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§1. Introduction.

In general, let 2 be an algebraic number field of finite degree, and let p be
a rational prime number. Then, the p-Sylow subgroup of the absolute ideal
class group of %k will be called the p-class group of 2 and will be denoted by
Cr,p» whose order will be denoted by h,,, Moreover, let K be a Galois exten-
sion over k. Then, the subgroup of all ideal classes of Cg,, which are ambigous
with respect to K/k will be called the ambigous p-class group of K with respect
to £ and will be denoted by A,,,, whose order will be denoted by a,,.

First, we shall deal with the case where K is a Galois extension of degree
mn over k such that the Galois group G=G(K/k) satisfies the following condi-
tion :

(A) G has a normal subgroup N of order n and »n subgroups H,, H,, ---, H,
of same order m such that we have G=NH,= -+ =NH, and H;"H;={¢} for
1#j, where we denote by ¢ the unit element of G.

If the Galois group G(K/k) satisfies above condition (A), then K will be
called the (A)-extension over k. For example, it is clear that K is an (A)-
extension over k if the Galois group G(K/k) is isomorphic to one of the follow-
ing groups :

(a) the non-abelian group of order pg where p and ¢ are rational prime
numbers such that g=1 (mod p),

(b) the abelian group of type (p, p),

(c) the dihedral group,

(d) the Galois group G(Q((,, a'/%)/Q), where ¢q is an odd prime number, {,
is a primitive g-th root of unity and a is a rational integer such that a'?&Q({,).

Now, our main theorem is as following. Namely :

THEOREM 1. Let k be an algebraic number field of finite degree and let K
be an (A)-extension over k. Let F, L,, ---, L, be the subfields of K corresponding
respectively to the subgroups N, H,, -+, H, of the Galois group G(K/k) by the
Galois theory. Then, if the class number hx of K is divisible by a rational prime
number p prime to n, then the p-class group Cg,, of K is generated by its sub-
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groups Ap,p, ALyp, *» Aryp. Moreover, if p is also prime to m, then we have

Cr,p/ Ak,p=Ar,p/ Ao X <Ary,py 5 Argp>/Akyp -

Finally, in § 3, using above theorem we shall prove some interesting results
concerning with the p-class group Cg,, of K when K is an Sy-extension over
b, that is, when the Galois group G{(K/k) is isomorphic to the symmetric group
S, of degree n.

§2. p-class groups of (A)-extensions.

First, we shall prove the following group-theoretic lemma, from which our
main theorem follows easily.

LEMMA. Let G be a finite group of order mn such that it satisfies the condi-
tion (A). Let M be a finite G-module such that each element of WM has the finite
order prime to n and assume that if a is an element of M and we have ca=a
for any oG, then we have a=0. Then, if we put

N={asM|oca=a, Vo =N},
H.={acsM|oca=a, Vo= H,}, (=1, 2, -, n),
then we have

) M=RA+D,+ - +9,.

Moreover, if the ovder of each element of W is also prime to m, then we have
the dirvect sum as following:

2) M=RBO,+ -+ +Dn).

Particularly, if m=n and all H; (i=1, 2, ---, n) are also normal subgroups o7 G.
then M is perfectly decomposed into the direct sum as following:

3 M=RDD:D --- DDx .
ProoF. Let us put
N={e, ay, =+, an_1},
Hi={e, B, -+, Bim-1} (i=1, 2, ---, n)
and define n+1 endomorphisms ¢, ¢,, ---, ¢, of M by
pla)=a+ta,a+ - +ay,_,a,
dila)=a+Bunat -+ +Bim-a, (i=1,2, ---. n

for any a=MM respectively. Then, we have clearly ¢(MOCTM and & (MOTH,
(=1, 2, ---, n). Now, we put
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O=0p+¢,+ -+,

and we shall prove that @ is an automorphism of 9t. Since we have H;\H;
={e} for i#j by our assumption and it is easily seen that NNH;={e} for
i=1, 2, ---, n, it follows immediately that mn elements ¢, a;, ==, ap-1, B, **,
Bim-1, Ba1s =+, Bnm-1 0f G are distinct to each other and hence they exhaust
all elements of G. Therefore, we have

D(@)=p@)+¢.(a)+ - +¢a(a)
=(ataat+ - +aza)+(at+fuat - + i n-1a)
+ o HatBuat -+ Bumastd)

=na+ X ca=na
oEG

for any a=I because we have 3 sa=0 by our assumption. Since the order
gEG

of any =M is prime to n, this implies clearly that @ is an automorphism of
Pt. Hence we have

M= (W)= (M) + (D) + -+ +¢ (V)
CRAH,+ - +9H, M
and we have M=RN+H,+ --- +9, evidently.

Since we have ¢(a)=na=®(a) for any a=N it follows easily that @ coin-
cides to ¢ on R, and hence the restriction of ¢: M — N to N is an automor-
phism of M. Hence, if we put Ker =&, then it is easily verified that M=NDK.
Since we have

Ja)=a+Bna+ - +Bi m1a=ma
for any a=$,; and the decomposition of G by N is
G:AZ_{'_N‘BH—{— +N‘81 m-17 (2:1; 2) Ty 71)
by our assumption, if a=$, then we have
p(ma)=ma-+a,(ma)-+ - +az_,(ma)
:(a+ﬁ11a+ +ﬁz m—la>+al(a+‘8ila+ +ﬁz m~1a>
+ - ta, (CH‘,BUCH‘ 4-‘/31‘ m-10)
= > 0a=0.

aEeG

This implies ma= & clearly. Now, if we assume that the order of each element
of M is also prime to m, then we have H;C& for i=1, 2, ---, n and hence

RN+ - +9,)TRNR={0}.
This implies M=RP(H,+ --- +9,) immediately.
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Finally if we assume m=n and all H; (=1, 2, ---, n) are also normal sub-
groups of G, then it is easily verified that G=H;H; for i#j because we have

HH/H~H,/H~H,=H,.

As we have Nn\H,={¢} (=1, 2, ---, n), if we replace H; with N in our lemma,
then it follows

Sin(R+9,4 - +9i 1 4+Di+ - +9.)=1{0}

for i=1, 2, ---, n. This implies the holding of (3) clearly. Thus, our lemma is
proved completely.

PrROOF OF THEOREM 1. Our theorem is the immediate consequence of
applying to the abelian group Cg ,/A,,, with G=G(K/k) as the operator
domain.

COROLLARY. Notations being same as Theorem 1, and moreover if we assume
(p, m)y=1 and hy,,<hg,p, then there exists a subfield of K such that the order of
its p-class group is greater than hy,p.

ProoF. Since all degrees [K: k], [K: F] and [K: L] (1=1, 2, ---, n) are
prime to p by our assumption, it follows easily that A, ,, Ap,, and A;, , are
isomorphic to Cy,,, Cr,p and Cy,;,, respectively. [3] Moreover, it is clear by
our assumption that at least one of the p-groups Ar,,/A,, and Az, »/As,p
(=1, 2, ---, n) is not the unit group. From above our assertion follows im-
mediately.

THEOREM 2. Let k be an algebraic number field of finite degree, and let K
be a Galois extension over k such that the Galois group G(K/k) is an abelian
group of type (I, ), where [ is a rational prime number. Let F,, Fy, ---, F i1, be
the proper intermediate fields between k and K. If the class number hg of K is
divisible by a rational prime number p (#10), then Cg, ,/Ax,p s decomposed into
the direct product as following:

CK;P/AkyP:AFhP/Ak;PX o XAFH-I;P/AkyP .

ProoF. This theorem follows immediately by applying the last assertion
of to the p-group Cg,,/Apg,p

§3. p-class groups of S,-extensions.

In this section, we shall be mainly concerned with the applying of
1 and 2 to the p-class groups of S,-extensions.

THEOREM 3. Let k be an algebraic number field of finite degree, and let K
be an Sy-extension over k where we assume n=4. If we have hgp>ay,, for
any rational prime number p, then there exist proper intermediate fields F and
L, L, -, L, between k and K such that L, L,, ---, L, are conjugate to each
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other over k and we have

CK,p:<AF,p, ALl,p; Ty, ALT,p> .

Moreover, if p>2, then there exists a proper subfield of K such that the order
of its p-class group is greater than a,,,. If n=6, then this is also true for p=2.

PrROOF. We may regard the Galois group G=G(K/k) as the symmetric
group S, of n letters ay, a,, -+, a,.

(1) the case when p>2.

Let T, be the subfield of K corresponding to the subgroup {I, (a;a,), (a;a,),
(a,a,)(asay)} of G by the Galois theory. Then, it is obvious that K is an (A)-
extension over T,. Hence, if we denote by F, L, and L, the proper interme-
diate fields between T, and K, where we assume L, and L, are conjugate to
each other over &, then using we have

CK,p:<AF,p; ALl,p, ALz,p>

clearly. Moreover, since Cg ,/A,,, is non-trivial by our assumption, it follows
immediately that among the p-groups Ar ,/Aw,p, Az,,p/Aw,p and Az, /A, there
exists at least one which is non-trivial. Now, since Ap,,, Az, , and A, , are
isomorphic to Cr, ,, Cr,,, and Cg, , respectively in our case, it follows immedi-

ately that among hp,,, hz,,, and h;, , there exists at least one which is greater
than ag,,.

(2) the case when p=2,

Let T, be an intermediate field between 2 and K such that K is an S.-
extension over T,. Moreover, let F, L,, L, and L, be proper intermediate
fields between T, and K, where we assume L,, L, and L, are conjugate to each
other over k. Then, since K is an (A)-extension over T,, using [Theorem 1|
we have

CK,2:<AF,2; AL1,2; ALg,z, AL3,2>

immediately. Finally, if we assume n=6, then there exists a subfield of K
corresponding to the subgroup <(ag.a,), (a.asa¢)> of G which is of type (3,3).
Now, our assertion concerning with the order of 2-class group follows similarly
as the case when p>2. Q.E.D.

Now, for the subfields of S,-extensions we shall consider a condition con-
cerning with the divisibility of their class numbers by a rational prime number p.

THEOREM 4. Let k be an algebraic number field of finite degree, and let K
be an S,-extension over k where we assume n=5. Let M be the subfield of K
such that we have [M: k]=2. Moreover, we assume hg ,>ay,, for a rational
prime number p. If F and L,, L,, -, L, are proper intermediate fields between
Bk and K such that they satisfy the assertion of Theorem 3 and [K: L]
(1=1, 2, ---, v) is prime to p, then we have hp; > ax,p, for i=1,2, -+, r.
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PROOF. Since it follows easily from our assumption that Cy, , is isomorphic
to Az, for i=1, 2, ---, r, we have a,,,=a;,,,=hy;,, clearly. Now, we assume
hi;,p=ar,p, from which it follows A, ,=A,,, evidently. Then, since we have
Ck,p={Ap,p, AL,,p, ***, AL, p» We obtain Cg ,=Ap,, clearly. If F,.=F, F,, ---,
F, are all of the conjugates of F over k, then we have also Cg,,=Ap,,, (1=
1, 2, -+, s) because Ap;,, (1=1, 2, -+, 5) is isomorphic to Ap,, clearly. Hence,

S
if we put 7=\ F;, then it is easily verified that we have Cg, ,=Ar,,. Now,
i=1

since the Galois group G(K/T) is a normal subgroup of G(K/k) and it is well
known that the alternative group A, of degree n is the unique proper normal
subgroup of S, when n=5, we must have G(X/T)DG/M) and this implies
TCM immediately. Hence we have Cg,,=Ar,,CAy,, and this is a contradic-
tion clearly. Thus, we have h;; ,>a,,, for =1, 2, ---, », and our theorem is
proved completely.

COROLLARY 1. The fields k, K and M being same as Theorem 4, and similarly
we assume hg,,>ay,, for an odd prime number p. Moreover, let = be an element
of S, and let L be a subfield of K corresponding to the subgroup of S, generated
by n. Then, if we have one of the following cases:

(1) = is a transposition,

(2) 7 is a cycle of length q—1, where q (=n) is an odd prime number such
that (p, ¢(g—1)=1,

(3) @ is a product of (q—1)/2 disjoint transpositions, where q (=n) is an odd
prime number different from p, then we have always hy,,> ay,p.

Proor. It is easily shown for each of above cases that there exists a
subfield 7" of K such that [K: T is prime to p and K/T is an (A)-extension
in which L plays a part of L;. Now, our assertion follows immediately from
[Theorem 4 ' Q.E.D.

If the fields K and M are same as then it is easily verified
that we have hy,,<ay,,. Now, in following corollary, we shall deal with the
case where we may assume Ag,,>hy,, instead of hx,,>ay,p,.

COROLLARY 2. The fields k, K and M being same as Theorem 4, and we
assume hg,,>hy,, for an odd prime number p (>3). Moreover, if p=n, then
we assume that there exists no prime ideal of M whose ramification index in K
is divisible by p. Then, if F and L., L,, ---, L, are proper intermediate fields
between k and K such that they satisfy the assertion of Theorem 3 and [K: L;]
(=1, 2, ---, ¥) is prime to p, then we have hp;p,>as,, for i=1,2, -+, 1.

To prove this corollary we must use the following lemma, which has been
proved in [2]

LEMMA. Let p (>3) be an odd prime number. Let G be a finite group and
let P be a p-subgroup of G which is contained in the center of G. Then, if G/P
is isomorphic to the alternative group A, of degree n, then there exists a normal
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subgroup N of G such that we have G=NXP.

PrROOF OF COROLLARY 2. If we assume h; ,=as,, then it follows Cg,,
=Au,p as the proof of Now, let £ be the unramified abelian ex-
tension over K such that the Galois group G(£/K) is isomorphic to Cg,,. Then,
it is easily verified that £ is a Galois extension over k and the Galois group
G(2/K) is a p-group which is contained in the center of the Galois group
G(Q2/M). Since the Galois group G(K/M) is isomorphic to the alternative group
A, of degree n and we have p>3 by our assumption, using above lemma it
follows easily that there exists an abelian extension U over M such that we
have KU=£ and KNU=M and moreover the Galois group G(U/M) is isomor-
phic to Cg,,. Since there exists no prime ideal of M whose ramification index
in £ is divisible by p in our case, U must be an unramified abelian extension
over M. ‘This implies hg,,=hy,, which is a contradiction clearly. Thus, our
assertion is proved completely. Q.E.D.

Finally, we shall deal with the rank of p-class groups of S,-extensions.
Namely, in following theorem, we shall give some lower bound for it.

THEOREM 5. Let k be an algebraic number field of finite degree, and let K
be an S,-extension over k where we assume n=5. Moreover, let M be the subfield
of K such that we have [M: k]=2. If we have hg ,>ay,, for an odd prime
number p and if we denote by p the rank of p-group Cx,p/Ar,p then we have
always p=3. Hence, hg,p/ax,p is divisible by at least p* in our case.

PrOOF. We may regard the Galois group G(K/k) as the symmetric group
S, of n letters a,, a., ---, a, as before. Let L,, L, and L; be the subfields of K
corresponding to the subgroups {(a,a,)a.a.)), {(a,a;)(a.a)y and {(a,a,)(a.a;)> of
S, respectively, and we put F=L,;L,\L,. Since the Galois group G(K/F) is
an abelian group of type (2, 2), applying to it we have

CKyp/AF,p:ALvP/AFyPXALZyp/AprXAL?,yp/AF,p

immediately. As L;, L, and L, are conjugate to each other over k&, Az, ,, Az,
and A,,, are isomorphic to each other. Hence, it follows easily that we have
A, p2Ar,p for i=1, 2, 3, because if we assume otherwise, then we must have
Ck,»=Ar,p and from this we must have a contradiction using the same method
as the proof of Now, from above our assertion follows immediately.

COROLLARY. The fields k, K and M being same as above, and we assume
hg,p>hu,p for an odd prime number p (>3). Moreover, if p=n, then we assume
that there exists no prime ideal of M whose ramification index in K is divisible
by p. Then, if we denote by p the rank of p-group Crg,p/As,p, then we have
always p=3.

Proor. Using same method as the proof of |Corollary 2 of [Theorem 4l our
corollary follows easily.




K. OuTa

-3
~J
(e

References

[1] K. Ohta, On the relative class number of a relative Galois number field, J. Math.
Soc. Japan, 24 (1972), 552-557.

[27 K. Ohta, On the p-class groups of S,
Stugaku, 28 (1976), 253-257.

[37 A, Yokoyama, On the relative class number of finite algebraic number fields, J.
Math. Soc. Japan, 19 (1967), 179-185.

Resp. A, extensions, (in Japanese),

Kiichiro OHTA

Department of Mathematics
Faculity of General Education
Gifu University

Nagara, Gifu

Japan



	\S 1. Introduction.
	THEOREM 1. ...

	\S 2. $p$ -class groups ...
	THEOREM 2. ...

	\S 3. $p$ -class groups ...
	THEOREM 3. ...
	THEOREM 4. ...
	THEOREM 5. ...

	References

