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§0. Introduction.

The purpose of this paper is to construct an imbedding of every Rieman-
nian symmetric space G/K of non-compact typs into a compact real analytic
manifold X. Here G is a semi-simple Lie group and K a maximal compact
subgroup. Our imbedding has the following properties:

The action of G on X is analytic and the orbital decomposition of X is of
normal crossing type in the sense of Remark 6 in § 2. Moreover, there appears
the Martin boundary in X and the system of invariant differential equations
on the symmetric space has regular singularity along the Martin boundary in
the sense of Definition 5.1 in [9].

As for realizations of G/K there are several papers [1J, [2], [5], [7]
and [11], [14] 1If the rank of the symmetric space is
higher than one, the Martin boundary does not appear in the realizations given
by [71, 123 [13], and the orbital decompositions have more
complicated geometrical structures than ours. The realizations given by
[11], are essentially the same ones called Satake-Furstenberg com-
pactifications. They are only different in the methods of constructions. There
exists a realization among Satake-Furstenberg compactifications where the
Martin boundary appears. But it is a compactification of G/K as a manifold
with boundaries and the natural analytic structure around the boundaries is not
investigated.

In we construct an imbedding of G/K into a manifold X' to solve
S. Helgason’s conjecture that any simultaneous eigenfunction of all invariant dif-
ferential operators on a Riemannian symmetric space can be represented by
the Poisson integral of a hyperfunction on its Martin boundary. It is the
essential point in that we can apply a theorem of regular singularity in [9]
because the system of invariant differential equations on G/K can he analy-
tically extended around the Martin boundary in X' and has regular singularity.
But it is not sufficient for further investigations because there is only a local
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action of G on X’. This is a motivation to write this paper. The relation
between X’ and X is shown in [Proposition 11, which says that X’ is an open
dense submanifold of X.

§1. Notation and preliminaries concerning semi-simple Lie groups.

We will use the standard notation Z, R and C for the ring of integers, the
field of real numbers and the field of complex numbers, respectively. The set
of non-negative integers is denoted by N and the set of positive real numbers
by R,. Lie groups will be denoted by Latin capital letters and their Lie alge-
bras by corresponding small German letters. If C is a Lie group and ¢ its Lie
algebra, the adjoint representation of C is denoted by Ad (or Ad¢) and the
adjoint representation of ¢ by ad (or ad.).

We will now list some standard notation concerning semisimple Lie groups
used in this paper and subsequent papers. Let G be a connected real semi-
simple Lie group with finite center Z, g the Lie algebra of G and {,)> the
Killing form of g. Let @ be a Cartan involution of ¢ and g=f-+p the Cartan
decomposition of ¢ into the eigenspaces of §. We also denote by # the Cartan
involution of G corresponding to the Cartan involution € of g. Let a be a
maximal abelian subspace of p, a* its dual, af the complexification of a*. If
A, peag, let Hyea, be determined by A(H)=<{H,;, H) for HEa and put {A, up=
(H; H,>. Let Y be a Cartan subalgebra of g containing a. Then H=a-t where
t=9"f. We denote by g¢ the complexification of g and for any subspace b of
g we denote by b the complex linear subspace of gc spanned by b. For any
root a of (g¢, YHe), we fix a root vector X, corresponding to «. Introducing
compatible orders in the space of real valued linear forms on a++/—1t and a,
we denote by P, the set of non-zero positive roots a such that a|,#0, by ¥
the set of restricted roots, by X* the set of restricted positive roots and by ¥'=
{ay, -+, a;} the set of restricted positive simple roots. Let p denote half the
sum of the positive restricted roots with multiplicity, that is, 2p0=(2 sep, @) lqc.
For any root a in 2, we denote by g* the root space in g corresponding to a.
We put n*=23Y,z;+¢* and n"=6(n"*), then n"=gN\24ecp,CX, and n =2 ,=;-¢%,
where X~ denotes the set of negatives of the members in Y*. Let K, A, N*
and N~ denote the analytic subgroups of G corresponding to f, a, n* and n~,
respectively. Let M denote the centralizer of A in K, M* the normalizer of
A in K and W the factor group M*/M, the (little) Weyl group. The Weyl
group W acts as a group of linear transformations of a and also on af by
(wA)(H)=Xw™H) for Hea, A=af and weW. For any element w in W, we
fix its representative m, in M*. Weput a*={Hea; a(H)>0 for any a in X'},
which is called the positive Weyl chamber. Let AT=expa®, A'=\Uyepm,ATmy
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and P=MAN. Then A’ is the totality of regular elementsin A, P is a minimal
parabolic subgroup of G and there exist the decompositions

(1.1) G=KA*K (Cartan decomposition),
(1.2) G=KAN~ (Iwasawa decomposition),
(1.3) G=\UyewPm,P (Bruhat decomposition).

Here A* is the closure of A* in G and in (1.2) each g€G can be uniquely
written

(1.4) g=k(g)exp H(gn(g), k(g €K, H(g)ca, n(g)eN*.

Let U(g) denote the universal enveloping algebra of g¢, which is naturally
identified with D(G), the totality of the left G-invariant differential operators
on G. The number [ which equals dima is called the real rank of G and the
rank of the symmetric space G/K. Let D(G/K) denote the algebra of left G-
invariant differential operators on G/K and put D(G)X={D<U(g); Ad(k)D=D
for any k€ K}. Then D(G/K) is a polynomial ring over C with [ algebraically
independent generators and there exists a natural homomorphism of D(G)¥
onto D(G/K).

For an element w in W, we define subalgebras 3, u;, and u; of g by

ny=n"NAd (m,)n", wh=n"NAd (m)n"
(1.5)
up=Ad (mp ur=n"NAd (mz")nt.

We put Nji=exp(n)), Uji=exp(u;) and Up=exp (uy), then they are closed
simply connected subgroups of G and

(1.6) N*=N3Ui=UiNy, NiNnUHZ={1}.

The Killing form defines a Euclidian inner product on o* and ;€% (i=1, -, [)
defines the reflection wy,: A—A—2a;{4, ap/{a;, a;) on a*. We can naturally
identify W with the reflection group generated by wa,, -+, wa,. Let w=w, -+ w,
is the minimal expression for we W as a product of reflections with respect to
the roots in ¥, then the length L(w) of w is said to be n. Let @ be the sub-
set of ¥ and We be the subgroup of W generated by the reflections with
respect to the elements in @. We note here that the number of the subsets of
¥ equals 2'. We put

(0)"=2"NZueoRa,

1.7
W@)={weW; w e cil*}.
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Then every element w in W can be written in one and only one way in the
form (cf. Proposition 1.1.2.13 in [16])

(1.8) w=wew(O), wesWs, w(@)=W(O).

Let w* denote the unique element in W such that Ad (w*n*=n". Then L(w*)
=L(w) for any we W and L(w*)=L(w) means w=w*. Let w§ and w*(@) denote
the elements in We and W(@), respectively, such that w*=wiw*(@). Put
Pe=\Uyew, Pm,P. Then Ps constitute the parabolic subgroups containing P
when @ runs through the subsets of ¥. We define subalgebras as, a(@), 13,
1%(0), me and me(K) of g by

aw={Hea; a(H)=0 for every «a in O},
a@)={Hea; {H, X)>=0 for any X in as},

n;r:Zzez+-<a>+gl, e =0(ng),
1.9)
1"(0)=2ic<o>+8*, 17(0)=0(n"(O)),

me=m+1"(0)+n"(0)+a(@),
me(K)=meN¥.

Let Ao, A(O@), N&, N=*(O@), Ms,, and Me(K), denote the connected analytic sub-
groups of G corresponding, respectively, to ag, a(@), ng, n*(O), me and me(K).
Then AsNZ are closed solvable subgroups of G and we have the direct decom-
position

(1.10) A=AsA(O)
and the semi-direct decompositions
(1.12) N==NiN(©).

We put Me=MMs,, and Me(K)=MMes(K),, then the group MsAs is the centralizer
of as in G, Mo(K)=KN\Ms and we have the decompositions (cf. § 1.2.4 in [16])

(1.12) Ms=MsK)A(O)N*(O) (Iwasawa decomposition),
(1.13) Ps=MsAsN§ (Langlands decomposition),
(1.14) Ps=MsK)AN™*,

(1.15) G=\Upewwer-1N"m,Ps (disjoint union),

(1.16) G=\Upeww -1Uim,Pe (disjoint union).
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The decompositions (1.12), (1.13) and give analytic diffeomorphisms of
the product manifolds Me(K)X A(@)X N*(O), MeX AeX N§, Mo(K)X AXN™ onto
Ms, Ps and Ps, respectively, and if w is in W(@)™*, the map (u, p)—um,p defines
an analytic diffeomorphism of the product manifold U} X Ps onto the submani-
fold N*m,Ps of G. Here we note

(1.17) MU im, C NG =mMyco,Udecor-1M5k0) for weW(@)™*.

Hence G is the union of the open submanifold NgPs and submanifolds of lower
dimensions.

§2. A realization of symmetric spaces in compact manifolds.

In this section we will construct a compact manifold X such that G acts
analytically on it and that the open G-orbits are isomorphic to symmetric spaces.
To investigate all the G-orbits appeared in )?, we prepare the following lemma.

LEMMA 1. Put Po(K)=Me(K)A;Ni. Then Po(K) is a closed subgroup of
G and there exist the decompositions

2.1) C=Unpeww,-1mMy ,UsN (@)A(@)Ps(K) (disjoint union),
(2.2) CG=\Upewm,N A(O)Ps(K) .

If weW(O)™, the map (uy, n, a, p)—uynap defines an analytic diffeomorphism
of the product manifold UgzXN (O)XAO)XPo(K) onto the submanifold
UsN(O)AO)Ps(K) of G. And G is a union of the open dense submanifold
N-A(O)Ps(K) and submanifolds of lower dimensions.

PrOOF. To show Ps¢(K) is a group we need only verify ma=am, aNia™?
CN&§ and mN{m'CN§ for meMsK) and ac=As. But they clearly follow
from (1.9) and the definition of Me¢(K). The groups Me(K), As and N& are
closed in K, A and N*, respectively. Therefore Po(K) is closed in G because
of the Iwasawa decomposition (1.2). Next we note that My=N"(0)A(O)M«(K)
(cf. (1.12)). Then (1.5), (1.13) and (1.12) imply that in

UsmyPo=my,(N~Nmy' N*m, )N (0)A(O)Ms(K)AsN&
=myUuN (0)AO)Ps(K)
for m,=W(@) ! and that
NgPe=NsgN (O)A(O)Ms(K)AsN§
=N"A(O)Ps(K) .
This proves the rest part of Lemma 1. q.e.d.
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REMARK 2. Suppose @=¥. Then We=W, W(O)={1}, Me=G, MsK)=
GNK=K, Ae={1}, A(@)=A, N5s={1}, N*(O@)=N*, Pe=G, Ps(K)=K and
is reduced to G=N"AK (Iwasawa decomposition). On the other hand, suppose
O=0. Then We={l}, W(O)=W, Me=M, Ms(K)=M, As=A, A@)={1}, Ni=
N=, N*@)={1}, Pe=Po(K)=MAN*=P and equals G:w\EJmeN‘P.

If C is a Lie group and ¢ is its Lie algebra, we identify ¢ with the totality

of left invariant vector fields on C. Fix a basis {Y,, =-, Y,} of ¢. Then any
real analytic vector field ¥ on C can be uniquely expressed as

Y= énq Ci(p) Y;

with real analytic functions c¢;(p) on C. This is clear because for any point p
in C, {(Y1)p, -+, (Ym)p} is a basis of the tangent space T,C of C at p. Let
{H, -+, H;} be the dual basis of a with respect to ¥={ay, -+, a;}, that is,
a;(H;)=d;;. For 2€X*, we fix a basis {X;,; 1=i=m(2)} of ¢* where m(Q)=
dim ¢* and put X_;=—0(X;,).

LEMMA 3. Let X, be the homogeneous space G/Pe(K). Fix an element g in
G and identify N~ X A(O) with the open dense submanifold of X by the map
(n, a)—gnaPs(K) (cf. Lemma 1). For an element Y in g, let Y|Xe be the vector
field on X corresponding to the l-parameter group which is defined by the action
exp(tY) on X, (teR). Then at any point p=(n,a) in N"XA(O), the vector
field 1is expressed as

(V1 X)p=Des+2mPe_1,(g, n)(X_2)p
(2.3) + X secoxt 2P ey (g, n)e e Y X 2)p
+2aieeci(g; n)(Hz>p

by the identification TyN-BTeA@)=T o (N-X AO)ZT snarexrXe. Here the real
analytic functions c.;(g, n) and c,(g, n) are determined by the equation

Ad"](gn)Y:EIES+2§’L&}‘>(C%(§, n)XZi’*—c—li(g; n>X—1i)
+lefilci(g) n>H1,+A/[<g’ n)) A/[(g) n)Em .

(2.4)

PrROOF. Assume |[t| is sufficiently small. Then the direct sum decomposi-
tions g=n"-Fa+nt+m=n"+a(@)+me(K)+as+ns and the relation [a, n”]Cn~ show
that we can put

exp (tY )gn=gnexp Ni(t) exp A,(¢) exp N{(¢) exp M.(1),
(2.5) exp Ni(t)a=a exp N3 (1) exp A(t) exp Py(t),

exp N1(t) exp Ay(t)a exp N5 (t)a *=exp N3 (t) exp A.(2),
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where N;(t)en™ (1=1,2,3), Nf@®)ent, Ai(H)€q, A(t)€a(@), M,(t)em and P,(t)
eme(K)+as+ns. Hence we have

(2.6) exp (1Y )gnaPe(K)=gn exp N;(t)a exp (A,(t)+As(1))Ps(K) .

Put (ON;(t)/0t)(0)=N; (1=1,2,3), (dN{(t)/0t)(0)=Ni and (9A,(t)/0t)0)=A4;
(j=1,2). Then shows that

Ad "M gn)Y=Ni+4+A,+N7 mod m,
2.7 Ad Y (a)Nf=N;+A, mod me(K)+ae+135 ,
Ny+Ad(a)N;=Nj .
If 1{O>*, we have
Ad™N @) X;=e e X,
=g Moea( X, — X ;) e tose X ;.
=¢ 202t Ad Y (a) X, mod me(K) .
On the other hand, if Ae2*—<O)*, we have

Ad"Ya)X;=e "5 X, g .
Then A,=0 and

Ni+Ad(@)N; = ey 28 Pc_1,(g, 1) Xy
+ Tiecost DR ey (g, m)e sl X,
A1+A252aieeci<g, n)HL mod Qe .

Thus we obtain [2.3) by [2.6) and [2.7). q.e.d.
Let X be the product manifold GX N- X R! and let £=(g, n, {) be a point

in X (geG,ne N, t=(t, -, t;)€R"). Then G acts on X by the correspondence
(g’,(g,mt)—(g'g nt) for g’=G. Put sgni=(sgnty, -, sgnt)s{—1,0,1},
O;={a;e¥; t;+0} and a(£)=exp (—X,;,- H;log|t;|)€ A(@z), where sgns=s/|s]|
for seR—{0} and sgn0=0. We will define an equivalence relation for points
in X.

DEFINITION 4. Two points £=(g,n,t) and i’'=(g’,#’,t) in X are equi-
valent, which will be denoted by £~%’, if and only if the following two condi-
tions hold.

(2.8) sgni=sgni’.

(2.9) gna()Pe(K)=g'n'a(#")Pe(K)  in Xo,.
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Then we denote by X the quotient space of X with the quotient topology
defined by the equivalence relation.

Since the action of G on X is compatible with the equlvalence relation, G
also acts on X. Let 7 be the natural projection of X onto X. Put U

({g} X N" X R") for g&G. Then the map (n, t)—n((g, n, t)) defines the bijection
(cf. Lemma 1))

(2.10) 0z: N"XR ~, U,.

THEOREM 5. The quotient space X has the following properties.

i) Xisa simply connected, compact, real analytic manifold without bound-
ary.

ii) X:Uwewﬁmwzugeaﬁg-

Here ﬁg 1s an open submanifold of X with the topology such that the map (2.10)
is a real analytic diffeomorphism. Moreover X—ﬁg is a union of a finite number
of submanifolds of X whose codimensions in X are not lower than 2.

iti) The action of G on X is real analytic. For a point £ in X the G-
orbit of n(%) is isomorphic to the homogeneous space G/Pe(K) and for points %
and %' in X the G-orbits of (%) and (&) coincide if and only if sgnX=sgni’.
Hence the orbital decomposition of X with respect to the action of G is of the
form

K= Uacr2%(G/Po(K))  (disjoint union),

where 30 is the number of the elements of O and 2%°(G/Ps«(K)) is the disjoint
union of 2%° copies of G/Pe(K).

iv) Identify the open G-orbit =( {xeX sgn xa( -, 1)}) with the Rieman-
nian symmetric space G/K and the orbit n({xEX, sgn £=0}) of the lowest
dimension with its Martin boundary G/P. Let D(X) be the totality of G-invari-
ant differential operators on X whose coefficients are real analytic functions.
Then the natural rvestriction

D(X) _~, D(G/K)

is bijective. For any algebra homomorphism X of D()?) to C the system of
differential equations on X

My (D—X(D)u=0  for DeD(X)

has regular singularity along the set of walls )N(i:n({(g, n, t)EX'; t;=0}) with
the edge G/P in the sense of Definition 5.1 in [9].
REMARK 6. Since

(2.11) dim X—dim (G/Ps(K))=I—1%6 ,
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the open G-orbits in X are isomorphic to G/K and the number of them equals
2! and that of all the G-orbits equals 3. The decomposition of X into G-orbits
is of “normal crossing type” in the following sense:

For every point in )?, there exists a local coordinate system (x,, -:*, Xz,
Y1, -+, ¥1) on a neighbourhood of the point such that if sgny,=sgnyj for j=1,
-+, I, two points (xy, ***, x4, ¥y, =+, ¥) and (xi, -+, x%, ¥, -+, ¥)) belong to the
same G-orbit.

For example, put G=SL(2, R), N‘:{(}C 1); xER}, A:{(l/“/z—\/?);
tER+} and z=x++/—1¢. Then we can easily show that X is isomorphic to

the 1-dimensional complex projective space PL=C\U{co} with the action of G

oxpia((t Dy St emy

and that
X=v,vu,,, =CUC=P;.
voow
z——1/z

For the first step to prove we prepare
LEMMA 7. The map
(2.12) Pg' o Py @EKﬁgﬂU”y) - SDE’I(ﬁgm[jg’)
is an analytic diffeomorphism between the open subsets of N~ X R'.

PrROOF. Let Y be an element of g. By the identification

P
G/K &~ N"XA_~, NXR. . N xR =0,
w W W
gnaK «—i(n, a) —> (n, 71182, . gmatlog)=(n, t)

the vector field Y| N"X R} corresponding to the l-parameter group defined by
the action exp(sY) on G/K for s€R is expressed as

YIN X RL=3 e s+ 218 (c2,(g, Mt +c_;,(g, ) X_;,
—2haci(g, mt; 0/0t; .

(2.13)

Here we denote by ** the function #*#v ... f2#0 and the functions c.,(g, n)
and c;(g, n) are those which are determined by (2.4) (see [Lemma 3J). Since
A(H;) are non-negative integers for A2, the vector field Y| N“ X R} is analy-
tically extended to a vector field Y|N" X R' on N XR%

For every point £=(g, #, £) in X, put Bs={(t,, -+, t,)€R'; sgnt;=sgn#; for
1<i<I[} and define the identification
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Pg
G/Pay <~ N-X A(0:) -~ N"XB; = N"XR! =1,
W )] v
gnaPe; < (n, a) — (n, sgnie™@1°8%, - sgnie”tioe?)

Since (2.13) shows (Y| N" X RY), T (N~ X B;) for g€ N" X Bz, we can restrict the
vector field Y|N-XR! on N X B;. Then, using the above identification and
comparing and (2.13), we see that its restriction on N X B; is the same
one defined by because e ?4l°¢®=¢?* and H,=—t,0/0t;. Hence we have the
following claim by and by the 1-parameter transformation group on
N~X R corresponding to Y| N X R

Suppose £=(g,,f) in X and Y in ¢ satisfy that gfa(X) e
exp (sY)gN"A(O;)Ps,(K) for 0=<s=1. Then there exists an open subset V of
N-XR' containing (#,7) such that ¢l,ye0¢, defines an analytic diffeomor-
phism of V to an open subset of N"X R

For any £=(g, 7, 1), there exist Y, -, Y,en"+a(@;) such that na(f)=
expY,expY,,-expY,. Put y(s)=exp {(s—[s]) Ad (g)Y .1} exp (Ad (g)Y1)
---exp (Ad (g)Y,) for 0=s=<Fk, where [s]is the largest integer satisfying [s]=s.
Then y(s)gN~A(Oz)Ps (K)=gN A(O:)Ps(K) and y(k)g=gna(£). Applying the
above claim to y(s) in place of exp(sY), we see that 90;%1“3;)09”8’ which equals
(Pplog 0 Pyck-12)° -+ 0 (Pylyg © Pycrg) °(Pying © @), defines an analytic diffeomorphism
of a suitable neighbourhood of (#, ) to a neighbourhood of (1, sgn £).

Let ¢ be an arbitrary point in J,n0,. Then there exist #=(g, #, ) and
2'=(g’, ', t') satisfying n(£)=n(2')=¢. We denote by Ps,(K), the connected
component of Ps (K) containing 1. Then Py (K)=Po(K)oM. Since giia(£)Pe,(K)
=g’ a(%')Pe(K), we have (gha(£))'g’'n’a(Z")=pm with meM and H< Pe (K),.
Since we can choose Y/, -+, Y in me(K)+0as,+n3, so that p=exp YViexp Y,
-exp Y, we see by the same argument as in the case of ¢ 1 - o, that
90;:?(16)50%,;@(;) defines an analytic diffeomorphism between suitable neighbour-
hoods of (1, sgn£). Moreover, since gp;a@%qogga(g);,((n, D)=0m" i, 1), ¢Faain
O Pnadp is an analytic diffeomorphism of N™XR!. Thus we have proved that
P20 Pehad Pz’ O Pgnrain, (p;’:‘m@)’i)ogﬁ'g%a(;) and @glaad)O@enap define analytic
diffeomorphisms of suitable open neighbourhoods of (1, sgn%) to open subsets
of N"XR' Combining these maps and their inverse, we see that ¢z'og, de-
fines an analytic diffeomorphism of an open set containing (7, ) to an open set
containing (#/, #/), which implies ¢;(0,NU,) and ¢z} (U,nU,) are open in
N-XR' and that the map is an analytic local diffeomorphism. But the
map is bijective, so we have the claim of g.e.d.

ProOF OF THEOREM 5. First we remark that the proof of shows
that
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(214) G O)3(g, /', t) — pgtog (0, ') EN-X R

defines a real analytic map of the open subset 7z %(U,) of Xto N-XR'. There-
fore for any open subset V of N™XR! n lop(V)=¢z(V) is open in X. On
the other hand, for any open subset V of X pgromn( V) is clearly openin N-X R
Hence the map [2.10) is a homeomorphism.

For points x and x" in X there exists g in G such that U contains x and
x’ because Lemma 1] shows that {geG; U,2x} and {g€G; [/,=x'} are open
dense in G. Since ¢, is homeomorphic and N~ X R' is Hausdorff, X is also
Hausdorft.

Thus we see that X is a connected real analytic manifold. The claims 11)
and iii) are clear from what we have proved. The claim concerning X— Ug
immediately follows from Iwasawa decomposition (1.2) and Lemma 1.

Whitney’s transversality theorem says that for any submanifold V of X
satlsfymg codimz¥=2 and for any differentiable map y: St (=the unit circle)
—X, there exists a differentiable map 7' S'—X—¥YcX such that y is homo-
topic to y’. Therefore the fundamental group of X equals that of i ¢ Since
the fundamental group of U ¢ 18 trivial, X is simply connected.

Consider the compact subset B=KX {1} x[—1, 17* of X. Then z(B) is also
compact because it is the image of a compact set under the continuous map.
Since {exp (—>-1H;logt;); 0<t;=1 for 1=<j=I} equals A,, Cartan decomposi-
tion (1.1) shows that =(B) contains all the open G-orbits of X. Therefore the
compact set m(B) is open dense in )?, which implies n(B):)? and that X is
compact.

To prove the claim in iv), we prepare the following:

LEMMA 8. Let Y be an element of the Lie algebra a+n~. Then by the
identification

N-A Pad N XR, <, N"XR",
) (U]
na=nexp (—24-1H;log t;) «<—(n, )

the left invariant vector field Y| N~ X RY on the Lie group N~ A corresponding
to Y is expressed as

Y | N-X R =3 g+ S0P 12X = Shoscst 801,
where
Y:EZEH\”‘E?L({DC sz—z +2; 16';

Therefore Y| N~ X RY can be analytically extended to a vector field on N~ X R'.
PrOOF. For a=exp (—X%.,H,logt;), we have

Ad (@) X_y=e M5 X_, =t X-zz,
which proves the claim (cf. the proof of Lemma 7). g.e.d.
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Now we will prove iv). For a Lie subalgebra b of g, we denote by U(bH)
the universal enveloping algebra of b, and naturally identify U(b) with a sub-
algebra of U(g). Let p: D(G)*—D(G/K) be the natural surjective map with
the kernel D(G)XNU(g)t. Then for DeD(G)%, there exists a unique element
D’eU(a+n~) such that D’=D mod U(g)f because of the Iwasawa decomposition
g=t+a+n". Since D'—DeU(g)t, Lemma § proves that p(D) can be analytically
extended to a differential operator on U/ ¢ for every g&G. Therefore we have
the analytic extension D of (D) on X because X is simply connected. Let
7, be the transformation on X corresponding to the action of g&G. Since
z'z,‘ﬁ—f) vanishes on the open subset G/K of )?, we have z-;‘fﬁ:ﬁ on )?', which
shows ﬁeD()?). Hence the map D()?)—»D(G/K) is surjective and the injec-
tivity of the map is clear because G/K is open in X

Now we remember the concept of regular singularity in [9] and the struc-
ture of D(G/K) (cf. Chapter X in [6]). Let (x, -, xp, t3, -+, ;) be a local
coordinate system of X such that )?,- is defined by ¢;=0 for every j=I, -, L
Put 9,=t;d/0t;, 9=(9y, ---, ) and tD,=(t,0/0x,, £,0/0x,, -+, 1,0/3x,). Let P, be
differential operators of order 7; (=1, :-,[) on X whose coefficients are real
analytic functions. Then the system of differential equations

M: Pu=0 for j=1, -, 1

is said to have regular singularity along the set of walls {)?1, oo )?l} if the
following conditions hold :
[RS-0] There are differential operators Q%, of order<r;4r,—7; such that

LP; P 1=,Q%P; for j,k=1,--,1.
[RS-1] For any j, P; is of the form
Pj:Pj(t: X, "9: tDz) .

[RS-2] Put a,(x, s)=P,;0, x,s,0) and let &,(x,s) be its homogeneous part of
degree 7; with respect to s. Then the solution of the system of
equations

a(x, s)= - =a,(x, s)=0

is only the origin s=0=C" for any =x.
For DeD(G)¥, let D; be a unique element of U(a) defined by the equation

(2.15) D—D;enU(g)+U(g)t
and put
(2.16) D.=e?oD;oe™*

where e? is the function on A defined by e?(a)=e°°2® for a=A. Then denot-
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ing by U(a)” the subalgebra {D=U(a); Ad (m,)D=D for we W} of U(a), the
map
7: D(G)X — Ula)
U] W
D — D,

defines a surjective homomorphism of D(G)X¥ onto U(a)” with the kernel
D(G)XN\U(g)t. Therefore it induces the isomorphism

(2.17) 7 D(G/K)=D(G)X/D(G*NU()t -~ U(a)7 .

Here the order of y(D) equals that of D for DeD(G/K) and U(a)” is known
to be a polynomial ring over C with [ algebraically independent homogeneous
elements p,(H,, -+, H)), -+, p.(Hy, -+, H)).

Now we will verify the conditions [RS-0], [RS-1] and [RS-2] for the
system My, which is expressed as

My : (P]—'X(PJ))u::O for ]:1, e l,

where P;=7"%(p;). Since D(G/K) is a commutative ring, [RS-0] is clear.
Moreover shows [RS-17] and in [RS-2]

(2'18) aj(x; S1, *0, sl):pj(p(Hl:)_Sli ) P(HL)—‘Sl)_‘X(D;) .

Therefore the system of equations a,(x, s)=p,(—s)=0 for j=1, ---, [ implies s=0.

Thus we complete the proof of

The following proposition will be used in a subsequent paper.

PROPOSITION 9. We denote by e the involutive automorphism of X induced
by the map of X: (g, n, )—(g, n,s), where s;=t; if a;&E0 and s;=—1t; if a;€06.
Then e and the action of G are mutually commutative and € D=D for any
DED(),Z ).

PrOOF. The commutativity is clear seeing

For DeU(g), we denote by D’ the unique element in U(a+n~) satisfying
ﬁ—ﬁ’EU(g)f. This correspondence induces the identification

D(X) ~, D(G/K) = U(g)/U(g)t _~, U(a-+n").

Consider in the open submanifold U, of X. The totality of left N~ A-invariant
differential operators on U, is naturally identified with U(a+n~) (cf. Lemma 8).
Since 76(00,)=U,, 76 induces an involutive automorphism ¥ of U(a+n~), which
satisfies

T:';(HJ'>:}IJ' ’
(2.19) {

TH(X_3)=(— 1) TOX ;.

Using the identifications, D in D()? ) can be expressed as
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D=(D—D)+Dx;,

where D—D,enU(a+n~) and e’oDjce ?cU(a)¥. Since t&D;=D; and ziD&
D()?) we have t¥D—Den Ula+n)N\D(G/K). Therefore the isomorphism
(2.17) proves z&D—D=0. q.e.d.

Put X,=Gx R' and identify X, with the closed submanifold Gx {1} X R* of
X. Then X has the analytic action of G and the equivalence relation ~ induced
by those on X. We remark here that the analytic map =|X,: —»X which
will be denoted by m, induces a homeomorphism of the quotient space XO/N
with the quotient topology onto X because the map 7: Xa(g, n, H)y—(gn, z‘)EX
satisfies 7(£)=% for #=.X, (cf. Bourbaki [3] [3]. Let 2=(g, ) be a point in X,.
Then by the natural identifications T:X,=g¢+7T,R' and Tﬁ(f)ﬁggn"—{—TtR‘, the
differential (dr,); is expressed as

(dro)(8/0t)=08/dt;,  j=1,+,1,

(2.20)
(dﬂo)x(y> ZA:Z“LE"L(D(CXJZZ—*“C )X—Zi)
—Z§~:1le‘ja/al‘j YEQ,
where
(2.21) Y =S et SPD(Ch, Ko+ Cog X2 )+ 55, H,  modm,

(cf. (2.13)). Therefore =, is smooth, that is, (dr,); is surjective for any Z€ Xo.
Moreover X has the following universal property.

PROPOSITION 10. Given an analytic map f of X, to a real analytic manifold
Y such that f(R)=f(&") if Z~Z" in Xo, then there is a unique analytic map f of
X to ¥ such that the following diagram is commutative :

" Vi N
X, -~ T

To

~

X

PROOF. We have only to prove the analyticity of /. Let s, be the analytic
map of ﬁg to X, defined by (n, t)—(gn,t). Since f| ljg:fomosg[ﬁg:fosg[ﬁg
for g€G, f is also analytic. g.e.d.

In another realization of G/K and G/P is given. The following pro-
position shows the relation between the realization in and X.

PROPOSITION 11. The natural map

To w
KX(—1, 1)), GXR' — X

induces an analytic diffeomorphism
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t: (K/M)X(—1, 1)} —> X

onto an open dense submanifold of X which contains G/P.
Proor. Let £=(k,t) be a point of KX(—1,1). Then the following

{ (dm,):(0/0t;)=0/at;, j=1, -1,
(dr)s(Xy— X_3)=(tP—1)X_,., A3*, i=1, - m(d),

shows that the map dr,:T:(KX(—1,1)H —»T,,@))z is surjective because
Xy—X_;,€¥t and **—1+0. Moreover, since (k, t)~(km, t) for any me M, which
is clear because kma(£)Pe (K)=ka(£)Ps (K ), we obtain the smooth analytic map
c: (K/M)x(—1, 1)‘—>)?. Comparing the dimensions of the manifolds, we see
that ¢ is analytic local diffeomorphism.
Here we note that Cartan decomposition (1.1) induces the analytic diffeo-
morphism
K/Mx A" — G/K
) W
(M, a) — kaK

onto an open dense submanifold of G/K. Therefore putting Z=K/Mx {(—1, 1)
—{0}}%Y, we see that the restriction ¢|Z is injective and ¢«(Z) is open dense in
X. Since Z is open dense in (K/M)x(—1,1)* and ¢|Z is injective and ¢ is an
analytic local diffeomorphism, we can conclude that ¢ is injective. Thus we
can identify (K/M)X(—1, 1)* with an open dense submanifold of X. Moreover,
since K acts transitively on G/P, we have K/MX {0}'!~G/P by
and q.e.d.
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