A second order theory of ordinal numbers with Ackermann-type reflection schema

By Masazumi HANAZAWA

(Received Aug. 20, 1976)

§ 1. Introduction.

The underlying logic of the ordinal number theory OA given in [3] is a weakened second order logic. Adopting the standard second order logic, we can obtain a stronger theory. We shall denote it by OA^+ . In this paper we first show the consistency of OA^+ by interpreting it in ZF. In fact, OA^+ is interpretable in various theories which are much weaker than ZF. Roughly speaking, OA^+ is interpretable in those theories that have the first uncountable ordinal ω_1 and all subsets of $\omega_1 \times \omega_1$. I do not know whether OA^+ is strictly weaker than those theories. Next, we give a theory which is somewhat simple and whose strength is equal to that of OA^+ .

$\S 2$. The theory OA^+ .

- 2.1. The language of OA^+ (denoted by L_0).
- (a) Individual variables: x_0, x_1, \cdots .
- (b) Predicate variables: P_0, P_1, \cdots .
- (c) Predicate constants: *=*, *<*, O*.
- (d) Logical symbols: $7, \land, \exists$.
- 2.2. The axioms and the inferences of OA^+ .
- (a) The axioms and the inferences of the standard second order logic and the equality axiom: $a=b\leftrightarrow \forall P[Pa\rightarrow Pb]$.
 - (b) The following four:

$$Oa \land \forall x [x < a \leftrightarrow x < b] \rightarrow a = b;$$

$$Oa \land x < a \land y < x \rightarrow y < a;$$

$$\forall P[\forall x [Ox \rightarrow [(\forall y < x)Py \rightarrow Px]] \rightarrow \forall x [Ox \rightarrow Px]];$$

$$Oa_1 \land \cdots \land Oa_n \land \forall x [A(x) \rightarrow Ox \land (\forall y < x)A(y)] \rightarrow \exists y [Oy \land \forall z [z < y \leftrightarrow A(z)]],$$

where A(x) contains neither the predicate constant O nor free variables except $a_1 \cdots a_n, x$.

§ 3. An interpretation of OA^+ in ZF.

There is a direct interpretation of OA^+ in ZF, but we show an indirect one to imply that OA^+ is interpretable in theories that are weaker than ZF.

By L_{ZF} , we shall denote the language of ZF.

First, we add the new constant symbol α , β to L_{ZF} and add the following axioms to ZF:

- (a) $\operatorname{Ord}(\alpha) \wedge \operatorname{Ord}(\beta) \wedge \alpha < \beta$,
- (b) $(\forall a_1 \cdots a_n < \alpha) [(\exists x < \beta) A(x, a_1 \cdots a_n, \beta) \rightarrow (\exists x < \alpha) A(x, a_1 \cdots a_n, \beta)]$

for every $A(x, a_1 \cdots a_n, \beta)$, where the constant symbol α does not occur in $A(x, a_1 \cdots a_n, \beta)$ and all free variables are indicated.

Denote this theory by ZF'.

LEMMA 1. ZF' is a conservative extension of ZF.

PROOF. Let B be a sentence of L_{ZF} and $ZF' \vdash B$. Note that for any finite set A_1, \dots, A_n of formulas of L_{ZF} , there exists a formula A of L_{ZF} such that

$$ZF \vdash (\forall ab \in On) [(\forall a_1 \cdots a_n < a) [(\exists x < b) A(xa_1 \cdots a_n b) \rightarrow (\exists x < a) A(xa_1 \cdots a_n b)]$$

$$\rightarrow \wedge_{i=1\cdots n} (\forall a_1 \cdots a_n < a) [(\exists x < b) A_i (xa_1 \cdots a_n b) \rightarrow (\exists x < a) A_i (xa_1 \cdots a_n b)]],$$

where x, $a_1 \cdots a_n$, b are all of the variables occurring free in A_1, \cdots, A_n : E.g., let $A(xa_1 \cdots a_nb)$ be

$$\wedge_{i=1\cdots n} \lceil (\exists y < b) A_i (ya_1 \cdots a_n b) \rightarrow (\exists y \leq x) A_i (ya_1 \cdots a_n b) \rceil$$
.

So, there exists a formula A of L_{ZF} such that

$$ZF \vdash (\exists a, b \in On) [0 < a < b \land (\forall a_1 \cdots a_n < a) [(\exists x < b) A(xa_1 \cdots a_n b)]] \rightarrow B.$$

Now let $\alpha_0=1$ and $\alpha_{m+1}=\sup \left[\xi(a_1\cdots a_n)\,|\,a_1\cdots a_n<\alpha_m\right]$, where $\xi(a_1\cdots a_n)$ means the least ordinal ξ such that $(\exists x<\omega_1)A(xa_1\cdots a_n\omega_1)\to A(\xi a_1\cdots a_n\omega_1)$, and put $\alpha=\sup \alpha_m$. Then $0<\alpha<\omega_1$ and $(\forall a_1\cdots a_n<\alpha)[(\exists x<\omega_1)A(xa_1\cdots a_n\omega_1)\to (\exists x<\alpha)A(xa_1\cdots a_n\omega_1)]$. Hence we have $ZF \vdash B$,

Now, we shall interpret OA^+ in ZF'.

For each formula A of L_0 , we define its interpretation I(A) in ZF' recursively as follows:

$$I(A)$$
 is A if A is $a < b$ or $a = b$,

$$I(Pa_1 \cdots a_n)$$
 is $\langle a_1 \cdots a_n \rangle \in P$,

$$I(Oa)$$
 is Ord $(a) \land a < \alpha$,

I(7A) and $I(A \wedge B)$ are 7I(A) and $I(A) \wedge I(B)$ respectively,

 $I(\exists x A)$ is $\exists x \lceil \text{Ord}(x) \land x < \beta \land I(A) \rceil$,

 $I((\exists P)A)$ is $(\exists P)I(A)$,

where every symbol which is contained in L_0 as an individual variable or a predicate variable is assumed to be contained also in L_{ZF} as a variable.

THEOREM 1. $OA^+ \vdash A \Rightarrow ZF' \vdash I(A)$, for every sentence A of L_0 .

PROOF. We shall show this for the main case that A is the axiom

$$\forall a [Oa \land \forall x [B(xa) \rightarrow Ox \land (\forall y < x)B(ya)] \rightarrow \exists u [Ou \land \forall x [x < u \leftrightarrow B(xa)]]],$$

where B does not contain the predicate constant O.

Suppose $a < \alpha \land (\forall x < \beta) [I(B(xa)) \rightarrow x < \alpha \land (\forall y < x) I(B(ya))]$. Then we have $(\exists z < \beta) (\forall x < \beta) [I(B(xa)) \rightarrow x < z]$ since $\alpha < \beta$. This formula does not contain the constant symbol α , since the symbol O does not appear in B(xa). Hence we have $(\exists z < \alpha) (\forall x < \beta) [I(B(xa)) \rightarrow x < z]$, which implies

$$(\exists u < \alpha)(\forall x < \beta)[x < u \leftrightarrow I(B(xa))]$$
.

Thus we have $ZF' \vdash I(A)$.

§ 4. The theory O_2 .

DEFINITION of O_2 . The underlying logic of the theory O_2 is the standard second order logic with an individual constant α and predicate constants = and <. (We shall write L_{α} to denote this language.) The axioms are the following:

- (a) " < is a well-ordering,"
- (b) $(\forall a_1 \cdots a_n < \alpha) [(\exists x < \alpha) A(xa_1 \cdots a_n) \leftrightarrow \exists x A(xa_1 \cdots a_n)]$, where $A(xa_1 \cdots a_n)$ contains neither the constant α nor free variables except the indicated.

Now, the assertion in § 3 is divided into the following two: O_2 is consistent and OA^+ is interpretable in O_2 .

We used ω_1 to prove the consistency of O_2 in § 3. The author has no answer to the following question now:

QUESTION. Is ω_1 necessary to prove the consistency of O_2 ?; e.g., "Is the sentence $\forall P[(\forall x < \omega)(\exists ! y)Pxy \rightarrow \exists z(\forall x < \omega) \neg Pxz]$ consistent with O_2 relative to O_2 ?"

In the rest, we show that OA^+ is almost equal to O_2 in strength.

For this purpose, we shall provide some metamathematical notions on OA^+ . O-formulas are defined recursively as follows:

(a) a < b, a = b, $Pa_1 \cdots a_n$ are O-formulas;

(b) If A and B are O-formulas, then so are $\exists x [Ox \land A], (\exists P)A, A \land B$ and $\forall A$.

A P-formula means a formula in which the predicate constant O does not occur.

Let L(b) be the conjunction of the following four:

$$\forall y [\forall x [x < b \leftrightarrow x < y] \to b = y],$$

$$\forall P [(\exists x < b) Px \to (\exists x < b) [Px \land (\forall y < b) [Py \to x \le y]]],$$

$$\forall x \forall y [x < y < b \to x < b],$$

$$\forall x [x < b \to x \ne b].$$

 $O^*(x)$ is the *P*-formula $(\forall b \leq x) L(b)$.

We shall denote the constant $\ell x \forall y [y < x \leftrightarrow Oy]$ by Ω as in [3].

The interpretation I of OA^+ in O_2 is defined recursively as follows: I(a < b), I(a = b), $I(Pa_1 \cdots a_n)$ and I(Oa) are a < b, a = b, $P \in I_1 \cdots I_n$ and $I(A \land B)$, $I(A \land B)$, I

Next, for each formula F(x) of L_0 , we define an interpretation $R(\lambda x F(x), *)$ (or simply $R_F(*)$) of O_2 in OA^+ recursively as follows:

 $R_F(x)$ is x for every individual variable x,

 $R_F(\alpha)$ is Ω ,

 $R_F(Xt_1\cdots t_n)$ is $Xs_1\cdots s_n$ where X is a predicate symbol and s_i is $R_F(t_i)$ for $i=1,\cdots,n$,

 $R_F(7A)$ and $R_F(A \wedge B)$ are $7R_F(A)$ and $R_F(A) \wedge R_F(B)$ respectively,

$$R_F(\exists x A)$$
 is $\exists x [O^*(x) \land F(x) \land R_F(A)]$,

$$R_F((\exists P)A)$$
 is $(\exists P)R_F(A)$.

We write often $R_t(A)$ for $R(\lambda x(x < t), A)$.

Lemma 2. If a sentence A of L_{α} is logically valid (i.e., provable in the second order logic with =), then

$$OA^+ \vdash F(\Omega) \rightarrow R_F(A)$$
.

PROOF. By induction on the length of the proof for A.

LEMMA 3. $OA^+ \vdash A \Rightarrow O_2 \vdash I(A)$.

PROOF. Same as § 3.

LEMMA 4. $OA^+ \leftarrow (\forall x < \Omega)F(x) \rightarrow [R_F(I(A)) \leftrightarrow A]$, for every O-formula A.

PROOF. By induction based on the recursive definition of O-formulas.

LEMMA 5. Let A be a sentence of L_{α} such that $O_2 \vdash A$. Then there is a

formula F(ux) such that

$$OA^+ \vdash \exists u [(\forall x < \Omega)F(ux) \land R(\lambda xF(ux), A)].$$

To prove this lemma we shall provide further metamathematical notions on OA^+ .

For any formula A(x), the formula $(\exists ! x)[A^*(x) \land (\forall y < x) \neg A^*(y)]$ is provable (in OA^+), where $A^*(x)$ is the formula $O^*(x) \land [\exists z[O^*(z) \land A(z)] \rightarrow A(x)]$. We write $\mu x A(x)$ for $\iota x[A^*(x) \land (\forall y < x) \neg A^*(y)]$.

If a function f can be defined by the postulate " $y=f(x_1 \cdots x_n) \leftrightarrow A(yx_1 \cdots x_n)$ " for some P-formula A, we call it a P-function.

J(*,*), K(*) and L(*) are the P-functions defined similarly as in [3] such that for all $x,y<\Omega$, J(K(x),L(x))=x, K(J(xy))=x, L(J(xy))=y and J(xy), K(x), $L(x)<\Omega$.

Let L'(*,*) be the P-function defined by the following induction:

$$L'(0, x) = x$$

$$L'(k, x) = L(L'(k-1, x))$$
 if $0 < k < \omega$,

$$L'(k, x) = 0$$
 otherwise.

We shall write $(a)_i$ for K(L'(i, a)), and $(a)_{ij}$ for $((a)_i)_j$.

PROOF OF LEMMA 5. Suppose that a sentence A is provable in O_2 . Then there is a formula $B(xa_1\cdots a_n)$ of L_α which contains neither the constant α nor free variables except the indicated and which possesses the following property: The sentence [< is a well-ordering $] \land 0 < \alpha \land (\forall a_1 \cdots a_n < \alpha)[\exists xB(xa_1 \cdots a_n) \rightarrow (\exists x < \alpha)B(x, a_1 \cdots a_n)] \rightarrow A$ is logically valid. (See the proof of Lemma 1 for this reason.) Since B does not contain α , it is also a formula of L_0 ; besides a P-formula.

Let H be the P-function defined by the following induction:

$$H(0, a) = \mu x [R_{o*}(B)(x, (a)_{01} \cdots (a)_{0N})],$$

$$H(k, a) = \mu x [x < H(k-1, a) \land R_{H(k-1, a)}(B)(x, (a)_{k1} \cdots (a)_{kN})]$$

if $0 < k < \omega$,

H(k, a) = 0 otherwise,

where N means the n-th numeral.

Put
$$\beta = \mu x [x \ge \Omega \land (\exists k, a < \Omega) [x = H(k, a)]]$$
.

From the definition we easily obtain that

(a)
$$O^*(H(k, a))$$
,

- (b) $(\forall j \leq k) [(a)_j = (b)_j] \rightarrow H(k, a) = H(k, b)$,
- (c) $H(k, a) \neq 0 \rightarrow H(k+1, a) < H(k, a)$,
- (d) $a, k < \Omega \land \beta = H(k, a) \neq 0 \rightarrow H(k+1, a) < \Omega$.

SUBLEMMA 1. $\beta = 0 \rightarrow (\forall a_1 \cdots a_n < \Omega) [\exists x [O^*(x) \land R_{O^*}(B)(xa_1 \cdots a_n)] \rightarrow (\exists x < \Omega) R_{O^*}(B)(xa_1 \cdots a_n)]].$

PROOF. $\beta=0$ implies $H(0, a)<\Omega$ for every $a<\Omega$.

SUBLEMMA 2. $a_1 \cdots a_n < \Omega \land \beta \neq 0 \land (\exists x < \beta) [R_{\beta}(B)(xa_1 \cdots a_n)] \rightarrow (\exists x < \Omega) [R_{\beta}(B)(xa_1 \cdots a_n)].$

PROOF. Since $\beta \neq 0$, there exist $a, k < \Omega$ such that $\beta = H(k, a)$. Since $a, a_1 \cdots a_n < \Omega$, there exists $c < \Omega$ such that $((c)_{k+1})_1 = a_1, \cdots, ((c)_{k+1})_N = a_n$ and $(\forall j \leq k) \in [(a)_j = (c)_j]$. Put d = H(k+1, c). Then $d = \mu x [x < \beta \wedge R_\beta(B)(xa_1 \cdots a_n)]$ since $H(k, c) = H(k, a) = \beta$. Hence $R_\beta(B)(da_1 \cdots a_n)$ since $(\exists x < \beta)[R_\beta(B)(xa_1 \cdots a_n)]$. Besides $d = H(k+1, c) < \Omega$, since $H(k, c) = \beta \neq 0$ and $k, c < \Omega$, q. e. d.

Now let F(ux) be the P-formula

$$O^*(x) \wedge [u = 0 \vee [u \neq 0 \wedge x < H((u)_0, (u)_1)]].$$

SUBLEMMA 3. $OA^+ \vdash (\exists u < \Omega) [(\forall x < \Omega) F(ux) \land R(\lambda x F(ux))]$

$$(\forall a_1 \cdots a_n < \alpha) [\exists x B(x a_1 \cdots a_n) \rightarrow (\exists x < \alpha) B(x a_1 \cdots a_n)])].$$

PROOF. Case 1: $\beta=0$. Put u=0. Then $F(ux)\leftrightarrow O^*(x)$. Hence the desired conclusion is immediate from Sublemma 1.

Case 2: $\beta \neq 0$. There exist $a, k < \Omega$ such that $\beta = H(k, a)$. Put u = J(k, J(a, 1)). Then $F(ux) \leftrightarrow x < \beta$. The desired conclusion follows from $u < \Omega$ and Sublemma q. e. d.

Now, write W for the sentence "< is a well-ordering." Write B^* for the sentence $(\forall a_1 \cdots a_n < \alpha) [\exists x B(xa_1 \cdots a_n) \rightarrow (\exists x < \alpha) B(xa_1 \cdots a_n)]$. Since $\vdash W \land B^* \land 0 < \alpha \rightarrow A$, we have, by Lemma 2,

$$OA^+ \vdash F(u, \Omega) \land R(\lambda x F(ux), W \land B^* \land 0 < \alpha) \rightarrow R(\lambda x F(ux), A)$$
.

Since O^* is well-ordered by <, $OA^+ \vdash R(\lambda x F(ux), W)$. Since F(ux) is a P-formula, $(\forall x < \Omega)F(ux) \land u < \Omega$ implies $F(u, \Omega)$. Hence by SubLemma 3, $OA^+ \vdash (\exists u < \Omega)[(\forall x < \Omega)F(ux) \land R(\lambda x F(ux), A)]$. This completes the proof of Lemma 5.

Now, we see that O_2 is a conservative extension of OA^+ in the following sense:

Theorem 2. $OA^+ \vdash A \Leftrightarrow O_2 \vdash I(A)$ for every O-sentence A.

PROOF. (\Rightarrow) See § 3.

 (\Leftarrow) Let $O_2 \vdash I(A)$. Then by Lemma 5 there is a formula F(ux) such that $OA^+ \vdash \exists u [(\forall x < \Omega)F(ux) \land R(\lambda xF(ux), I(A))]$. Now, suppose $(\forall x < \Omega)F(ux) \land I(A)$

 $R(\lambda x F(ux), I(A))$ in OA^+ . Then by Lemma 4, $R(\lambda x F(ux), I(A)) \leftrightarrow A$. Hence A, q. e. d.

§ 5. A remark.

Indeed, OA^+ is stronger than OA. Because the consistency of OA is provable in OA^+ . We verify this fact in this section. Since $OA^+ \vdash Cons(OA) \Leftrightarrow O_2 \vdash Cons(OA)$ by the result of the previous section, it suffices to show $O_2 \vdash Cons(OA)$.

For this purpose we shall provide some notions.

If a formula of L_{α} does not contain the constant α , we call it a P-formula. A term which is defined by a P-formula is called a P-term.

Consider (in O_2) the model L of the constructible sets in the similar manner in [3]. Similarly as xEy and $\langle xy\rangle^\circ$ in [3], there exist a P-formula $x\in y$ which means $\mathfrak{F}'x\in\mathfrak{F}'y$ intuitively and a P-term $\langle xy\rangle$ which means an ordered pair in L. We can easily define a P-term \tilde{x} which means the x-th ordinal in L.

Now, there exists a formula I(*,*) of L_{α} which possesses the following properties in O_2 :

(a)
$$I(s, \lceil x < y \rceil) \leftrightarrow s(\lceil x \rceil) < s(\lceil y \rceil)$$
,

(b)
$$I(s, \lceil Ox \rceil) \leftrightarrow s(\lceil x \rceil) < \alpha$$
,

(c)
$$I(s, \lceil Px_1 \cdots x_n \rceil) \leftrightarrow \langle \widetilde{s(\lceil x_1 \rceil)} \cdots \widetilde{s(\lceil x_n \rceil)} \rangle \in s(\lceil P \rceil)$$
,

(d)
$$I(s, \lceil A \land B \rceil) \leftrightarrow I(s, \lceil A \rceil) \land I(s, \lceil B \rceil)$$
,

(e)
$$I(s, \lceil \neg A \rceil) \leftrightarrow \neg I(s, \lceil A \rceil)$$
,

(f)
$$I(s, \lceil \exists x A \rceil) \leftrightarrow \exists a \forall s' \lceil \forall b \lceil b \neq \lceil x \rceil \rightarrow s'(b) = s(b) \rceil \land s'(\lceil x \rceil) = a$$

$$\rightarrow I(s', \lceil A \rceil)$$
],

(g)
$$I(s, \lceil (\exists P)A \rceil) \leftrightarrow \exists a \forall s' \lceil \forall b \lceil b \neq \lceil P \rceil \rightarrow s'(b) = s(b) \rceil \land s'(\lceil P \rceil) = a$$

$$\rightarrow I(s, \lceil A \rceil) \rceil$$
,

where $\lceil X \rceil$ means Gödel number of X and s(x) means the individual assigned to the "variable" x by the assignment s.

And there exists a P-formula J(*,*) of L_{α} which possesses the properties (a), (c)-(g) in O_2 .

The following is clear:

LEMMA 6.

$$O_2 \vdash \forall \lceil A \rceil \lceil \lceil A \rceil$$
 is a "P-formula" $\rightarrow \forall s \lceil I(s, \lceil A \rceil) \leftrightarrow J(s, \lceil A \rceil) \rceil \rceil$.

The notation \bar{b} (also \bar{x}) below means a finite sequence of variables.

LEMMA 7. Let A be a formula of L_{α} which does not contain free predicate variables, and a, \bar{b} , \bar{x} , y be all of the free variables in A. Then

$$O_2 \vdash \forall a \forall \bar{b} [\forall \bar{x} < a \exists y A \rightarrow \exists c \forall \bar{x} < a \exists y < c A]$$
.

PROOF. We may assume that A does not contain the constant α . For, the assertion for the general case results from the above by substituting α for one of the variables \bar{b} .

$$\forall a < \alpha \, \forall \, \bar{b} < \alpha \, \forall \, \bar{x} < \alpha \, \lceil \exists \, yA \rightarrow \exists \, y < \alpha A \rceil$$

is an axiom of O_2 . Hence

$$\forall a < \alpha \forall \bar{b} < \alpha [\forall \bar{x} < a \exists y A \rightarrow \forall \bar{x} < a \exists y < \alpha A].$$

Hence

$$\forall a < \alpha \, \forall \, \bar{b} < \alpha [\forall \, \bar{x} < a \, \exists \, y \, A \rightarrow \exists \, c \, \forall \, \bar{x} < a \, \exists \, y < c \, A]$$
.

This implies

$$\forall a \forall \bar{b} [\forall \bar{x} < a \exists y A \rightarrow \exists c \forall \bar{x} < a \exists y < c A]$$

by axioms of O_2 , since

$$\lceil \forall \bar{x} < a \exists y A \rightarrow \exists c \forall \bar{x} < a \exists y < c A \rceil$$

is a P-formula,

q. e. d.

LEMMA 8. O_2 —"For every formula A of L_0 and every individual a, there exists u such that

$$\forall x_1 \cdots x_n [\langle \tilde{x}_1 \cdots \tilde{x}_n \rangle \in u \leftrightarrow x_1 \cdots x_n < a \land I((v_1/x_1 \cdots v_n/x_n), A)],$$

where $v_1 \cdots v_n$ is a sequence of variables in which every free variable in A appears and $(v_1/x_1 \cdots v_n/x_n)$ means the assignment that assigns x_i to v_i for each $i=1 \cdots n$."

PROOF. Note that $O_2 \leftarrow \forall xy \exists z \forall v < x \forall w < y [\langle vw \rangle < z]$. Use induction (in O_2) on the complexity of A with the aid of Lemma 7.

LEMMA 9. $O_2 \mapsto \forall \lceil A \rceil \lceil \lceil A \rceil$ is an "axiom of OA" $\to I(O, \lceil A \rceil)$].

PROOF. If A is an axiom of comprehension, it follows from Lemma 8. If A is an axiom of reflection (of Ackermann-type), it follows from Lemma 6. The other cases are trivial.

By Lemma 9 and the properties of I(*,*), we have $O_2 \vdash \text{Cons}(OA)$.

References

- [1] W. Ackermann, Zur Axiomatik der Mengenlehre, Math. Ann., 131 (1956), 336-345.
- [2] M. Hanazawa, On replacement schemas in Ackermann's set theory, Sci. Rep. Saitama Univ., 8 (1957), 25-28.
- [3] M. Hanazawa, A theory of ordinal numbers with Ackermann's schema, to appear.
- [4] J. Lake, On an Ackermann-type set theory, J. Symbolic Logic, 38 (1973), 410-412.
- [5] J. Lake, Natural models and Ackermann-type set theories, J. Symbolic Logic, 40 (1975), 151-158.
- [6] A. Levy, On Ackermann's set theory, J. Symbolic Logic, 24 (1959), 154-166.
- [7] A. Levy and R.L. Vaught, Principles of partial reflection in the set theories of Zermelo and Ackermann, Pacific J. Math., 11 (1961), 1045-1062.
- [8] W. Reinhardt, Ackermann's set theory equals ZF, Ann. Math Logic, 2 (1970), 189-249.

Masazumi HANAZAWA
Department of Mathematics
Faculty of Science
Saitama University
Urawa, Saitama
Japan