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A finiteness theorem for foliated manifolds
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\S 1. Introduction.

Let $M$ be a smooth closed manifold which carries a smooth foliation $\mathfrak{F}$ . A
smooth form $\omega$ of degree $P$ is said to be of $filtration\geqq i$ if it vanishes whenever
$p-i+1$ of the vectors are tangent to the foliation. In this way the deRham
complex of smooth forms becomes a filtered complex and we have the spectral
sequence $E_{k}(\mathfrak{F})$ which converges after a finite number of steps to the (finite-
dimensional) real cohomology of $M$.

Let us denote by $I(\mathfrak{F})$ the Lie algebra of all infinitesimal transformations
of the foliation. At each point $x\in M$, we get a subspace $I(\mathfrak{F})(x)$ of the tangent
space $T_{x}$ (by evaluating the vector fields at x). The foliation is called transitive
if $I(\mathfrak{F})(x)=T_{x}$ for all $x$ .

THEOREM. If a smooth closed manifold $M$ carries a transitive foliation $\mathfrak{F}$

then $E_{2}(\mathfrak{F})$ is finite dimensional.
This theorem is proved in no. 6) below: the method of proof, which is of

independent interest, consists in making a parametrix for the exterior derivative
by averaging over flows and then employing the theory of compact operators.

In no. 1) we define the filtration and in no. 2) by using the theory of exact
couples reduce the finiteness problem to an equivalent simpler form (Lemma 3).

In no. 3) the relevant results from functional analysis are recalled, a $k$-parametrix
is defined and it is related to the finite dimensionality of $E_{k}(\mathfrak{F})$ . In nos. 5) and
6) we construct a 2-parametrix when $\mathfrak{F}$ is transitive and thereby prove the
theorem. Beyond some elementary differential geometry (chapter I of [2]),

functional analysis ([7]) and homological algebra (definition of spectral sequence
as in [3]) the treatment below is self-contained. Further comments about the
various aspects of this construction and the literature are made in no. 7) below.

\S 2. Lie subalgebras of $\mathfrak{H}_{M}$ .

If $M$ is a smooth manifold, the set of all its smooth tangent vector fields
is a Lie algebra with the usual bracket operation. We shall denote this Lie
algebra by $\mathfrak{H}_{H}$ . We also denote by $\Lambda(M)$ the algebra of all smooth forms on



688 K. S. SARKARIA

$M$ ; as usual we will equip this algebra with the (skew) derivations $d$ (exterior

derivative), $\tau_{X}$ (interior product) and $L_{X}$ (Lie derivative). Here $X\in \mathfrak{H}_{M}$ . We
have the following well-known formulas:

(a) $d^{2}=0$ (b) $\tau_{X}\tau_{Y}+\tau_{Y}\tau_{X}=0$ (c) $L_{X}L_{Y}-L_{Y}L_{X}=L_{[X,Y]}$

(1)
(d) $d\tau_{X}+\tau_{X}d=L_{X}$ (e) $\tau_{X}L_{Y}-L_{Y}\tau_{X}=\tau_{[Y,X]}$ (f) $L_{X}d-dL_{X}=0$ .

(So one cannot make any more (skew) derivations out of $d,$ $L_{X}$ and $\tau_{X}$ by using
the ’bracket’ operations).

Let $\mathfrak{F}$ be any subalgebra of $\mathfrak{H}_{H}$ . A degree $p$ form $\omega\in\Lambda^{p}(M)$ is said to be
of $filtration\geqq i$ if

$(\tau_{X_{1}}\tau_{X_{2}}\cdots\tau_{x_{p- i+1}})(\omega)=0$ (2)

whenever $X_{1},$ $\cdots$ , $X_{p-i+1}\in \mathfrak{F}$ . In other words $\omega(X_{1}, \cdots , X_{p})=0$ whenever $p-i+1$

of the vectors are in $\mathfrak{F}$ We shall denote the subalgebra of all forms of filtra-
tion $\geqq i$ by $\Lambda_{i}(\mathfrak{F})$ whereas $\Lambda_{i}^{p}(\mathfrak{F})$ will denote those which are also of degree $p$ .

LEMMA 1. $d(\Lambda_{i}(\mathfrak{F}))\subseteq\Lambda_{i}(\mathfrak{F})$ . Also if $X\in \mathfrak{F},$ $L_{X}(\Lambda_{i}(\mathfrak{F}))\subseteq\Lambda_{i}(\mathfrak{F})$ .
PROOF. The second inclusion follows by (1) (e).

After that the first inclusion follows from (1) (d). Q. E. D.
A subalgebra $\mathfrak{F}\subseteq \mathfrak{H}_{M}$ is called a foliation-with-singularities if it is a module

over the ring $\Lambda^{0}(M)$ of all smooth functions. By tensoring any subalgebra
$\mathfrak{F}\subseteq \mathfrak{H}_{M}$ with $\Lambda^{0}(M)$ we get a foliation $\overline{\mathfrak{F}}$ with singularities which contains $\mathfrak{F}$

For each $x\in M$ we have the evaluation map $e_{x}$ : $\mathfrak{H}_{M}\rightarrow T_{x}$ . If the subalgebra
$\mathfrak{F}$ is a module over $\Lambda^{0}(M)$ and furthermore if the vector spaces $e_{x}(\mathfrak{F})=D_{x}$ are
of the same dimension $l$ we say that $\mathfrak{F}$ is a foliation of codimension $c=m-l$,
(here $m=\dim M$ ). Now $\bigcup_{x\in M}D_{x}$ is a subbundle $D$ of the tangent bundle $T$ .

Conversely given any subbundle $D$ of $T$ one could define $\Lambda_{i}(D)$ exactly as
above (by using (2) and $C^{\infty}(D)$ in place of $\mathfrak{F}$).

LEMMA 2. $d(\Lambda_{i}(D))\subseteq\Lambda_{i}(D)$ for all $i$ if and only if $D$ is tangent to afoliation.
PROOF. Take any two vector fields $X,$ $Y\in C^{\infty}(D)$ and let $\omega$ be any l-form

that vanishes on $D$ . Then $\omega([X, Y])=2d\omega(X, Y)=0$ since $d\omega\in\Lambda_{1}^{2}(D)$ . Hence
[X, $Y$] $\in C^{\infty}(D)$ Q. E. D.

Henceforth we will concentrate on the case when $\mathfrak{F}$ is a foliation though
almost everything holds, with some occasional modifications, if $\mathfrak{F}$ is any subal-
gebra of $\mathfrak{H}_{M}$ .

$X\in \mathfrak{H}_{M}$ is called an infinitesimal transformation of $\mathfrak{F}$ if for all $Y\in \mathfrak{F},$ $[X, Y]$

$\in \mathfrak{F}$ . By Jacobi’s identity all such vector fields form a subalgebra $I(\mathfrak{F})\supseteq \mathfrak{F}$

However by repeating this process one gets nothing new $i$ . $e$ . $I(I(\mathfrak{F}))=I(\mathfrak{F})$ .
(Proof. Over an open cell $U\subseteq M$ choose local coordinates so that the vector

fields $\frac{\partial}{\partial x^{1}}$ , , $\frac{\partial}{\partial x^{l}}$ span $D$ . Choose any $Y\in I(I(\mathfrak{F}))$ . We then see that
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$-[Y,$ $\frac{\partial}{\partial x^{i}}]=-[Y,$ $[\frac{\partial}{\partial x^{j}},$ $x^{j}\frac{\partial}{\partial x^{i}}]]$

$=[\frac{\partial}{\partial x^{j}},$ $[x^{j}\frac{\partial}{\partial x^{i}},$ $Y]]+[\chi^{j}\frac{\partial}{\partial x^{i}},$ $[Y,$ $\frac{\partial}{\partial x^{j}}]]$

$\in C^{\infty}(D)=\mathfrak{F}.)$

We shall say that a foliation $\mathfrak{F}$ is transitive if $\overline{I(\mathfrak{F})}$ is the one-leaf foliation of
$M$. This is clearly same as the definition above.

\S 3. Spectral sequences.

Lemma 2 makes it quite clear that given a foliated manifold $(M, \mathfrak{F})$ a
natural object of study is the filtered $comPlex$

$\Lambda=\Lambda_{0}(\mathfrak{F})-\Lambda_{1}(\mathfrak{F})-$ $\leftarrow\Lambda_{c}(\mathfrak{F})\leftarrow 0$ . (3)

(It will be understood that $\Lambda_{n}(\mathfrak{F})=\Lambda$ if $n<0$ and $=0$ if $n>c$). To study this
we recall some terminology from [3].

An exact couPle is an exact sequence

of vector spaces and linear maps. One always equips $C$ with the differential
$gh$ (Note that $ghgh=0$).

Then the derived exact $ coupl\ell$ is the induced exact sequence

$H(C)$

where the definition of $\tilde{g}$ alone could be mysterious; but we don’t need this.
Corresponding to the filtered complex (3) one has the exact couple
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(4)

Here $D_{1}=\sum_{i}$: $H(\Lambda_{i}),$ $E_{1}=\sum_{i}H(\frac{\Lambda_{i}}{\Lambda_{i+1}})$ and these spaces shall be given the usual

grading and bigrading $(e$ . $g$ . $E_{1}^{p,q}=H^{p+q}(\frac{\Lambda_{p}}{\Lambda_{p+1}}),$ $D_{1}^{p}=H(\Lambda_{p})etc.)$ . The maps

are made up of the maps of the long exact homology sequences of $ 0\rightarrow\Lambda_{i+1}\rightarrow$

$\Lambda_{i}\rightarrow\Lambda_{i}/\Lambda_{i+1}\rightarrow 0$ . The important thing for us is to note that $\sigma$ is induced by

the inclusions $\Lambda_{i+1}\rightarrow\Lambda_{i}$ .
Now by repeatedly forming the derived of this exact couple we get our

spectral sequence:

(5)

Note that each space $E_{n}$ is equipped with a differential $d_{n}$ and is the homology
of the previous. It is also clear that $D_{n}=\sigma^{n-1}(D_{1})$ , so it is made up of the
images $D_{n}^{i}$ of the maps $H(\Lambda_{i})\rightarrow H(\Lambda_{i-n+1})$ induced by inclusion.

LEMMA 3. Let $\mathfrak{F}$ be a foliation of lhe closed manifold M. Then $E_{k}(\mathfrak{F})$ is
finite dimensional if and only if the images of all the induced maps $ H(\Lambda_{i})\rightarrow$

$H(\Lambda_{i- k+1})$ are finite dimensional.
PROOF. First, if $D_{k}^{i}$ is finite dimensional for all $i$ the exactness of (5) shows

that all the $E_{k}^{i}$ are also finite dimensional. Conversely suppose in (5) $E_{n}$ is
finite dimensional and $D_{n+1}=\sigma(D_{n})$ is of finite type; then by exactness it follows
that $D_{n}$ is also of finite type. So by downward induction we get required
result. (The induction is permissible since for $n$ large enough $E_{n}=H(\Lambda)$ and
$D_{n}^{i}\subseteq H(\Lambda)$ or $=0$). Q. E. D.

COROLLARY 1. Let $\mathfrak{F}_{1},$ $\mathfrak{F}_{2}$ be two foliations of $M$ such that $\mathfrak{F}_{1}\subseteq \mathfrak{F}_{2}$ and
$ c(\mathfrak{F}_{1})-c(\mathfrak{F}_{2})=\xi$ . Then if $E_{k}(\mathfrak{F}_{a})$ is finite dimensional so is $E_{k+}\backslash \simeq(\mathfrak{F}_{b})$ .

PROOF. Only the case $a\neq b$ is non-trivial. For definiteness let us assume
$a=1,$ $b=2$ . We note first that
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$\Lambda_{i}(\mathfrak{F}_{2})\subseteq\Lambda_{i}(\mathfrak{F}_{1})$

(6)
$\Lambda_{i}(\mathfrak{F}_{1})\subseteq\Lambda_{i-\xi}(\mathfrak{F}_{2})$

Now the map $H(\Lambda_{i}(\mathfrak{F}_{2}))\rightarrow H(\Lambda_{i-k-\xi- 1}(\mathfrak{F}_{2}))$ is seen to factor through the map
$H(\Lambda_{i}(\mathfrak{F}_{1}))\rightarrow H(\Lambda_{i- k- 1}(\mathfrak{F}_{1}))$ which is of finite rank. Q. E. D.

COROLLARY 2. For any foliation $\mathfrak{F}\subseteq \mathfrak{H}_{M},$ $E_{c+1}(\mathfrak{F})$ and $E_{m-C+2}(\mathfrak{F})$ are finite
dimensional.

PROOF. {foliation of $M$ by $pts$ } $\subseteq \mathfrak{F}\subseteq$ { $foliation$ of $M$ by one leaf}. Also
one can easily check that

$E_{2}$ {pt. $foliation$ } $\cong H(\Lambda)\cong E_{1}$ {one-leaf foliation}.

Now we use Corollary 1. Q. E. D.

\S 4. Compact operators.

Let us denote by $Z_{i}$ all the closed forms that lie in $\Lambda_{i}$ . Then the image
of $H(\Lambda_{i})\rightarrow H(\Lambda_{i-k+1})$ is isomorphic to the vector space

$\frac{Z_{i}}{d(\Lambda_{i- k+1})\cap Z_{i}}$ .

To prove the finite dimensionality of these quotients we use the theory of
topological vector spaces.

We shall topologise $\Lambda$ with the usual $C^{\infty}$ topology. In this way it becomes
a Hausdorff locally convex topological vector space. (Infact it is also complete
and metrisable: briefly, a Frechet space. One can characterize this topology of
$\Lambda$ as the unique Frechet space topology in which all differential operators are
continuous). Further it is clear that each subspace $\Lambda_{i}$ is also a closed subspace.

If $E$ and $F$ are HLCTVSes a linear map $s:E\rightarrow F$ is called compact if it
maps some nhbd $U\ni O$ to a set $s(U)$ with compact closure. (We note that such
a map can be a homeomorphism only if $E$ and $F$ are finite dimensional; for
now $s(U)$ is a relatively compact neighbourhood of $O\in F$, and we can use a
theorem of Riesz. The same theorem, coupled with the open mapping theorem,
shows that if $E$ and $F$ are Frechet spaces, $s(E)$ can be closed only if it is
finite dimensional).

We are interested in using the following
LEMMA 4. Let $E$ be a HLCTVS and let $s:E\rightarrow E$ be compact. Then $(1-s)$

$(E)$ is closed and of finite codimension.
PROOF. See p. 197 of [7]. Q. E. D.
(Note that only the closedness is non trivial. Granting this we conclude

that $E/(1-s)(E)$ is also Hausdorff-besides being locally convex. Since $s$ induces
the identity map in this quotient we can use the above mentioned theorem of
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Riesz.)

COROLLARY 3. Let $\mathfrak{F}\subseteq \mathfrak{H}_{M}$ be a foliation on M. Also suppOse that we have
available two linear maps $s,$ $p$ in $\Lambda$ such that

a) $s$ is compact

b) $1-s=dP+Pd$
(7)

c) $s(\Lambda_{i})\subseteqq\Lambda_{i}$ for all $i$

d) $p(\Lambda_{i})\subseteqq\Lambda_{i-k+1}$ for all $i$ .

Then $E_{k}(\mathfrak{F})$ is finite dimensional.
PROOF. By (b), (c) and (d) it follows that $(1-s)Z_{i}\subseteqq d(\Lambda_{i-h+1})\cap Z_{i}$ . But by

(a) and Lemma 4, $\frac{Z_{i}}{(1-s)Z_{i}}$ is Pnite dimensional. So $Z_{i}/d(\Lambda_{i-k+1})\cap Z_{i}i$ . $e$ . the

image of $H(\Lambda_{i})\rightarrow H(\Lambda_{i- k+1})$ is also finite dimensional. Now use Lemma 3.
Q. E. D.

REMARK. If one omits condition (7) (c) we only get $(1-s)Z_{i}\subseteqq d(\Lambda_{i-k+1})$ .
So the question arises as to when

$\frac{Z_{i}}{(1-s)(Z_{i})\cap Z_{i}}$ is finite dimensional?

Unfortunately this happens only if (c) holds at least mod finite dimensional
spaces. To see this one can use the following result.

LEMMA 5. Let $F$ be a closed subspace of a Frechet space $E$ and let $ s:E\rightarrow$

$E$ be a comPact map. Then $\frac{F}{(1-s)(F)\cap F}$ is finite dimensional if and only if

$\frac{s(F)}{F\cap s(F)}$ is finite dimensional.

(Its proof employs only the functional analysis mentioned above.)

A pair of linear maps $s,$
$ P:\Lambda\rightarrow\Lambda$ satisfying (7) will be called a $k$-parametrix.

\S 5. Averaging over flows.

Extending the terminology above we shall say that a vector space $V\subseteqq \mathfrak{H}_{M}$

is transitive if $V(x)=T_{x}$ for all $x\in M$. If $M$ is compact it is clear that we can
always extract a finite dimensional transitive subspace out of V. (For example
if a foliation $\mathfrak{F}$ of $M$ is transitive there exists a finite dimensional subspace
$V\subseteqq I(\mathfrak{F})$ which is transitive).

We now fix such a finite dimensional and transitive vector space $V\subseteqq \mathfrak{H}_{M}$ ,
and, furthermore choose a Riemannian metric $g$ on $V$. Let $|g|$ denote the
volume element. Finally let us choose a smooth non-negative real valued func-
tion $\phi$ on $V$ supported in a compact neighbourhood of $0$ . Using these ingredients
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we define a map $s:\Lambda\rightarrow\Lambda$ by

$(s\omega)(x)=\int_{V}(\nu_{1}^{*}\omega)(x)\phi(\nu)|g|$ . (8)

(Let $\nu_{t}$ ; $M\rightarrow M$ denote the flow of the vector field $\nu\in V$. Then $\nu_{1}$ ; $M\rightarrow M$ is
the diffeomorphism corresponding to $t=1$ . It induces the map $\nu_{1}^{*}$ : $\Lambda\rightarrow\Lambda.$)

We can assume, without loss of generality, that dim $V>m$ . ($\dim V=m$ is
possible only if $M$ is parallelisable). For each $x\in M$ we denote the kernel of
$e_{x}$ : $V\rightarrow T_{x}$ by $V_{x}$ and its orthogonal complement by $V^{x}$ . The induced metrics
on these two subspaces are called $g_{x}$ and $g^{x}$ respectively. If $\nu\in V$ we have a
unique decomposition $\nu=u+w$ where $u\in V_{x}$ and $w\in V^{x}$ . Using Fubini’s theorem
about repeated integrations we can write above expression as

$(s\omega)(x)=\int_{V_{x}}|g_{x}|\int_{V^{x}}(u+w)_{1}^{*}(\omega)(x)\phi_{u}(w)|g^{x}|$ . (9)

Here $\phi_{u}(w)=\phi(u+w)$ .
LEMMA 6. We can choose supp $\phi$ so small that the map $F_{x}^{u}$ : $V^{x}\rightarrow M$ given

by $F_{x}^{u}(w)=(u+w)_{1}(x)$ maps $supp\phi_{u}$ diffeomorphically into $M$ for all $x$ and $u$ .
PROOF. Let $N$ denote the bundle over $M$ which is the union of all the spaces

$V_{x},$ $x\in M$. Now consider the map $M\times V\rightarrow FN\times M$ given by $(x, \nu)\rightarrow((x, u),$ $\nu_{1}x$):

here $\nu=u+w,$ $u\in V_{x},$ $w\in V^{x}$ . It is a smooth map of maximum rank $onM\times\{0\}$

(due to transitivity of $V$); also it maps the compact set $M\times\{0\}$ diffeomorphically
into $N\times M$. So one can find a neighbourhood $M\times U$ of this on which $F$ is a
diffeomorphism. If we take $supp\phi\subseteqq U$ the Lemma follows. Q. E. D.

Let us denote the l-dimensional bundle of volumes by $\Omega\rightarrow M$ . Also let
$\lambda T^{*}$ denote the bundle of covectors. (So $\Lambda(M)=C^{\infty}(\lambda T^{*})$). For each triple
$x\in M,$ $y\in M$ and $u\in V_{x}$ we define a linear map $K_{u}(x, y):\lambda T_{y}^{*}\rightarrow\lambda T_{x}^{*}\otimes\Omega_{y}$ by

$K_{u}(x, y)=0$ if $y\not\in F_{x}^{u}(supp\phi_{u})$ .
If $y=F_{x}^{u}(w),$ $w\in supp\phi_{u}$ and $\omega_{y}\in\lambda T_{y}^{*}$ then (10)

$K_{u}(x, y)\omega_{y}=(u.+w)_{1}^{*}(\omega_{y})\otimes((F_{x}^{u})^{-1})^{*}(\phi_{u}\cdot|g^{x}|)(y)$ .

Substituting this definition in the above formula (9) we get

$(s\omega)(x)=\int_{V_{x}}|g_{x}|\int_{M}K_{u}(x, y)\omega(y)$ . (11)

If we furthermore define $K(x, y):\lambda T_{y}^{*}\rightarrow\lambda T_{x}^{*}\otimes\Omega_{y}$ by

$K(x, y)=\int_{V_{x}}K_{u}(x, y)|g_{x}|$ (12)

we see that
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$(s\omega)(x)=\int_{M}K(x, y)\omega(y)$ . (13)

Operators of this type are called integral operators (see [1]). They are in
particular compact. We thus have

LEMMA 7. The operatOr $s(V, \phi, g):\Lambda(M)\rightarrow\Lambda(M)$ defined by (8) is compact
if $M$ is compact, $V$ is transitive, and supp $\phi$ is small enough.

REMARK. We have explicitly constructed the smooth kernel $K(x, y)$ of $s$ .
The operator $s$ is in fact of trace class, the trace being defined by $Tr(s)$

$=\int_{M}$ Tr $K(x, x)$ : see [1]. This fact is important when one proves index

formulas by using the parametrix.

\S 6. The parametrix.

We define a linear map $ p:\Lambda\rightarrow\Lambda$ by

$(p\omega)(x)=\int_{V}\int_{0}^{1}(\tau_{\nu}\nu_{t}^{*}\omega)(x)\phi(\nu)dt|g^{\iota}$ (14)

Furthermore we normalise the function

$\int_{V}\phi(\nu)|g|=1$ . (15)

LEMMA 8. The map $s$ is chain homotopic to the identity map, $1-s=dp+pd$ .
PROOF.

$(dp+pd)(\omega)=\int_{V}\int_{0}^{1}(d\tau_{\nu}+\tau_{\nu}d)\nu_{t}^{*}\omega\phi(\nu)dt|g|$

since induced maps commute with exterior derivative. Now by l(d) this equals

$\int_{V}\int_{0}^{1}L_{v}\nu_{t}^{*}\omega\phi(\nu)dt|g|$ .

But the Lie derivative $L_{\nu}$ is the negative derivative along the flow. So this
equals

$\int_{V}(0)-\nu_{1}^{*}\omega)\phi(\nu)|g|=\omega-s\omega$

by using (15). Q. E. D.
THEOREM. Let $\mathfrak{F}$ be a transitive foliation of the closed manifold M. Then

$E_{2}(\mathfrak{F})$ is finite dimensional.
PROOF. Choose a finite dimensional transitive $V\subseteqq I(\mathfrak{F})$ and construct $s$ and

$P$ as above, taking care that supp $\phi$ is small enough. So $s$ is compact and $1-s$
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$=dp+pd$ by Lemmas 7 and 8. Since each $\nu\in V$ is an infinitesimal transforma-
tion of $\mathfrak{F},$

$\nu_{t}$ ; $M\rightarrow M$ maps leafs onto leafs. So $\nu_{t}^{*}(\Lambda_{i})\subseteqq\Lambda_{t}$ for all $i$ . Now (8)
and (14) tell us that $s(\Lambda_{i})\subseteqq\Lambda_{i},$ $p(\Lambda_{i})\subseteqq\Lambda_{i-1}$ for all $i$ . So $(s, p)$ is a 2-parametrix
and, by Corollary 3, $E_{2}(\mathfrak{F})$ is finite dimensional. Q. E. D.

\S 7. Concluding remarks.

(a) If $\mathfrak{F}$ is a fibration ( $i$ . $e$ . the leaves are preimages $\pi^{-1}(b),$ $b\in B$ where
$\pi$ : $M\rightarrow B$ is of $\max$ . rank) then it is transitive. Again many foliations arising
out of Lie group actions are transitive.

(b) In general $E_{2}(\mathfrak{F})$ is infinite dimensional. The cohomology of [8] is
$E_{2}^{*,0}(\mathfrak{F})$ and examples are given there when it is not finite dimensional.

(c) $\mathfrak{F}$ transitive’ is a very restrictive hypothesis $e$ . $g$ . all leafs have to be
diffeomorphic. However by using Corollary 1 above one can construct instances
when $E_{3}(\mathfrak{F})$ is finite dimensional (by finding a foliation $\mathfrak{F}^{\prime}$ of one dimension
more which is transitive and contains $\mathfrak{F}$ etc.). Again for some non-transitive
foliations the kernel $K(x, y)$ of s–which is now smooth only on an open subset
of $M\times M$–satisPes estimates which allow $s$ to be compact.

(d) Let $s^{p}$ denote the map $\Lambda^{p}(M)\rightarrow 8\Lambda^{p}(M)$ . Then $\sum_{p}(-1)^{p}Trs^{p}=e(M)$ , the

Euler characteristic. One can compute the left side from (10) and (12) and thus
get a semi-local Gauss-Bonnet theorem. The reader should compare with [1]

which is the source of many ideas of this paper.
(e) If $\mathfrak{F}$ admits a bundle–like metric then $E_{2}^{*,0}(\mathfrak{F})$ are finite dimensional.

This follows from [4]; the result is proved there by using Hodge theory.
(f) If a parametrix is sought for some other skew derivation $\partial$ (say, the $\overline{\partial}$

of complex manifolds) then instead of Lie derivatives L. one has to deal with
the derivations $\tau_{\nu}\partial+\partial\tau_{\nu}$ and instead of $\nu_{t}$ ; $M\rightarrow M$ with the flow on $T(M)$ given
by the vector field on $T(M)$ corresponding to this. This remark is important
to give canonical constructions of parametrices which are well behaved with
respect to some extra structure on $M$ (say, a connection). We will deal with
these topics in a subsequent paper.

(g) Take the foliation $\mathfrak{F}$ on a torus $T^{2}$ with irrational slope $\alpha$ . Then if $\alpha$

can be well-approximated by rationals $E_{1}(\mathfrak{F})$ is infinite dimensional; otherwise
finite dimensional. So even for an ergodic, minimal flow $E_{1}(\mathfrak{F})$ can be infinite
dimensional. (One must be able to construct time averages of forms in the $C^{1}-$

topology for $E_{1}(\mathfrak{F})$ to be finite dimensional). We also remark that if $M$ is
orientable and $E_{1}(\mathfrak{F})$ is finite dimensional then $E_{\infty}^{pq}(\mathfrak{F})\cong E_{\infty}^{c-p,l-q}(\mathfrak{F})$ , (and so, if
$c(\mathfrak{F})$ is odd, that signature $(M)=0)$ . This duality theorem, which is the analog
of Serre’s duality for complex manifolds, holds in other instances too. All this
can be found in [6].
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(h) The Programme of studying the filtration (3) of the deRham complex
was commenced in [5], a thesis written under the guidance of Professor
Anthony Phillips at Stony Brook.
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