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1. Introduction.

In this Paper we shall prove the following results.
THEOREM 1. Let $G$ be a finite group. Let $S_{0}$ be a subgroup of a Sylow

2-subgroup $S$ of $G$ such that $|S:S_{0}|\leqq 2$ . If there exists an element $x$ such that
$\langle x\rangle\triangleleft S_{J}x^{2}=z,$ $|z|=2$, and $z^{G}\cap S_{0}=\{z\}$ , then $Z^{*}(G)\neq 1$ or a Sylow 2-subgroup of
$\langle z^{G}\rangle$ is dihedral or semidihedral.

COROLLARY 1. Let $X$ be a cyclic subgroup of a Sylow 2-subgroup $S$ of $G$ .
If $X$ is weakly closed in $S$ with respect to $G$, then $Z^{*}(G)\neq 1$ or a Sylow 2-sub-
group of $\langle\Omega_{1}(X)^{G}\rangle$ is dihedral or semidihedral.

D. M. Goldschmidt determined the structure of the finite groups with weakly
closed four-groups. Jonathan I. Hall determined the structure of the finite
groups with weakly closed cyclic group of order 4. This corollary is a gener-
alization of Jonathan I. Hall’s result.

COROLLARY 2. Let $S$ be a Sylow 2-subgroup of a finite group G. SuPpose
$S=R_{1}*\cdots*R_{n}$ and the following conditions hold;

(1) $R_{1}$ has a cyclic subgroup of index 2 for $i=1,2,$ $\cdots$ , $n$ .
(2) $Z(S)$ is cyclic.
Then $\Omega_{1}(Z(S))\subseteqq Z^{*}(G)$ or a Sylow 2-subgroup of $\langle\Omega_{1}(Z(S))^{G}\rangle$ is dihedral or

semidihedral.
We shall write $A*B$ for a central product of $A$ and $B$ .
THEOREM 2. Let $G$ be a finite group. Let $S_{0}$ be a subgroup of a Sylow 2-

subgroup $S$ of $G$, such that $|S:S_{0}|\leqq 2$ . If every involution of $S_{0}$ is isolated each
other, then $Z^{*}(G)\neq 1$ or there exists an involution $z$ of $S_{0}$ such that a Sylow 2-
subgroup of $\langle z^{G}\rangle$ is dihedral or semidihedral.

In fact we find an example in symmetric group of degree 6 which has an
involution $z$ such that a Sylow 2-subgroup of $\langle z^{G}\rangle$ is neither dihedral nor semi-
dihedral.

We shall say elements $x_{J}y$ of $G$ are isolated if $x$ any $y$ are not conjugate
in $G$ .
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2. Preliminaries.

LEMMA 2.1. If $A$ and $B$ are conjugate subsets of a Sylow $P$-subgroup $P$ of
$G$, then there exist Sylow $p$-subgrouPs $Q_{i}$ with $H_{i}=P\cap Q_{i}$ a time intersection,
$1\leqq i\leqq n$ such that

(1) $C_{P}(H_{i})\subseteqq H_{i}$

(2) $H_{i}$ ; Sylow $P$-subgroup of $O_{p,p^{\prime}}(N(H_{i}))$

(3) $H_{\iota}=P$ or $N(H_{i})/H_{i}$ is $p$-isolated
(4) $A\subseteqq H_{1},$ $A^{x_{1}\cdots x_{i}}\subseteqq H_{i+1}$ for some $x_{i}\in N(H_{i})$ if $H_{i}=C_{P}(\Omega(Z(H_{i})))$ and for

some $x_{i}\in N(H_{i})\cap C_{G}(\Omega(Z(H_{i})))$ if $H_{i}\neq C_{P}(\Omega(Z(H_{i})))$ , and $A^{x_{1}\cdots x_{n-1}/}=B$ for some
$y\in N_{G}(P)$ .

This fusion lemma may be found in Goldschmidt [2].

LEMMA 2.2. If element $t,$ $z$ of a Sylow $P$-subgroup $P$ of $G$ are conjugate
and $z\in Z(P)$ , then there exists an element $g$ of $G$ such that $t^{g}=z$ and $C_{S}(t)^{g}\subseteqq S$.

PROOF. Since $t$ and $z$ are conjugate in $G$, there exists an element $k$ such
that $t^{k}=z$ . Since $C_{S}(t)^{k}\subseteqq C_{G}(t^{k})=C_{G}(z)$ and $S\subseteqq C_{G}(z)$ , by Sylow’s theorem there
exists an element $h$ of $C_{G}(z)$ such that $C_{S}(t)^{kh}\subseteqq S$ . we set $g=kh$, then $t^{g}=t^{kh}$

$=z^{h}=z$ . So the lemma is proved.
We say that, for a subgroup $K$ of a Sylow 2-subgroup $S$ of $G,$ $K$ is strongly

involution closed if $k\in I(K)$ and $k^{g}\in S$ for some $g\in G$ implies that $k^{g}\in K$.
In [3], Goldschmidt proved the following result.
LEMMA 2.3. SuPpose $D$ is a strongly involution closed dihedral 2-subgroup of

G. Then a Sylow 2-subgroup of $\langle D^{G}\rangle$ is dihedral or semidihedral.

3. Proof of Theorem 1.

Let $G$ be a finite group which satisfies the assumption of Theorem 1.
We may assume that $Z^{*}(G)=1$ .
LEMMA 3.1. There exists an involution $t$ such that $t,$ $tz$ and $z$ are conjugate

each other in $G$ .
PROOF. By $z*$ -theorem there exists an involution $t$ of $S$ which is conjugate

to $z$ and distinct from $z$ . Let $x$ be as in Theorem 1. Suppose $t$ centralizes $x$ .
By Lemma 2.2 there exists an element $g$ such that $t^{g}=z,$ $C_{S}(t)^{g}\subseteqq S$ . Since $z^{g}=$

$(x^{g})^{2}\in S_{0},$ $z^{g}=z$, this implies $t=z_{J}$ which contradicts the choice of $t$ . By hypo-
thesis $\langle x\rangle\triangleleft S_{J}$ so $x^{t}=x^{-1}$ . Thus $t^{x}=x^{-1}txtt=tz$, which proves Lemma 3.1.

LEMMA 3.2. Let $D$ be weakly closed in $N_{S}(D)$ with respect to $G$, then we
have $S\triangleright D$ .

PROOF. Let $g$ be an element of $N_{S}(N_{S}(D))$ , then we have $D^{g}\subseteqq N_{S}(D)$ . Since
$D$ is weakly closed in $N_{S}(D)$ , we have $D^{g}=D$ . Thus $g\in N_{S}(D)$ , this implies
$N_{S}(N_{S}(D))=N_{S}(D)$ . Hence we have $S=N_{S}(D)_{J}$ which proves Lemma 3.2.
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LEMMA 3.3. $G$ has a strongly involution closed dihedral a-subgrouP $\cdot$

PROOF. Let $ D_{0}=\langle t\rangle\chi\langle z\rangle$ , where $t$ and $z$ are as in Lemma 3.1. If $z^{G}\cap N_{S}(D_{0})$

$\subseteqq D_{0}$ , then $D_{0}$ is weakly closed in $N_{S}(D_{0})$ since $ D_{0}=\langle z^{G}\cap N_{S}(D_{0})\rangle$ . By Lemma
3.2 we have $D_{0}\triangleleft S$, hence $z^{G}\cap S\subseteqq D_{0}$, this implies that $D_{0}$ is strongly involu-
tion closed. Then the Lemma is proved. Therefore we may assume that
$z^{G}\cap N_{S}(D_{0})\not\leqq D_{0}$ . $Thusthereexistsaninvolutionusuchthatu\in z^{G}\cap N_{S}(D_{0})-D_{0}$ .
Assume $C_{D_{0}}(u)=D_{0}$ , then $u$ centralizes $t$ . Since $u$ is conjugate to $z$, there exists
an element $g$ such that $u^{g}=z$ and $C_{S}(u)^{g}\subseteqq S$ by Lemma 3.2.

Assume $t^{g}\in S_{0}$ , so that $t^{g}=z$ by hypothesis of Theorem 1. This implies
$u=t$, which contradicts the choice of $u$ . Similarly we have $z^{g}\not\in S_{0}$ . Therefore
$(tz)^{g}\in S_{0}$ , and hence $(tz)^{g}=z$ since $tz$ is conjugate to $z$ . This implies $tz=u$,
which contradicts the choice of $u$ . Thus $\langle u\rangle D_{0}$ is a dihedral group of order
8, and all involutions of $\langle u\rangle D_{0}$ are conjugate. Let $D_{1}$ be $\langle u\rangle D_{0}$ . Assume
$z^{G}\cap N_{S}(D_{1})\subseteqq D_{1}$ , then it is easy that $D_{1}$ is strongly involution closed. Thus we
may assume $z^{G}\cap N_{S}(D_{1})\not\leqq D_{1}$ . We shall repeat this method. Assume that $D_{n}$ is
a dihedral subgroup of $S$, all involutions are conjugate to $z$, and that $z^{G}\cap N_{S}(D_{n})$

$\not\leqq D_{n}$ . Let $v\in z^{G}\cap N_{S}(D_{n})-D_{n}$ . By previous method it is easy proved that
$C_{D_{n}}(v)$ is cyclic group. Next we shall prove that $ C_{D_{n}}(v)=\langle z\rangle$ . Suppose false.
Then there exists an element $y$ of $D_{n}$ such that $|y|=4$ and $[v, y]=1$ . Clearly
$y^{2}=z$ . Since $v$ is conjugate to $z$ and $z\in Z(S)$ , there exists an element $g$ such
that $v^{g}=z$ and $C_{S}(v)^{g}\subseteqq S$ by Lemma 2.2. In particular we have $y^{g}\in S$, hence
$z^{g}=(x^{g})^{2}\in S_{0}$ . By hypothesis of Theorem 1 we have $z^{g}=z$ . This implies $v=z$,
which contradicts the choice of $v$ . Therefore we have $ C_{D_{n}}(v)=\langle z\rangle$ . Let $D_{n+1}$

$=\langle v\rangle D_{n}$ , then $D_{n+1}$ is dihedral. If we repeat this method, we have a dihedral
subgroup $D$ such that $z^{G}\cap N_{S}(D)\subseteqq D$ and $I(D)\subseteqq z^{G}$ . This implies that $D$ is a
strongly involution closed dihedral subgroup. Hence Lemma 3.3 is proved.

Since all involutions of $D$ are conjugate, $\langle D^{G}\rangle=\langle z^{G}\rangle$ . By Lemma 2.3 a
Sylow 2-subgroup of $\langle D^{G}\rangle$ is dihedral or semidihedral. This completes the
proof of Theorem 1.

4. Proof of Theorem 2.

Let $G$ be a finite group which satisPes the assumption of Theorem 2.
LEMMA 4.1. There exists an involution $z$ of $S_{0}$ which is conjugate to an

involution $t$ of $S$, moreover conjugate to $tz$ .
PROOF. Let $z_{0}$ be an involution of $S_{0}$ . By $z*$-theorem we have an involu-

tion $t_{0}$ of $S$ which is conjugate to $z_{0}$ and distinct from $z_{0}$ . Since $S\triangleright S_{0}$, we
have $\Omega_{1}(S_{0})\subseteqq Z(S)$ by hypothesis of Theorem 2. In particular $z_{0}\in Z(S)$ . By
Lemma 2.1 there exist an element $g$ and 2-subgroup $H$ such that $t_{0^{g}}=z_{0},$ $ g\in$

$N_{G}(H)$ and $H=C_{S}(\Omega_{1}(Z(H)))$ . Since $z_{0}\in Z(S),$ $t_{0}\in\Omega_{1}(Z(H))$ . Set $K=\Omega_{1}(Z(H))_{J}$

then $g\in N(K)$ . Since $H$ is a tame intersection, we may assume that $g$ is an
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odd order element. Let $K_{0}=[K, g]$ , then $|K_{0}$ : $K_{0}\cap S_{0}|=2$ . Since every involu-
tion of $S_{0}$ is isolated each other, $|K_{0}^{\#}|\geqq|(K_{0}\cap S_{0})^{*}|\times 3$ . This implies that $K_{0}$

is four-group and $g^{3}\in C_{G}(K_{0})$ . Let $z$ be an involution of $K_{0}\cap S_{0}$ and $t$ be an
involution of $K_{0}-S_{0}$, then Lemma 4.1 is proved.

Then it is easy that Theorem 2 can be proved by using of Lemma 3.2 and
Lemma 3.3. Thus Theorem 2 is proved.

5. Proof of Corollary 1.

If $|X|=2$, then $Z^{*}(G)\neq 1$ by $z*$-theorem. Assume $|X|=4$ . Let $S_{0}=C_{S}(X)$,
then $|S:S_{0}|\leqq 2$ . Let $\Omega_{1}(X)=\langle z\rangle$ . If $t\in z^{G}\cap S_{0}$, then $[t, X]=1$ . Since $z\in Z(S)$,
we have an element $g$ such that $t^{g}=z$ and $C_{S}(t)^{g}\subseteqq S$ by Lemma 2.2. Then
$X^{g}\subseteqq S$ since $X\subseteqq C_{S}(t)$ . Since $X$ is weakly closed in $S$, we have $X^{g}=X$, this
implies that $z^{g}=z$ . Hence $t=z$, thus we have $z^{G}\cap S_{0}=\{z\}$ . Since $X\triangleleft S$, the
assumption of Theorem 1 is satisfied, which implies a conclusion of Corollary 1.

Assume $|X|\geqq 8$ . Let $|X|=2^{n},$ $n\geqq 3$ . We set $X=\langle x\rangle,$ $y=x^{2},$ $ y_{0}\in\langle x\rangle$ such
that $|y_{0}|=4$ . Let $S_{0}=C_{S}(y_{0})$ , then $|S:S_{0}|\leqq 2$ . Let $t\in z^{G}\cap S_{0}$ . Since $|t|=2$ and
$\langle x\rangle\triangleleft S_{J}x^{t}=x$ or $x^{-1},$ $x^{-1}z,$ $xz$ . Since $t$ centralizes $y_{0},$

$x^{t}=x$ or $xz$ . Thus $y^{t}=y$

in each cases. By Lemma 2.2 there exists an element $g$ such that $t^{g}=z$ and
$C_{S}(t)^{g}\subseteqq S$ . Since $y\in C_{S}(t),$ $y^{g}\in S$, hence $y^{g}$ acts on $X$. Since $|X|\geqq 8$, automor-
phism of $X$ is type of $(2^{n-2},2)$ . Hence $(y^{g})^{2}n- 2$ centralizes $X$. Since $|y|=2^{n-1}$,
$(y^{g})^{2^{n- 1}}=z^{g}$ . Let $t_{0}=z_{J}^{g}t_{0}$ centralizes $X$. Since $t_{0}$ is conjugate to $z$, there
exists an element $k$ such that $t_{0}^{k}=z$ and $C_{S}(t)^{k}\subseteqq S$. Since $X\subseteqq C_{S}(t_{0})_{J}X^{k}=X$.
Hence $z^{k}=z$ . This implies $t_{0}=z$, hence $t=z$ . Thus $z^{G}\cap S_{0}=\{z\}$ . Since $\langle y_{0}\rangle\triangleleft S$,
the assumption of Theorem 1 is satisfied. This completes the proof of Corol-
lary 1.

6. Proof of Corollary 2.

We set $\langle z\rangle=\Omega_{1}(Z(S))$ . We may assume that exponent of $R_{1}\geqq exponent$ of
$R_{i}$ for $i=1,$ $\cdots$ , $n$ . $R_{1}$ has a maximal cyclic subgroup $\langle x\rangle$ such that $|R_{1}$ : $\langle x\rangle|$

$\leqq 2$ . We set $|x|=2^{m}$ and $S_{0}=\langle x\rangle*R_{2}*\cdots*R_{n}$ , then $|S:S_{0}|\leqq 2$ . Assume $ t\in$

$z^{G}\cap S_{0}$, then there exists an element $g$ such that $t^{g}=z$ and $C_{S}(t)^{g}\subseteqq S$ by Lemma
2.2. Since $t\in S_{0_{J}}[x, t]=1$ . Therefore $x^{g}\subseteqq S$ . Then $z^{g}=(x^{g})^{2^{m-1}}\in Z(S)$ by the
assumption (1) of Corollary 2. By the assumption (2) of Corollary 2 we have
$z^{g}=z$ . This implies $t=z$, hence $z^{G}\cap S_{0}=\{z\}$ . By Theorem 1 Corollary 2 is
proved.
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