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Introduction

When there is a set of objects, we can consider predicates over the domain
of objects as new objects. To distinguish new objects from old ones, we call
the former, objects of type (¢), and the latter, objects of type ¢. This method
of introducing new objects can be repeated as follows: if objects of type ©
are introduced at the n-th stage, then predicates over the domain of objects
of type 7 are introduced at the (n+1)-th stage. These new objects are called
objects of type (7).

Simple type theory of finite type is a formalization of this idea. In it,
types and objects are introduced inductively as follows: 1. Elements of an
individual domain are objects of type ¢. 2. If objects of type = have been
introduced, then predicates over the domain of objects of type z can be intro-
duced as objects of type (7).

At the stage when the above process has been completed (we call this
stage the w-th stage), we can introduce as new objects: predicates over the
domain of all objects which are introduced by this stage. These new objects
are called objects of type (w). The systems introduced in Andrews and
Uesu are formalizations of this idea. We note that the systems have
variables which range over the domain of types of simple type theory of
finite type, in addition to variables which range over the domain of objects
of each type.

The above method of introducing new objects can be repeated untill the
p¢-th stage for any ordinal g in the following manner: 1. (0-th stage) Elements
of the individual domain are called objects of type ¢. 2. ((v+1)-th stage) If
objects of type = are introduced at the v-th stage, then predicates over the
domain of objects of type r are introduced as objects of type (z) at the (v+
1)-th stage. 3. (A-th stage (4 is a limit ordinal)) At this stage, predicates over
the domain of all objects which are introduced at the v-th stage with v<2Z are
introduced as objects of type (4).

We can consider a system which is a formalization of this idea. In this
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system, types, objects, and variables which range over domains of types are
introduced as follows: 1. Elements of an individual domain are objects of
type ¢, which is a type of level 0. 2. If objects of type ¢ have been introduced
where 7 is a type of level v with v<p, then predicates over the domain of
objects of type = can be introduced as objects of type (zr) where () is a type
of level v-+1. 3. If 4 is a limit ordinal with A<p, predicates over the domain
of objects of types of levels less than A are introduced as objects of type (4),
where (1) is a type of level 4. We also introduce variables which range over
the domain of types of levels less than A.

For the system which has just been described, we can enlarge the set of
provable second order formulas by increasing the value of g from v to v+1
for v<®® but not for v>w’

The purpose of this paper is to define transfinite type theory which makes
it possible for us to enlarge further the set of provable second order formulas.
Roughly speaking, for the system which we will be considering, we can enlarge
the set by increasing the value of g from v to v+1 for any v<w”.

In this paper, an index constant, index variables, symbols for type varia-
bles, as well as the symbols of simple type theory of finite type, are introduced
as primitive symbols. We use these symbols for defining indices, orders, and
type variables. Roughly speaking, an index stands for a natural number. An
order, which is defined as a finite sequence of indices, represents a limit ordinal
in the same way in which a finite sequence {(m,, :--, m,;> of natural numbers
represents a limit ordinal w**'-m,+ -+ +w-m,. We use orders as follows: 1.
If m is an order, then (m) is a type of level m. 2. If m is an order and «a is
a symbol for a type variable, then a(m) is a type variable which ranges over
the domain of types of levels less than m.

There are four sections in this paper. We give the formation rules of the
systems in §1. We prove some syntactical properties of the systems in § 2.
In § 3 we define the concept “general model”, and state some of its semantical
properties. In §2 and §4 we prove three theorems which relate to the sets
of provable second order formulas.

The author wishes to thank Professor S. Maehara for his kind advice.

§1. Systems for transfinite type theory

In this section we define a logical system H,,, for natural numbers k and
n, an element f of ®*** and an ordinal . We use the following primitive
symbols.

Logical symbols: V(or), 7(not), 3(there exists). Index constant: o. Type
constant: ¢. Bound index variables: p, g, ---. Free index wvariables: 7, s, ---.
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Symbols for bound type variable: &, %, ---. Symbols for free type variable: «,
B, -++. Symbols for bound variable: X, Y, ---. Symbols for free variable: A, B, ---.
Additional symbols: 4, 4, =, (,), —.

The system may contain as primitive symbols function symbols for indi-
viduals g, &, - .

Quasi-indices are defined inductively as follows. 1. The index constant o,
free index variables and bound index variables are quasi-indices. 2. If I is a
quasi-index then so is (). We use symbols /, /, --- to denote quasi-indices. A
function Vi(J) is defined inductively as follows. 1. Vi(o)=0. 2. If p is a free
index variable or bound index variable then Vi(p)={p}. 3. VI({(I)=Vi(I). A
quasi-index [ is called an index if Vi(I) contains no bound index variable. A
function Ps(/) is defined inductively as follows. 1.If Iis o, free index variable
or bound index variable then Ps(I)=1. 2. Ps((I))=Ps(I). A relation I<] is
defined inductively as follows. 1. 0<(J) for any quasi-index J. 2. If p is a
free index variable or bound index variable and Ps(J)=p5 then p<(J). 3. If
I<J then (I)<(J). Similarly a relation /<] is defined as follows. 1. 0<]J
for any quasi-index J. 2. If p is a free index variable or bound index variable
and Ps(/)=p then p<J. 3. If I<] then (/)=(J). Indices 0™ are defined in-
ductively as follows. 1. 0@=o0. 2. o™*P=(p'™),

Quasi-orders are defined as follows. 1. If 1, -, I, are quasi-indices and
y<p then
oy ey Iy w7
is a quasi-order. 2. If [,,---, I;_; are quasi-indices, 1<k and m<f(i) then
<[0, Tty [i—ly O(m)’ O(f(i+l)): ) O(f(k))) /,!>

is a quasi-order. 3.

] k
<0<f N e o< f¢ ))’ ‘u>

is a quasi-order (the maximum order). We use symbols m, 1,0, - to denote
quasi-orders. A relation < on quasi-orders is defined as follows. If (i) k<v or
(ii) for some ¢ (0<1<k), £=v, [kéfk, ,[i+1§]i+1 and I;<J;, then

<[()’ T Ik; IC><<]0, o )]kr V> .

A relation < on quasi-orders is defined as follows. If (i)
<[0’ Tty [ky IC><<]0: T ’Jk; D> or (11) K=y, Ik é]k; Tty Il§]1 and -[0 é]o, then

<[0) Tty [k) E>§<]0) T )Jk) V>.
We define
VilLy, ooy Iy v2) = Vi) \J - UVI(I) .
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A quasi-order m is called an order if Vi(m) contains no bound index variable.

Quasi-iypes are defined inductively as follows. 1. The type constant ¢ is
a quasi-type. 2. If m is a quasi-order and £ is a symbol for bound type
variable then &(m) is a quasi-type (bound type variable). 3. If m is an order
and a is a symbol for free type variable then a(m) is a quasi-type (free type
variable). 4. If m is a quasi-order then (m) is a quasi-type. 5. If 7 is a quasi-
type then (z) is a quasi-type. We use symbols ¢, 7, v, --- to denote quasi-types.
A function Vi(z) is defined inductively as follows. 1. Vi(¢)=0. 2. V{(&(m))=
{Em)}. 3. Vi(a(m))={a(m)}. 4. If m isa quasi-order then V¢((m))=0. 5.1If ¢
is a quasi-type then Vt((z))=V(z). The function V' is extended as follows.
1. Vi()=0. 2. Vi(a(m)=Vi(em))=Vi(m). 3. Vi((m)=Vi(m). 4. Vi{(z))=Vi(z).
A quasi-type 7 is called a type if Vi(r) contains no bound index variable and
Vi(z) contains no bound type variable. Functions Ord'(r) and Ord*(r) are
defined inductively as follows. 1.O0rd'(¢()=0rd%(¢)=0. 2. Ord(¢(m))=O0rd'(a(m))
={m}. 3. Ord*¢&@m))=0rd*(a(m))=0. 4. If m is a quasi-order then Ord'((m))
=@ and Ord*((m))={m}. 5. If z is a quasi-type then Ord'((z))=Ord'(z) and
Ord*((z))=O0rd*(z). We write Ord'(z)<m to denote the fact that n<m for any
element 1 of Ord!(z). Similarly we use symbols Ord*(z) <m, Ord'(z)<m and
Ord?(z)<m.

A function deg(z) is defined inductively as follows. 1. deg(¢)=0. 2. If m
is a quasi-order but not the maximun order then deg(&(m))=deg(a(m))=deg
((m))=0. 3. If m is the maximum order then deg(&(m))=deg(a(m))=deg((m))
=1. 4. If =z is a quasi-type with deg(z)=0 then deg((z))=0. 5. If = is a quasi-
type with deg(z)#0 and Ord'(z)=0 then deg((z))=deg(z)+1. 6. If = is a quasi-
type with deg(z)#0 and Ord'(z)+#0 then deg((z))=deg(z).

Quasi-varieties, quasi-formulas, function VP and extensions of V' and Vt are
defined by a simultaneous induction as follows.

1. If X is a symbol for bound variable and 7 is a quasi-type with deg(z)
=<n, then X° is a quasi-variety of a quasi-type = (bound variable of a quasi-
type 7), VI(X)=Vi(z), Vi(X")=V¥z) and V*(X")={X7}.

2. If Ais a symbol for free variable and 7 is a type with deg(z)<n, then
AT is a quasi-variety of a type t (free variable of a type ), Vi(A")=Vi(7),
VH(A")=V*(z) and VP(A")={A°}.

3. If t,, -, t, are quasi-varieties of the type ¢ and g is a function symbol
for individuals then g(#,, ---, t,) is a quasi-variety of the type ¢,

Vi(g(tl) Tty tm)):V‘(tl)U i UVI(tTn) ’
Vi(g(ty, -, 1) =V - U V),

and
Ve (g(ly, -, tw)=VP(t) U - UVR(2,).
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4, (E€F) is a quasi-formula, VI(((E<F))=V{(E)UVI(F), Vi(E€F))=V(E)
UVHF) and VP((E€F))=V?(E)UV?(F) if E and F are quasi-varieties of quasi-
types = and (z), respectively with the following properties (a) and (b): (a) For
any symbol for free or bound type variable £ and any quasi-orders m and n
if &(m) and &) are elements of V¢(E) or of VF) then m=mun. (b) For any
symbol for free or bound variable X and any quasi-types ¢ and v if X’ and
X® are elements of VP(E) or of VP(F) then o=v.

5. If F is a quasi-variety of a quasi-type (m) (m is a quasi-order), £ is a
quasi-variety of a quasi-type z with Ord'(z)<m, Ord*(r)<m and the properties
(a) and (b) in 4, then (E<F) is a quasi-formula, Vi((E € F))=V{(E)UVi(F),
VH{(E€F))=VY{E)UVYF) and VP(E€F))=Vr(E)UVe(F).

6-7. If A and B are quasi-formulas with the properties (a) and (b) in 4
(with “¥”, “B” in place of “E”, “F”, respectively), 7(A) and (A)V(B) are
quasi-formulas, Vi(7(U)=Vi(A), V(7)) =V), V*(7(A))=Ve(A), Vi(A)V
(B))= Vi) U Vi(B), V(A)V(B)=V()JIV(B) and V?(A)V (B))=V>A)V
Ve (B).

8. If X° is a bound variable of a quasi-type = and A is a quasi-formula
with the property that V?(A) contains X° or V®() contains no bound variable
of the form X? then 3X°(A) is a quasi-formula, Vi@X(N)) = Vi(r)UViNA), V*
GAXA)=V(r)UVHA) and VP EAX (A))=VrA)—{X"}.

9. F&m)(A) is a quasi-formula, Vi(FEm)(A))=Vim)UIVi(A), V{(FEm)(A)) =
V() —{&(m)} and VPEEm)(A))=VP(A) if &(m) is a bound type variable and
A is a quasi-formula with the following properties (a) and (b): (a) V() con-
tains £(m) or Vt(A) contains no bound type variable of the form &(n). (b) For
any element Y of V?(¥), V¢(o) does not contain &(m).

10. 3p(A) is a quasi-formula, VI(Fp(A))=VIA)—{p}, Vi{(@p(A))=VHA) and
Ve(3p(A))=V>?(NA) if p is a bound index variable and A is a quasi-formula with
the following properties (a) and (b): (a) For any element &(m) of V&), Vi(m)
does not contain ». (b) For any element X? of V?(¥), Vi(¢) does not contain p.

11. If X° is a bound variable of a quasi-type = with deg((z))<n and % is
a quasi-formula with the property that V?(A) contains X° or V?(A) contains
no bound variable of the form X? then AX°(A) is a quasi-variety of a quasi-
type (z), VI(AX"(A)) = Vi(z)UVIA), VI(AX(N)) =Vi(z)UVHA) and VPAX ' (N))=
Ve (A)—{X7}.

12. AXS™(A) is a quasi-variety of a quasi-type (m), Vi(AX™(A))=Vi(m)
U V), VH(AXE™(A))=VH(A)—{Em)} and VP(AXE™(R)) = VP (A)— {XE™} if
&(m) is a bound type variable with deg((m))<n, X¢™ js a bound variable of
the quasi-type §(m) and % is a quasi-formula with the following properties
(a), (b) and (c): (a) V*(A) contains X*™ or V?(A) contains no bound variable
of the form X?. (b) V&) contains &(m) or V&A) contains no bound type
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variable of the form £(n). (c) For any element Y? of VP(2A) which is distinct
from X*™ V(o) does not contain &(m).

A quasi-variety E of a quasi-type 7 is called a variety of a type t if VI(E)
contains no bound index variable, V{(£) contains no bound type variable and
V?(E) contains no bound variable (note that if E is a quasi-variety of a quasi-
type 7 then Vi(z) S V{(E) and Vi(z) S VYFE)). Similarly a quasi-formula % is
called a formula if Vi) contains no bound index variable, Vt(U) contains no
bound type variable and V*(¥) contains no bound variable. We can prove by
the induction on FE that if X7 is an element of VP(F) then Vi(z)SVYE) and
V{(z)S VH(F) and that if &(m) is an element of Vt(E) then Vim)SVi(E). VI(E)
is the set of free and bound index variables which occur free in E, V{(E) is
the set of free and bound type variables which occur free in E and VP(E) is
the set of free and bound variables which occur free in E.

We write E(f) to denote the result obtained from E by replacing every

free occurrences of a bound index variable p by an index I when E is a
quasi-index, quasi-order, quasi-type, quasi-variety or quasi-formula. We write

E(S(;_n» to denote the result obtained from E by replacing every free occur-

rences of a bound type variable &(m) by a type ¢ when E is a quasi-type,
quasi-variety or quasi-formula and Ord'(z)<m and Ord*(z)<m. Similarly we

write E(ig) to denote the result obtained from FE by replacing every free

occurrences of a bound variable X° of a type ¢ by a variety F of the type 7
when E is a quasi-variety or quasi-formula. We can prove by the induction
on ¢ that if Ord’(¢)<n and Ord*(¢)<n then

ord'(o(7))=n(}), o (a(P)<n(]),
Ord‘(a(sgn)))gn and Ordz(cr(‘s(:t)>><n.

Similarly we can prove
V(E(?)):{E(m(‘?)) &(m) is an element of V‘(E)},

VP(E<§)>:{X": for some quasi-type 7 X7 is an element .of VP(E) and
(=5},

V(ECTY) (v U V(B — ()

and
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VP(E<5(?)>>={X": for some quasi-type v X* is an element of V?(E) and

()=},

Ay, oo+, Uy—By, -+, B, is called a sequent if A; and B; are formulas with
the following properties (a) and (b): (a) For any symbol for free type variable
« and any orders m and n if a(m) and a(n) are elements of Vt((¥,) or - or of
V¢(*B,) then m=n. (b) For any symbol for free variable A and any types 7
and o if A" and A’ are elements of V?(A,) or --- or of V°(B,) then 7r=o.
We use symbols I, 4, --- to denote finite or empty sequences of formulas with
the preceding properties (a) and (b). Vi{I"), V{(I") and V*(I") denote the unions
of Vi(A), V{(A) and V?(A), respectively for all A in I'. We say that a free
index variable 7 is an eigen-variable for a variety or formula E (for a sequent
I'—4) it V(E)VI(I)UVi(4)) does not contain ». We say that a free type
variable a(m) is an eigen-variable for E (for I'—4) if for any order n
VHE)VH([)\JVt(d)) does not contain a(n). Similarly a free variable A° is an
eigen-variable for E (for ['—4) if for any type o VP(E)(Ve(I") UV?(4)) does
not contain A°.

A sequent of the form A—YW is an axiom. We make a list of the inference
rules in the following and then we can define as usual the notions: “proof”,

LA T

“provable”, “proof without cut” and “provable without cut”.

Structural inference rules

. I'—4 r—4
Thinning o o1 To4,9
. AU N, -4 I'—d4,%, %
Contraction X, = TToAW
I',%,B, 456 I'—4,%,%,6
Interchange T B9 -0 =4 %96
I'—4,% A 60-5
R AN RN
Logical inference rules
I'—d4,% A I'—4
7N, I'—4 I'—d4, 7%
A I'—4 B, -4 I'—4,% I'—4,%8
AVSY, I'-4 I'-4,9Avs I'—4,Av®s

3 for variable of each type
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a(5), r-a r-4,5(%)
3XA, I'—4 I'—4,3X%
A" is a free variable of a type = and an E is a variety of
eigen-variable for the lower sequent. a type T.

3 for type variable

G s rosaCe)
Aem)A, ['—4 I'—4,36mYU
a(m) is a free type variable and an eigen- T is a type with
variable for the lower sequent. Ord'(z)<m and
Ord*(z)<m.

3 for index variable

Y - p
Au(P), r—4 r—4,%(%)
A, I'—4 I'—4,3pA
v is a free index variable and an eigen- I is an index.

variable for the lower sequent.
Addditional inference rules
Comprehension
X* X*
21( © ), I'—4 r—4,9( =)
(E€aX*N), 4 =4, (E€1X"A)

W) -1 r-au1CP)(E)
(Ec AXEmy), I'—4 =4, (Ee AX &)

E is a variety of a type ¢ with Ord'(z)<m and Ord*(z)<m.
Extensionality

(A"€E), I'—4,(AeF) (AeF),I'—4,(A<E)
(E€B?), I'=4,(FEB)

A7 is a variable of a type ¢ and an eigen-variable for the lower
sequent, B® is a free variable of an appropriate type ¢ and FE and F are
varieties of the type (7).

(A*weE), =4, (A"™eF) (A*weF), ['>4, (A cE)
(EeBY), I =4, (FEB)

A free type variable a(m) and a free variable A*™ of the type a(m)
are eigen-variables for the lower sequent, B is a free variable of an
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appropriate type = and E and F are varieties of the type (m).

When 2 is a set of formulas in Hy,, , Hy ,.(2) denotes the system obtained
from H,, by adding the formulas in 2 as axioms. 2y ., is the set of for-
mulas in Hy,,, of the following forms (A-1)-(A-6). Il ., is the set of for-
mulas in H; ,, of the following forms (A-1)-(A-7).

(A-1) VX®IYWYZL(ZTe XD)=(Zre Y™)],

where 7 is a type with Ord(z)<m and Ord*z)<m.

(A-2) YX®IYWYEm)Y ZEMW[(ZEm e X)) = (Z5m e Y™)],

where m and n are orders with m=n,

(A-3) FXMYEm)Y YCmI[(YEmDe Xm)=9[],

where IEM)YA is a formula.

(A-4) AXVPVY (YW e X)) =W AVPVY (YD eX™)=A)],

where 3p is a formula and n and o are quasi-orders of the forms {/,, ---,
Lioyy by Livay o s Iny ) and o, o+, Jion, D, Jivss o+, Jos 9, respectively with <0, -,
0, (Fi41), Lias, =+, Iy £)<m and <0, -+ 0, (Jis1), Jise, =+, Jo» ¥>=<m (when i=k, €0, ---,
0, k+1><m and <0, --- 0, y+1><m). (L, -, I4, Jo, -+, J» are indices.)

(A-5) AXWLYpYY@(YWeX™)=A) AVHY YO(Y@e X ™) =A)],

where 3pU is a formula and n and o are quasi-orders of the forms {/,, :*-,

Ii—ly (p>’ jri+17 Tty Ik; K:> and <]0: Tt Ji—lr (p), ]13+1’ T :]k; !J>, reSpectiVely WIth <O:
Tty 0; (I’L'+1)7 111+2} Tty Ik’ K>§m and <O; Tty O: (.Ii+l); ]i+2) ;]k’ l)>§m (When l:k,
<O, "‘,0, K+1>§m and <0,"‘,0, V+1>§m> (Io,v ”"Ik)]O; ""Jk are indices-)

(A__G) VX*V Yo'aZ(m)[(Xz‘ = Z(m)) A 7 (YO‘ = Z(m))] s

where Ord!(z)<m, Ord'(c)<m, Ord*(z)<m, Ord*(c)<m and one of the fol-
lowing holds: (a) z=¢ and ¢ is of the form (v) or of the form (n). (b) = and
o are of the forms (n), (v), respectively (n is an order and v is a type). (¢)
7z and o are of the forms (n), (v), respectively with n<o. (d) r is a free type
variable a(n) with n=<o for some element o of Ord?*(o).

(A-7) (Axiom of choice for each type)

3 XCOPY YYD € X)) D
AZOIW (W e ZO)ANY O ={ZD, (W7}})]
AVY®[IZH(Z7 € YO)DIAZT({Y®D, {Z7}) € X))
AV YOV ZYWL(({YD, {27} & XM A
(YO, W} e X)) DZ7=Wr]1],
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where A°=B° is an abbreviation for
VXD(A? € X9) D (B € X))
and {A°} and {A° B°} are abbreviations for

AX?(X°= A% and AX(X°=A’Vv X°=DB%
respectively.

§2. Two syntactical properties

THEOREM 1. Assume that I'—4 is a sequent of H,,, and provable in H,,,,
for some p. Then I'—4 is provable in H,, (0 is the constant 0 function with
the domain k+1). Similar results hold, reading Hy. o(Zow0)s Hopo(Zopu0) O
Hyo, oIl o,0,0), Ho,po(Ily,,.0) in place of Hy o, Hi,pyo, respectively.

PROOF. Let v, -+, v;,; be all the ordinals that occur in a proof of I'—4
in Hy,,, with v;<p,< -+ <Y(KO=)e < - <viyy  We substitute vy, -, vy, v;
+1, -+, v+ for vy, oo, vy, Viyy, oo, Yiyj, respectively throughout the proof. Then
we get a proof of I'—4 in H,,,.

To state the next theorem we must make some preparations. The theorem
holds in general for H; ,.(2;,,..) and for H;,,(II;,,) with p<w and n+0.
But, to simplify the notation, we assume that 2=0, f(0)=0, #=1 and n=1.
For the same purpose we use a(7,0), a(0,1) instead of a({r,0)), a( 0, 1)),
respectively. '

We write AP =B «(0,1)=5(0,1), r=s to denote the following for-
mulas respectively

¥ XSO AT @ X€01>9) 5 (B0 @ X<O)]
3 XD F YROD( X0 — YAy
J XS0 Y02 X702 = Y<8,05) |
By the axioms (A-1), (A-3) and we can prove
(31) A= B
= Y Y COD[(A90D g Yawm) 5 (BAoD g Ye@m)]
(3.2) (a(0,1)=(B(0, 1))Da(0, 1)= (0, 1),
(3.3) (rn=(s)Dr=s.
By the axioms we can prove
(34) ¢#(a(0,1),
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(385) ¢+, 07),
3.6) (a0, 1)+ (7, 0).

We can prove 3JE((r), 0)((K0, 0>)=&((r),0)) and, by the axioms
7 3&(0, 0)((K0, 0>)=£&(0, 0)). Hence, by the axioms (A-4), we can prove

B7 0=#().
The symbols (r&J) and (r<s) denote the following formulas
Y XCOIUTY YUY €00 o X OIS A
VPV Y EPONY ZEDLON((Y RO o X<01))
(Z(<(p),°>) = X(<0,1>)>)] D V Y(<1‘,0>)( Y(<‘r,0>) = X(<0,1>))}

and
V X(<0,1>) {[V Y(<(T),0>)( Y(<<T),°>) = X(<0’1>)) A

va Y20y Z(<(p>,0>)((y<<p,0>) = X(<0,1>>) -
(Z(<(p>.0>> = X(<0,1>)))] =) Yc<s,o>>( Y <802 X(<0,1>>)} R

respectively. The formula Vp(p<=3) is said to be the axiom of induction on
index. By the axioms (A-4) we can prove

(3.8) r<s—=V&(r, 0)3n(s, 0)(&(r, 0)=1(s, 0))
and
(3.9) r<s—3&(s, 0)((Kr, 0>)=£&(s, 0)) .

By the axioms we can prove Y&(r, 0) 7 (&(r, 0)=({r, 0))) and so we can
prove

B.10) r<s=V&(r, 0)7 (&(r, 0)=(s, 00)).

The symbols («(0,1)=Z(/,0)) (I is any index) and (a(0, 1) € (0, 1)) denote
the following formulas

¥ XSOIYYHY & X< AV p(p<TD
Y Y(<p,0>>(y<<p,0>> = X(<0,1>))) A VE(I; O)V Yf(z,O)
v Z(E(I,O))((}/E(I,O) = X(<0,1>)) - (Z(E(I,O)) = X(<o,l>)))]

DV YOOy aoh & X<
and
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Y XSOUIY V(Y & XU AV p((p e I) D
Y Y20y o0 @ XS0 A YE, 1)Y YEOD
Y ZEO((YEOD @ X<012) 5 (730 & X<0,1>))]
DY YOy g X))

respectively. The formulas V&(Z, 0)(&(1, 0)=Z (I, 0)) and VE(0, 1)(£(0, 1)=%(0, 1))
are said to be the axioms of induction on type.

THEOREM 2. Assume that p<w, n#0 and I'—4 is a sequent of H,,,(0 is
the constant 0 function with the domain k+1). Assume that O is a finite se-
quence of the axioms of induction on index or on type. If O, I'—4 is provable
in Hy pn(2y,,0) then I'—4 is provable in the same system. Similar result holds,
reading Hy , (Il ;,,.) in place of Hy ,W(2s, 0.

ProOF. First we define an operation E* inductively as follows.

1. (YO)*=Y~.

2. (gt , t))F = g(t,*, v, 1 %) .

3-5. (FEeF)*=E*xeF* (7W*="7(A*) and (AV B)*=A*V B*,

6. @Y W=V (Y eF AUAY.

7. Q&U, 0020)*=3&, 0)((6U, 0) e (L, 0)) AUF),
(&0, DAY*=3&(0, D((£(0, 1) € (0, 1)) AA*) .

8, AqW)*=Fq{(g=I) AU*).

9, AY W*=2Y" (Y eF) AUAH).

10, (AYSDOUY*x = AYEDO(E, 0) € T(L, 0)) A (YD = F) AU*),

(AYEODYYk = AV OD((£(0, 1) € T(0, D) A (YO e F) A AX) .

In the preceding definition (A" ) (where Ord'(z) <<0,1> and Ord*(z) <
{0,1>) is the abbreviation for

VXSO LY V(Y € X)) AVED, 1Y YEoD
[L(£(0, 1) € (0, 1)) A Y ZEOD((Z8@P g Yéem)
(280D @ X<ON)T D (YEOI € XU A Yg
VY SeIL(g € 3) AVE(Q, OV ZFP(ZF0D & Vi)
D((&(g, 0) € (g, M) A (Z5@P & X <) T]D
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(Y(<Q,0>) = X(<0,1>))]] ) (A" = X(<0,1>))}
and (A< <) is the abbreviation for
VE(0, l)VXe“’"’((X‘f“”” e A<M o (Xeco,l) e®).

We can prove the following lemma by the induction on E.

LEMMmaA 1. (D) (E(‘?))*:E*G))
@ () =eo (),

a (55 =),

The following lemma is easily proved by the induction on E and .

LEMMA 2. If E is a variety of Hy,, then E¥X=E is provable. If U is a
Jormula of H,,, then A*=A is provable.

The desired theorem can be derived from with the next two
lemmas. To prove the lemmas we must make some preparations.

Let F denote the following variety of the type (<0, 1)).

AXEFODFY(XEOD =Y v I7(0, 1) Y %O
[XEOD =Y @O A (9(0,1) € Z(0, 1)) AV Z7%D
(Z70D g Y O 5 (270D e )]V g Y <10
[XE00 = V<29 A (g & 3) AV (g, 0 274
[(Z792 e Y<>) D ((9(q, 0) € T(g, 0)) A (Z%*P e F))1]} .
Then we can prove VY“Y‘eF) and, by the definition of ,
YE, 1)V XEOL(XEOb e F)D (XSO e g)].
Therefore we can prove
[(a(0, 1) e (0, 1)) AV YOD((YHOD & A0

- (Ya(o,l) = F)))] D (A(a'(o,x)) = F)
and
[(reI) AVE®F, 0)V XETOL(XEmD e A0

D&, 0)eZ(r, N A (XS e F)]ID (A e F),

Therefore, by the definition of ¥, we can prove
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(A" e FD (A e F),
and hence, by the axioms (A-3) and (A-4), we can prove
8.11) (A eF)—(a(0,1) X0, 1) A

VXa(O,l)((Xa(O,I) = A(a(o,l))) ) (Xa(o,l) = %))
and

(38.12) (A eF-FTeIJ)AVEQr, )V XD
[(X570 & A<m*) D((E(r, 0) € F(r, 0)) A(X*2 e F)].
Let G denote the following variety of the type (0, 1)).
AXFODEYEOD(Y IO = F) A (£(0, 1) € (0, 1))
Then, by the definition of (0, 1), we can prove VX (X‘'eG),

Vo((p € J) DV XSPIN(XKP0 < ()
and
VE(0, 1)V XDy YE@( X0 & G) (Y €Om = (),

Therefore, by the definition of Z(0, 1), we can prove
(3.13) (a(0,1)=Z(0, 1)) =X XD ).
By the axioms (A-4) we can assume
VY XPOILXCP @A) = (p=0V 3g(p=(g) A (g€ IN].
Then we can prove VY UO(Y 002 = A0 and
VY YRRy ZKDUN[(YLPO») = AOIN) 5 (ZP103 o KON |
Therefore we can prove
((r) € J) =V YKOID(YRIMN2) g AN
and hence, by the axioms (A-4) and we can prove
B14) (Ne—(rel).
By the axioms (A—4) we can assume
VY XPOP[(X <P & B = ((r<p) A 7 (P ).
Then we can prove

7 (T' = 3) —Y Y(<(T);°>)(Y(<(T),0>) = B(<0’1>))
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and

VY YCPONY ZE@UON[(YP0) o BEO1) T (ZEP10) o B0 ]
Therefore we can prove
(7 (reJ) Ar<s) =V Y<H(YH2 g BROI)

and hence we can prove

(3.15) 7@redIAr<<s—7(6=l).
Therefore we can prove

316) (r<s)N(eI)—-rel).

Similarly we can prove

B.17) F<LHA(red)—r<s)*.

Using (3.11), (3.12), (3.13) and Lemma 1, we can prove the following lemma
by the induction on the length of a proof.
LEMMA 3. If a sequent 5—%2 is provable in Hy ,.(2y,,..) then

(reg), -, (am)eIm), -, (A7), -, 5*—02*

is provable in the same system, where r,--- are the elements of Vi(&)\UVi(£),
a(m), --- are the elements of V{(E)UVH(R), A%, --- are the elements of V*(E)\U
Vo(Q). Similar result holds, reading Hy,,.(Il;,,..) in place of Hy (2, ,0)
Using and (3.17) we can prove the following lemma.
LEMMA 4. The following formulas are provable in Hy , (2, 0).

(D Vp(peIN*
(D (V&(0, 1)(&(0, 1) = Z(0, D)*.
(I J)DVEU, 0)(EU, 0) (U, 0))*.

§ 3. General model

In this section we shall define a notion “general model for H; ,,".
We define a function &(X, Y, m) by the induction on m as follows. 1.
&X,Y,0=X. 2.8X,Y,m+1)=8(X, Y, m)U{(r); v is an element of ¥ or

of B(X, Y, m)}. We define (X, Y)=U®(X, Y, m). In this section we write
’ m=0

A—B to denote the set of all functions whose domains are A and whose
ranges are subsets of B. We write ¢o~¢(S) to denote the fact that ¢ and ¢
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are functions with the same domain and ¢(a)=¢(a) for every a which is not
an element of S. Frequently we write ¢o~¢(a) instead of ¢~¢({a}).

0, J0, 6, Lo, D, F, D) is a general model for Hy,, if the following condi-
tions (M-1)-(M-5) hold.

(M-1) o is an element of .

Define I=3J, X w. Relations < and < on J are defined as follows. 1. (1,0)
<(i,m) if and only if [<m. 2. (o,])<(z,m) if and only if I<m. 3. (1,
(z, m) if and only if [=<m. 4. (o, )=(i, m) if and only if [<m. 5. If i+#0 and
1#J then neither (i, [)<(j, m) nor (7, [)=<(j, m) holds. We use symbols i,i, -
to denote elements of J.

We define Od as the following set.

{(g, ==, 1g,¥>; 10, -+, j& are elements of I and v < p} .

Relations < and =< on Od are defined as follows.

oy ey e £) <oy o+, 1a, ¥ if and only if (i) £ <v or (ii) for some i (0<i< k),
E=v, 1, =<1 -, S ee and <.

Loy ooy e D=L, ***, 1a, ¥y if and only if

@A) Qo oy 1a £0<Lo, =+, 1 ¥y Or (1) £=v,1,Z10, -+, 1, =]z We use symbols b,
g, .-+ to denote elements of Od. Note that < and =< are well-founded relations.

(M-2) 3, is a function with the following properties. 1. The domain is
Od. 2. ¢ is an element of Z,(p) for any element p of Od. 3. If p=<q then T,(b)
c3,(q). 4. If p<q but neither p=gq nor p<q then T,(»)+T,(q). 5. If neither
p=<q nor q=p then FT(p)#T.(a).

We define a function ¥ as follows. 1. The domain is Od. 2. T(P)=G(Z, (D),
{a; a<p}). We define T, as the union of T,(p) for all p in Od and define T=
&(T,, Od). We use symbols 8, t, -+ to denote elements of 7.

(M-3) 9D is a function with the following properties 1-6. 1. The domain
is T. 2. ®@®)+0 for any element 8 of 7. 3. D(8) and D(t) are disjoint for any
elements 8 and t of T, with 8+#1. 4. For any element & of T, each element of
®D(8) is not a function. 5. For any element & of T ©((8))=D@)—{t, f}. 6. For
any element P of Od D((bh)) =D(p)—{¢, f}, where D(p) is the union of D) for
all t in T(p).

Note that ©(8) and D(t) are disjoint for any elements 8 and t of T with
1.

(M-4) & is a function whose domain is the set of all pairs {g, m), where
g is a function symbol and m is a natural number. And for any function
symbol g and natural number m $F(g, m) is an element of (D(¢))™—D(e).

A function ¢ is said to be an assignment for index variables if the domain
is the set of all free and bound index variables and the range is a subset of
3. A function X is said to be an assignment for type variables if it has the
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following properties. 1. The domain is the set of all symbols for free and
bound type variables. 2. For any symbol for free or bound type variable
a X(e) is a function whose domain is Od. 3. For any element p of Od X(a)(p)
is an element of T(p). A function ¢ is said to be an assignment for variables
if it has the following properties. 1. The domain is the set of all symbols for
free and bound variables. 2. For any symbol for free or bound variable 4 ¢(A)
is a function whose domain is 7. 3. For any element & of T ¢(A)(&) is an
element of D(8). '

(M-5) $ is a function whose domain is the set of all quadruplets <E, ¢,
©,, 3y, where E is a quasi-index, quasi-order, quasi-type, quasi-variety or quasi-
formula, ¢, is an assignment for index variables, ¢, is an assignment for type
variables and ¢, is an assignment for variables. And £ has the following
properties 1.1-4.10. 1.1 (0, @1, ©s, ©3)=(0,0). 1.2 O(7, ¢, ©s, ©s)=¢,(r) for any
free or bound index variable . 1.3 If 9, ¢, ©,, ©;) =, m) then HUI), @1, ¢,
503):(i; WH‘D- 2.0 é:)«[o; ey I, vy, D1y, Py 903):<‘g’([o; D1, Qo §03); e, (I, ©D1y Py
©s), V). 3.1 D¢, 01, 05, @) =t. 3.2 D(a(m), i, ©,, ©3) = @,(a)(H(M, @4, ©,, ¢;)) for
any free or bound type variable a(m). 3.3 H((z), @1, ¢s, ©s) = (D(7, @1, ©2, ©s)).
4.0 If F is a quasi-variety of a quasi-type t then $(F, ¢;, ¢,, ¢5) is an element
of DD(z, 1, @5, 0a)). 4.1 D(AT, @1, 05, P2)=0s(A)ND(z, @1, @s, ¢5)) for any free or
bound variable A of a quasi-type 7. 4.2 H(g(ty, =+, tn), 1, ©s @) =T(g, M)
(D(ty, ©1, s, ©3), =, Dty @1, @2, €3). 43 DUEEF), 01, @z, 03) =H(F, @1, ¢, Ps)
(D(E, @1, 92, 93))- ‘

t lf '@(SX, GDD 902) @3): f’

44 (7Y, D1, Qo 993) = { .
f otherwise.

t if O, ¢, 0, @)=t or DB, 01, @, @) =1,
4-5 ‘2)(9’[ \/ %y SDI) (sz 903) - { :
f otherwise.

t if S, ¢, @5, ¢)=t for some assignment
4.6 DEAXU, ¢y, @5, 05) = for variables ¢ with ¢,~¢(X),
f otherwise.
t if S, ¢, X, @)=t for some assignment
47 DEEMY, @, @, @) = for type variables X with ¢,~X(§),
f otherwise.
t if 9%, ¢, ¢, 0;)=1 for some assignment
4.8 DAY, ¢y, ©,, @)= for index variables ¢ with ¢;~¢(p),

f otherwise.
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t if S, ¢, ., )=t for some assignment
for variables ¢ with ¢,~¢(X) and

O(X) (7, @1, 2, 02)) =D,

f otherwise.

4.9 @(ZXTQI, SDly 902; 903)(b) =

4010 @(AXf(M)QI’ GDD 9029 503)(b)

t if O, ¢, X, )=t for some assignments X and ¢
with ,~X(&), X(E)HM, @1, @2, ¢5)) =8, ps~P(X) and
— ¢(X)(B)=b(8 is the type of b, that is, 8 is the unique
element of T(H(m, ¢,, ¢,, ¢5)) such that D(8) contains bd),

f otherwise.

We can prove the following lemma by the induction on = and E.

LEMMA 5. (I) If m is a quasi-order and t is a quasi-type with Ord'(z)<m
and Ord®(z) <m then 9(z, ¢, s, @s) is an element of T(H(m, ¢;, ©,, 0.)). (D) If
o(P)=¢(p) for any element p of VI(E), x(a)(®(m, @1, 02 9))=o(@)(D(M, dy, o,
) for any element a(m) of VHE) and p(A)®(z, p1, 92, 0:)=¢s( Az, du, b,
&) for any element A° of VP(E) then E, @1, 4o 03)=D(E, ¢, do, o). (D) If

oi~i(B) and $u(B)=0, ¢y, s, 02) then D(E(D), 01, 00 00 =D(E, 41, 01, 0.
If @u~s(8), Po(EXDMM, @1, Dy, 03)) =T, @1, 2, ¢s) and VHE) contains no bound
type variable of the form &) with m=+n then «Z)(E(E(;n)) @1, ©s, (/33>:$,’)(E, 01,

5112, 903)- Iy §03N¢3(X), Sbs(X)(‘b(T; ©1, P2, Sbs)):'f’(F, D15 Do, @3) and V*(E) contains
no bound variable of the form X° with o+t then

@<E<)}(;) s D1, Vo, §03> = @(E, D1, Do, Gbs) .

Using Lemma 5 we can prove the following theorem as usual by the in-
duction on the length of a proof.

THEOREM 3. If a sequent I'—4 is provable in Hy, , then for any assign-
ments @y, ¢y, @5 either YA, @y, @,, @s) =t for some W in 4 or (B, ¢y, s, 5)=F
for some B in I

Hence the systems Hy ,n, Hyn(2g.0) and Hy,o(Ilg,,.,) are Consistent be-
cause we can define principal models, 1i.e., such general models that J,= {o},
F,p)={c} for any element p of Od and D((z))=D(r)—{t, f}.

The proof of the following theorem is routine and so omitted (see Taka-
hashi and Uesu [8].

THEOREM 4. If p<w, the completeness of the general models for Hy,,
and the cut-elimination theorem for Hj ,. hold.
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§ 4. Provabilities of second order formulas

THEOREM 5. If pu<w there is a second order formula which is not provable
in Hy n2(;,,0) but provable in Hy , 0.1(2¢,,5). The similar result holds, reading
HyunL 1)y Hyimss( g ) in place of Hipun(Z g )y i Z g, pun), respec-
tively.

PrROOF. We use symbols a, b, ---, x, y, --- instead of A‘, B, ---, X*, Y*, -,
respectively. Let T, denote the conjunction of the following formulas (N-1)-
(N-7).

(N-1) Vx(0=+x") (N-2) VxVy(x'=y Dx=y)
(N-3) Vx(x+0=x) (N-4) VxVy(x+y =(x+y))
(N-5) Vax(x-0=0) (N-6) VxVy(x-y =x-y+x)

(N-7) YXU{[0e X)) AVx(x € XD € XO)N]DVx(xs XO)},

where 0 is a particular free variable of the type ¢ and /, 4+, - are particular
function symbols.

Let Consis;,,,» denote the second order formula which states, via the
Go6del numbering, the consistency of Hy, (% f,ﬂ,,;U{ﬁtO}). By Godel's second
incompleteness theorem M,DConsisy,,,» is not provable in Hy ,.(2y,..). But
it is provable in Hf,,l,nﬂ(f fymn). In the remainder of this section we show
how to formalize a main part of the semantics for Hf,ﬂ,,,(Z' fon ™ {Mo}) in
Hy pmii( 25,00V {J}). To save space we assume that k=0, =1 and n=0.

By we can use the axioms of induction on index and on type.
We use an informal language together with the formal one to simplify the
notation. We use symbols A, B, ---, X, Y, --- instead of A7, B, .-, X", Y7, -,
respectively if the type = is uniquely determined by the context.

We can define Typ(a) by the induction on a as follows (Typ(a) means that
a is the Godel number of a type). 1. Typ(2). 2. If Typ(a) then Typ(2?-3%).
3. If a=2""" for some b then Typ(2°-3%). We can define g(a) and h(a) by the
induction on a as follows. 1. g(2)=0. 2. g(2%-3%)=g(a). 3. g(2*-3%)=(a),. 4.
h(2)=0. 5. h(2%-3%)=h(a)+1. 6. h(2-3%)=1.

For each a we can define the least set (a) of the type ({o,1)) with the
following three properties. 1. a is an element of €(a). 2. If A*%Y is an ele-
ment of €(a) so is the set {A™""} of the type (a(o,1)). 3. For any index r
the set {a} of the type ({r,0)>) is an element of &(a). We can prove

(5.1) a#b—-ECa)NEDH)=0,
(5.2) (A*"D e E(a)) A (B e E(a)) — A“OHD = B> D
(5.3) V&0, 1)IXFOD( XD = E(a)).
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We write a®®"? to denote a unique element of &(a) of a type «(0, 1).

We can define the least set & of the type (o, 1)) with the following two
properties. 1. The set {0} of the type (Ko, 0)) is an element of & 2. If a set
{a} of a type ({r,0)) is an element of & so is the set {a+1} of the type
(), 00). We write =0 to denote the fact that the set {a} of a type
({7, 0)) is an element of & We can prove

(5.4) Vx3Ap(p=o0"),
(55) r=0PAs=0P—-r=s,
(5.6) =0 N\s=0""*"P=3J&(s, 0)(&(s, 0) = (K7, 0))) .

We can define the least set © of the type ({0, 1>) with the following three
properties. 1. For any a the set {2,5%"'} of the type (¢) is an element of D.
2. Suppose that Typ(a) and, for some A“%®, the set {a*"", A*®Y} of the type
(a(0,1)) is an element of ®. If, for any element C*®V of B“®% the set
{a®®b, C*%D} of the type (a(o,1)) is an element of 9, then so is the set
{pex 10 B@®L of the type ((a(o, 1)), where b=2%.3% 3. If r=0%, b=2°"
and, for any type a(r, 0) and any element B*"® of A<"*> of the type a(r, 0),
there exists a number ¢ such that (i) g(c)<a+1, (ii) Typ(c) and (iii) the set
{c», B¥DY of the type (a(r,0)) is an element of ®, then the set {d<"*?,
A2 of the type (K7, 0))) is an element of ®, where d=2%-3°. We write
(A% =D(a)) to mean that Typ(a) and the set {a*®P, A%®D} of the type
(a(0,1)) is an element of ®. We write a(o, 1)=[a] to mean that (A**P=D(a))
for some set A*®? of the type a(o,1). We can prove

B.7) alo,)=[al A Blo,)=Tal—alo, 1)= (0, 1),
(5.8) Typ(a)—3&(0, 1)(&(o, )=[a]),
(5.9) ao,1)=[a]ANalo,)=[b]—a=b.

For each A*®" we can define the least set E(A*®D) of the type (Ko, 1))
with the following three properties. 1. A*®® ig an element of E€(A4A*"Y), 2.
If B®Y ig an element of €(A**"?) then so is the set {Bf®Y} of the type
(B(o, 1)). 3. If for some type y(r, 0) y(r, 0)=a(o, 1) then the set {A*®"} of the
type ({r,0)) is an element of E(A*™"). We write A**Y=~B5"Y to mean that
BP®Y is an element of E(A"""). We can prove

(5.10)  ATOD £ BIOD A AXOD o CEOD A BAOD o D7 O,D , CAO,D o i, |
(5.11) A% = BBOD A A% OD = CBOD _, BAOD — CEO,D

(5.12) (a),=0A (A" =D(b)) —E(a) NE(A*D) =0,
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(513)  alo, )=[alA Blo, =[0I (g(a)<g(b)V (g(a)=g(b) A
h(a) < h(B)))— ¥ X DT YBOD(XOD = YEODY

A set @ of a type ((a(o, 1)) is said to be an assignment for variables
if it has the following three properties. 1. Each element of ¢“*®" jg a set
of the form {a®®P, p¥®D A%DY for some a,b, ¢, Blo, 1), A" and B with
a=71 Typ(b), (BFOY e D(b)) and BPOV = A*®H, 2, If a=T7*", Typ(b) and
sets {a®®Y paOD A0} gpd {g* @, p¥OD B*ODY gre elements of ¢«* D then
A%OD=PRao,D 3 There exists a number a such that for any b if Typ(b) and
b*®™Y is an element of an element of ¢«*® then b<a. (Note that the argu-
ments in § 3 hold good with slight modifications even if we change the defini-
tion of assignment for variables as follows. 1. The domain of ¢ is the set of
all symbols for free and bound variable. 2. For any symbol for free or bound
variable A ¢(A) is a function whose domain is a finite subset of 7. 3. For
any element 8 of the domain of ¢(A) ¢(A)(8) is an element of D(8)).

When ¢« ig an assignment for variables and Typ(b) we write ¢(a, b)
=AP®Y to mean that one of the following holds. 1. For some B*™" with
APOD = B the get {¢™%P, p™D B*®DY ig an element of W% and (APD
eD(b)), where ¢=71 2. b=2, APSY=( and for all B**? the set {c**?,
baOD BX%DY ig not an element of “*®Y? where ¢=7%"* 3. b#2, AP®Y isan
empty set, 8(o, 1)=[b] and for all B¥*? the set {c*®V, b*®D B*®D} is not an
element of 1 where ¢c=7%"', When ¢«*® gand @ gre assignments
for variables we write ¢~¢(a) to mean that for any b,c and A" if ¢(b, c)
=A7%Y and b+#a then ¢(b, ()=A""P, We can prove

(5.14) If @« ig an assignment for variables and (A?®Y=%(a)) there
exists an assignment for variables ¢® with p~¢(b) and ¢(b, a)= APV,

Similarly we can define assignments for index wvariables and for type
variables. When «*©®D? Y «*@D) gpd HU* D) are assignments for index varia-
bles, for type variables and for variables, respectively, a is the Gddel number
of a quasi-variety E, (AP®P e D(b)) and AP = B*®D the set

PULU GU ({cOD, 57O, Bon))

can be regarded as the statement that 9(E, ¢, X, ¢)=AP" (in the notation of
§3), where ¢=11% Similarly when a is the Godel number of a quasi-formula
A and b=0 or b=1 the set

2 U ¢ U | {60(0,1), pO1}}

can be regarded as the statement that &%, ¢, %, ¢)=¢ (in the case b=0) or
that U, ¢, X, ¢)=F (in the case b=1), where ¢=11% Using quantifiers for
variables of the type ({o,1)) we can pick out the true statements by the
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induction on a.

(1]
(2]

{3]
(4]
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