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\S 1. Introduction.

In general, let $k$ be an algebraic number field of finite degree, and let $P$ be
a rational prime number. Then, the $p$-Sylow subgroup of the absolute ideal
class group of $k$ will be called the $p$-class group of $k$ and will be denoted by
$C_{k,p}$ , whose order will be denoted by $h_{k,p}$ . Moreover, let $K$ be a Galois exten-
sion over $k$ . Then, the subgroup of all ideal classes of $C_{K,p}$ which are ambigous
with respect to $K/k$ will be called the ambigous p-class group of $K$ with respect

to $k$ and will be denoted by $A_{k,p}$ , whose order will be denoted by $a_{k,p}$ .
First, we shall deal with the case where $K$ is a Galois extension of degree

$mn$ over $k$ such that the Galois group $G=G(K/k)$ satisfies the following condi-
tion:

(A) $G$ has a normal subgroup $N$ of order $n$ and $n$ subgroups $H_{1},$ $H_{2},$ $\cdots$ , $H_{n}$

of same order $m$ such that we have $G=NH_{1}=\ldots=NH_{n}$ and $H_{i}\cap H_{j}=\{\epsilon\}$ for
$i\neq j$ , where we denote by $\epsilon$ the unit element of $G$ .

If the Galois group $G(K/k)$ satisfies above condition (A), then $K$ will be
called the (A)-extension over $k$ . For example, it is clear that $K$ is an $(A)-$

extension over $k$ if the Galois group $G(K/k)$ is isomorphic to one of the follow-
ing groups:

(a) the non-abelian group of order $pq$ where $p$ and $q$ are rational prime
numbers such that $q\equiv 1(mod p)$ ,

(b) the abelian group of type $(p, p)$ ,
(c) the dihedral group,
(d) the Galois group $G(Q(\zeta_{q}, a^{1/q})/Q)$ , where $q$ is an odd prime number, $\zeta_{q}$

is a primitive q-th root of unity and $a$ is a rational integer such that $a^{1/q}\not\in Q(\zeta_{q})$ .
Now, our main theorem is as following. Namely:
THEOREM 1. Let $k$ be an algebraic number field of finite degree and let $K$

be an (A)-extension over $k$ . Let $F,$ $L_{1},$ $\cdots$ , $L_{n}$ be the subfields of $K$ corresponding
respectively to the subgroups $N,$ $H_{1},$ $\cdots$ , $H_{n}$ of the Galois group $G(K/k)$ by the
Galois theory. Then, if the class number $h_{K}$ of $K$ is divisible by a rational prime
number $p$ prime to $n$ , then the $p$-class grouP $C_{K,p}$ of $K$ is generated by its sub-
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grouPs $A_{F,p},$ $A_{L_{1?}p},$ $\cdots$ , $A_{L_{n},p}$ . Moreover, if $p$ is also Prime to $m$ , then we have

$C_{K,p}/A_{k,p}=A_{F,p}/A_{k}$ , $p\times<A_{L_{1},p},$ $\cdots$ , $A_{L_{n},p}>/A_{k,p}$ .
Finally, in \S 3, using above theorem we shall prove some interesting results

concerning with the $p$-class group $C_{K,p}$ of $K$ when $K$ is an $S_{n}$-extension over
$k$ , that is, when the Galois group $G(K/k)$ is isomorphic to the symmetric group

$S_{n}$ of degree $n$ .

\S 2. $p$-class groups of (A)-extensions.

First, we shall prove the following group-theoretic lemma, from which our
main theorem follows easily.

LEMMA. Let $G$ be a finite group of order $mn$ such that it satisfies the condi-
tion (A). Let $\mathfrak{M}$ be a finite G-module such that each element of $\mathfrak{M}$ has the finite
order prime to $n$ and assume that if $a$ is an element of $\mathfrak{R}t$ and we have $\sigma a=a$

for any $\sigma\in G$ , then we have $a=0$ . Then, if we put

$\mathfrak{N}=\{a\in \mathfrak{M}|\sigma a=a, \forall\sigma\in N\}$ ,

$\mathfrak{H}_{i}=\{a\in \mathfrak{M}|\sigma a=a, \forall\sigma\in H_{i}\}$ , $(i=1,2, \cdots , 7l)$ ,

then we have

(1) $\mathfrak{M}=\mathfrak{N}+\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{n}$ .
Moreover, if the order of each element of $\mathfrak{R}t$ is also prime to $m$ , then we have
the direct sum as following:

(2) $\mathfrak{M}=\mathfrak{N}\oplus(\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{n})$ .
Particularly, if $m=n$ and all $H_{i}$ ($i=1,2,$ $\cdots$ , n) are also norm $al$ subgroups $o^{f}G$ .
then $\mathfrak{M}$ is perfectly decomp0sed into the direct sum as following:

(3) $\mathfrak{M}=\mathfrak{N}\oplus \mathfrak{H}_{1}\oplus\cdots\oplus \mathfrak{H}_{n}$

PROOF. Let us put

$N=\{\epsilon, \alpha_{1}, \cdots \alpha_{n-1}\}$ ,

$H_{i}=\{\epsilon, \beta_{i1}, \cdots \beta_{im-1}\}$ $(i=1, 2, ’ n)$

and define $n+1$ endomorphisms $\varphi,$
$\psi_{1},$ $\cdots$ , $\psi_{n}$ of $\mathfrak{M}$ by

$\varphi(a)=a+\alpha_{1}a+$ $+\alpha_{n-1}a$ ,

$\psi_{i}(a)=a+\beta_{i1}a+\cdots$ $+\beta_{im}$ a , ($i=1,2,$ $\cdots$ , n)

for any $a\in \mathfrak{M}$ respectively. Then, we have clearly $\omega(\mathfrak{R}t)\subset \mathfrak{N}$ an\’o $c^{1}’.(\backslash !)^{1})$

$(i=1,2, \cdots , n)$ . Now, we put
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$\Phi=\varphi+\psi_{1}+\cdots+\psi_{n}$

and we shall prove that $\Phi$ is an automorphism of $\mathfrak{M}$ . Since we have $H_{i}\cap H_{j}$

$=\{\epsilon\}$ for $i\neq j$ by our assumption and it is easily seen that $N\cap H_{i}=\{\epsilon\}$ for
$i=1,2,$ $\cdots$ , $n$, it follows immediately that $mn$ elements $\epsilon,$ $\alpha_{1},$

$\cdots$ , $\alpha_{n-1},$ $\beta_{11},$ $\cdots$ ,
$\beta_{1m-1},$ $\beta_{21},$ $\cdots$ , $\beta_{nm-1}$ of $G$ are distinct to each other and hence they exhaust
all elements of $G$ . Therefore, we have

$\Phi(a)=\varphi(a)+\psi_{1}(a)+\cdots+\psi_{n}(a)$

$=(a+\alpha_{1}a+\cdots+\alpha_{n-1}a)+(a+\beta_{11}a+ -- +\beta_{1m-1}a)$

$+\cdots+(a+\beta_{n1}a+\cdots+\beta_{nm-1}a)$

$=na+\sum_{\sigma\in G}\sigma a=na$

for any $a\in \mathfrak{M}$ because we have $\sum_{\sigma\in G}\sigma a=0$ by our assumption. Since the order

of any $a\in \mathfrak{M}$ is prime to $n$ , this implies clearly that $\Phi$ is an automorphism of
M. Hence we have

$\mathfrak{R}f=\Phi(\mathfrak{M})=\varphi(\mathfrak{M})+\psi_{1}(\mathfrak{Y}l)+\cdots+\psi_{n}(\mathfrak{R}\neg \mathfrak{c})$

$\subset \mathfrak{N}+\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{n}\subset \mathfrak{M}$

and we have $\mathfrak{Y}t=\mathfrak{N}+\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{n}$ evidently.
Since we have $\varphi(a)=na=\Phi(a)$ for any $a\in \mathfrak{N}$ it follows easily that $\Phi$ coin-

cides to $\varphi$ on $\mathfrak{N}$, and hence the restriction of $\varphi$ : $\mathfrak{M}\rightarrow \mathfrak{N}$ to $\mathfrak{N}$ is an automor-
phism of $\mathfrak{N}$ . Hence, if we put Ker $\varphi=\mathfrak{K}$ , then it is easily verified that $\mathfrak{M}=\mathfrak{N}\oplus \mathfrak{K}$ .
Since we have

$\psi_{i}(a)=a+\beta_{i1}a+\cdots+\beta_{im-1}a=ma$

for any $a\in \mathfrak{H}_{i}$ and the decomposition of $G$ by $N$ is

$C=N+N\beta_{i1}+\cdots+N\beta_{im-1}$ , ($i=1,2,$ $\cdots$ , n)

by our assumption, if $a\in \mathfrak{H}_{i}$ then we have

$\varphi(ma)=ma+\alpha_{1}(ma)+\cdots+\alpha_{n- 1}(ma)$

$=(a+\beta_{i1}a+\cdots+\beta_{im-1}a)+\alpha_{1}(a+\beta_{i1}a+\cdots+\beta_{\ell m- 1}a)$

$+\cdots+\alpha_{n- 1}(a+\beta_{i1}a+\cdots+\beta_{im-1}a)$

$=\sum_{\sigma\in G}\sigma a=0$ .
This implies $ma\in \mathfrak{K}$ clearly. Now, if we assume that the order of each element
of $\mathfrak{M}$ is also prime to $m$ , then we have $\mathfrak{H}_{i}\subset \mathfrak{K}$ for $i=1,2,$ $\cdots$ , $n$ and hence

$\mathfrak{N}\cap(\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{n})\subset \mathfrak{N}\cap \mathfrak{K}=\{0\}$ .
This implies $\mathfrak{M}=\mathfrak{N}\oplus(\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{n})$ immediately.
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Finally if we assume $m=n$ and all $H_{i}$ ($i=1,2,$ $\cdots$ , n) are also normal sub-
groups of $G$ , then it is easily veriPed that $G=H_{i}H_{j}$ for $i\neq j$ because we have

$H_{i}H_{j}/H_{j}\cong H_{i}/H_{i}\cap H_{j}\cong H_{i}$ .
As we have $N\cap H_{i}=\{\epsilon\}$ $(i=1,2, \cdots , n)$ , if we replace $H_{i}$ with $N$ in our lemma,
then it follows

$\mathfrak{H}_{i}\cap(\mathfrak{N}+\mathfrak{H}_{1}+\cdots+\mathfrak{H}_{i- 1}+\mathfrak{H}_{i+1}+\cdots+\mathfrak{H}_{n})=\{0\}$

for $i=1,2,$ $\cdots$ , $n$ . This implies the holding of (3) clearly. Thus, our lemma is
proved completely.

PROOF OF THEOREM 1. Our theorem is the immediate consequence of
Lemma applying to the abelian group $C_{K,p}/A_{k,p}$ with $G=G(K/k)$ as the operator

domain.
COROLLARY. Notations being same as Theorem 1, and moreover if we assume

$(p, m)=1$ and $h_{k,p}<h_{K,p}$ , then there exists a subfield of $K$ such that the order of
its $p$-class group is greater than $h_{k,p}$ .

PROOF. Since all degrees $[K:k],$ $[K:F]$ and $[K:L_{i}]$ ($i=1,2,$ $\cdots$ , n) are
prime to $P$ by our assumption, it follows easily that $A_{k,p},$ $A_{F,p}$ and $A_{L_{i}p}$ are
isomorphic to $C_{k,p},$ $C_{F,p}$ and $C_{L_{i,P}}$ respectively. [3] Moreover, it is clear by

our assumption that at least one of the $P$-groups $A_{F,p}/A_{k,p}$ and $A_{L_{i},p}/A_{k,p}$

$(i=1,2, \cdots n)$ is not the unit group. From above our assertion follows im-
mediately.

THEOREM 2. Let $k$ be an algebraic number field of finite degree, and let $K$

be a Galois extension over $k$ such that the Galois group $G(K/k)$ is an abelian
group of type $(1, 1)$ , where 1 is a rational Prime number. Let $F_{1},$ $F_{2},$ $\cdots$ , $F_{l+1}$ be
the ProPer intermediate fields between $k$ and K. If the class number $h_{K}$ of $K$ is
divisible by a rational Prime number $p(\neq l)$ , then $C_{K,p}/A_{k,p}$ is decomPosed into
the direct product as following:

$C_{K,p}/A_{k,p}=A_{F_{1},p}/A_{k}$ , $p\times\cdots\times A_{F_{l+1},p}/A_{k,p}$ .
PROOF. This tbeorem follows immediately by applying the last assertion

of Lemma to the $p$-group $C_{K,p}/A_{k,p}$ .

\S 3. $p$-class groups of $S_{n}$-extensions.

In this section, we shall be mainly concerned with the applying of Theorem
1 and 2 to the $p$-class groups of $S_{n}$-extensions.

THEOREM 3. Let $k$ be an algebraic number field of finite degree, and let $K$

be an $S_{n}$ -extension over $k$ where we assume $n\geqq 4$ . If we have $h_{K,p}>a_{k,p}$ for
any rational prime number $p$, then there exist proper intermediate fields $F$ and
$L_{1},$ $L_{2},$ $\cdots$ , $L_{r}$ between $k$ and $K$ such that $L_{1},$ $L_{2},$ $\cdots$ , $L_{r}$ are conjugate to each
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other over $k$ and we have

$ C_{K,p}=\langle A_{F,p}, A_{L_{1}p}, \cdots A_{L_{\gamma},p}\rangle$ .
Moreover, if $p>2$ , then there exists a proper subfield of $K$ such that the order
of its $p$-class group is greater than $a_{k,p}$ . If $n\geqq 6$, then this is also true for $p=2$ .

PROOF. We may regard the Galois group $G=G(K/k)$ as the symmetric
group $S_{n}$ of $n$ letters $a_{1},$ $a_{2},$

$\cdots$ , $a_{n}$ .
(1) the case when $p>2$ .
Let $T_{1}$ be the subfield of $K$ corresponding to the subgroup {I, $(a_{1}a_{2}),$ $(a_{3}a_{4})$ ,

$(a_{1}a_{2})(a_{3}a_{4})\}$ of $G$ by the Galois theory. Then, it is obvious that $K$ is an $(A)-$

extension over $T_{1}$ . Hence, if we denote by $F,$ $L_{1}$ and $L_{2}$ the proper interme-
diate fields between $T_{1}$ and $K$, where we assume $L_{1}$ and $L_{2}$ are conjugate to
each other over $k$ , then using Theorem 1 we have

$ C_{K,p}=\langle A_{F,p}, A_{L_{1},p}, A_{L_{2},p}\rangle$

clearly. Moreover, since $C_{K,p}/A_{k,p}$ is non-trivial by our assumption, it follows
immediately that among the $P$-groups $A_{Fp}/A_{k,p},$ $A_{L_{1},p}/A_{k,p}$ and $A_{L_{2},p}/A_{k,p}$ there
exists at least one which is non-trivial. Now, since $A_{F,p},$ $A_{L_{1},p}$ and $A_{L_{2}p}$ are
isomorphic to $C_{F,p},$ $C_{L_{1},p}$ and $C_{L_{2},p}$ respectively in our case, it follows immedi-
ately that among $h_{F,p},$ $h_{L_{1},p}$ and $h_{L_{2},p}$ there exists at least one which is greater
than $a_{k,p}$ .

(2) the case when $p=2$ .
Let $T_{2}$ be an intermediate Peld between $k$ and $K$ such that $K$ is an $S_{3^{-}}$

extension over $T_{2}$ . Moreover, let $F,$ $L_{1},$ $L_{2}$ and $L_{3}$ be proper intermediate
fields between $T_{2}$ and $K$, where we assume $L_{1},$ $L_{2}$ and $L_{3}$ are conjugate to each
other over $k$ . Then, since $K$ is an (A)-extension over $T_{2}$ , using Theorem 1
we have

$ C_{K2}=\langle A_{F,2}, A_{L_{1},2}, A_{L_{2},2}, A_{L_{3},2}\rangle$

immediately. Finally, if we assume $n\geqq 6$ , then there exists a subPeld of $K$

corresponding to the subgroup $\langle(a_{1}a_{2}a_{3}), (a_{4}a_{5}a_{6})\rangle$ of $G$ which is of type $(3,3)$ .
Now, our assertion conceming with the order of 2-class group follows similarly
as the case when $p>2$ . Q. E. D.

Now, for the subfields of $S_{n}$-extensions we shall consider a condition con-
cerning with the divisibility of their class numbers by a rational prime number $p$ .

THEOREM 4. Let $k$ be an algebraic number field of finite degree, and let $K$

be an $S_{n}$-extension over $k$ where we assume $n\geqq 5$ . Let $M$ be the subfield of $K$

such that we have $[M:k]=2$ . Moreover, we assume $h_{K,p}>a_{M,p}$ for a rational
prime number $p$ . If $F$ and $L_{1},$ $L_{2},$ $\cdots$ , $L_{r}$ are prOper intermediate fields between
$k$ and $K$ such that they satisfy the assertion of Theorem 3 and $[K:L_{i}]$

($i=1,2,$ $\cdots$ , r) is Prime to $p$, then we have $h_{L_{i}p}>a_{k,p}$ for $i=1,2,$ $\cdots$ , $r$.
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PROOF. Since it follows easily from our assumption that $C_{L_{i},p}$ is isomorphic
to $A_{L_{i},p}$ for $i=1,2,$ $\cdots$ , $r$, we have $a_{k,p}\leqq a_{L_{i},p}=h_{L_{i},p}$ clearly. Now, we assume
$h_{L_{i}p}=a_{k,p}$ , from which it follows $A_{L_{i},p}=A_{k,p}$ evidently. Then, since we have
$ C_{K,p}=\langle A_{F,p}, A_{L_{1},p}, \cdots , A_{Lr\cdot p}\rangle$ we obtain $C_{K,p}=A_{F,p}$ clearly. If $F_{1}=F,$ $F_{2},$ $\cdots$ ,
$F_{s}$ are all of the conjugates of $F$ over $k$ , then we have also $C_{K,p}=A_{F_{i},p}(i=$

$1,2,$ $\cdots$ , s) because $A_{F_{i},p}$ ($i=1,2,$ $\cdots$ , s) is isomorphic to $A_{F,p}$ clearly. Hence,

if we put $T=\bigcap_{i=1}^{l}F_{i}$ , then it is easily verified that we have $C_{K,p}=A_{T,p}$ . Now,

since the Galois group $G(K/T)$ is a normal subgroup of $G(K/k)$ and it is well
known that the alternative group $A_{n}$ of degree $n$ is the unique proper normal
subgroup of $S_{n}$ when $n\geqq 5$, we must have $G(K/T)\supset G(K/M)$ and this implies
$T\subset M$ immediately. Hence we have $C_{K,p}=A_{T,p}\subset A_{M,p}$ and this is a contradic-
tion clearly. Thus, we have $h_{L_{i},p}>a_{k,p}$ for $i=1,2,$ $\cdots$ , $r$, and our theorem is
proved completely.

COROLLARY 1. The fields $k,$ $K$ and $M$ being same as Theorem 4, and similarly
we assume $h_{K,p}>a_{M,p}$ for an odd Prime number $p$ . Moreover, $let\pi|$ be an element
of $S_{n}$ and let $L$ be a subfield of $K$ corresPonding to the subgroup of $S_{n}$ generated
by $\pi$ . Then, if we have one of the following cases:

(1) $\pi$ is a transposition,
(2) $\pi$ is a cycle of length $q-1$ , where $q(\leqq n)$ is an odd prime nunzber such

that $(p, q(q-1))=1$ ,
(3) $\pi$ is a Product of $(q-1)/2$ disjoint transPositions, where $q(\leqq n)$ is an odd

prime number different from $p$ , then we have always $h_{L,p}>a_{k,p}$ .
PROOF. It is easily shown for each of above cases that there exists a

subfield $T$ of $K$ such that $[K:T]$ is prime to $P$ and $K/T$ is an (A)-extension
in which $L$ plays a part of $L_{i}$ . Now, our assertion follows immediately from
Theorem 4. Q. E. D.

If the fields $K$ and $M$ are same as Theorem 4, then it is easily verified
that we have $h_{M,p}\leqq a_{M,p}$ . Now, in following corollary, we shall deal with the
case where we may assume $h_{K,p}>h_{M,p}$ instead of $h_{K,p}>a_{M,p}$ .

COROLLARY 2. The fields $k,$ $K$ and $M$ being same as Theorem 4, and we
assume $h_{K,p}>h_{M,p}$ for an odd prime number $p(>3)$ . Moreover, if $p\leqq n$ , then
we assume that there exists no prime ideal of $M$ whose ramification index in $K$

is divisible by $p$ . Then, if $F$ and $L_{1},$ $L_{2},$ $\cdots$ , $L_{r}$ are Proper intermediate fields
between $k$ and $K$ such that they satisfy the assertion of Theorem 3 and $[K:L_{i}]$

($i=1,2,$ $\cdots$ , r) is Prime to $p$, then we have $h_{L_{i},p}>a_{k,p}$ for $i=1,2,$ $\cdots$ , $r$ .
To prove this corollary we must use the following lemma, which has been

proved in [2].

LEMMA. Let $P(>3)$ be an odd prime number. Let $G$ be a finite group and
let $P$ be a $p$-subgrouP of $G$ which is contained in the center of G. Then, if $G/P$

is isomorphjc to the alternative group $A_{n}$ of degree $n$, then there exists a normal
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subgroup $N$ of $G$ such that we have $G=N\times P$.
PROOF OF COROLLARY 2. If we assume $h_{L_{i},p}=a_{k,p}$ , then it follows $C_{K,p}$

$=A_{M,p}$ as the proof of Theorem 4. Now, let $\Omega$ be the unramified abelian ex-
tension over $K$ such that the Galois group $G(\Omega/K)$ is isomorphic to $C_{K,p}$ . Then,
it is easily veriPed that $\Omega$ is a Galois extension over $k$ and the Galois group
$G(\Omega/K)$ is a $P$-group which is contained in the center of the Galois group
$G(\Omega/M)$ . Since the Galois group $G(K/M)$ is isomorphic to the alternative group
$A_{n}$ of degree $n$ and we have $p>3$ by our assumption, using above lemma it
follows easily that there exists an abelian extension $U$ over $M$ such that we
have $ KU=\Omega$ and $K\cap U=M$ and moreover the Galois group $G(U/M)$ is isomor-
phic to $C_{K,p}$ . Since there exists no prime ideal of $M$ whose ramification index
in $\Omega$ is divisible by $p$ in our case, $U$ must be an unramified abelian extension
over $M$. This implies $h_{K,p}\leqq h_{M,p}$ , which is a contradiction clearly. Thus, our
assertion is proved completely. Q. E. D.

Finally, we shall deal with the rank of $P$-class groups of $S_{n}$-extensions.
Namely, in following theorem, we shall give some lower bound for it.

THEOREM 5. Let $k$ be an algebraic number field of finite degree, and let $K$

be an $S_{n}$-extension over $k$ where we assume $n\geqq 5$ . Moreover, let $M$ be the subfield
of $K$ such that we have $[M:k]=2$ . If we have $h_{K,p}>a_{M,p}$ for an odd Prime
number $p$ and if we denote by $\rho$ the rank of $P$-group $C_{K,p}/A_{k,p}$ , then we have
always $\rho\geqq 3$ . Hence, $h_{K,p}/a_{k,p}$ is divisible by at least $p^{3}$ in our case.

PROOF. We may regard the Galois group $G(K/k)$ as the symmetric group
$S_{n}$ of $n$ letters $a_{1},$ $a_{2},$

$\cdots$ , $a_{n}$ as before. Let $L_{1},$ $L_{2}$ and $L_{3}$ be the subfields of $K$

corresponding to the subgroups $\langle(a_{1}a_{2})(a_{3}a_{4})\rangle,$ $\langle(a_{1}a_{3})(a_{2}a_{4})\rangle$ and $\langle(a_{1}a_{4})(a_{2}a_{3})\rangle$ of
$S_{n}$ respectively, and we put $F=L_{1}\cap L_{2}\cap L_{3}$ . Since the Galois group $G(K/F)$ is
an abelian group of type $(2, 2)$ , applying Theorem 2 to it we have

$C_{K,p}/A_{F,p}=A_{L_{1},p}/A_{F,p}\times A_{L_{2},p}/A_{F,p}\times A_{L_{3},p}/A_{F,p}$

immediately. As $L_{1},$ $L_{2}$ and $L_{3}$ are conjugate to each other over $k,$ $A_{L_{1},p},$ $A_{L_{2},p}$

and $A_{L_{3},p}$ are isomorphic to each other. Hence, it follows easily that we have
$A_{L_{i},p\#}\supset A_{F,p}$ for $i=1,2,3$ , because if we assume otherwise, then we must have
$C_{K,p}=A_{F,p}$ and from this we must have a contradiction using the same method
as the proof of Theorem 4. Now, from above our assertion follows immediately.

COROLLARY. The fields $k,$ $K$ and $M$ being same as above, and we assume
$h_{K,p}>h_{M,p}$ for an odd Prime number $p(>3)$ . Moreover, if $p\leqq n$, then we assume
that there exists no Prime ideal of $M$ whose ramification index in $K$ is divisible
by $p$ . Then, if we denote by $\rho$ the rank of $p$-group $C_{K,p}/A_{k,p}$ , then we have
always $\rho\geqq 3$ .

PROOF. Using same method as the proof of Corollary 2 of Theorem 4 our
corollary follows easily.
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