fx<P)A(x, a, -+ a,, B)—@x<a)A(x, a, -+ ay, )]

for every A(x,a, - a,, B), where the constant symbol « does not occur in
A(x, ay -+ a,, B) and all free variables are indicated.

Denote this theory by ZF’.

LEMMA 1. ZF’ is a conservative extension of ZF.

PrOOF. Let B be a sentence of Lzr and ZF'—B. Note that for any finite
set Ay, -+, A, of formulas of Lz, there exists a formula A of Lzr such that

ZF—(VabeOn)[(Va, - a,<a)[Fx<b) A(xa, - ab)—(@x< a) A(xa, -+ a,b)]
= Aizpa(Vay - 0, <)L 3x<b) Ay(xa, -+ a,b)—3x<a)Ay(xa, -+ azb)]],

where x, a, - a,, b are all of the variables occurring free in A, . A4,: E. g,
let A(xa, --- a,b) be

A sl @Y < D) A3, -+ anh)— @Ay = ) A(ya; - aab)] .
So, there exists a formula A of Lzr such that
ZF—3a, besOn)0<a<bA{Va, - a,<a)[Fx<b)A(xa, - a,b)
—3Ax<a)A(xa, --- a,b)]]—B.

Now let a,=1 and a,.,,=sup[&(a, - a,)|a, - a,<a,], where &(a, -+ a,) means
the least ordinal ¢ such that (3x< w,)A(xa, - a,w,)— A(éa, -+ a,w;), and put
a=sup «,,. Then 0<a<w; and (Va, - a,<a)[Fx<w)A(xa, - a,0;)—Fx< a)
A(xa, - a,w,)]. Hence we have ZF+ B, q.e.d.
Now, we shall interpret OA™ in ZF'.
For each formula A of L, we define its interpretation I(A) in ZF’ recur-
sively as follows:

I(A) is A if A is a<b or a=b,
I(Pa, - a,) is a, - a,y P,
I(Oa) is Ord (e)Ne< e,



A second order theory of ordinal numbers 747

I(7A) and I(AAB) are 71(A) and I(A)AI(B) respectively,
I(3xA) is 3x[0rd () Ax<BAI(A)],
I(3P)A) is @P)I(A),

where every symbol which is contained in L, as an individual variable or a
predicate variable is assumed to be contained also in L,r as a variable.
THEOREM 1. OAY— A ZF'—I(A), for every sentence A of L,.
PrROOF. We shall show this for the main case that A is the axiom

Ya[Oa AV x[B(xa)—OxAN(NVy<x)B(ya)]—3Iu[Ou AV x[x<u< B(xa)11],

where B does not contain the predicate constant O.

Suppose a<aANVx<B)[I(B(xa))—x<aNMy<x)I(B(ya))]. Then we have
Fz< BV x< B)[I(B(xa))—x<z] since a<p. This formula does not contain the
constant symbol «, since the symbol O does not appear in B(xa). Hence we
have (Jz<a)(Vx<B)[I(B(xa))—x<z], which implies

Gu<a)Vx< Plx<ueI(B(xa))].
Thus we have ZF'—I(A).

§4. The theory O,.

DEFINITION of O,. The underlying logic of the theory Oz is the standard
second order logic with an individual constant « and predicate constants =
and <. (We shall write L, to denote this language.) The axioms are the
following :

(a) “ < is a well-ordering,”

(D) (Va, - a,<a)[Fx<a)A(xa, -+ a,)IxA(xa, - a,)], where A(xa, - a,)
contains neither the constant a nor free variables except the indicated.

Now, the assertion in § 3 is divided into the following two: O, is consistent
and OA™" is interpretable in O,.

We used w, to prove the consistency of O, in §3. The author has no
answer to the following question now:

QUESTION. Is w; necessary to prove the consistency of 0,?; e.g., “Is the
sentence VP[(Vx<w)3!y)Pxy—32(Vx<w)7 Pxz] consistent with O, relative
to 0,?”

In the rest, we show that OA* is almost equal to O, in strength.

For this purpose, we shall provide some metamathematical notions on OA*,

O-formulas are defined recursively as follows:

(a) a<b, a=b, Pa, - a, are O-formulas;
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(b) If A and B are O-formulas, then so are 3x[OxA A], AP)A, AAB and
7 A.

A P-formula means a formula in which the predicate constant O does
not occur.

Let L(b) be the conjunction of the following four:

VilVax[x<box<yl—b=y],
VPLEx<b)Px—3x<b[PxANNy<b[Py—x=<y11],
VaVylx<y<b—x<b],
Vx[x<b—x=b].

O*(x) is the P-formula (Vb=x)L(b).

We shall denote the constant ¢xVy[ y<x<0y] by 2 as in [3].

The interpretation I of OA* in O, is defined recursively as follows : [(a<b),
I(a=b), I(Pa, --+ a,) and I(Oa) are a<b, a=b, Pz, - a, and a< a respectively;
I(7A), IIAANB), I3xA) and I((3P)A) are 7I(A), I(A)NI(B), AxI(A) and (3P)I(A)
respectively.

Next, for each formula F(x) of L,, we define an interpretation R(AxF(x), )
(or simply Rg(*¥)) of O, in OA" recursively as follows:

Rg(x) is x for every individual variable x,

Re(a) is 2,

Rp(Xt, ---t;) is Xs; -+ s, where X is a predicate symbol and s; is Rg(t;)
for i=1, ---, n,

Rp(7A) and Ry(AAB) are 7Rz(A) and Rr(A)ARp(B) respectively,
Rz(3xA) is Ax[O*(X)AF(xX)AR(A)],
R(AP)A) is AP)Rs(A).

We write often R,(A) for R(Ax(x<1t), A).
LEMMA 2. If a sentence A of L, is logically valid (i.e., provable in the
second order logic with =), then

OA*—F(2)—Rz(A).

ProOF. By induction on the length of the proof for A.

LEMMA 3. OA*'—A=>0,—I(A).

PROOF. Same as § 3.

LEMMA 4. OA*—(Vx<Q)F(x)—[Rp(I(A))-Al, for every O-formula A.
PrROOF. By induction based on the recursive definition of O-formulas.
LEMMA 5. Let A be a sentence of L, such that O,— A. Then there is a
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Sormula F(ux) such that
OA*—Fu[(Vx < 2)F(ux) A\ R(AxF(ux), A)].

To prove this lemma we shall provide further metamathematical notions
on OA*,

For any formula A(x), the formula (3! x)[A*(x) A(Vy<x)7 A*(»)] is provable
(in OA*), where A*(x) is the formula O%*(x) A[3z[0#*(2) A A(2)]— A(x)]. We
write pxA(x) for ex[ A¥(x) A(Vy<x)7A*(y)].

If a function f can be defined by the postulate “y=f(x, --- x,)> A(yx;--+ x,)”
for some P-formula A, we call it a P-function.

J(x, %), K(x) and L(x) are the P-functions defined similarly as in such
that for all x, v<Q, J(K(x), L(x))=x, K(J(xy))=x, L(J(xy))=y and J(xy), K(x),
L(x)< £,

Let L’(x, %) be the P-function defined by the following induction:

L0, x)=x,

L'(k, x)=L(L"(k—1, x)) if 0<k<w,

L'(k,x)=0  otherwise.

We shall write (a); for K(L'(, a)), and (a);; for ((a));.

ProOF OF LEMMA 5. Suppose that a sentence A is provable in O,. Then
there is a formula B(xa, --- a,) of L, which contains neither the constant «
nor free variables except the indicated and which possesses the following
property : The sentence [ < is a well-ordering]A0<aA(Va, - a,<a)[IxB(xa,
v a,)—@x<a)B(x, a, -+ a,)]—A is logically valid. (See the proof of
for this reason.) Since B does not contain «, it is also a formula of L,; be-

sides a P-formula.
Let H be the P-function defined by the following induction:

H(0, a) = px[Ros(B)(x, (@)o: -+ (@)on)],
H(k, @) = px[x < H(k—1, a) A R gci-1,a3(B)(%, (@)p1 -+ (@)an)]

if 0<k<w,
H(k, a)=0 otherwise,
where N means the n-th numeral.

Put B=pux[x= 2 A3k, a< Q)[x=H(k, a)]].
From the definition we easily obtain that

(a) O*(H(k, a)),
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(b) (Vj=k)[(a);=(b);1—H(k, a)=H(k, b),
(¢) H(k,a)+0—H(k+1,a)< H(k, a),
(d) a,k<QAB=Hk, a)+0—HE+1,a) < Q.

SUBLEMMA 1. B=0—-(Va, - a,<2)[Ix[0*(x) A Rox(B)(xa, --- a,)]—3x < Q)
Ro#(B)(xa, -+ a,)]].

ProoOF. B=0 implies H(0, a)< 2 for every a<f.

SUBLEMMA 2. ;- a,<Q2AB#0NQx<B)[Ru(B)(xa, -+ ay)]—>Fx<2)[Rs(B)
(xa, -+ a,)].

ProOOF. Since 8+0, there exist a, k< §2 such that f=H(k, a). Since q,a,
-+ a,< £, there exists ¢< 2 such that ((¢)ss1)i=ay, -+, (O)ss1)y=0, and (Vi< k)
[(@);=(¢);]. Put d=H(k+1,¢). Then d=ux[x<BARy(B)(xa, - a,)] since H(k,
c)=H(k, a)=p. Hence Ry(B)(da, - a,) since (Ix<B)[Ry(B)(xa, -+ a,)]. Besides
d=H(k+1, c)< £, since H(k, ¢)=8+0 and k, c<2, _ g.e.d.

Now let F(ux) be the P-formula

O*(X)AN[u=0VLu#0Ax<H({(u),, (w))]I].
SUBLEMMA 3. OA*— FQu< D[(Vx< Q)F(ux) A R(AxF(ux),
(Va, - a,<a)[FxB(xa, -~ a,)—3x < a)B(xa, --- a,)])].

PrROOF. Case 1: f=0. Put u=0. Then F(ux)-O#*(x). Hence the desired
conclusion is immediate from Sublemma 1.

Case 2: B8+#0. There exist a, k<2 such that f=H(%, a). Put u=J(k, J(a, 1)).
Then F(ux)~x<f. The desired conclusion follows from « < £ and Sublemma
2, q.e.d.

Now, write W for the sentence “< is a well-ordering.” Write B* for the
sentence (Ya, -+ a,<a)[FxB(xa, -+ a,)—Fx<a)B(xa, --- a,)]. Since —WAB* A0
<a—A, we have, by Lemma 2,

OA*— F(u, 2) N RQAxF(ux), W A B* A0 < a)— R(AxF(ux), A).

Since 0% is well-ordered by <, OA*— R(AxF(ux), W). Since F(ux) is a P-
formula, (Vx<Q)F(ux) Au< 2 implies F(u, ). Hence by SubLemma 3, 0A*
—Au<DLVx< D F(ux) AR(AxF(ux), A)]. This completes the proof of

Now, we see that O, is a conservative extension of OA* in the following
sense :

THEOREM 2. OA*— A& O,—I(A) for every O-sentence A.

PROOF. (=) See § 3.

(&) Let O,—1I(A). Then by Lemma 9 there is a formula F(ux) such that
OA*—Fu[(Vx < DF(ux) N R(AxF (ux), I(A))]. Now, suppose (Vx<£2)F(ux)A
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R(AxF(ux), I(A)) in OA*. Then by R(AxF(ux), I(A))«> A. Hence A4,
q.e.d.

§5. A remark.

Indeed, OA™* is stronger than OA. Because the consistency of OA is pro-
vable in OA*. We verify this fact in this section. Since OA*+— Cons (0A) &
O,+— Cons (OA) by the result of the previous section, it suffices to show O,—
Cons (OA).

For this purpose we shall provide some notions.

If a formula of L, does not contain the constant «, we call it a P-formula.
A term which is defined by a P-formula is called a P-term.

Consider (in O,) the model L of the constructible sets in the similar manner
in [3] Similarly as xEy and <{xy)>° in[3], there exist a P-formula xey which
means JFx=Fy intuitively and a P-term {xy> which means an ordered pair in
L. We can easily define a P-term % which means the x-th ordinal in L.

Now, there exists a formula I(x, *) of L, which possesses the following
properties in O,:

(@) I(s,Tx<yT) o s(TxT) <s(MyM),

(b) I(5,T0xN) & s(MxN<a,

(© s, TPx, - 2, o (5, - (T2 > € (TP,

(d) I(s,TAANB) o I(s,TANWYWAI(s,TBT),

(@ I(s,T7AT) & 71(s,TAT),

(f) I(s,TAxAN) < FaVs'[VO[b#TxT—-s'(b)=s(b)JAs(TxH=a
—I(s',TAN],

(g) I(s,TAP)AT) & JaVs'[Vb[b#TPI—s'(b)=s(b)IJAs'("TPN)=a
—I(s,T A3,

where "X means Godel number of X and s(x) means the individual assigned
to the “variable” x by the assignment s.

And there exists a P-formula J(*, *) of L, which possesses the properties
(a), (c)~(g) in O,.

The following is clear:

LEMMA 6.

O,—YTATTAY is a “P-formula” —Ys[I(s,T A1) & J(s,TAT]I].
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The notation b (also %) below means a finite sequence of variables.
LEMMA 7. Let A be a formula of L, which does not contain free predicate
variables, and a, b, X, y be all of the free variables in A. Then

0,—VaVb[V¥<adyA—IcVE<ady<cA].

PrOOF. We may assume that A does not contain the constant «. For,
the assertion for the general case results from the above by substituting a
for one of the variables b.

Va<aVb<aVi<a[dyA—Iy<aA]
is an axiom of 0,. Hence
Va<aVb<a[Vi<adyA—Vi<ady<aA].
Hence
Va<aVb<a[Vi<aldyA—IcVi<ady<cA].
This implies
VaVbh[VE<adyA—IAcVi<ady<cA]
by axioms of O,, since
[Vi<adyA—3IcVi<aly<cA]

is a P-formula, g.e.d.
LEMMA 8. O,—“For every formula A of L, and every individual a, there
exists u such that

Voo 2 [KE o Bd € u o 2y 2y <A A0/ 210 0/ %), AT,

where v, - v, is a sequence of variables in which every free variable in A ap-
pears and (vy/x, - V,/X,) means the assignment thal assigns x; to v; for each
i=1:-n"

PrOOF. Note that O,—VxydzVv<axVw < y[{vw) < z]. Use induction (in O,)
on the complexity of A with the aid of Lemma 7

LEMMA 9. O,—YTATTA7 is an “axiom of OA”—I1(0,TAT)].

PrOOF. If A is an axiom of comprehension, it follows from
If A is an axiom of reflection (of Ackermann-type), it follows from
The other cases are trivial.

By and the properties of I(*, %), we have O,— Cons (0A).
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