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1. Introduction.

The notion of shape for compacta was introduced by K. Borsuk [4]. In a
series of papers [5], [6] and [7] Borsuk has defined the concepts of funda-
mental absolute neighborhood retracts (FANR’s), movability and n-movability
and has proved that all of these properties are shape invariants.

In this paper we shall introduce the concepts of fine movability and n-fine
movability, $n=0,1,2,$ $\cdots$ , which are shape invariants and define the n-fine mova-
bility pro-group $m_{n}(X, x_{0})$ for a pointed compactum(X, $x_{0}$). For a compactum
$X$, we shall prove that

(1) $X$ is a pointed FANR, $i$ . $e$ . an FANR having the shape of a CW-com-
plex if and only if $X$ is fine movable,

(2) $X$ is n-fine movable if and only if $m_{k}(X, x_{0})=0$ for $x_{0}\in X$ and $k=0,1$ ,
2, $n$,

(3) an n-dimensional compactum $X$ is fine movable if and only if $m_{k}(X, x_{0})$

$=0$ for $x_{0}\in X$ and $k=0,1,2,$ $\cdots$ , $n+1$ ,
(4) an $LC^{n-1}$ compactum $X$ is n-fine movable,
(5) if $X$ is n-fine movable $X$ is n-movable,
(6) if $X_{1},$ $X_{2}$ and $X_{1}\cap X_{2}$ are n-fine movable compacta $X_{1}\cup X_{2}$ is n-fine

movable.
From (1), (2) and (5) we have the following implications: a pointed FANR

$\rightarrow an$ n-fine movable $compactum\rightarrow an$ n-movable compactum. It is known that
each of converse implications does not generally hold. S. Marde\v{s}i\v{c} [18] has
proved that an n-dimensional $LC^{n-1}$ compactum is movable. The assertions (4)
and (5) extend this result. For pointed FANR’s or equivalently for fine mov-
able compacta (6) has proved by Dydak, Nowak and Strok [12].

Throughout this paper all spaces are metrizable and maps are continuous.
AR and ANR mean those for metric spaces. By dim $X$ we mean the covering
dimension of $X$.

The author would like to express his thanks to J. Ono and K. Sakai for
valuable discussion and to acknowledge his gratitude to the referee for valuable
advice.
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2. Fine movability.

Let $M$ and $N$ be spaces and $X$ and $Y$ closed sets of $M$ and $N,$ respectiveIy.
A map $f:M-X\rightarrow N$ is said to be a fine map from $M-X$ into $Nrel$ . $X,$ $Y$ if
for every neighborhood $V$ of $Y$ in $N$ there exists a neighborhood $U$ of $X$ in
$M$ such that $f(U-X)\subset V$ . (Sometimes $Y$ is not contained in the range of $f$.
If $f(M-X)$ is disjoint from $Y$, then we often write $f:M-X\rightarrow N-Y$ rel. $X,$ $Y.$ )

Two fine maps $f,$ $g:M-X\rightarrow N$ rel. $X,$ $Y$ are said to be fine homotopic (notation:
$f$ er $g$ ) if there exists a homotopy $H:(M-X)\times I\rightarrow N$ satisfying the following
conditions; $H(x, O)=f(x),$ $H(x, 1)=g(x)$ for $x\in M-X$ and for every neighborhood
$V$ of $Y$ in $N$ there exists a neighborhood $U$ of $X$ in $M$ such that $H((U-X)\times I)$

$\subset V$ . $H$ is called a fine homotopy $rel$ . $X,$ $Y$ connecting $f$ and $g$.
A closed subset $X$ of a space $M$ is said to be unstable in $M$ (Sher [23, $p$ .

346]) if there exists a homotopy $H:M\times I\rightarrow M$ such that $H(x, O)=x$ for $x\in M$

and $H(x, t)\in M-X$ for $x\in M$ and $0<t\leqq 1$ . It is known by Anderson [1] and
Chapman [9] that every compactum of the Hilbert space $l_{2}$ is unstable in $l_{z}$

and every Z-set of the Hilbert cube $Q$ is unstable in $Q$ . Also, it is known by
[15, Theorem 1] that every metric space $X$ is imbedded as an unstable subset
into an AR $M(X)$ with dim M(X) $=\dim X+1$ and $w(M(X))=w(X)$ .

LEMMA 1. A closed set $X$ of a space $M$ is unstable in $M$ if and only if
for every oPen neighborhood $V$ of $X$ in $M$ there exists a homotopy $H:M\times I\rightarrow M$

such that

(2.1) $H(V\times I)\subset V,$ $H(M\times(O, 1$]) $\subset M-X$ and $H(x, t)=x$

for $(x, t)\in M\times\{0\}\cup(M-V)\times I$, where $(0,1$] $=\{t:0<t\leqq 1\}$ .
PROOF. Since the if part is obvious, we only prove the only if part. Let

$X$ be an unstable set of $M$. There is a homotopy $H^{\prime}$ : $M\times I\rightarrow M$ such that
$H^{\prime}(x, O)=x$ for $x\in M$ and $H^{\prime}(M\times(O, 1$]) $\subset M-X$. Let $V$ be any open neighbor-
hood of $X$ in $M$. By the paracompactness of $M$ there exists a map $\alpha;M\rightarrow I$

such that $H^{\prime}(\bigcup_{x\in V}\{x\}\times[0, \alpha(x)])\subset V$ and $M-V=\alpha^{-1}(0)$ . Define $r:M\times I\rightarrow M\times I$

and $H:M\times I\rightarrow M$ by

$r(x, t)=(x, \alpha(x))$ for $\alpha(x)\leqq t$ ,

$=(x, t)$ for $\alpha(x)\geqq t$ ,

$H(x, t)=H^{\prime}r(x, t)$ for $(x, t)\in M\times I$ .
It is easy to see that $H$ satisfies (2.1).

LEMMA 2. Let $X$ be an unstable compact set of $M$ and $V$ a neighborhood

of $X$ in M. For every fine map $f:Z-B\rightarrow M$ from $Z-B$ to $Mrel$ . $B,$ $X$, where
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$Z$ is a space and $B$ is a closed set of $Z$, there is a fine homotopy $H:(Z-B)\times I$

$\rightarrow Mrel$ . $B,$ $X$ such that $H(x, O)=f(x),$ $H(x, 1)\in M-X$ for $x\in Z-B$ and $H(x, t)$

$=f(x)$ for $x\in(Z-B)\cap f^{-1}(M-V)$ and $t\in I$.
PROOF. By Lemma 1 there exists a homotopy $H^{\prime}$ : $M\times I\rightarrow M$ such that

$H^{\prime}(V\times I)\subset V,$ $H^{\prime}(M\times(O, 1$]) $\subset M-X$ and $H^{\prime}(x, t)=x$ for $(x, t)\in M\times\{0\}\cup(M-V)$

$\times I$. For each $x\in Z$, put $\alpha(x)=\min(\rho(x, B),$ $1$ ), where $\rho$ is a metric in Z. Define a
homotopy $H:(Z-B)\times I\rightarrow M$ by

$H(x, t)=H^{\prime}(f(x), t\cdot\alpha(x))$ for $(x, t)\in(Z-B)\times I$ .

Obviously $H(x, O)=f(x),$ $H(x, 1)\in M-X$ for $x\in Z-B$ and $H(x, t)=f(x)$ for $ x\in$

$(Z-B)\cap f^{-1}(M-V)$ and $t\in I$. To prove that $H$ is a fine homotopy rel. $B,$ $X$,
let $U$ be any neighborhood of $X$ in $M$. Since $X$ is compact, we can Pnd a $\epsilon>0$

and a neighborhood $U^{\prime}$ of $X$ in $M$ such that $H^{\prime}(U^{\prime}\times[0, \epsilon])\subset U$ . Since $f$ is a
fine map rel. $B,$ $X$, there exists a neighborhood $V^{\prime}$ of $B$ in $Z$ such that $f(V^{\prime}-B)$

$\subset U^{\prime}$ . Put $V^{\prime\prime}=V^{\prime}\cap\{x:\alpha(x)<\epsilon, x\in Z-B\}$ . Then we have $H(V^{\prime}\times I)\subset H^{\prime}(f(V^{\prime})$

$\times[0, \epsilon])\subset U$ . Therefore $H$ is a fine homotopy rel. $B,$ $X$.
Let $X$ be a compactum and $M$ an AR containing $X$. Let $n=0,1,2,$ $\cdots$

We say that $X$ is fine movable (resp. n-fine movable) in $M$ if for every neigh-
borhood $V$ of $X$ in $M$ there exists a neighborhood $V^{\prime}$ of $X$ satisfying the fol-
lowing condition:

(2.2) Let $V$“ be any neighborhood of $X$ in $M$, and let $Z$ be a space
and $B$ a closed set of $Z$ (resp. with dim $(Z-B)\leqq n$). For every
fine map $f:Z-B\rightarrow V^{\prime}$ rel. $B,$ $X$ there exists a fine homotopy
$H:(Z-B)\times I\rightarrow V$ rel. $B,$ $X$ such that $H(x, O)=f(x)$ and $H(x, 1)$

$\in V^{\prime\prime}$ for $x\in Z-B$ .

LEMMA 3. Let $M$ and $M^{\prime}$ be $T’ s$ containing a compactum X. If $X$ is fine
movable (resp. n-fine movable) in $M$, then $X$ is fine movable (resp. n-fine movable)

in $M^{\prime}$ .
PROOF. We shall prove the lemma only for fine movability. Since $M$ and

$M^{\prime}$ are AR’s, there exist maps $\varphi:M\rightarrow M^{\prime}$ and $\psi$ : $M^{\prime}\rightarrow M$ such that $\varphi|X=\psi|X$

$=1_{X}$ , where $1_{X}$ is the identity map of $X$. Let $U$ be a neighborhood of $X$ in
$M^{\prime}$ . By the fine movability of $X$ in $M$ we can find a neighborhood $V^{\prime}$ of $X$ in
$M$ satisfying (2.2) for $V=\varphi^{-1}(U)$ . Since $M^{\prime}$ is an ANR and $\varphi\psi(x)=x$ for $x\in X$,
there exist a neighborhood $U^{\prime}$ of $X$ in $M^{\prime}$ and a homotopy $H^{\prime}$ : $U^{\prime}\times I\rightarrow U$ such
that $U^{\prime}\subset\psi^{-1}(V^{\prime})\cap U,$ $H^{\prime}(x, t)=x$ for $(x, t)\in U^{\prime}\times\{0\}\cup X\times I$ and $H^{\prime}(x, 1)=\varphi\psi(x)$

for $x\in U^{\prime}$ . Let us prove that $U^{\prime}$ satisfies (2.2). Let $f:Z-B\rightarrow U^{\prime}$ be a fine map
rel. $B,$ $X$. Take any neighborhood $U^{\prime}$ of $X$ in $M^{\prime}$ . By the definition of $V^{\prime}$

there is a fine homotopy $H^{\prime}$ : $(Z-B)\times I\rightarrow\varphi^{-1}(U)$ rel. $B,$ $X$ such that $H^{\prime\prime}(x, 0)=$

$\psi f(x)$ for $x\in Z-B$ and $H^{\prime}((Z-B)\times\{1\})\subset\varphi^{-1}(U$“ $)$ . Define $H:(Z-B)\times I\rightarrow U$ by
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$H(x, t)=H^{\prime}(f(x), 2t)$ , $0\leqq t\leqq 1/2$

$x\in Z-B$ .
$=H^{\prime}(x, 2t-1)$ , $1/2\leqq t\leqq 1$

Then $H(x, O)=f(x)$ and $H(x, 1)\in U^{\prime}$ for $x\in Z-B$ . Obviously $H$ is a fine homo-
topy rel. $B,$ $X$ .

By Lemma 3 we can simply define: A compactum $X$ is fine movable (resp.

n-fine movable) if there exists an AR $M$ containing $X$ such that $X$ is fine mov-
able (resp. n-fine movable) in $M$.

THEOREM 1. The fine movability and the n-fine movability are shape invari-
ants.

PROOF. We only prove the theorem for fine movability. Let $X$ and $Y$ be
compacta with the same shape. Suppose that $X$ is fine movable. To show that
$Y$ is fine movable, let $M$ and $N$ be compact AR’s containing $X$ and $Y$ unstably,
respectively. Since Sh $(X)=Sh(Y)$ there exist proper maps $\xi:M-X\rightarrow N-Y$

and $\eta:N-Y\rightarrow M-X$ such that $\eta\xi_{p}\simeq 1_{M-X}$ and $\xi\eta_{p}^{\simeq}1_{N-Y}$, where $\simeq p$ means pro-
perly homotopic. (Cf. [9, Theorem 2] or [17, Theorem 1 and Corollary 2].) Let
$U$ be any neighborhood of $Y$ in $N$. Take a neighborhood $V$ of $X$ in $M$ such
that $\xi(V-X)\subset U$. For the neighborhood $V$, by the fine movability of $X$ there
exists a neighborhood $V^{\prime}$ of $X$ in $M$ satisfying the condition (2.2). Since
$\xi\eta_{p}^{\simeq}1_{N-Y}$, we can find a neighborhood $U^{\prime}$ of $Y$ in $N$ such that $\eta(U^{\prime}-Y)\subset V^{\prime}$

and $\xi\eta|(U-Y)_{p}\simeq i_{U’-Y}$ in $U-Y$, where $i_{U^{\prime}-Y}$ is the inclusion: $U^{\prime}-Y\rightarrow U-Y$.
To prove that $U^{\prime}$ satisfies (2.2) for the neighborhood $U$, let $U$“ be any neigh-
borhood of $Y$ and let $f:Z-B\rightarrow U^{\prime}$ rel. $B,$ $Y$ be a fine map. By Lemma 2 we
can assume that $f(Z-B)\subset U^{\prime}-Y$ . Choose a neighborhood $V^{\prime\prime}$ of $X$ in $M$ such
that $\xi(V‘‘ -X)\subset U^{\prime}$ . By the definition of $V^{\prime},$ $(2.2)$ and Lemma 2, there exists
a fine homotopy $H^{\prime}$ : (V’– $X$ ) $\times I\rightarrow V-X$ rel. $X,$ $X$ such that $H^{\prime}(x, O)=x$ and
$H^{\prime}(x, 1)\in V^{\prime}-X$ for every $x\in V^{\prime}-X$ . Define $H:(Z-B)\times I\rightarrow U$ by

$H(x, t)=\xi H^{\prime}(\eta f(x), t)$ , $(x, t)\in(Z-B)\times I$ .
Then $H(x, O)=\xi\eta f(x)$ and $H(x, 1)\in\xi H^{\prime}((V^{\prime}-X)\times\{1\})\subset\xi(V^{\prime}-X)\subset U^{\prime}$ for each
$x\in Z-B$ . Obviously $H$ is a fine homotopy rel. $B,$ $Y$ . Since $\xi\eta f_{p}\simeq f$ in $U-X$,

this completes the proof.
In [17] we have defined the fine shape $Sh_{f}(X)$ for a compactum $X$. Let

us remind its dePnition. Let $X,$ $Y$ be compacta and $M,$ $N$ AR’s containing $X,$ $Y$

respectively. Consider the subspaces $Z=M\times[0,1$ ) $\cup X\times\{1\}$ and $Z^{\prime}=N\times[0,1$ ) $\cup$

$Y\times\{1\}$ of $M\times I$ and $N\times I$, respectively. Suppose that there exist fine maps
$F:Z-X\times\{1\}\rightarrow N$ rel. $X\times\{1\},$ $Y$ and $G:Z^{\prime}-Y\times\{1\}\rightarrow M$ rel. $Y\times\{1\},$ $X$ such
that

(2.3) $G*Ff\simeq p_{M}$ rel. $X\times\{1\},$ $Y$ and $F*G\simeq {}_{f}P_{N}$ rel. $Y\times\{1\},$ $X$ ,
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where $G*F:Z-X\times\{1\}\rightarrow M$ and $F*G:Z^{\prime}-Y\times\{1\}\rightarrow N$ are defined by $G*F(x, t)$

$=G(F(x, t),$ $t$) and $F*G(y, t)=F(G(y, t),$ $t$), and $p_{M}$ ; $Z-X\times\{1\}=M\times[0,1$ ) $\rightarrow M$ and
$p_{N}$ : $Z^{\prime}-Y\times\{1\}=N\times[0,1$ ) $\rightarrow N$ are the projections. Then we say that $X$ and $Y$

has the same fine shape and we write $Sh_{f}(X)=Sh_{f}(Y)$ . If only the first relation
in (2.3) is true, then we say that $Y$ is fine dominate $X$ and we write $Sh_{f}(Y)\geqq$

$Sh_{f}(X)$ . The following has proved in [17, Theorem 1].

(2.4) $Sh_{f}(X)\geqq Sh_{f}(Y)$ if and only if, for any compact AR’s $M$ and $N$

containing unstably $X$ and $Y$ respectively, there exist pr0per maps
$f:M-X\rightarrow N-Y$ and $g:N-Y\rightarrow M-X$ such that $fg_{p}\simeq 1_{N-Y}$ .

By (2.4) and the proof of Theorem 1, we have
COROLLARY 1. The fine movability and the n-fine movability are hereditarily

fine shape Properties (cf. Borsuk [8, p. 348]).

LEMMA 4. Every compactum is O-fine movable.
PROOF. Let $X$ be a compactum. By $Theore_{-}n1$ of [15] there exist a

compact AR $M(X)$ such that $X$ is an unstable set of $\Lambda M(X)$ and $P=M(X)-X$
is an infinite simplicial polytope. Let $V$ be a neighborhood of $X$ in $M(X)$ .
Since $M(X)$ is an ANR, we can find a neighborhood $V^{\prime}$ of $X$ and a fine homo-
topy $H:(P^{0}\cap V^{\prime})\times I\rightarrow V$ rel. $X,$ $X$ such that $H(x, O)=x$ and $H(x, 1)\in X$ for
$x\in P^{0}\cap V^{\prime}$ , where $P^{0}$ is the set of the vertices of $P$. Obviously the neighbor-
hood $V^{\prime}$ satisfies the condition (2.2) of the O-fine movability for $V$ .

Following Borsuk [8, p. 204] and Dydak [13], a compactum $X$ is said to
be a pointed FANR if for every point $x\in X(X, x)$ is an FANR in the pointed
shape category whose objects are pointed compacta and whose morphisms are
pointed F-sequences. By [8, Chap. VIII, (1.5)], [14, Theorem 1.11 and [24,
Th\’eor\‘eme 5.8] $X$ is a pointed FANR if and only if $X$ is an FANR and $X$ has
the shape of a CW-complex (cf. Dydak [13]).

THEOREM 2. A compactum $X$ is a pointed FANR if and only if $X$ is fine
movable.

PROOF. The only if part follows immediately from [24, Th\’eor\‘eme 5.8] and
Lemma 3. Conversely, suppose $X$ is fine movable. Imbed $X$ into the Hilbert
space $l_{2}$ . Let $V$ be a neighborhood of $X$ in $l_{2}$ . We shall prove that there
exists a neigbborhood $V^{\prime}$ of $X$ in $l_{2}$ satisfying the following condition:

(2.5) For every neighborhood $V^{\prime}$ of $X$ there exists a homotopy
$H:V^{\prime}\times I\rightarrow V$ such that $H(x, t)=x$ for $(x, t)\in V^{\prime}\times\{0\}\cup X\times I$

and $H(x, 1)\in V^{\prime/}$ for $x\in V^{\prime}$ .

Obviously, since the existence of $V^{\prime}$ implies that $X$ is a pointed FANR, it is
enough to find $V^{\prime}$ satisfying (2.5). By the fine movability of $X$ there exists a
neighborhood $V^{\prime}$ of $X$ satisfying (2.2) for the neighborhood $V$ . We claim that
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$V^{\prime}$ satisfies (2.5), too. To prove it, let $V^{\prime\prime}$ be any neighborhood of $X$. By
(2.2) there exists a fine homotopy $H^{\prime}$ : $(V’-X)\times I\rightarrow V$ rel. $X,$ $X$ such that $H^{\prime}(x, 0)$

$=x$ and $H^{\prime}(x, 1)\in V^{\prime\prime}$ for every $x\in V^{\prime}-X$. By Lemma 2 we can assume that
$H^{\prime}((V^{\prime}-X)\times I)\subset V-X$. Since $H^{\prime}$ is a fine homotopy rel. $X,$ $X$, we can find an
open neighborhood $W$ of $X$ such that $W\subset V^{\prime}$ and $H^{\prime}((W-X)\times I)\subset V^{\prime}-X$.
Since $W$ is an $l_{2}$-manifold, by the negligibility of $X$ in $W$ [$2$, Theorem 5], there
exists an onto homeomorphism $\varphi$ : $l_{2}\rightarrow l_{2}-X$ such that $\varphi|l_{2}-W=1_{l_{2}-W}$ and $\varphi(W)$

$=W-X$ . Define $H^{\prime}$ : $V^{\prime}\times I\rightarrow V$ by

$H^{\prime\prime}(x, t)=\varphi^{-1}H^{\prime}(\varphi(x), t)$ for $(x, t)\in V^{\prime}\times I$ .
Then

(2.6) $H^{\prime}(x, 0)=x$ and $H^{\prime}(x, 1)\in V^{\prime}$ , $x\in V^{\prime}$ ,

$H^{\prime\prime}(X\times I)\subset W$ .

Now, consider the product space $V^{\prime}\times I\times J$, where $J=\{s;0\leqq s\leqq 1\}$ , and its subset
$K=V^{\prime}\times I\times\{0\}\cup V^{\prime}\times(\{0\}\cup\{1\})\times J\cup X\times I\times J$. We shall define a map $\xi:K\rightarrow V$

such that

(2.7) $\xi(x, t, O)=H^{\prime}(x, t)$ , $(x, t)\in V^{\prime}\times I$ ,

$\xi(x, 0, s)=x$ and $\xi(x, 1, s)\in W$ , $(x, s)\in V^{\prime}\times J$ ,

$\xi(x, t, 1)=x$ , $(x, t)\in X\times I$ .
To construct a homotopy $H$ satisfying (2.5), by the homotopy extension theo-
rem, extend $\xi$ to a map $\xi^{\prime}$ : $V^{\prime}\times I\times J\rightarrow V$ . If we define $H:V^{\prime}\times I\rightarrow V$ by $H(x, f)=$

$\xi^{\prime}(x, t, 1),$ $(x, t)\in V^{\prime}\times I$, then the homotopy $H$ is a required one. Thus it remains
to construct a map $\xi$ satisfying (2.7). Define $\eta$ on the set $V^{\prime}\times I\times\{0\}\cup X\times\{1\}$

$\times J\cup V^{\prime}\times\{0\}\times J$ by

$\eta(x, t, O)=H^{\prime}(x, t)$ , $(x, t)\in V^{\prime}\times J$ ,

$\eta(x, 1, s)=H^{\prime}(x, 1-s)$ , $(x, t)\in X\times J$ ,

$\eta(x, 0, s)=x$ , $(x, s)\in V^{\prime}\times J$ .
Since $\eta(V^{\prime}\times\{1\}\times\{0\}\cup X\times\{1\}\times J)\subset W$, by the homotopy extension theorem,
$\eta|V^{\prime}\times\{1\}\times\{O\}\cup X\times\{1\}\times J$ is extended to a map $\eta^{\prime}$ : $V^{\prime}\times\{1\}\times J\rightarrow W$. By the
definition of $\eta$ on the set $X\times I\times\{0\}\cup X\times\{1\}\times J$, there is a map $\eta^{\prime}$ : $X\times I\times J\rightarrow X$

such that $\eta^{\prime/}(x, t, O)=\eta(x, t, 0),$ $\eta^{\prime}(x, 1, s)=\eta(x, 1, s)$ and $\eta^{\prime\prime}(x, 0, s)=\eta^{\prime}(x, t, 1)=x$ .
Define $\xi:V^{\prime}\times I\times J\rightarrow V$ by $\xi=\eta$ on $V^{\prime}\times I\times\{0\}\cup V^{\prime}\times\{0\}\times I,$ $\xi=\eta^{\prime}$ on $V^{\prime}\times\{1\}\times J$

and $\xi=\eta^{\prime\prime}$ on $X\times I\times J$. Obviously $\xi$ satisfies (2.7). This completes the proof
of the theorem.

THEOREM 3. An n-dimensional compactum $X$ is a p0inted FANR if and only
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if $X$ is $(n+1)- fine$ movable.
PROOF. Let dim $X=n$ . By [15, Theorem 1] there exists a compact

AR $M(X)$ such that $X$ is an unstable subset of $M(X)$ and dim $M(X)=n+1$ . If
$X$ is $(n+1)- fine$ movable in $M(X)$ , it is obvious that $X$ is fine movable in $M(X)$ ,

because dim $(M(X)-X)\leqq n+1$ . By Theorems 1 and 2 $X$ is a pointed FANR.

3. Pro-groups $m_{k}(X,x_{0})$ .
In this section we shall define progroups $m_{k}(X, x_{0})$ satisfying (2) and (3) in

Introduction. The following notations are used throughout the section.

(3.1) $I^{k}=\{(x_{1}, \cdots , x_{k}) : 0\leqq x_{i}\leqq 1, i=1, \cdots , k\}$ ;

$J^{k-1}=$ {( $x_{1}$ , – , $x_{k})\in I^{k}$ : $x_{k}=1$ or $\prod_{i=1}^{k-1}x_{i}(1-x_{i})=0$ } ;

$I_{0}^{k}=I^{k}-I^{k-1}$ ;

$J_{0}^{k-1}=J^{k-1}\cap I_{0}^{k}*$ $k=1,2,3,$ $\cdots$ .
Let $(M, X)$ be a pair of spaces and $x_{0}\in X$ . Consider the set $F_{k}(M, X, x_{0})$ of
all fine maps $f:$ $I^{k}-I^{k-1}=I_{0}^{k}\rightarrow M$ rel. $I^{k}$ ‘1 $X$ such that $f(J_{0}^{k-1})=x_{0}$ . In the set
$F_{k}(M, X, x_{0})$ we define the relation $ t\equiv$ ” as follows:

(3.2) For $f,$ $g\in F_{k}(M, X, x_{0}),$ $f\equiv g$ if and only if there exists a fine
homotopy $H:I_{0}^{k}\times I\rightarrow M$ rel. I, $X$ such that $H(x, O)=f(x)$ ,
$H(x, 1)=g(x)$ for $x\in I_{0}^{k}$ and $H(J_{0}^{k-1}\times I)=x_{0}$ .

Obviously the relation $\equiv$ is an equivalence relation in $F_{k}(M, X, x_{0})$ . By
$\mu_{k}(M, X, x_{0})$ we denote the set of the equivalence classes. For $k\geqq 2$, a usual
group structure is introduced in $\mu_{k}(M, X, x_{0})$ ; namely, for $f,$ $g\in F_{k}(M, X, x_{0})$,
define

(3.3) $f\cdot g(x_{1}, \cdots, x_{k})=f(2x_{1}, x_{2}, x_{k})$ , $0\leqq x_{1}\leqq 1/2$ ,

$=g(2x_{1}-1, x_{2}, \cdots, x_{k})$ , $1/2\leqq x_{1}\leqq 1$ .
The operation in (3.3) induces a group structure in $\mu_{k}(M, X, x_{0})$ . For $k\geqq 2$, by
$\mu_{k}(M, X, x_{0})$ we mean the group with this structure. For $k=1\mu_{1}(M, X, x_{0})$ is
a set. We call $\mu_{k}(M, X, x_{0}),$ $k=1,2,$ $\cdots$ , the k-dimensional fine group of
$(M, X, x_{0})$ . Obviously

(3.4) if $k\geqq 3$ then $\mu_{k}(M, X, x_{0})$ is abelian.

Let $X$ be an unstable compact subset of $M$. For a pair $(N, Y)$ of spaces
and $y_{0}\in Y$, suppose that there is a map $f:(M-X)\cup\{x_{0}\}\rightarrow N$ such that $f|M-X$
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is a fine map from $M-X$ to $N$ rel. $X,$ $Yandf(x_{0})=y_{0}$ . Then a homomorphism
$f_{*}:$ $\mu_{k}(M, X, x_{0})\rightarrow\mu_{k}(N, Y, y_{0})$ is defined as follows. For any $g\in F_{k}(M, X, x^{0})$,
by the proof of Lemma 2 there exists a $g^{\prime}\in F_{k}(M, X, x_{0})$ such that $g\equiv g^{\prime}$ and
$g^{\prime}(I_{0}^{k})\subset(M-X)\cup\{x_{0}\}$ . Define $f_{*}:$ $\mu_{k}(M, X, x_{0})\rightarrow\mu_{k}(N, Y, y_{0})$ by

$f_{*}([g])=[fg^{\prime}]$ ,

where $[h]$ means the equivalence class containing $h$ . Obviously $f_{*}$ is a homo-
morphism for $k\geqq 2$ . We call $f_{*}$ the homomorphism induced by $f$.

Let $X$ be a compactum and $M$ an AR containing $X$ unstably. Choose a
neighborhood basis $\{M_{i} : i=1, 2, \}$ of $X$ in $M$ such that $M_{i+1}\subset M_{i},$ $i=1,2,$ $\cdots$

For each $i$, the inclusion map $\psi^{i}$ : $M_{\ell+1}\rightarrow M_{i}$ induces the homomorphism
$\psi_{*}^{i}:$ $\mu_{k}(M_{i+1}, X, x_{0})\rightarrow\mu_{k}(M_{i}, X, x_{0}),$ $k=1,2,$ $\cdots$ , where $x_{0}\in X$.

Let pro $(\mathcal{G})$ and pro $(\mathcal{E}_{0})$ be the Pro-categories of groups and pointed-sets
indexed by the directed set of positive integers, respectively. (See Marde\v{s}i\v{c}
[19; 2, 3, 4] and Moszy\’{n}ska [21] for the definition of the pro-category.) Denote
$\{\mu_{k}(M_{i}, X, x_{0}), \psi_{*}^{i} : i\in J\}$ by $m_{k}(X, x_{0} : M, \{M_{i}\})$ . Then $m_{k}(X, x_{0} : M, \{M_{i}\})$ is an
object of pro $(\mathcal{G})$ for $k\geqq 2$ and an object of pro $(\mathcal{E}_{0})$ for $k=1$ . If $M^{\prime}$ is another
AR containing $X$ unstably and $\{M_{i}^{\prime}\}$ is a neighborhood basis of $X$ in $M^{\prime}$ such
that $M_{i+1}^{\prime}\subset M_{i}^{\prime}$, then it is obvious that $m_{k}(X, x_{0} : M, \{M_{i}\})$ and $m_{k}(X, x_{0} ; M^{\prime}, \{M_{i}^{\prime}\})$

are isomorphic. Thus we can define the pro-group $m_{k}(X, x_{0})$ up to isomorphism
$(m_{1}(X, x_{0})$ is the pro-set). For a convenience we set $m_{0}(X, x_{0})=0$ . Here $0$ is a
zero object in pro $(\mathcal{G})$ or pro $(\mathcal{E}_{0})$ , We call $m_{k}(X, x_{0})$ the k-fine movability pro-
group of (X, $x_{0}$).

Finally, we give an alternate description of $\mu_{k}(M, X, x_{0})$ which is convenient
for use. Let us use the following notations.

(3.5) $E^{k}=\{(x_{1}, \cdots , x_{k}) : \sum_{i=1}^{k}x_{i}^{2}\leqq 1, -1\leqq x_{i}\leqq 1, i=1,2, \cdots , k\}$ ;

$E_{0}^{k}=\{(x_{1}, x_{k})\in E^{k} : x_{k}>0\}$ ;

$S^{k}=\{(x_{1}, x_{k+1}):\sum_{i=1}^{k+1}x_{i}^{2}=1\}$ ;

$S_{0}^{k}=\{(x_{1}, x_{k+1})\in S^{k} : x_{k+1}>0\}$ ;

$S_{1}^{k}=\{(x_{1}, x_{k+1})\in S^{k} : x_{k+1}\geqq 0\}$ ;

$l_{k}=\{(x_{1},0, 0, x_{k+1})\in S_{0}^{k} : x_{1}\geqq 0\}$ ; $k=1,2,$ $\cdots$ .
For each $k$ , there exists a fine map $h:$ $I^{k}-I^{k-1}(=I_{0}^{k})\rightarrow S_{1}^{k}-S^{k-1}(=S_{0}^{k})$ rel. I,
$S^{k-1}$ such that $h(J_{0}^{k-1})=l_{k}$ and $h|I_{0}^{k}-J_{0}^{k-1}$ : $I_{0}^{k}-J_{0}^{k-1}\rightarrow S_{0}^{k-1}-l_{k}$ is an onto homeo-
morphism. (See (3.1) for notations.) Thus every element of the group $\mu_{k}(M, X, x_{0})$

is represented by some fine map $f:S_{0}^{k}\rightarrow M$ rel. $S^{k-1},$ $X$ such that $f(l_{k})=x_{0}$ .
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LEMMA 5. An element $\alpha\in\mu_{k}(M, X, x_{0})$ is zero if and only if a fine map
$f:S_{0}^{k}\rightarrow Mrel$ . $S^{k-1},$ $X$ representing $\alpha$ is extended to a fine map $F:E_{0}^{k+1}\rightarrow Mrel$ . $E^{k},$ $X$.

The proof is obvious.

4. m-fine movability and m-movability.

LEMMA 6. Let $X$ be a compactum. If $m_{1}(X, x_{0})=0$ for each $x_{0}\in X$, then $X$

has a finite number of components.
PROOF. Let $M$ be an AR containing $X$. Suppose that $X$ has an infinite

number of components. There is a component $C_{0}$ of $X$ such that

(4.1) every neighborhood of $C_{0}$ in $M$ contains a component $C$

of $X$ different from $C_{0}$ .
Let $x_{0}\in C_{0}$ . We shall prove that $m_{1}(X, x_{0})\neq 0$ . Let $V$ be any neighborhood of
$X$ and $V_{0}$ the component of $V$ containing $C_{0}$ . By (4.1) there exists a component
$C$ of $X$ such that $C\neq C_{0}$ and $C_{0}\cup C\subset V_{0}$ . Let $f:(0,1$] $\rightarrow V_{0}$ be a map such that
$f(1)=x_{0}$ and $f((O, 1/2$]) is a point of $C$ . Then $f$ is a fine map rel. $\{0\},$ $X$ and
represents a non zero element of $\mu_{1}(V, X, x_{0})$ . Suppose that $\psi_{*}([f])=0$, where
$\psi_{*};$ $\mu_{1}(V, X, x_{0})\rightarrow\mu_{1}(M, X, x_{0})$ is induced by the inclusion $\psi:V\subset M$. This means
that there exists a fine homotopy $H:(0,1$] $\times I\rightarrow M$ rel. $\{0\},$ $X$ such that $H(x, 0)=$

$f(x)$ for $x\in(0,1$] and $H(\{1\}\times I\cup(O, 1$] $\times\{1\}$ ) $=x_{0}$ . Since there is a neighborhood
$V^{\prime}$ of $X$ in $M$ such that $V^{\prime}$ is a union of disjoint open sets $V_{1}$ and $V_{2},$ $V_{1}\supset C_{0}$

and $V_{2}\supset C$, this contradicts the connectedness of $(0,1$]. Thus $m_{1}(X, x_{0})\neq 0$ .
This completes the proof.

THEOREM 4. A compactum $X$ is n-fine movable if and only if $m_{k}(X, x_{0})=0$

for $k=0,1,2,$ $\cdots$ , $n$ and $x_{0}\in X$.
PROOF. For $n=0$, the theorem follows from Lemma 4 and the definition

of $m_{0}(X, x_{0})$ . Let $n>0$ and let $M$ be an AR containing $M$ unstably. For neigh-
borhoods $V$ and $V^{\prime}$ of $X$ in $M$, we write $V^{\prime}\subset Vn$ if $V^{\prime}$ satisfy the condition
(2.2) of the n-fine movability for $V$ .

Suppose that $X$ is n-Pne movable. Let $M_{0}$ be any neighborhood of $X$ in
$M$. Choose a neighborhood basis $\{M_{t} : i=1, 2, \}$ of $X$ such that $M_{i}\subset_{n}M_{i-1}$ ,

$i=1,2,$ $\cdots$ . We shall prove that the homomorphism $\psi*:\mu_{k}(M_{1}, X, x_{0})\rightarrow\mu_{k}(M_{0}, X, x_{0})$

is zero for each $k\leqq n$ and $x_{0}\in X$, where $\psi$ is the inclusion of $M_{1}$ into $M_{0}$ . Ob-
viously this shows that $m_{k}(X, x_{0})=0$ for $k\leqq n$ . Let $f:S_{0}^{k}\rightarrow M_{1}$ be a fine map
rel. $S^{k-1},$ $X$ such that $f(l_{k})=x_{0}$ . Since $M_{i}\subset_{n}M_{i-1},$

$i\geqq 1$ , and $n\geqq k$ , there exist
homotopies $\xi_{i}$ : $S_{0}^{k}\times I\rightarrow M_{i}$ rel. $S^{k-1},$ $X$ such that $\xi_{0}(x, O)=f(x),$ $\xi_{i}(x, 0)=\xi_{i-1}(x, 1)$

$\in M_{i+1}$ for $x\in S_{0}^{k}$ and $i=1,2,$ $\cdots$ Let $R_{0}$ be the space of non negative reals.
Define a map $\xi$ : $S_{0}^{k}\times R_{0}\rightarrow M_{0}$ by

$\xi(x, t)=\xi_{i}(x, i+1-t)$ for $x\in S_{0}^{k}$ and $i\leqq t\leqq i+1,$ $i=0,1,2,$ $\cdots$
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By the dePnition of $\xi$ , for any neighborhood $V$ of $X$ in $M$ there exist an $r\in R_{0}$

and a neighborhood $W$ of $S^{k-1}$ in $S_{1}^{k}$ such that

(4.2) $\xi(W\times R_{0}\cup S_{0}^{k}\times(r, \infty))\subset V$ .
Since there is a homeomorphism onto $\varphi$ : $E_{0}^{k+1}\rightarrow S_{0}^{k}\times R_{0}$ such that $\varphi(x)=(x, 0)$

for $x\in S_{0}^{k}$ , the existence of the map $\xi$ satisfying (4.2) implies that the map $f$

is extended to a fine map: $E_{0}^{k+1}\rightarrow M_{0}$ rel. $E_{0}^{k},$ $X$. By Lemma 5, this means that
$\psi_{*}([f])=0$ . Thus $\psi_{*}$ is zero.

Conversely, assume that $m_{k}(X, x_{0})=0$ for $k\leqq n$ and $x_{0}\in X$. Since $n\geqq 1$ , by
Lemma 6 $X$ has a finite number of components. Hence we can assume that
$X$ is connected. Let $M$ be a compact AR containing $X$ unstably. Fix a point
$x_{0}\in X$. For neighborhoods $W$ and $W^{\prime}$ of $X$ in $M$ we write $W^{\prime}\ll Wn$ if $W^{\prime}\subset W$

and $\psi_{*};$ $\mu_{k}(W^{\prime}, X, x_{0})\rightarrow\mu_{k}(W, X, x_{0})$ is zero for $k=1,2,$ $\cdots$ , $n$ , where $\psi$ is the
inclusion map of $W^{\prime}$ into $W$. Let $V$ be any open neighborhood of $X$ in $M$.
Since $X$ is connected, there exists an open neighborhood basis $\{V_{i} : i=0,1, -\}$

of $X$ such that $V=V_{0},$ $V_{i+1}\ll V_{i}n$ and each $V_{i}$ is connected. We shall prove

that the condition (2.2) of the n-fine movability is satisfied by $V$ and $V^{\prime}=V_{n+1}$ .
To do it, let $f:Z-B\rightarrow V_{n+1}$ be a fine map rel. $B,$ $X$, where $Z$ is a space, $B$ is
closed in $Z$ and dim $(Z-B)\leqq n$ . Without loss of generality, by Lemma 2 it can
be assume that

(4.3) $f(Z-B)\subset V_{n+1}-X$ .
Also, by the proof of Theorem 3.1 of Dugundji [11], we can assume that $P=$

$Z-B$ is an n-dimensional locally finite simplicial polytope satisfying the fol-
lowing;

(4.4) $P$ is open in $Z=P\cup B$ and there is a sequence $\{\epsilon_{i}\}$ of positive
numbers such that $\epsilon_{i}\rightarrow 0(i\rightarrow\infty)$ and if for a simplex $s$ of $P$

$\rho(s, B)<1/i$ then diameter of $s<\epsilon_{i}$ , where $\rho$ is a metric in $Z$ .
We shall construct a map $\xi:P\times[0,1$ ) $\rightarrow V$ satisfying the condition;

(4.5) $\xi(x, O)=f(x)$ for $x\in P$, and for any neighborhood $W$ of $X$ in $M$

there exist a closed neighborhood $U$ of $B$ in $Z$ and a map $\alpha$ :
$P\rightarrow[0,1)$ such that $\alpha^{-1}(0)\cup B=U$ and $\xi(x, \alpha(x))\in W$ for $x\in P$ .

At first, suppose that a map $\xi$ is constructed. Take any neighborhood $V^{\prime}$ of
$X$ in $M$. There exists a neighborhood $U$ of $B$ in $Z$ and a map $\alpha$ : $P\rightarrow[0,1$ )
satisfying (4.5) for $W=V^{\prime}$ . Define $H:P\times I\rightarrow V$ by

$H(x, t)=\xi(x, t\cdot\alpha(x))$ for $x\in P$ and $t\in I$ .
Then $H(x, O)=f(x)$ and $H(x, 1)\in V^{r}$ for $x\in X$. It is obvious that $H$ is a fine
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homotopy rel. $B,$ $X$. This shows that $X$ is n-fine movable. Thus it remains to
construct a map $\xi$ in (4.5).

For each simplex $s$ of $P$, put $p(s)=max\{i:f(s)\subset V_{i}\}$ . By (4.3) $ p(s)<\infty$ for
every simplex $s$ . Denote by $P^{k}$ the k-skeleton of $P$. For $x\in P^{0}$, since $V_{p(x)}$ is
connected, there is a map $f_{x}$ : $\{x\}\times[0,1$ ) $\rightarrow V_{p(x)}$ such that $f_{x}(x, O)=f(x)$ and
$f_{x}([1/2,1))=x_{0}$ . Define $\xi_{0}$ : $P\times\{0\}\cup P^{0}\times[O, 1$ ) $\rightarrow V_{n}$ by

$\xi_{0}(x, 0)=f(x)$ , $x\in P$ ,

$\xi_{0}(x, t)=f_{x}(x, t)$ , $x\in P^{0}$ and $t_{0}\in[0,1$).

For some $m<n$, suppose that for each $k\leqq m$ , the map $\xi_{k}$ : $P\times\{0\}\cup P^{k}\times[0,1$ )
$\rightarrow V_{n-k}$ such that

(4.6) $\xi_{k}|P\times\{O\}\cup P^{k-1}\times[0,1$ ) $=\xi_{k-1}$ , where $\xi_{-1}=f$, if $s$ is a k-simplex
of $P$ then $\xi_{k}|s\times[0,1$ ) $:s\times[0,1$ ) $\rightarrow V_{p(s)-k}$ is a fine map rel.
$s\times\{1\},$ $S$ .

Let $s$ be an $(m+1)$-simplex of $P$. Consider a map $f_{s}^{\prime}$ : $s\times\{O\}\cup\partial s\times[0,1$ ) $\rightarrow V_{p(s)-m}$

dePned by

$f_{s}^{\prime}(x, O)=f(x)$ for $x\in s$ ,

$f_{s}^{\prime}(x, t)=\xi_{m}(x, t)$ for $(x, t)\in\partial s\times[O, 1)$ ,

where $\partial s$ is the boundary of $s$ . Then $f_{s}^{\prime}$ is a fine map rel. $\partial s\times\{1\},$ $X$. Since
$\psi*:\mu_{m}(V_{p^{(}s)-m}, X, x_{0})\rightarrow\mu_{m}(V_{p(s)-m-1}, X, x_{0})$ is zero, $f_{s}^{\prime}$ is extended to a Pne map
$f_{s}$ : $s\times[0,1$ ) $\rightarrow V_{p(s)-m-1}$ rel. $s\times\{1\},$ $X$ by Lemma 5. Define $\xi_{m+1}$ : $P\times\{0\}\cup P^{m+1}$

$\times[0,1)\rightarrow V_{n-m-1}$ by

$\xi_{m+1}(x, 0)=f(x)$ , $x\in P$ ,

$\xi_{m+1}(x, t)=f_{s}(x, t)$ , $x\in s\in P^{m+1}$ and $t\in[0,1$).

Obviously (4.6) is satisfied for $k=m+1$ . Thus, for each $k,$ $\xi_{k}$ satisfying (4.6)

has been constructed. Put $\xi=\xi_{m}$ . By the construction of $\xi$ , for every neigh-
borhood $W$ of $X$ and for every simplex $s$ of $P$, there is $t_{s}\in[O, 1$ ) such that
$\xi(s\times[t_{s}, 1))\subset W$. Thus, for a given neighborhood $W$ of $X$, it follows from the
paracompactness of $P$ that there are a map $\alpha$ : $P\rightarrow[0,1$ ) and a neighborhood $U$

of $X$ satisfying (4.5). This completes the proof.
From Theorems 2, 3 and 4, and the proof of Theorem 4 the following

corollaries are obtained.
COROLLARY 2. $A$ finite dimensional compactum $X$ is a pOinted FANR if

and only if $m_{k}(X, x_{0})=0$ for $k=0,1,2,$ $\cdots$ and $x_{0}\in X$.
COROLLARY 3. A continuum $X$ is n-fine movable if and only if for some
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point $\chi_{0}$ of $Xm_{k}(X, x_{0})=0$ for $k=0,1,$ $\cdots$ , $n$ .
COROLLARY 4. An n-dimensional continuum $X$ is a pOinted FANR if and only

if for some point $x_{0}\in Xm_{k}(X, x_{0})=0$ for $k=0,1,$ $\cdots$ , $n+1$ .
Next, we shall investigate the connection between n-fine movability, $LC^{n-1}$

and n-movability in the sense of Borsuk [7].

THEOREM 5. Every $LC^{n-1}$ compactum is n-fine movable.
PROOF. Let $X$ be an $LC^{n-1}$ compactum. By $M(X)$ denote a compact AR

containing $X$ unstably which is constructed in [15, Theorem 1]. Then $P=$

$M(X)-X$ is a locally finite simplicial polytope. Let $P^{n}$ be the n-skeleton of $P$.
Since $X$ is $LC^{n-1}$ , there exist a neighborhood $W$ of $X$ in $\lrcorner M(X)$ and a retrac-
tion $r;X\cup(W\cap P^{n})\rightarrow X$ satisfying the following:

(4.7) there exists a sequence $\{\epsilon_{i}\}$ of positive numbers such that $\epsilon_{i}\rightarrow 0$

$(i\rightarrow\infty)$ and if $s$ is a simplex of $P^{n}$ and $\rho(s, X)<1/i$ then the
diameter $s\cup r(s)<\epsilon_{i}$ , where $\rho$ is a metric in $M(X)$ .

Let $V$ be any neighborhood of $X$ in $M(X)$ . Since $M(X)$ is an ANR, by (4.7)

there exist a neighborhood $V^{\prime}$ of $X,$ $V^{\prime}\subset V\cap W$, and a homotopy $H:((V^{\prime}\cap P^{n})$

$\cup X)\times I\rightarrow V$ satisfying the following:

(4.8) $H(x, O)=x,$ $H(x, 1)=r(x)$ for $x\in(V^{\prime}\cap P^{n})\cup X$, there exists a
sequence $\{\delta_{i}\}$ of positive numbers such that $\delta_{i}\rightarrow 0(i\rightarrow\infty)$ and
if $s$ is a simplex of $P^{n}$ and $\rho(s, X)<1/i$ then diameter
$H((s\cap V^{\prime})\times I)<\delta_{i}$ .

Then it is easy to prove that the condition (2.2) of the n-fine movability is
satisfied for $V$ and $V^{\prime}$ . This completes the proof.

Theorem 5 extends [18, Theorem 1] and [7, Theorem 4.1].

THEOREM 6. Every n-fine movable compactum is m-movable.
PROOF. Let $X$ be an n-fine movable compactum. We use the same nota-

tions as in the proof of Theorem 5. For a given neighborhood $V$ of $X$ in
$M(X)$ , we must find a neighborhood $V^{\prime}$ of $X$ satisfying the following;

(4.9) for any neighborhood $V^{\prime\prime}$ and for a compactum $C$ of $V^{\prime}$ with
dim $C\leqq n$ there exists a homotopy $H:C\times I\rightarrow V$ such that
$H(x, 0)=x$ and $H(x, 1)\in V^{\prime}$ for $x\in C$ .

Let us show that a neighborhood $V^{\prime}$ satisfying the condition (2.2) of the n-fine
movability is a required one. By (2.2) there is a fine homotopy $H^{\prime}$ : $(P^{n}\cap V^{\prime})\times I$

$\rightarrow V$ rel. $X,$ $X$ such that $H^{\prime}(x, O)=x$ and $H^{\prime}(x, 1)\in V^{\prime\prime}$ for $x\in P^{n}\cap V^{\prime}$ . From the
construction of $M(X)$ , we can assume that $V^{\prime}-X$ is a subpolytope of $P$. Since
every compactum $C$ of $V^{\prime}$ with dim $C\leqq n$ is deformable to $(V’-X)\cap P^{n}$ in $V^{\prime}$ ,
by composing this deformation and the homotopy $H^{\prime}$ we find a homotopy
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satisfying (4.9). This completes the proof.
Finally, we shall prove a sum theorem of n-fine movable compacta.
THEOERM 7. Let $X_{1}$ and $X_{2}$ be n-fine movable compacta such that $X_{1}\cap X_{Z}$

is n-fine movable. Then $X=X_{1}\cup X_{2}$ is n-fine movable.
PROOF. By [15, Theorem 1], construct a compact AR $M(X)$ containing $X$

unstably such that $K=M(X)-X$ is an infinite polytope. Since $X_{1}$ and $X_{2}$ are
closed in $X$, by the construction of $M(X)$ , there exist compact AR’s $M(X_{1})$ and
$M(X_{2})$ such that $M(X_{1})\cup M(X_{2})=M(X),$ $M(X_{1})\cap M(X_{2})$ is an AR, $M(X_{i})\cap X=X_{i}$

and $M(X_{i})-X_{i}$ is a subpolytope of $P$ for $i=1,2$ . Put $K_{i}=K\cap M(X_{i}),$ $i=1,2$ .
Let $V$ be any neighborhood of $X$ in $M(X)$ . By using the same argument as
the proof of the if part of Theorem 4 we can show that there exists a neigh-
borhood $V^{\prime}$ of $X$ in $M(X)$ satisfying the following;

(4.10) if $Z$ is a space, $B$ is a closed set such that $P=Z-B$ is an
n-dimensional infinite Polytope satisfying (4.4) and if $ f:Z-B\rightarrow$

$V^{\prime}-X$ is a fine map rel. $B,$ $X$, then there is a map $\xi:P\times[0,1$ )
$\rightarrow V$ such that $\xi$ satisfies (4.5) and $\xi(f^{-1}(V^{\prime}\cap K_{i})\times[0,1))\subset V\cap K_{i}$ ,
$i=1,2$ .

The map $\xi$ is constructed inductively for the skeletons of $K_{i},$ $i=1,2$, and
$K_{1}\cap K_{2}$ by making use of the n-fine movability of $X_{i},$ $i=1,2$, and $X_{1}\cap X_{2}$ .
Finally, the n-fine movability of $X$ is proved by using the map $\xi$ (cf. the proof
of the if part of Theorem 4).

COROLLARY 5. Let $X$ be an n-dimensional compactum which is a union of
compacta $X_{1}$ and $X_{2}$ . If $X_{1},$ $X_{2}$ and $X_{1}\cap X_{2}$ are n-fine movable, then $X$ is
movable.

This is a consequence of Theorems 6 and 7, and [16, Theorem 3].

The following theorem was proved by J. Ono in case $X$ is an FANR. Also
K. Sakai [22, 6-4] proved it in case $X$ is an MANR and $X_{1}\cap X_{2}$ is an MAR in
the sense of Godlewski. Our proof is similar to them.

THEOREM 8. Let $X$ be a compactum which is a union of compacta $X_{1}$ and
$X_{2}$ . If $X$ is n-fine movable and $X_{1}\cap X_{2}$ is an FAR, then $X_{1}$ and $X_{2}$ are n-fine
movable.

PROOF. Let $M(X)$ be a compact AR containing $X$ unstably constructed
in [15, Theorem 1]. Denote by $M(X_{i}),$ $i=1,2$, and $M(X_{1}\cap X_{2})$ the compact

AR’s in $M(X)$ corresponding to $X_{i},$ $i=1,2$, and $X_{1}\cap X_{2}$ , respectively, that is,
$M(X_{1})\cup M(X_{2})=M(X),$ $M(X_{1})\cap M(X_{2})=M(X_{1}\cap X_{2})$ and $M(X_{i})\cap X=X_{i}$ for $i=1,2$ .
Put $M=M(X)/M(X_{1}\cap X_{2})$ and $M_{i}=M(X_{i})/M(X_{1}\cap X_{2}),$ $i=1,2$ . By *denote the
point corresponding to $M(X_{1}\cap X_{2})$ . Each of $M$ and $M_{i},$ $i=1,2$, is a compact

AR and $M$ is a one point union of $M_{1}$ and $M_{2}$ and $M_{1}\cap M_{2}=\{*\}$ . Let $\varphi:M(X)$

$\rightarrow M$ be the quotient map. Set $X^{\prime}=\varphi(X)$ and $X_{i}^{\prime}=\varphi(X_{i}),$ $i=1,2$ . Since $X^{\prime}=$
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$X/X_{1}\cap X_{2},$ $X_{i}^{\prime}=X_{i}/X_{1}\cap X_{2},$ $i=1,2$, and $X_{1}\cap X_{2}$ is an FAR, Sh $(X)=Sh(X^{\prime})$ and
Sh $(X_{i})=Sh(X_{i}^{\prime}),$ $i=1,2$ . Thus it is enough to prove that X\’i, $i=1,2$, is n-fine
movable (cf. Theorem 1). We give the proof only for $X_{1}^{\prime}$ . Let $V$ be any
neighborhood of $X_{1}^{\prime}$ in $M_{1}^{\prime}$ . Since $X^{\prime}$ is n-fine movable, there exists a neigh-
borhood $W$ of $X^{\prime}$ in $M^{\prime}$ satisfying the condition (2.2) of the n-fine movability for
the neighborhood $V\cup M_{2}^{\prime}$ . Put $V^{\prime}=W\cap M_{1}^{\prime}$ . Then $V^{\prime}$ is a neighborhood of $X^{\prime}$

in $M_{1}^{\prime}$ . Since $M_{1}^{\prime}\cap M_{2}^{\prime}=\{*\}$ , there is a retraction $r:M^{\prime}\rightarrow M_{1}^{\prime}$ such that $r(M_{2}^{\prime})=$

$\{*\}$ . By using the retraction $r$, it is easy to see that the neighborhood $V^{\prime}$ of
$X_{1}^{\prime}$ in $M_{1}^{\prime}$ satisPes the condition (2.2) for $V$ . Thus $X_{1}^{\prime}$ is n-fine movable. This
completes the proof.

It is not known whether Theorem 8 holds in case $X_{1}\cap X_{2}$ is n-fine movable:
PROBLEM. Let $X$ be a union of compacta $X_{1}$ and $X_{2}$ . If $X$ and $X_{1}\cap X_{2}$

are n-fine movable (resp. fine movable), then are $X_{1}$ and $X_{2}$ n-fine movable
(resp. fine movable)?

REMARK. Since the n-fine movability is a shape property, all statements
for finite dimensionality can be replaced by finite fundamental dimensionality
in the sense of Borsuk [8, p. 227]. For example, Theorem 3 is generalized
slightly as follows.

THEOREM 3’. A compactum $X$ with Fd $X\leqq n$ is a pointed FANR if and
only if $X$ is $(n+1)- fine$ movable, where Fd $X$ is the fundamental dimension of $X$.

By Theorems 2, 5 and 6 we have the following implications.

pointed FANR $-fine$ movability
$\downarrow$

$LC^{n-1}compactum\rightarrow n- fine$ movability
$\downarrow$

n-movability

Each of the converse implications does not hold. Also, it is known by the
following examples that the hypothesis of finite dimensionality in Theorem 3
or Corollaries 2 and 4 is necessary and the n-fine movability in Theorem 7 or
Corollary 5 can not be replaced by the movability.

EXAMPLES. (1) An inPnite O-dimensional compactum is movable by [20]
but not l-fine movable.

(2) Let $X$ be a dyadic solenoid. Imbed $X$ into a compact AR $M(X)$ con-
structed in [15, Theorem 1]. We use the same notations as in the proof of it.
Let $x_{0}\in X$ and consider the subset $X_{0}=X\cup(\bigcup_{n=1}^{\infty}K_{n})\cup J$, where $J$ is an arc in
$M(X)$ connecting $\chi_{0}$ and a point of $K_{1}$ . Obviously $X_{0}$ is a movable continuum.
However it is easy to see that $m_{1}(X_{0}, x_{0})=0$ and $m_{2}(X_{0}. x_{0})\neq 0$ . Thus $X_{0}$ is
l-fine movable but not 2-fine movable.
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(3) Let $x_{i=1}^{\infty}=S_{i}$ be a continuum which is a one point union of a countable

number of copies $S_{i}$ of a 1-sphere. Then $X$ is $LC^{0}$ and l-dimensional. How-
ever, for every point $x_{0}$ of $Xm_{1}(X, x_{0})=0$ and $m_{2}(X, x_{0})\neq 0$ . Thus $X$ is not 2-
fine movable.

(4) Let $X$ be the continuum constructed by Borsuk [3, p. 124]. Borsuk
proved that $X$ is locally contractible and $\check{H}^{n}(X)\neq 0$ for each $n\geqq 0$, where $\check{H}^{*}$ is
the integral Cech cohomology. Since $X$ is $LC^{\infty},$ $X$ is n-fine movable for each
$n$ . However $X$ is not fine movable.

(5) Let $Y$ be the non movable compactum constructed by Cox [10, Theo-
rem 5] such that $Y$ is a one point union of movable compacta $X_{1}$ and $X_{2}$ .
Obviously both $X_{1}$ and $X_{2}$ are not l-fine movable.
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