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Let 2 be a field with discrete valuations, k, the completion of % with
respect to a prime divisor p of k, k., the separable algebraic closure of &, and
kysep the separable algebraic closure of k, containing k., Here a prime divisor
is a normalized discrete valuation. Let S be a finite set of prime divisors of &,
G a finite abelian group, and (K” j,) a pair of a finite abelian extension K* of
ky in kpsep, and an injective homomorphism j, from the Galois group G(K?/ky)
into G for each p=S. An imbedding problem

P=P{k, G, S, (K? j» (0 S)}

is to find a pair (K, j) of an abelian extension K of k in k., and a surjective
isomorphism j: G(K/k)=G satisfying Ky=K?® and j,=joRes, for any p& S, where
Ky=Kky and Res,: G(K;/ky)—G(K/E) is the restriction from K, to K. We call
the pair (X, j) a solution of the imbedding problem P.

When % is a finite algebraic number field or an algebraic function field in
one variable over a finite constant field, Grunwald, Hasse and Wang (2], [3],
gave a condition for an imbedding problem P to have a solution, and in
particular proved that an imbedding problem P has a solution if (%, G, S) is
not the “special case” (see also Chap. 10 of and of [5)). Their
proofs were based on class field theory, and Hasse (3], §4, 1) raised the
problem of giving a proof based on Kummer theory.

In the present paper, we shall give a certain sufficient condition for an
imbedding problem P to have a solution for any field k with discrete valuations.
More precisely, we shall prove the following

THEOREM. Let k be a field, S a finite set of prime divisors of k, and G a finite
abelian group of type (pi'%, pa2, -, pi'Y). Then an imbedding problem P{k, G, S,
(K% jp») 0=S)} has a solution if the following two conditions are satisfied :

(i) There exist t distinct prime divisors Gy, s, ==*, 4z 0f k outside S such
that L(piH)E ke, if pich(k).

(i) If exp(G) is divisible by 4 and if ch(k)=2, then {(4)=k (see Notation
below and Theorem 5).

*) Partially—supported by Fijukai Foundation.
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COROLLARY. Let k be a finite algebraic number field or an algebraic
Sfunction field in n variables (n=1) over any field. Then an imbedding problem
Pik, G, S, (K?, j») (0ES)} has a solution if the condition (ii) is satisfied (see
Proposition 6).

Note that our method of proof gives an answer to Hasse’s problem under
the condition (ii) which is stronger than the condition that (2, G, S) is not the
“special case”, and that the prime divisors of an algebraic function field in the
above corollary are not necessarily trivial on the constant field.

Our proof depends only upon Kummer theory, Galois theory, the approxima-
tion theorem on valuations, éebotarev’s density theorem and Hensel’'s lemma,
and the key to our proof is which is a generalization of Proposition
3 of [4].

NoOTATION. ch(k): the characteristic of a field k. {(m): a primitive m-th
root of unity. exp(G): the exponent of a finite abelian group G. A finite
abelian group G is called of type (p1?, p3'3, -, pr'9), if G is isomorphic to the
direct product of ¢ cyclic groups of order p;** (1=:=t) with p,<p,<---=p, and
m;=1(1=i=t), where p; is a prime number for any i (1=:i=¢), y|K: the
restriction of y&G(L/k) to K, where L and K are finite Galois extensions of k
such that LDK.

§1. An explicit construction of cyclic extensions.

Let Z denote the ring of rational integers and NN the set of natural
numbers. Let p be a fixed prime number and let {; be a primitive p’-th root
of unity such that (?,,=, with i NU{0}. Let %k be a field of characteristic
different from p. Assume that & contains a primitive 4-th root of unity if p=2.
If CmEE for all me N, then let n,=c0, otherwise let n,=N be such that Cnoel‘;
and CnOHeEE, where E=Fk(¢,). Fix neN, and put k(,)=F. Put N=[F': k],
N'=[k" k] and N”=[F:k], then N=N'N". Let k' be a unique cyclic extension
of & of p-power degree such that B (C)=F'. Let ¢ be a fixed generator of the
Galois group G(k’/k) and let I Z be such that {={% and [*1. Let n;€N be
such that p"! is the exact power of p dividing (1—I[¥), and put s=(1—I[¥)/p".
We have n,=n if £'=F, by the above assumption. For any sub-extension S/M
of £'/k, put

3(S/M)= ng:) 55 te Z[GK k)],

where 6=g¢"¥:¥) [=[M:¥ gnd g=[S: M]. Here Z[G(#'/k)] is a group ring of
G(E'/k) over Z. 1t is easily verified that J(T/M)=2(T/S)XZ(S/M) for E'>TD
SDOMDE.

LEMMA 1. Let notations and assumptions be as above. Moreover let d and
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m be rational integers such that 1=p*<[k': k] and d<m=n, and let k,/k be
the unique sub-extension of k'/k of degree p. Put g,=g??, l,=I7?, Ezzlg(cm_d)
and my=Max (0, n” —(m—d)), where n”=Min (n, n,). Then the following two
statements (i) and (ii) hold:

() For any bek,, put a=b*""w=C,na, z= N wEF® gnd K'=FE(z). Assume
that wE ¥ (Fypn= M=% ey a0, Then K'Jk is an abelian extension of
degree Np™ %, and there exists a unique TEG(K’/k) satisfying

Zi=zh (wsp“'l‘")z( ki/k)>
Q) [
7k =0,.
Let K be the sub-field of K fixed by y. Then K/k is a cyclic extension of
degree p™ satisfying KNk'=k, and KE=RK'. If n=n,, then there exists a
unique FeGK k) satisfying

zi=z'a*
) {.,
7lk'=0.
Then 7| K is a generator of G(K/k).
(i1) Conversely every cyclic extension K of k of degree p™ satisfying KNk’
=k, can be obtained in the way of (i).
ProoOF. We will prove the lemma in the following two cases (A) and (B).
(A) The case where n,=n. Put pi=p/, [gzzﬁjzpd':q, (B B =p¥=¢
and [£ :kJ]=p“=p", where k,=Fk,(C). Then N'=qq'=p'p"=p" ™. It is easily
verified that d’=n—(m—d)—m, and n”+d=m—d +m, Put 1—[¥1=gsp" ¥
and (1—[")/(1—I1""%=s,q’, then s, $;=Z, s, ,#0(mod p) and s=s;s,. Put
S=3/k), Z,=3(k,/k) and X,=3(k,/F).
(i) Using the equality ¥=2X(k"/k,)Y, and that ack, we easily obtain
WE=CNIN T (gEeyse @ (LN T pse22)p" =D Hence, if we put

@) v y=LNH TN () e,
then
@ ]

By assumption, ye&(B)? if m—d=0, hence [K": E]:pm‘d. By using (1) and
that bek, we have y° l=ps20 "V O—ps1520""¥ hence

3) yot=(a)P"

By [4], Proposition 2, (3) implies that K'/k is an abzlian extension of degree
Np™ ¢  Let 6=G(K'/k) be such that ¢|k’=¢. Then by (3),

) 27 =00 0
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for some r=Z. Let TEG(K'/E/) be such that z"=2z{,,_,4, and let ' €Z be such
that »++Ir'=0 (mod p™"%¢). Put 7=dz". Then by (4), we have

®)

Put flz'fp'“‘—l—fp"zl—l—---—i—f'lp"2+ll’"16Z[G(k’/k)]. Making ¥, operate on both
members of (5), we obtain

(6) 2=z"(a")*,

where 7,=77". Since (w21)*={L /5(a®)1, (6) gives 2=z (W)= ' Hence
if we put y=7,z", where »”Z is such that —s/®*+7[;=0 (modp™ ), then
“—zll(ws)fl and y|EF’ =0, ie., 7 satisfies the condition (*) in Lemma 1. Since
R'=F'(2), such 7 is unique. Since KNE' is the sub-field of ' fixed by o,
KNE' =k, so KNk’=k,. Now we will show that the order of 7 is p”N”. Put
Si=p ¥ i N VP2 NP1 By making S| operate on z/7hi=
(w21, we have 2V u¥P'=("2, hence z¥7" =z, since z'"""=(w*)*. Since
#V'7|f'=gV=1, this implies 77"”=1. From this and 7|k’ =0,, we see that the
order of 7 is N”p”, hence [K:k]=p™ Now we will show that the order of
rmod (y>GW/k)/{yr> is pm % Here (7> denotes the subgroup of G(K'/k),
generated by y. Suppose that r'=y’ with i, j€Z. Restrict them to £’, then
1=¢77, so N"p”|j, i.e, N”p” divides j. Since the order of y is N”p”, ri=pi=1,
so p™ ¢|i, hence the order of z mod (7Y is p™ % Since y=7,c” and since
r”#0 (mod p), the order of 7, mod<y) is equal to that of z mod <(r), ie., to
p™ ¢, This implies that the order of 7|K is p™. From this fact and [K: k]=
p™, we see that K/k is a cyclic extension of degree »™ and that 7|K is a
generator of G(K/k).

(i) Put s;=1 or (1—I¥"?)/A—[""9q” according as d'=d or d’<d, where
q”=p*"%. Then s;Z, 5370 (mod p). Let r, ¢, ¥’ =N be such that —rs,=N"[""1
(mod p™ Td), — S+ syN” ¥ t=0 (rnodpm 9, and N”tt’=1 (mod p™ %). Since s,=s,
(mod p™~¢-%1) by the next Lemma 2 and since =1 (mod p®), we have t'=1
(mod p™ ¢ %), Put K'=KF/, K'=KFE' and G= G(K’/k) Let 6 G be such that
#|k'=¢ and such that | K is a generator of G(K/k), where K:K(Cl). Since
61|K is a generator of G(K/k,), where 6,=6%, there exists a generator z of
G(K'JE") such that ¢|K=¢ 7'|K. Put y=d,r. Since y¥?’=1 on K and £,
y¥P=1. If y'=1, then rllk’—a =1, hence N”p”|i. Therefore the order of 7
is N”p”. Since y|K=1 and [K" K]=N"p”, this implies that K is the sub-
field of K’ fixed by 7. Let L be the sub-field of K’ fixed by 7/, where 7'=ad,7",
and put L=L(,). Then 7'|#'=¢, implies that LNE'=k. If 7"*=1 with an
i€Z, then y'*|k'=0g{=1, so N”p"|i. Conversely y'¥?'=(c¥*")¥?'=1 on K, since
=1 (mod p™ ¢"%). From this fact and that y’"¥?"=¢"=1 on k', it follows



Grunwald-Hasse-Wang’s theorem 317

that y’¥'?"=1. Hence the order of y’ is N”p”, so, [L:k]=p™ Since LNEk'=k,,
this implies [Lk’:k’J=p™ % Therefore K'=Lk’ and R'=LF. Since LE'=K'
and LNE'=Fk,, the order of ¢ *|L=d,|L is p™ ¢, Hence the order of |L is p™.
Since [L:k]=p™, this implies that L/k is a cyclic extension of degree p™.
Put 6,=6""%, ¢,=o¢"", [,=I""? and '=7""Y. Now we will prove the statement
(ii) in the following two cases (I) and (I).

(D) The case where £,DF,. Let ' =Z be such that »’ N”[¥"~=1 (mod pmEEm),
Applying (ii) of the following to LDk Dk, 8,| L and A=C,, we see
that there exists a y,=%, such that L=F£,(z;) and such that

@ zit=z,00

where z,="""/y,. Since fﬁ’zﬁ’, yleE(E’)p if m—d>0. On the other hand,
since L/k is an abelian extension, by [4], Proposition 2, there exists a,ek,
such that

(@) 2% l=q,.

By making (6,—1) operate on (2) and by using (1), we have a2 '=1, hence
o=k, Put S,=¢¥' 14N 2 4. Jg/¥ 2 N1 ZTG]. Making 3, operate
on (2),

3) 272 le=qg2,

From this equality and (1), it follows that

) G g emg )P 0 =0
Put 5=V 4% MGV IV e Z0G), S=3(k/), z=2F, y =) and
alzaof. It follows from (2) that z,=z""*" 'B with some Beky. Put b=a, or

Crrl g emg ¥t according as m,=0 or not. Then by (1) and the fact that a, <k,
we see that b‘;z‘l:l, hence bek,. Note that k,=F if m,>0. Put y=y; and
z=z5. Then by the definition of b, (2) and (4),

(5) Y= (0P
and
(6) 2o l=g3

Since [K: F/]J=p™?, y& ()P if m—d>0. Put Q=a¥ '+a? 2+-+a+1€Z[G],
where a«=&V'%. By making £ operate on (1), we have

) 7 =gl st

since '=7""' on L. Put a=b*"" and w={,a. Since m—d' +m =n"+d, by
using (5), we have
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® z="% w3,

By (4) and the definition of g, we see easily that a=q,. Put 3,=¢? 1467 ~2[+ -
+al?" "2+ [P "'e Z[G]. By making it operate on (6) and using that a,=a, we have
217u=(g*%1.  Since (W*)F1=CP7(a®)®1, we have zot"u=(w)¥1{;#%~". By this
equality and (7), 290" =zl(w*)*1¢¢,_, with i=—s[? '+ N"[¥"1s,5)0,t. Hence by
the definitions of ¢ and ¢/,

©) zi=2z" (w21,

(II) The case where EICEZ. If E:EZ, then 152151:52, hence the case is
contained in (I), so we may suppose that E#Ez, hence m,=0. Put ]l:flgz
and K,=KFE, There exists y,€k, such that L,=F,(z,), where z,=?™¥y,.
Since K'=L,F", y,& ()P if m—d>0. We have

10 25 =2,

with some r,€N, 7,0 (mod p). Let rieN be such that rpi=—r(modp), and
put z,=z5t and y,=»7%. Then z,=?""%/y,. By taking the #;-th power of [10),

(11) 2l =zl

Since fz/k is abelian, by [4], Proposition 2, there exists a<k, such that

(12) i i=a.

By making 3, operate on [12),

13) Zfrle=g 32,

Since #¥'=7""* on L and since 4,/2,=1, we have &,=(<'")**™* on L,. Hence

by and [(I13), we have zi"2={;"sa®2, so =, 4a*?, since m,=0. Put
y=y! and z=z{. Then by the definition of 7,

(14) y=Ly T (a*?)*e
and
(15) ="y

Since [K':E1=pm¢, ye&(k')? if m—d>0. By taking the s-th power of
and 12},

(16) Zr/:ZC:nl—Lg—lN,
and
an —

By making 3, operate on [17),
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(18) 201 h=(g")1,

Put w={,a. Then, in the same way as in the proof of (i), using [I8), (14)
and [(15), we have

(19) 2= ()Tt
and
(20) 2= W=,

By and [19), 2917 '=z"(w®)*1¢i,_, with i=s,[V"IN"¢,—I”~'s. Hence by the
definitions of ¢ and ¢/, 27=z"(w%)*1, so 7 satisfies the condition (*) in Lemma 1.

(B) The case where n,>n. Then E’:lg, d=0 and my=n—m.

(i) Put y=C,b. Then w=y?"-™. By assumption, y**®e(E)? if m—d>0,
and z="¥ys#b  gince (yFm)o-t=y1-t" by [T], Proposition 2, K'/k is an
abelian extension. Let &€ G(K"/E) be such that &|F=¢. Then z°- = y-tVom
={r,w?™ ™" with some r&Z. Let t=G(K'/E) be such that z7=C,z. Let r'EN
be such that #[4+r=0 (modp™. Put y=é&z”. Then z'=z'(w*)*"'", hence r
satisfies the condition (*) in Lemma 1. Put fz;fN‘1+7’N“21+---+7’lN“2+lN‘.1E
Z[G(K"/R)]. By making it operate on the above equality, z7’N‘lN:(w”’"l‘")Z(;/’”,
hence z¥=z. Since 7|k=0, this implies that the order of y is N. Since
N=#=0(mod p), K/k is a cyclic extension of degree p™.

(ii) Put ]%:K(Cl). Then there exists y£* such that K':lg(p’K/Y). Since
I?/k is an abelian extension, by [4], Proposition 2, y°"'=AP™ with an Ak,
From this, it follows that y=#®=y¥¥-1ps™ with a3 Bek. Since NI¥ 130
(mod ), this implies that K=k~ y>#®) Put b=C7ly, a=b"""™ and w=Cna.
Then w=y?""™ and K=F(z), where z= N wEb | Since K/k is a unique sub-
extension of K/k of p-power degree such that K(Cl):k, K is the sub-field of
K fixed by 7. This completes the proof of Lemma 1.

COROLLARY. Let notations and assumptions be as in (i) of Lemma 1, and
moreover let w' €k be such that w'=wA?" with some A<E)*. Put z/=
PN W' EED | Then K'=k'(2") and z/7"0= (w's?™")3k/b,

Proor. Put X=J3(t'/k) and X,=3(k,/k). Since w'*=w=(A3?", it is
obvious that K'=F'(z') and that z'=zA3{: with some icZ. Hence, by using
S=3 .3 /k), Z/i’_ll:27‘11A2(01‘11)::(WSPnl_n)EI(AZI)l‘lN:(u}/-?pnl_n)ZI’ S0 z/T"h=
(w’sP"1™ ™21, (g.e.d.)

REMARK 1. (1) If k'=Fk, k’xk, and m—d>0, then the condition in
1 that w¥*/Pe )P " " s equivalent to that Nia(b)**P ()P0,
If "=k, k;=F and m—d>0, then the condition always holds.

(2) Let w and w’ be as in (i) of Lemma 1. Assume that n=n,. Then w
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and w’ define the same field K if and only if there exist t=Z, %0 (mod p),
and cek’ such that ¢o1-i=(w't/w)=*V®,

LEMMA 2. Let notations and assumptions be as in the case (A) in the proof
of Lemma 1. Then s,=s} (mod p™ ¢ %),

PROOF. When £’=F, we have s,=s,=1. Hence we may assume that £’=FZ.
We will prove the assertion in the following two cases (I) and (II).

() The case where £,DF,. Put sj=(1— l”)/(l—lN'P')p”. Then s;eZ and
si#0 (mod p). We have easily Ny, ()= Cirlae P I_Cn —a;, Where [=1Pv
On the other hand, since {, is a root of an irreducible polynomial X?'—{,_4,
over £,, we have Nip,C)=Cnoay, Or —Cnog, =008 4171 according as p*2 or
p=2. Hence s{=1 (mod p" 4", If n—d,;=m—d—d,, then n=m and d=0, so
ky=F', hence k,=F,=FE'=F, since £, Dk, ; this is a contradiction. Hence n—d,—1
=m—d—d,. Therefore s{=1 (mod p™ % %), Since s{=s,/s,, this implies the
assertion.

(I) The case where £,CE,. We have N; i, Ca)= Chrler+18 7  —rs . where
I,=1%9, On the other hand, since {, is a root of an irreducible polynomial
X9 —&,_ 4 over k,, we have N, &) =Cn-ar or 357 41 according as px2 or
p=2. Hence s,=1 (modp" -1, If n—d”=m—d—d,, then n=m and d’=0, so
k,=F,=F'=FE, since k,Ck,; this is a contradiction, hence n—d”—1=m—d—d,.
Therefore s,=1 (mod p™ ¢7%1). This implies the assertion.

The following is well known.

LEMMA 3 (Albert). Let p be a prime number and let k be a field of char-
acteristic different from p. Let m, neN\I{0}, and assume that {,Ek. Let
K/E be a cyclic extension of degree p™. Then the following two statements (i)
and (i) hold:

(i) There exists a cyclic extension L of k of degree p**™ containing K, if
and only if there exists an A€ K such that Ng/,(A)=Cn.

(i1) Let L/k be a cyclic extension of degree p™™™ containing K and let &
be a generator of G(L/k). Then for any AeK satisfying Ng(A)=Cpn, there
exists a yEK such that L=K(z) and 20" = A, where z=?%/y.

§ 2. Theorems.

For the proof of [Theorem 5, the cyclic case is essential (see
below).

For a field k and a prime divisor p of k, let ke, and k., denote the
maximal separable algebraic extensions of k2 and k, such that Fk..,Ckpsep, TE-
gpectively. Here a prime divisor of 2 means an equivalence class of discrete
valuations of k, and k, denotes the completion of % with respect to p. In
the following, all separable algebraic extensions of % and k, are assumed to be



Grunwald-Hasse-Wang's theorem 321

contained in kg, and kpe, respectively. For a finite extension K of k& in kg,
let px denote the restriction of the valuation of kpe, to K, and K, the com-
pletion of K with respect to bg, i.e., K=Kk, in kpep. Then we have the
following

THEOREM 4. Let p, k, {;, n and k' be as in the beginning of §1, and let
S be a finite set of prime divisors of k. Assume that there exists a prime divisor
q of k such that q&S and {,<k,. Let G be a cyclic group of order p". For
each PES, let a pair (K° jy) of a cyclic extension K® of ky, of degree p'* with
0=my=n and an injective homomorphism j,: G(K*/ky)—G be given. Then there
exists a cyclic extension K of k of degree p™ satisfying the following three
conditions:

() Ky=K* for all peS.

(ii) There exists an isomorphism j from G(K/k) onto G such that j;—joResy,
where Resy: G(Ky/ky)—G(K/k) is the restriction from K, to K.

(ili) KNnk'=k.

Proor. We use the notations in the beginning of §1. If n,=n, then
is easily verified, so we may assume that no<n. Put Ey=FEy(),
E'=Fky\E', Ny=[%;: k] and Ny=[F": k]. Then N=N;N,. Identify G(£;/k;) and
G(k’'/F" in the natural way. Put g,=0¥&G(ks/k;) and L,=["». For any sub-
extension S/M of By/k, define 3(S/M)="S of "= ZIG(/k)], where o,=
okl [ =[MR] and g=[S:M]. Identify X(S/M) and S(SNE'/MNE") in the
natural way. Put B=K’Nkj, pi=p®=[k:ky] and E=Fylmy-q,). Let n,EN
be such that {,,€k, and {,,.;&k. For each p<S, put mep=Max (0, vj —(my—
dy), where v/=Min(vy, n). Then by Lemma 1, for each p<S, there exists b,k
satisfying the following : wg #¥*e e (Bp)P" ™y~ %+ if m,—d,>0, where a,=bp™*
and wy=Cm,ap; put z,=*¥wf» and K =F|(z,), where 3,=X\(E}/k,), then K'*/k,
is an abelian extension ; let ypEG(I%’p/kp) be such that

ey

{zgpzz{:’“(wﬁ)‘f”‘
7ol Bi=0p1,
where L, =%, on=0f?=¢"# and 3,;=23(k{/ky), then K’ is the subfield of K»
fixed by 7y; there exists a unique aPEG(K’P/k;.) satisfying

zpv=2zp(a3)
(2) { o7
ayl ky=0y,
then a;|K® is a generator of G(K®/k;). Let B,=G be a generator of G, and
for each peS, let B,= G(K?/ky) be a generator of G(K?/ky) such that j,(8,)=pr""".
Then there exists t,&N, #,%#£0 (mod p), such that fy=a; """ |K?, where s'€Z is
such that ss’=1 (modp"). Let t,=1, and let wy, be a prime element of k.
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Since pg' with peS and i=0, 1, -+, Nj—1 are distinct prime divisors of £’, by
the approximation theorem, we see easily that there exists a wek’ such that

) (W' ¥'=1w» (mod p7)

for all peSU{q}, where » is a sufficiently large number and 2,=2(k"/k).
Since w.e k2 and since ky=F, wre(k)?, where X=X (k'/k). Put z="¥w? and
K'=F'(z). Then by Lemma 1, K’/k is an abelian extension of degree Np™; let
7€GK’/k) be such that

@

z'=z'w?
{ rlk'=a,
and let K be the sub-field of K" fixed by 7, then K/k is a cyclic extension of

degree p" such that Knk’=k. By (3), we have (w')*=w{> (modp’) hence
K K” for any peS. Let z-eG(K’/k) be such that

©) { S

c|k'=1,
and put S=t¢|K. Then 8 is a generator of G(K/k). In the following, we will
prove that K,=K® and that B,|K=pg*"""" for all pS. For simplicity, put
m=my, ky=F, by=F}, d=dy, wo=w", z,=2", p’=p;, ;=2 and 2,;=23y. Let
L/k and U/k be the sub-extensions of K/k of degree p" ™ and p" ™"¢, respec-
tively. Put K,=Kk,, L,=Lk, = LE', Uy=Uk, and U'=UE’. Let M be the

decomposmon field of px, with respect to k. Then MnE' =k, and ME = U’
since K;=K". Hence (0. M1=[EF":kJ. By 3,

(6) wo=w,A""
with some A&k, hence wi=wd*(A2»P". This implies that
@ z2y=2yA%(],

with some j=Z. By making (a,—/;) operate on (7) and by using (2), we have
zgr b =(a AP =55 (wy A", hence by (6),

® 2 =L (W)
On the other hand, by (4), zi"'=wj. By making 2, operate on this equality,
©) zp "= (w§)o,

where 7*1-——*{“’5. Let 7, G(K'/E") be such that z0=C,z, and put o= rize?" ",
where i=Z is such that i,=—s (mod p"™). Then by (9), z{"»={(wd* and

0|k’=¢Y». From this and (8), it follows that
(10) | K'=36.
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We see that M is the sub-field of U’ fixed by &. In fact, by [10), MC M,
where M’ is the sub-field of U’ fixed by §. Since [{F': MI=[F : k], it is
enough to show that the order of 6|0’ is [ : ko], and this fact follows from
0|E'=¢Y and 8|U,=7i?""™|U,. Hence M=M. By this fact we see easily
that MNU,=L,, hence K,n\M=L,. Since [M : L,J=p’, we have K,=K,M,
where K, is the sub-field of K’ fixed by 7%, hence K,=KM, so

11 (K=K

By using (6), (1) and [Corollary] to Lemma 1,

208 = (w0

(12) {

ol B/ =aVe?',

On the other hand, by making 3,3, operate on (4), zﬁf'"‘f':(wgf")fl, where

flzpfﬁ'"l‘il;. From this and [12), it follows that 73,][?’:71”. Therefore

=0 c T —TN n-m
(K),=K®. Hence by [11), K,=K By [10), ap| K=7#"""|K, s0 Bl K=tp*" " |K
=¢P"""| K, since r=zl». Therefore

(13) ‘Bp[ K:‘Bpn‘mv,

Let j: G(K/k)—G be the isomorphism such that j(8)=f, Then by [13), we
see that j,=joRes,. This completes the proof of

REMARK 2. holds also when ch(k)=p, if we remove the assump-
tions in that %k contains a primitive 4-th root of unity if p=2 and
that {,=k;. We can prove easily the statement, by using Sitze 12 and 13 of
Witt [8], and the approximation theorem.

By and Remark 2, we have the following

THEOREM 5, Let k be a field, S a finite set of prime divisors of k, and G
a finite abelian group of type (p7L, py2, «--, pie). Then an imbedding problem
Pk, G, S, (K? j») (0€S)} has a solution if the following two conditions are
satisfied :

(i) There exist t distinct prime divisors G, Gs -+, G, of k outside S such
that CpT9) E ke, if pixxch(k).

(i) If exp(G) is divisible by 4 and if ch(R)x2, then {(4)Ek.

PrROOF. Let G:ﬁ G; (direct product), where G; are cyclic subgroups of G
of order p7i for 1<i<t. Put K'i=Fq (2in/7;) or ke(B;) according as ch(k)=p;
or not, for 1=i<¢{, where x; is a prime element of k,, and 6; is the Witt
vector of length m,; such that @;(0,)=(z7% 0, -+, 0). Here @,(a)=(ali, a’i, -,
aki_)—(a, ay, -, Am;-y) for any Witt vector a=(a, ay, ***, @n,_,) of length m,.
Then by the condition (i) and Satz 13 of Witt [8], we see that K't/ky, is a
cyclic extension of degree pii. Let jo,: G(K"/k,)—G; be any isomorphism.
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By Galois theory, we see easily that and Remark 2 imply that
there exists a pair (X, j) of an abelian extension K of k2 and an isomorphism
j of G(K/k) into G satisfying K,—=K* and j,=joRes, for any p=S\U{q,, -+, q;}.
Since jq,: G(K'/ky)=G; for 1=i=t, we see that j is the isomorphism of
G(K/E) onto G. This completes the proof of [Theorem 5.

On the condition (i) of we have the following

PROPOSITION 6. Let k be a finite algebraic number field or a field finitely
generated over a field k, with transcendental degree=1, and let S be a finite set
of prime divisors of k. Let p be a prime number different from the chavacter-
istic of k. Then for any n€N, there exists a prime divisor q of k such that
&S and such that kq contains a primitive p"-th root of unity C,.

ProoF. If % is a finite algebraic number field, then the assertion is a
direct consequece of Cebotarev’s density theorem or Dirichlet’s theorem of the
arithmetic progression. Now let & be finitely generated over k, with transcen-
dental degree=1. Then there exist a subfield k2, of 2 and an element x of &,
transcendental over k;, such that %2 is a finite algebraic extension of k,(x).
Hence we may suppose that k=Fk,(x). If {,€k,, then for any prime divisor q
of k, {,=k,. Now suppose that {,sk;, and let f,(X)=k,[X] be a monic min-
imal polynomial of {, over &, for any m=n. Then there exist infinitely many
fm(X). Let p,&S be a prime divisor of k, trivial over k,, corresponding to
fm(X). Then residue field of k&, is ki({,). Therefore by Hensel's lemma,
CmEky,, s0 {,Eky . This completes the proof of

REMARK 3. (1) In view of the proof of we see that the
assumption of the existence of q in [Theorem 4 can be replaced by a weaker
condition : There exists a cyclic extension K°/kqy of degree p™ such that K“/\E.}:
ke with a prime divisor q&S. By [4], to Proposition 3, this condition
is equivalent to that N;'q/;q(lgé)z";q’kq)CI:(C,,q}Eq” with a prime divisor gq&S. The
condition (i) of can be also weakened in the same way.

(2) When £ is a finite algebraic number field, the proof of is
also valid for a finite set S of prime divisors containing infinjte prime divisors
of k if it is slightly modified, and so is
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