On the *p*-class groups of a Galois number field and its subfields

By Kiichiro Ohta

(Received May 14, 1977)

§1. Introduction.

In general, let k be an algebraic number field of finite degree, and let p be a rational prime number. Then, the p-Sylow subgroup of the absolute ideal class group of k will be called the p-class group of k and will be denoted by $C_{k,p}$, whose order will be denoted by $h_{k,p}$. Moreover, let K be a Galois extension over k. Then, the subgroup of all ideal classes of $C_{K,p}$ which are ambigous with respect to K/k will be called the ambigous p-class group of K with respect to k and will be denoted by $A_{k,p}$, whose order will be denoted by $a_{k,p}$.

First, we shall deal with the case where K is a Galois extension of degree mn over k such that the Galois group G=G(K/k) satisfies the following condition:

(A) G has a normal subgroup N of order n and n subgroups H_1, H_2, \dots, H_n of same order m such that we have $G=NH_1=\dots=NH_n$ and $H_i\cap H_j=\{\varepsilon\}$ for $i\neq j$, where we denote by ε the unit element of G.

If the Galois group G(K/k) satisfies above condition (A), then K will be called the (A)-extension over k. For example, it is clear that K is an (A)-extension over k if the Galois group G(K/k) is isomorphic to one of the following groups:

(a) the non-abelian group of order pq where p and q are rational prime numbers such that $q \equiv 1 \pmod{p}$,

(b) the abelian group of type (p, p),

(c) the dihedral group,

(d) the Galois group $G(Q(\zeta_q, a^{1/q})/Q)$, where q is an odd prime number, ζ_q is a primitive q-th root of unity and a is a rational integer such that $a^{1/q} \oplus Q(\zeta_q)$.

Now, our main theorem is as following. Namely:

THEOREM 1. Let k be an algebraic number field of finite degree and let K be an (A)-extension over k. Let F, L_1, \dots, L_n be the subfields of K corresponding respectively to the subgroups N, H_1, \dots, H_n of the Galois group G(K/k) by the Galois theory. Then, if the class number h_K of K is divisible by a rational prime number p prime to n, then the p-class group $C_{K,p}$ of K is generated by its sub-

groups $A_{F,p}$, $A_{L_{1},p}$, \cdots , $A_{L_{n},p}$. Moreover, if p is also prime to m, then we have

$$C_{K,p}/A_{k,p} = A_{F,p}/A_{k,p} \times \langle A_{L_1,p}, \cdots, A_{L_n,p} \rangle / A_{k,p}.$$

Finally, in § 3, using above theorem we shall prove some interesting results concerning with the *p*-class group $C_{K,p}$ of K when K is an S_n -extension over k, that is, when the Galois group G(K/k) is isomorphic to the symmetric group S_n of degree n.

§2. *p*-class groups of (A)-extensions.

First, we shall prove the following group-theoretic lemma, from which our main theorem follows easily.

LEMMA. Let G be a finite group of order mn such that it satisfies the condition (A). Let \mathfrak{M} be a finite G-module such that each element of \mathfrak{M} has the finite order prime to n and assume that if a is an element of \mathfrak{M} and we have $\sigma a=a$ for any $\sigma \in G$, then we have a=0. Then, if we put

$$\mathfrak{N} = \{a \in \mathfrak{M} | \sigma a = a, \forall \sigma \in N\},$$

$$\mathfrak{H}_i = \{a \in \mathfrak{M} | \sigma a = a, \forall \sigma \in H_i\}, \quad (i = 1, 2, \dots, n),$$

then we have

(1)
$$\mathfrak{M}=\mathfrak{N}+\mathfrak{H}_1+\cdots+\mathfrak{H}_n$$
.

Moreover, if the order of each element of \mathfrak{M} is also prime to m, then we have the direct sum as following:

(2)
$$\mathfrak{M} = \mathfrak{N} \oplus (\mathfrak{H}_1 + \cdots + \mathfrak{H}_n).$$

Particularly, if m=n and all H_i (i=1, 2, ..., n) are also normal subgroups of G. then \mathfrak{M} is perfectly decomposed into the direct sum as following:

$$\mathfrak{M}=\mathfrak{N}\oplus\mathfrak{H}_{1}\oplus\cdots\oplus\mathfrak{H}_{n}.$$

PROOF. Let us put

$$N = \{\varepsilon, \alpha_1, \cdots, \alpha_{n-1}\},\$$

$$H_i = \{\varepsilon, \beta_{i1}, \cdots, \beta_{i m-1}\} \qquad (i=1, 2, \cdots, n)$$

and define n+1 endomorphisms φ , ψ_1 , \cdots , ψ_n of $\mathfrak M$ by

$$\varphi(a) = a + \alpha_1 a + \dots + \alpha_{n-1} a,$$

$$\varphi_i(a) = a + \beta_{i1} a + \dots + \beta_{i-n-1} a, \quad (i=1, 2, \dots, n)$$

for any $a \in \mathfrak{M}$ respectively. Then, we have clearly $\varphi(\mathfrak{M}) \subset \mathfrak{N}$ and $\dot{\psi}_i(\mathfrak{M}) \subset \mathfrak{H}_i$ (*i*=1, 2, ..., *n*). Now, we put

$$\boldsymbol{\Phi} = \varphi + \psi_1 + \cdots + \psi_n$$

and we shall prove that Φ is an automorphism of \mathfrak{M} . Since we have $H_i \cap H_j = \{\varepsilon\}$ for $i \neq j$ by our assumption and it is easily seen that $N \cap H_i = \{\varepsilon\}$ for $i=1, 2, \dots, n$, it follows immediately that mn elements ε , $\alpha_1, \dots, \alpha_{n-1}, \beta_{11}, \dots, \beta_{1 \ m-1}, \beta_{21}, \dots, \beta_{n \ m-1}$ of G are distinct to each other and hence they exhaust all elements of G. Therefore, we have

$$\Phi(a) = \varphi(a) + \psi_1(a) + \dots + \psi_n(a)$$

= $(a + \alpha_1 a + \dots + \alpha_{n-1} a) + (a + \beta_{11} a + \dots + \beta_{1 m-1} a)$
+ $\dots + (a + \beta_{n1} a + \dots + \beta_{n m-1} a)$
= $na + \sum_{\sigma \in G} \sigma a = na$

for any $a \in \mathfrak{M}$ because we have $\sum_{\sigma \in G} \sigma a = 0$ by our assumption. Since the order of any $a \in \mathfrak{M}$ is prime to *n*, this implies clearly that Φ is an automorphism of \mathfrak{M} . Hence we have

$$\mathfrak{M} = \boldsymbol{\Phi}(\mathfrak{M}) = \varphi(\mathfrak{M}) + \psi_1(\mathfrak{M}) + \dots + \psi_n(\mathfrak{M})$$
$$\subset \mathfrak{N} + \mathfrak{H}_1 + \dots + \mathfrak{H}_n \subset \mathfrak{M}$$

and we have $\mathfrak{M}=\mathfrak{N}+\mathfrak{H}_1+\cdots+\mathfrak{H}_n$ evidently.

Since we have $\varphi(a)=na=\Phi(a)$ for any $a\in \mathfrak{N}$ it follows easily that Φ coincides to φ on \mathfrak{N} , and hence the restriction of $\varphi:\mathfrak{M}\to\mathfrak{N}$ to \mathfrak{N} is an automorphism of \mathfrak{N} . Hence, if we put Ker $\varphi=\mathfrak{R}$, then it is easily verified that $\mathfrak{M}=\mathfrak{N}\oplus\mathfrak{R}$. Since we have

$$\psi_i(a) = a + \beta_{i1}a + \dots + \beta_{i m-1}a = ma$$

for any $a \in \mathfrak{H}_i$ and the decomposition of G by N is

$$G = N + N\beta_{i1} + \dots + N\beta_{i m-1}$$
, $(i=1, 2, \dots, n)$

by our assumption, if $a \in \mathfrak{H}_i$ then we have

$$\varphi(ma) = ma + \alpha_1(ma) + \dots + \alpha_{n-1}(ma)$$

= $(a + \beta_{i1}a + \dots + \beta_{i m-1}a) + \alpha_1(a + \beta_{i1}a + \dots + \beta_{i m-1}a)$
+ $\dots + \alpha_{n-1} (a + \beta_{i1}a + \dots + \beta_{i m-1}a)$
= $\sum_{\sigma \in G} \sigma a = 0$.

This implies $ma \in \Re$ clearly. Now, if we assume that the order of each element of \mathfrak{M} is also prime to *m*, then we have $\mathfrak{H}_i \subset \Re$ for $i=1, 2, \dots, n$ and hence

$$\mathfrak{N}_{\bigcirc}(\mathfrak{H}_1+\cdots+\mathfrak{H}_n)\subset\mathfrak{N}_{\bigcirc}\mathfrak{R}=\{0\}.$$

This implies $\mathfrak{M}=\mathfrak{N}\oplus(\mathfrak{H}_1+\cdots+\mathfrak{H}_n)$ immediately.

765

Finally if we assume m=n and all H_i $(i=1, 2, \dots, n)$ are also normal subgroups of G, then it is easily verified that $G=H_iH_j$ for $i\neq j$ because we have

$$H_i H_j / H_j \cong H_i / H_i \cap H_j \cong H_i$$

As we have $N \cap H_i = \{\varepsilon\}$ $(i=1, 2, \dots, n)$, if we replace H_i with N in our lemma, then it follows

$$\mathfrak{H}_i \cap (\mathfrak{N} + \mathfrak{H}_1 + \cdots + \mathfrak{H}_{i-1} + \mathfrak{H}_{i+1} + \cdots + \mathfrak{H}_n) = \{0\}$$

for $i=1, 2, \dots, n$. This implies the holding of (3) clearly. Thus, our lemma is proved completely.

PROOF OF THEOREM 1. Our theorem is the immediate consequence of Lemma applying to the abelian group $C_{K,p}/A_{k,p}$ with G=G(K/k) as the operator domain.

COROLLARY. Notations being same as Theorem 1, and moreover if we assume (p, m)=1 and $h_{k,p} < h_{K,p}$, then there exists a subfield of K such that the order of its p-class group is greater than $h_{k,p}$.

PROOF. Since all degrees [K:k], [K:F] and $[K:L_i]$ $(i=1, 2, \dots, n)$ are prime to p by our assumption, it follows easily that $A_{k,p}$, $A_{F,p}$ and $A_{L_i,p}$ are isomorphic to $C_{k,p}$, $C_{F,p}$ and $C_{L_i,p}$ respectively. [3] Moreover, it is clear by our assumption that at least one of the p-groups $A_{F,p}/A_{k,p}$ and $A_{L_i,p}/A_{k,p}$ $(i=1, 2, \dots, n)$ is not the unit group. From above our assertion follows immediately.

THEOREM 2. Let k be an algebraic number field of finite degree, and let K be a Galois extension over k such that the Galois group G(K/k) is an abelian group of type (l, l), where l is a rational prime number. Let F_1, F_2, \dots, F_{l+1} be the proper intermediate fields between k and K. If the class number h_K of K is divisible by a rational prime number $p \ (\neq l)$, then $C_{K,p}/A_{k,p}$ is decomposed into the direct product as following:

$$C_{K,p}/A_{k,p} = A_{F_1,p}/A_{k,p} \times \cdots \times A_{F_{l+1},p}/A_{k,p}$$

PROOF. This theorem follows immediately by applying the last assertion of Lemma to the *p*-group $C_{K,p}/A_{k,p}$.

§ 3. *p*-class groups of S_n -extensions.

In this section, we shall be mainly concerned with the applying of Theorem 1 and 2 to the *p*-class groups of S_n -extensions.

THEOREM 3. Let k be an algebraic number field of finite degree, and let K be an S_n -extension over k where we assume $n \ge 4$. If we have $h_{K,p} > a_{k,p}$ for any rational prime number p, then there exist proper intermediate fields F and L_1, L_2, \dots, L_r between k and K such that L_1, L_2, \dots, L_r are conjugate to each

766

other over k and we have

$$C_{K,p} = \langle A_{F,p}, A_{L_1,p}, \cdots, A_{L_r,p} \rangle.$$

Moreover, if p>2, then there exists a proper subfield of K such that the order of its p-class group is greater than $a_{k,p}$. If $n \ge 6$, then this is also true for p=2.

PROOF. We may regard the Galois group G=G(K/k) as the symmetric group S_n of *n* letters a_1, a_2, \dots, a_n .

(1) the case when p>2.

Let T_1 be the subfield of K corresponding to the subgroup $\{I, (a_1a_2), (a_3a_4), (a_1a_2)(a_3a_4)\}$ of G by the Galois theory. Then, it is obvious that K is an (A)-extension over T_1 . Hence, if we denote by F, L_1 and L_2 the proper intermediate fields between T_1 and K, where we assume L_1 and L_2 are conjugate to each other over k, then using Theorem 1 we have

$$C_{K,p} = \langle A_{F,p}, A_{L_1,p}, A_{L_2,p} \rangle$$

clearly. Moreover, since $C_{K,p}/A_{k,p}$ is non-trivial by our assumption, it follows immediately that among the *p*-groups $A_{F,p}/A_{k,p}$, $A_{L_1,p}/A_{k,p}$ and $A_{L_2,p}/A_{k,p}$ there exists at least one which is non-trivial. Now, since $A_{F,p}$, $A_{L_1,p}$ and $A_{L_2,p}$ are isomorphic to $C_{F,p}$, $C_{L_1,p}$ and $C_{L_2,p}$ respectively in our case, it follows immediately that among $h_{F,p}$, $h_{L_1,p}$ and $h_{L_2,p}$ there exists at least one which is greater than $a_{k,p}$.

(2) the case when p=2.

Let T_2 be an intermediate field between k and K such that K is an S_3 extension over T_2 . Moreover, let F, L_1 , L_2 and L_3 be proper intermediate
fields between T_2 and K, where we assume L_1 , L_2 and L_3 are conjugate to each
other over k. Then, since K is an (A)-extension over T_2 , using Theorem 1
we have

$$C_{K,2} = \langle A_{F,2}, A_{L_{1},2}, A_{L_{2},2}, A_{L_{3},2} \rangle$$

immediately. Finally, if we assume $n \ge 6$, then there exists a subfield of K corresponding to the subgroup $\langle (a_1a_2a_3), (a_4a_5a_6) \rangle$ of G which is of type (3,3). Now, our assertion concerning with the order of 2-class group follows similarly as the case when p > 2. Q. E. D.

Now, for the subfields of S_n -extensions we shall consider a condition concerning with the divisibility of their class numbers by a rational prime number p.

THEOREM 4. Let k be an algebraic number field of finite degree, and let K be an S_n -extension over k where we assume $n \ge 5$. Let M be the subfield of K such that we have [M: k]=2. Moreover, we assume $h_{K,p} > a_{M,p}$ for a rational prime number p. If F and L_1, L_2, \dots, L_r are proper intermediate fields between k and K such that they satisfy the assertion of Theorem 3 and $[K: L_i]$ $(i=1, 2, \dots, r)$ is prime to p, then we have $h_{L_i,p} > a_{k,p}$ for $i=1, 2, \dots, r$.

PROOF. Since it follows easily from our assumption that $C_{L_i,p}$ is isomorphic to $A_{L_i,p}$ for $i=1, 2, \dots, r$, we have $a_{k,p} \leq a_{L_i,p} = h_{L_i,p}$ clearly. Now, we assume $h_{L_i,p} = a_{k,p}$, from which it follows $A_{L_i,p} = A_{k,p}$ evidently. Then, since we have $C_{K,p} = \langle A_{F,p}, A_{L_1,p}, \dots, A_{L_r,p} \rangle$ we obtain $C_{K,p} = A_{F,p}$ clearly. If $F_1 = F, F_2, \dots,$ F_s are all of the conjugates of F over k, then we have also $C_{K,p} = A_{F_i,p}$ (i= $1, 2, \dots, s$) because $A_{F_i,p}$ ($i=1, 2, \dots, s$) is isomorphic to $A_{F,p}$ clearly. Hence, if we put $T = \bigcap_{i=1}^{s} F_i$, then it is easily verified that we have $C_{K,p} = A_{T,p}$. Now, since the Galois group G(K/T) is a normal subgroup of G(K/k) and it is well known that the alternative group A_n of degree n is the unique proper normal subgroup of S_n when $n \geq 5$, we must have $G(K/T) \supset G(K/M)$ and this implies $T \subset M$ immediately. Hence we have $C_{K,p} = A_{T,p} \subset A_{M,p}$ and this is a contradiction clearly. Thus, we have $h_{L_i,p} > a_{k,p}$ for $i=1, 2, \dots, r$, and our theorem is proved completely.

COROLLARY 1. The fields k, K and M being same as Theorem 4, and similarly we assume $h_{K,p} > a_{M,p}$ for an odd prime number p. Moreover, let π be an element of S_n and let L be a subfield of K corresponding to the subgroup of S_n generated by π . Then, if we have one of the following cases:

(1) π is a transposition,

(2) π is a cycle of length q-1, where $q (\leq n)$ is an odd prime number such that (p, q(q-1))=1,

(3) π is a product of (q-1)/2 disjoint transpositions, where $q \leq n$ is an odd prime number different from p, then we have always $h_{L,p} > a_{k,p}$.

PROOF. It is easily shown for each of above cases that there exists a subfield T of K such that [K: T] is prime to p and K/T is an (A)-extension in which L plays a part of L_i . Now, our assertion follows immediately from Theorem 4. Q. E. D.

If the fields K and M are same as Theorem 4, then it is easily verified that we have $h_{M,p} \leq a_{M,p}$. Now, in following corollary, we shall deal with the case where we may assume $h_{K,p} > h_{M,p}$ instead of $h_{K,p} > a_{M,p}$.

COROLLARY 2. The fields k, K and M being same as Theorem 4, and we assume $h_{K,p} > h_{M,p}$ for an odd prime number p (>3). Moreover, if $p \le n$, then we assume that there exists no prime ideal of M whose ramification index in K is divisible by p. Then, if F and L_1, L_2, \dots, L_r are proper intermediate fields between k and K such that they satisfy the assertion of Theorem 3 and $[K: L_i]$ $(i=1, 2, \dots, r)$ is prime to p, then we have $h_{L_i,p} > a_{k,p}$ for $i=1, 2, \dots, r$.

To prove this corollary we must use the following lemma, which has been proved in [2].

LEMMA. Let p(>3) be an odd prime number. Let G be a finite group and let P be a p-subgroup of G which is contained in the center of G. Then, if G/Pis isomorphic to the alternative group A_n of degree n, then there exists a normal

768

subgroup N of G such that we have $G=N\times P$.

PROOF OF COROLLARY 2. If we assume $h_{L_i,p} = a_{k,p}$, then it follows $C_{K,p} = A_{M,p}$ as the proof of Theorem 4. Now, let Ω be the unramified abelian extension over K such that the Galois group $G(\Omega/K)$ is isomorphic to $C_{K,p}$. Then, it is easily verified that Ω is a Galois extension over k and the Galois group $G(\Omega/K)$ is a p-group which is contained in the center of the Galois group $G(\Omega/M)$. Since the Galois group G(K/M) is isomorphic to the alternative group A_n of degree n and we have p>3 by our assumption, using above lemma it follows easily that there exists an abelian extension U over M such that we have $KU=\Omega$ and $K \cap U=M$ and moreover the Galois group G(U/M) is isomorphic to $C_{K,p}$. Since there exists no prime ideal of M whose ramification index in Ω is divisible by p in our case, U must be an unramified abelian extension over M. This implies $h_{K,p} \leq h_{M,p}$, which is a contradiction clearly. Thus, our assertion is proved completely.

Finally, we shall deal with the rank of *p*-class groups of S_n -extensions. Namely, in following theorem, we shall give some lower bound for it.

THEOREM 5. Let k be an algebraic number field of finite degree, and let K be an S_n -extension over k where we assume $n \ge 5$. Moreover, let M be the subfield of K such that we have [M: k]=2. If we have $h_{K,p}>a_{M,p}$ for an odd prime number p and if we denote by ρ the rank of p-group $C_{K,p}/A_{k,p}$, then we have always $\rho \ge 3$. Hence, $h_{K,p}/a_{k,p}$ is divisible by at least p^3 in our case.

PROOF. We may regard the Galois group G(K/k) as the symmetric group S_n of *n* letters a_1, a_2, \dots, a_n as before. Let L_1, L_2 and L_3 be the subfields of *K* corresponding to the subgroups $\langle (a_1a_2)(a_3a_4) \rangle$, $\langle (a_1a_3)(a_2a_4) \rangle$ and $\langle (a_1a_4)(a_2a_3) \rangle$ of S_n respectively, and we put $F = L_1 \cap L_2 \cap L_3$. Since the Galois group G(K/F) is an abelian group of type (2, 2), applying Theorem 2 to it we have

$$C_{K,p}/A_{F,p} = A_{L_1,p}/A_{F,p} \times A_{L_2,p}/A_{F,p} \times A_{L_3,p}/A_{F,p}$$

immediately. As L_1 , L_2 and L_3 are conjugate to each other over k, $A_{L_1,p}$, $A_{L_2,p}$ and $A_{L_3,p}$ are isomorphic to each other. Hence, it follows easily that we have $A_{L_i,p} \supseteq A_{F,p}$ for i=1, 2, 3, because if we assume otherwise, then we must have $C_{K,p} = A_{F,p}$ and from this we must have a contradiction using the same method as the proof of Theorem 4. Now, from above our assertion follows immediately.

COROLLARY. The fields k, K and M being same as above, and we assume $h_{K,p} > h_{M,p}$ for an odd prime number p(>3). Moreover, if $p \le n$, then we assume that there exists no prime ideal of M whose ramification index in K is divisible by p. Then, if we denote by ρ the rank of p-group $C_{K,p}/A_{k,p}$, then we have always $\rho \ge 3$.

PROOF. Using same method as the proof of Corollary 2 of Theorem 4 our corollary follows easily.

References

- [1] K. Ohta, On the relative class number of a relative Galois number field, J. Math. Soc. Japan, 24 (1972), 552-557.
- [2] K. Ohta, On the *p*-class groups of S_n—Resp. A_n---extensions, (in Japanese), Sūgaku, 28 (1976), 253-257.
- [3] A, Yokoyama, On the relative class number of finite algebraic number fields, J. Math. Soc. Japan, 19 (1967), 179-185.

Kiichiro Ohta

Department of Mathematics Faculity of General Education Gifu University Nagara, Gifu Japan