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\S 1. Introduction.

The Purpose of this Paper is first to define a Z-invariant for involutions
on homology 3-spheres which have circles as the sets of fixed points. Our
definition of the invariant is derived from Hirzebruch’s formula about the signa-
ture of ramified coverings [2]. For the second we shall present examples
of involutions which are distinguished by our invariant. Finally, as an applica-
tion of this invariant, we shall show a theorem on 4-dimensional homotopy
smoothings. It will be proved that $\mathcal{H}S(P^{2}\times D^{2}, \partial)$ has a nontrivial element.

\S 2. Definition of $\sigma(H, \tau)$ .
We shall work in the smooth category. The following notations and con-

ventions are used throughout the paper.
For an involution $T:X\rightarrow X,$ $X/T$ denotes its orbit space, and FixT denotes

the set of fixed points of $T$. When $A\subset X$ is invariant under $T$, we write $A/T$

instead of $A/(T|A)$ . Let $i:X^{n}\rightarrow Y^{m}$ be an embedding of a compact oriented
n-manifold $X$ into an m-manifold $Y$ such that $i^{-1}(\partial Y)=\partial X$ . Then [X, $\partial X$]

denotes a homology class in $H_{n}(Y, \partial Y)$ represented by (X, $\partial X$ ). As usual,
$H_{n}(Y, \partial Y)$ means an n-dimensional integral homology group of $(Y, \partial Y)$ . For a
homology class $x,$ $x^{2}\in Z$ denotes its self-intersection number whenever it is
defined. Suppose that a manifold $X$ and its boundary $A$ are oriented, we write
$\partial X=A$ when {the orientation of $A$ } $\times$ { $the$ outward normal vector} coincides
with the orientation of $X$.

Now we define $\sigma(H, \tau)$ . Let $H^{3}$ be a homology 3-sphere, that is, a closed
3-manifold having an integral homology group isomorphic to that of a 3-sphere.
Let $\tau$ be a smooth involution on $H$ whose fixed points set $Fix\tau$ is diffeomorphic

to a circle $S^{1}$ . For $(H, \tau)$ , we define the signature $\sigma(H, \tau)\in Z$ using the follow-
ing two lemmas.

LEMMA 1. $ H/\tau$ is a homology 3-sphere.



654 S. FUKUHARA

PROOF. Because $Fix\tau$ is a codimension two submanifold in $H,$ $ H/\tau$ can be
regarded as a manifold by the standard way. Let $ p\in Fix\tau$ and $\pi$ : $ H\rightarrow H/\tau$ be
a canonical projection. For a given $x\in\pi_{1}(H/\tau, \pi(p))$ , represent $x$ by a smooth
loop1: $[0,1]\rightarrow H/\tau$ which intersects with $(Fix\tau)/\tau$ only at $\pi(p)$ and transversely.
Then clearly 1 can be ” lifted “ with respect to $\pi$ , that is, there is a loop
$l_{1}$ : $[0,1]\rightarrow H$ such that $\pi\circ l_{1}=l$ . Thus $\pi_{*};$ $\pi_{1}(H, p)\rightarrow\pi_{1}(H/\tau, \pi(p))$ is epic.
Therefore $\pi_{*};$ $H_{1}(H)\rightarrow H_{1}(H/\tau)$ is also epic. From the assumption that $H_{1}(H)$

$=0,$ $H_{1}(H/\tau)=0$ follows.
LEMMA 2. For any $(H, \tau)$ , there is a pair $(M, T)$ of an oriented compact

4-manifold $M$ and an orientation preserving involution $T$ on $M$ which satisfies
the following conditions:

(1) $\partial(M, T)=(H, \tau)$ .
(2) $\{i_{*}^{-1}[(FixT)/T, \partial]\}^{2}=0$ zohere $i_{*}:$ $H_{2}(M/T)\rightarrow H_{2}(M/T, \partial)$ is an isomor-

phism induced from an inclusion map
$\cdot$

(3) $w_{2}(M)=w_{2}(M/T)=0$ where $w_{2}$ mean the second Stiefel-Whitney class.
PROOF. It is well known that any orientable closed 3-manifold bounds a

simply connected parallelisable 4-manifold (Refer to [4], p. 53). For $ H/\tau$, we
supply such a manifold $N$. Because $ H/\tau$ is a homology 3-sphere, (Fix $\tau$) $/\tau\subset H/\tau$

bounds a connected Seifert surface, say $S_{1}$ , in $ H/\tau$ . Push the interior of $S_{1}$ into
the interior of $N$. As the result, we obtain a surface $S$ properly embedded in
$N$ such that $\partial S=(Fix\tau)/\tau$ and its trace $F$ of pushing is a 3-manifold embedded
in $N$ having $S\cup S_{1}$ as a boundary (See Figure 1.).

Figure 1.

Consider the following diagram $(^{*})$ .

$H_{2}(H/\tau, H/\tau-(Fix\tau)/\tau)\rightarrow H_{1}(H/\tau-(Fix\tau)/\tau)\rightarrow H_{1}(H/\tau)\cong 0$

$H_{2}(N, \downarrow N-S)$ $\succ H_{1}(N-S)\downarrow$ $\rightarrow H_{1}(N)\cong 0\downarrow$

$(^{*})$

From the fact that normal bundles of $(Fix\tau)/\tau$ and $S$ in $ H/\tau$ and $N$ are both
trivial and the excision theorem, we obtain

$H_{2}(H/\tau, H/\tau-(Fix\tau)/\tau)\cong H_{2}((Fix\tau)/\tau XD^{2}, (Fix\tau)/\tau\times S^{1})$

$H_{2}(N, N-S)\cong H_{2}(S\times D^{2}, S\times S^{1})$ .

Since the homology groups above are generated by the image of the natural
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maps

$H_{2}(D^{2}, S^{1})\rightarrow H_{2}((Fix_{T})/\tau\times D^{2}, (Fix_{T})/\tau\times S^{1})$

$H_{2}(D^{2}, S^{1})\rightarrow H_{2}(S\times D^{2}, S\times S^{1})$ ,

the map represented by the left vertical arrow in the diagram $(*)$ is an isomor-
phism. Furthermore, since $N-F$ is a deformation retract of $N,$ $ H_{2}(N-F)\rightarrow$

$H_{2}(N-S)\rightarrow H_{2}(N)$ is an isomorphism and $H_{2}(N, N-S)\rightarrow H_{1}(N-S)$ is a mono-
morphism. Hence $H_{1}(H/\tau-(Fix\tau)/\tau)\rightarrow H_{1}(N-S)\cong Z$ induced from an inclusion
is an isomorphism. Let $p;M\rightarrow N$ be a 2-fold ramified covering of $N$ with
branching locus $S$ which corresponds to an epimorphism $\pi_{1}(N-S)\rightarrow H_{1}(N-S)$

$\rightarrow Z_{2}$ . More precisely $M$ is constructed as follows. Let $N_{1}$ be a manifold ob-
tained from $M$ cut open along $F$ . Since $F$ is two-sided, we obtain cut ends $F_{1}$

and $F_{2}$ . Let $N_{1}^{\prime},$ $F_{1}^{f}$ and $F_{2}^{\prime}$ be copies of $N_{1},$ $F_{1}$ and $F_{2}$ . Then $M$ is obtained
from $N_{1}$ and N\’i by identifying $F_{1}$ with $F_{2}^{\prime},$ $F_{2}$ with $F_{1}^{\prime}$ . Since $\pi_{1}(N)=\pi_{1}(N_{1})$

$=\pi_{1}(N_{1}^{\prime})=1,$ $\pi_{1}(M)=1$ from van Kampen’s theorem.
Let $T:M\rightarrow M$ be a covering transformation. We shall show that $(M, T)$

satisfies (1) $\sim(3)$ . By the construction, we obtain

$\partial(M, T)=(H, \tau)$ and $\{j_{*}^{-1}[(FixT)/T, \partial]\}^{2}=\{i_{*}^{-1}[S, \partial]\}^{2}=\{i_{*}^{-1}[S_{1}, \partial]\}^{2}=0$ .
Let $\tilde{S}=p^{-1}(S)$ , and $N(\tilde{S})$ be a tubular neighbourhood of $\tilde{S}$ in $M$. Let int $N(\tilde{S})$

be interior of $N(\tilde{S})$ in $M$ and $\delta N(\tilde{S})=N(\tilde{S})$-int $N(\tilde{S})$ . Consider the following
sequence:

$H^{1}(M;Z_{2})\rightarrow H^{1}$ ($M$-int $N(\tilde{S});Z_{2}$) $\oplus H^{1}(N(S);Z_{2})\rightarrow^{j}H^{1}(\delta N(\tilde{S});Z_{2})$

$\rightarrow H^{2}(M;Z_{2})\rightarrow^{l}H^{2}(M- intN(S);Z_{2})\oplus H^{2}(N(\tilde{S});Z_{2})$ .

Taking ($H$, Fix $\tau$) and $(M,\tilde{S})$ instead of ( $ H/\tau$, Fix $\tau/\tau$) and $(N, S)$ , consider the
similar diagram to $(^{*})$ . We obtain $H_{1}(M-\tilde{S})\cong Z$ and $H^{1}(M-\tilde{S};Z_{2})=H^{1}(M$-int
$N(S);Z_{2})=Z_{2}$ . Since $H_{1}(\delta N(\tilde{S});Z_{2})=H^{1}(\tilde{S}\times S^{1} ; Z_{2})=H^{1}(S;Z_{2})\oplus H^{1}(S^{1} ; Z_{2})$ ,
$H^{1}(\delta N(\tilde{S});Z_{2})$ has the same rank as $H^{1}(M- intN(S);Z_{2})\oplus H^{1}(N(S);Z_{2})$ over
$Z_{2}$ . Furthermore $j$ is a monomorphism, since $H^{1}(M;Z_{2})=0$ . Thus $j$ is an
isomorphism, and then $i$ is a monomorphism. Note that $i=i_{1}\oplus(-i_{2})$ where

$i_{1}$ : $H^{2}(M;Z_{2})\rightarrow H^{2}$($M$-int $N(\tilde{S});Z_{2}$) and

$i_{2}$ : $H^{2}(M;Z_{2})\rightarrow H^{2}(N(\tilde{S}) ; Z_{2})\cong 0$

are induced maps from inclusions.
Since $i_{2}(w_{2}(M))=w_{2}$ ($M$-int $N(\tilde{S})$) $=p^{*}w_{2}(N-p(intN(\tilde{S})))=0$, and $i_{2}(w_{2}(M))=$

$w_{2}(N(S))=0$, we obtain $w_{2}(M)=0$ . This completes the proof of Lemma 2.
We now define the signature $\sigma(H, \tau)$ for an involution $\tau$ on $H$ which has a

circle as the set of fixed points.
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DEFINITION. For any $(H, \tau)$ , take $(M, T)$ satisfying the conditions (1) and
(2) in Lemma 2. Then we define

$\sigma(H, \tau)=\frac{1}{8}$ {sign $(M)-2$ sign $(M/T)$} $\in Q$

where sign $($ $)$ means the ordinary signature defined by the intersection form.
Then we can prove the following lemma.
LEMMA 3. $\sigma(H, \tau)$ is well defined and $\sigma(H, \tau)\in Z$.
PROOF. Let $(M, T)$ and $(M^{\prime}, T^{\prime})$ be pairs satisfying (1) and (2) in Lemma

2. Consider closed 4-manifold $M_{1}$ which consists of $M$ and $M^{\prime}$ identified along
their boundaries. Let $T_{1}$ be the involution on $M_{1}$ which is defined by $T_{1}|M=T$

and $T_{1}|M^{\prime}=T^{\prime}$ .
Let

$j_{*};$ $H_{2}(M/T)\rightarrow H_{2}(M/T, \partial)$ and

$i_{*}^{f}:$ $H_{2}(M^{\prime}/T^{\prime})\rightarrow H_{2}(M^{\prime}/T^{\prime}, \partial)$

be isomorphisms induced from inclusion maps. From the condition

(2) $\{i_{*}^{-1}[(FixT)/T, \partial]\}^{2}=\{i_{*}^{\prime-1}[(FixT^{\prime})/T^{\prime}, \partial]\}^{2}=0$ ,

we obtain $[(FixT_{1})/T_{1}]^{2}=0$ because, up to sign,

$[(FixT_{1})/T_{1}]^{2}$ equals to

$\{i_{*}^{-1}[(FixT)/T, \partial]\}^{2}\pm\{i_{*}^{f-1}[(FixT^{\prime})/T^{\prime}, \partial]\}^{2}$ .

Thus, applying Hirzebruch’s theorem about the signature of ramified cover-
ings [2], we obtain

sign $(M_{1})-2$ sign $(M_{1}/T_{1})=0$ .
Then we have

sign $(M)-2$ sign $(M/T)=sign(M^{\prime})-2$ sign $(M^{\prime}/T^{\prime})$

and $\sigma(H, \tau)$ is well defined.
Let $(M, T)$ be a pair satisfying not only (1) and (2) but also (3) in Lemma

2. Then sign $(M)$ and sign $(M/T)$ is divisible by 8 because intersection forms
of $M$ and $M/T$ are even unimodular. This completes the proof.

Now we define the cobordism group $\Omega$ . Let $(H_{1}, \tau_{1})$ and $(H_{2}, \tau_{2})$ be involu-
tions on homology 3-spheres which have circles as the sets of fixed point.
Then we say that they are cobordant in our sense when there is an involution
$T$ on $M$ satisfying:

(1) $\partial(M, T)=(H_{1}, \tau_{1})\cup(-H_{2}, \tau_{2})$ ,
(2) $M$ is an H-cobordism ( $i$ . $e$ . a homology cobordism) between $H_{1}$ and $H_{2}$ ,



Invariant for involutions on homology 3-spheres

(3) FixT is diffeomorphic to $S^{1}\times I$.
To define the connected sum of $(H_{1}, \tau_{1})$ and $(H_{2}, \tau_{2})$, take an equivariant

embedding
$h_{t}$ : $(D^{3}, D^{1})\rightarrow(H_{i}, Fix_{T_{i}})$ $(i=1,2)$ .

Then, attach $H_{1}-h_{1}(intD^{3})$ and $H_{2}-h_{2}(intD^{3})$ along their boundaries with an
equivariant orientation reversing diffeomorphism. By the standard argument,
we can show that the connected sum operation is compatible with the cobordism
relation and the set of cobordism classes $\Omega$ obtains abelian group structure. It
is clear that the function $\sigma$ : $\Omega\rightarrow Z$ which assigns the signature $\sigma(H, \tau)$ to
$[H, \tau]\in\Omega$ , a class of $(H, \tau)$ , is a well defined group homomorphism. In the
following section, we shall show that $\sigma$ is an epimorphism.

\S 3. Examples.

In this section we shall show the existence of $(H, \tau)$ with $\sigma(H, \tau)=k$ for
any integer $k$ .

Let $V_{k}$ be the Brieskorn manifold defined by

$V_{k}=\{(x, y, z)^{-}\subset C^{3}|x^{2}+y^{3}+z^{6k+1}=0, |x|^{2}+|y|^{2}+|z|^{2}=1\}$

for $k=0,1,2,$ $\cdots$

Let $\tau_{k}$ ; $V_{k}\rightarrow V_{k}$ be a map defined by

$\tau_{k}(x, y, z)=(-x, y, z)$ .

Then it is well known that $V_{k}$ is a homology 3-sphere (See $e$ . $g$ . $[3]$ ) and
$\tau_{k}$ is a smooth involution with $Fix\tau_{k}=V_{k}\cap\{x=0\}\cong S^{1}$ . Let $t_{k}$ denote the torus
knot of type $(3, 6k+1)$ in $S^{3}$ and $W_{k}$ be the 2-fold branched covering space
with branching locus $t_{k}$ . Denote by $\sigma_{k}$ the covering transformation with respect

to $W_{k}$ . Then, as is well known [3], $(V_{k}, \tau_{k})$ is equivariantly diffeomorphic to
$(W_{k}, \sigma_{k})$ . For $(W_{k}, \sigma_{k}),$ $\sigma(W_{k}, \sigma_{k})$ equals, up to sign, to 1/8 {the signature of
the torus knot $t_{k}$ } $=k$ (See [3].). Thus we have $|\sigma(V_{k}, \tau_{k})|=k(k=0,1,2, \cdots )$ .
Concluding these, we have the following proposition.

PROPOSITION 1. $\sigma$ : $\Omega\rightarrow Z$ is an ePimorphism.

\S 4. Some contractible 4-manifolds.

In this section we shall present an example of a homology 3-sphere which
bounds a contractible 4-manifold. We shall use this example to construct a 4-
dimensional nontrivial homotopy smoothing in the following section.

Now we describe the spinnable structure of $V_{k}$ . Recall that
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$V_{k}=\{(x, y, z)\in C^{3}|x^{2}+y^{3}+z^{6k+1}=0, |x|^{2}+|y|^{2}+|z|^{2}=1\}$ .
Define:

$K_{k}=\{(x, y, z)\in V_{k}|z=0\}$ ,

$F_{k}=\{(x, y, z)\in V_{k}|z\geqq 0\}$ ,

$V=\{(x, y)\in C^{2}||x|^{2}+|y|^{2}=1\}$ ,

$K=\{(x, y)\in V|x^{2}+y^{3}=0\}$ ,

$F=\{(x, y)\in V|x^{2}+y^{3}\leqq 0\}$ .

Let $\psi_{k}$ : $V_{k}\rightarrow V$ be a map defined by

$\psi_{k}(x, y, z)=(s^{1/2}x, s^{1/3}y)$

where $s$ is the unique positive real number satisfying the equation $|x|^{2}s+|y|^{2}s^{2f3}$

$=1$ (Refer to [5].).

Then, for $k\geqq 1,$ $\psi_{k}$ is a $(6k+1)$-fold cyclic branched covering map with $K$

$=\psi_{k}(K_{k})$ as the branching locus. Furthermore $\psi_{k}|F_{k}$ : $F_{k}\rightarrow F$ is a diffeomor-
phism. Note that $F$ is diffeomorphic to a punctured torus.

Now let $E_{k}$ and $E$ be mapping tori

$F_{k}\times[0,1]/((x, y, z), 0)\sim((-x, \omega^{2}y, z), 1)$

and

$F\times[0,1]/((x, y),$ $O$) $\sim((-x, \omega^{2}y),$ $1$ )

where $\omega=\exp\frac{2}{3}\pi i$ . Let consider the map $\varphi_{k}$ : $E_{k}\rightarrow V_{k}$ defined by

$\varphi_{k}((x, y, z), t)=(x\cdot$ exp $(6k+1)\pi it,$ $y\cdot\exp\frac{2}{3}(6k+1)\pi it,$ $z$ . exp $2\pi it)$ .

Then we obtain the following proposition by the same method as used in [1].

PROPOSITION 2. $V_{k}$ is diffeomorphic to $E_{k}\cup\partial F_{k}\times D^{2}$ where an attaching
diffeomorphism $h_{k}$ : $\partial E_{k}\rightarrow\partial F_{k}\times S^{1}$ is defined by

$ h_{k}((x, y, 0), t)=((x\cdot$ exp $(6k+1)\pi it,$ $y\cdot\exp\frac{2}{3}(6k+1)\pi it,$ $0),$ $t)$ .

Note that the diffeomorphism $\psi_{k}|F_{k}$ : $F_{k}\rightarrow F$ induces the diffeomorphism
from $E_{k}$ to $E$ . With the identification $F_{k}\approx F$ and $E_{k}\approx E$, we have $the_{\wedge}^{\vee}following$

immediately.

PROPOSITION 3. $V_{k}\cong E\bigcup_{J_{k}}\partial F\times D^{2}$ where $f_{k}$ : $\partial E\rightarrow\partial F\times S^{1}$ is defined by

$f_{k}((x, y),$ $t$) $=(x\cdot\exp(6k+1)\pi it,$ $y\cdot\exp\frac{2}{3}(6k+1)\pi it,$ $t)$ .
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Now let $B^{2}$ be a 2-disk, and let $g:\partial B^{2}\rightarrow\partial F$ be a diffeomorphism. Let $M^{3}$

$=EUB^{2}h\times S^{1}$ is dePned by

$h((x, y),$ $t$) $=(g(x\cdot\exp\pi it,$ $y\cdot\exp\frac{2}{3}\pi it),$ $t)$ .

We denote by $T_{1}$ a torus in $M^{3}$ which consists of $F\times\{0\}\subset E\subset M$ and $B^{2}\times\{0\}$

$\subset M$. From Mayor-Vietoris’ sequence for $(M^{3} ; E, B^{2}\times S^{1})$ and the fact that
$H_{*}(E)=H_{*}(S^{1})$ , we can show $M^{3}$ is a homology $S^{1}\times S^{2}$ and inclusion $j:T\rightarrow M$

induces an isomorphism $j^{*}:$ $H_{2}(T)\rightarrow H_{2}(M)$ . We can regard $V_{k}$ as the manifold
obtained from $M$ by performing the surgery on $\{p\}\times S^{1}$ where $p\in intB^{2}$ . If
we choose the standard framing decided by the product structure of $B^{2}\times S^{1}$ ,
then we obtain $V_{0}$ . Furthermore, if we choose the k-times twisted one, we
obtain $V_{k}$ . With respect to the orientation of $V_{k}$ , we adopt the following
convention. Define the orientation of $D^{4}=\{(x, y)\in C^{2}||x|^{2}+|y|^{2}\leqq 1\}$ as the
induced one from the complex structure of $C^{2}$ . We regard $V$ as oriented with
the relation $\partial D^{4}=V$ . Furthermore, as an orientation of $V_{k}$ , we adopt the in-
duced one from $V$ with $\psi_{k}$ : $V_{k}\rightarrow V$.

Next we construct a cobordism between $V_{k}$ and $V_{0}$ . Let $W_{k}$ be a manifold
obtained from $M\times I$ by attaching two 2-handles at $B^{2}\times S^{1}\times\{0\}$ and $B^{2}\times S^{1}\times\{1\}$

with untwisted and k-twisted framings respectively. Then, clearly, $\pi_{1}(W_{k})=1$

and components of $\partial W_{k}$ are $V_{0}$ and $V_{k}$ . Since $V_{0}$ is diffeomorphic to a 3-
sphere, we can attach $D^{4}$ to $W_{k}$ along $V_{0}$ . By $W_{k}^{\prime}$ , we denote the resulting
manifold. Now we survey 2-dimensional homology group of $W_{k}^{f}$ . Denote by $S$

a 2-sphere in $W_{k}^{\prime}$ which consist of the core of the attached 2-handles and $\{p\}$

$\times S^{1}\times I\subset M\times I\subset W_{k}^{f}$ . Denote by $T$ a torus in $M\times\{1/2\}\subset W_{k}^{\prime}$ defined by $T=T_{1}$

$\times\{1/2\}$ . We denote by $[S]$ and $[T]$ the elements of $H_{2}(W_{k}^{\prime})$ represented by
2-manifolds $S$ and $T$ with suitable orientations. By the easy computation we
obtain that $[S]$ and $[T]$ are generator of $H_{2}(W_{k}^{f})\cong Z\oplus Z$. Furthermore, under
the orientation of $W_{k}^{\prime}$ such that $\partial W_{k}=V_{k}$ , the intersection matrix of $W_{k}^{f}$ is

$\left(\begin{array}{ll}k & 1\\1 & 0\end{array}\right)$

when we take $[S]$ and $[T]$ as a base.
Next we shall try to kill the element of $\pi_{2}(W_{k}^{\prime})\cong H_{2}(W_{k}^{\prime})$ which corresponds

to $[T]$ by Hurewicz homomorphism. But, in general, it is impossible because,
by Rochlin’s theorem, $V_{k}$ does not bounds an acyclic 4-manifold for $k$ odd.
When $k=2$, we can do surgery to kill $\pi_{2}(W_{k}^{f})$ . Its proof occupies the remainder
of this section.

THEOREM 1. $V_{2}$ bounds a contractible 4-manifold.
PROOF. We shall show that we can represent a homology class $[T]\in$
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$H_{2}(W_{2}^{\prime})$ by an embedded sphere and, using this, we can kill $[T]$ . For this
reason, Prst we shall show that there is a menbrane $P$, that is, $P$ is an embed-
ded 2-disk in $W_{2}^{\prime}$ such that $T\cap P=\partial P$, with index $i(P)=0$ (See [6] for a precise
definition and fundamental properties of menbranes and their indices.). Moreover
$P$ can be chosen so that $P_{/\neg S=\emptyset}$ . The construction of $P$ is as follows.

First we describe in Figure 2 how $F_{0}$ and $K_{0}$ take their positions in $V_{0}\cong S^{3}$ .

Figure 2.

Let 1 and $m$ be loops on $F_{0}$ as in the figure above. Let push down the loop $m$

such that the resulting loop $m_{1}$ does not intersect with $l$ in $V_{0}$ . Obviously $l$ is
unknotted in $V_{0}$ and bounds 2-disk $D$ in $V_{0}$ such that $ D\cap m_{1}=\emptyset$ . We can regard
$l\subset M$ because $l\subset E_{0}\approx E$ and $E\subset M$. Let $P_{0}=D\cup l\times[0,1]\subset W_{2}^{\prime}$ . By smoothing
$P_{0}$ near $1\times\{0\}$ , we obtain a menbrane $P_{1}$ . If we construct a new menbrane $P_{1}^{\prime}$

by moving $P_{1}$ with an isotopy to make $P_{1}^{f}$ intersect with $P_{1}$ transversely, then
intersection number should be $-1$ . This shows that $i(P_{1})=-1$ . According to
Rochlin [5], from $S\subset W_{2}^{\prime}$ , we can make a menbrane $Q$ with $i(Q)=[S]^{2}\pm 1=2\pm 1$

such that $\partial Q$ is a trivial loop on $T$. For our use we choose the case of $i(Q)$

$=2-1=1$ . Then we connect $P_{1}$ and $Q$ to make a new menbrane $P$ with $i(P)$

$=0$ . By this menbrane $P$ on $T$, we can construct an embedded 2-sphere, say
$S^{\prime}$ , which represents $[T]$ . Since $S^{\prime}$ has a trivial normal bundle in $W_{2}^{f}$ , we can
perform surgery to kill $H_{2}(W_{2}^{\prime})$ . By $W$ we denote the resulting manifold.
Clearly $W$ is acyclic.

The simply-connectivity of $W$ is shown as follows. It will be sufficient if
we show that a fiber of a normal $S^{1}$-bundle of $S^{f}\subset W_{2}^{f}$ is null homotopic in
$W_{2}^{f}-S^{\prime}$ . Let $S_{1}$ be an embedded 2-sphere which is isotopic to $S$. We can
assume that $S_{1}$ intersects with $T$ at a point transversely, and intersects with

Figure 3.
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$P$ at $p_{1},$ $\cdots$ , $p_{i},$ $\cdots$ , $p_{n}$ transversely. Let $q_{i,1}$ and $q_{i.2}$ are intersection points of
$S$ and $S_{1}$ which correspond to $p_{t}$ (See Figure 3.). Let $l_{i}$ be a path in $S^{\prime}$ from
$q_{i,1}$ to $q_{i.2}$ . Let $M_{n}$ be a manifold made from $S_{1}$ by removing $D^{2}- fiber$ at $q_{i,1}$

and $q_{i.2}$ ($i=1,$ $\cdots$ , n) of normal $D^{2}$-bundle of $S^{\prime}$ in $W_{2}^{f}$ , and, in exchange, add
normal $S^{1}$ -bundle of $S^{\prime}$ in $W_{2}^{\prime}$ restricted on $l_{i}$ ($i=1,$ $\cdots$ , n) (See Figure 4). Then

Figure 4.

the resulting manifold $M_{n}$ is a surface with genus $n$ which intersect with $S^{\prime}$

only at a point transversely.
Next we consider a loop $\overline{l}_{i}$ ($i=1,$ $\cdots$ , n) which is constructed as follows.

We choose a lifting $l_{i}^{f}$ of $l_{i}$ on $M_{n}$ and a path $n_{t}$ ($i=1,$ $\cdots$ , n) in $M$ which joins
an end point and a starting point of $l_{i}^{\prime}$ as in Figure 5. Let $\acute{l}_{i}=l_{i}^{\prime}\cup n_{i}$ $(i=1, \cdots , n)$ .

Figure 5.

By the suitable choice of $n_{i}$ , we can assume that $\overline{l}_{i}$ is freely homotopic to the
loop $m_{1}\subset V_{0}$ in $W_{2}^{f}-S^{f}$ (note that the loop $l$ and $m$ in $V_{0}$ corresponds to the
longitude and meridian of the torus $T$). But $m_{1}$ is null homotopic in $W_{2}^{\prime}-S^{f}$ .
Thus there is a 2-disk (not necessarily embedded) in $W_{2}^{f}-S^{\prime}$ whose boundary
is $\overline{l}_{i}$ for $i=1,$ $\cdots$ , $n$ . Hence we obtain a 2-sphere (not necessarily embedded) in
$W_{2}^{\prime}$ which intersect $S^{f}$ at a point transversely. This shows that $\pi_{1}(W)=1$ .
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\S 5. A nontrivial element of $\mathcal{H}\mathcal{S}(P^{2}\times D^{2}, \partial)$ .

As usual we denote a real projective plane by $P^{2}$ . In this section we shall
present a nontrivial element of $\mathcal{H}\mathcal{S}(P^{2}\times D^{2}, \partial)$ . As far as the auther knows,
very few are known about homotopy smoothings of 4-manifolds except for the
case of $S^{1}\times S^{3}\# k(S^{2}\times S^{2})$ and $P^{4}\# k(S^{2}\times S^{2})$ . We construct a nontrivial element
of $\mathcal{H}\mathcal{S}(P^{2}\times D^{2}, \partial)$ using the example presented in \S 4.

The construction is as follows. First we consider a “suspension” of $(V_{2}, \tau_{2})$ .
Let $\Sigma$ be a 4-manifold which consists of two copies of $W$ in the proof of
Theorem 1, attached by $\tau_{2}$ ; $\partial W\rightarrow\partial W$ along their boundaries. Define an in-
volution $T$ on $\Sigma$ so that if $x$ belongs to the copy, then $T(x)$ may be a corre-
sponding point in the other copy. Then we can easily show that $\Sigma$ is a homotopy
4-sphere and $T$ is well defined involution on $\Sigma$ . Furthermore, when we restrict
$T$ on $ V_{2}\subset\Sigma$ , we obtain $(V_{2}, \tau_{2})$ . Let $S^{3}$ and $S^{4}$ be 3 and 4-spheres, and $A_{0}$ and
$A$ be standard involutions on $S^{3}$ and $S^{4}$ which have circles $S^{1}\subset S^{3}\subset S^{4}$ as sets of
fixed points. We shall dePne an equivariant map $h:(\Sigma, T)\rightarrow(S^{4}, A)$ and show
that $h$ has some exotic property.

Let $h_{0}$ : $(V_{2}, \tau_{2})\rightarrow(S^{3}, A_{0})$ be an equivariant map which satisfies the follow-
ing condition (1) and (2):

(1) For equivariant tubular neighbourhoods N\’o and $\Lambda_{0}^{\Gamma}$ of $Fix\tau_{2}$ and $FixA_{0}$

in $V_{2}$ and $S^{3}$ respectively, $h_{0}|N_{0}^{\prime}$ : $N_{0}^{\prime}\rightarrow N_{0}$ is a diffeomorphism.
(2) $h_{0}$ ( $V_{2}$-int $N_{0}^{f}$) $=S^{3}$-int $N_{0}$ .

It is easy to show that such $h_{0}$ exists because we can construct a map from
$V_{2}/\tau_{2}$ to $S^{3}/A_{0}$ which satisfies the conditions similar to (1) and (2) above, then
take the ”lifting” of it as $h_{0}$ .

We define $h:(\Sigma, T)\rightarrow(S^{4}, A)$ to be a “suspension“ of $h_{0}$ . More precisely,
extend $h_{0}$ to a map from $W$ to $D^{4}$ , and extend further to a map from $\Sigma$ to $S^{4}$

to be equivariant. With respect to $h$ , we can assume the following (1) and (2).
(1) For equivariant tubular neighbourhoods $N^{f}$ and $N$ of FixT and FixA

in $\Sigma$ and $S^{4},$ $h|N^{\prime}$ : $N^{\prime}\rightarrow N$ is a diffeomorphism.
(2) $h(\Sigma_{-}intN)=S^{4}- intN$.
Let $Q^{\prime}=(\Sigma_{-}intN^{\prime})/T$ and $Q=(S^{4}- intN)/A$ . Let $/l;-Q^{f}\rightarrow Q$ be the map

induced from $h|(\Sigma_{-}intN^{\prime})$ . By the short computation we can show that $h$ is a
homotopy equivalent map of $(Q^{\prime}, \partial)$ and $(Q, \partial)$ . Since $Q$ is diffeomorphic to
$P^{2}\times D^{2}$ , we can consider $((Q^{\prime}, \partial),\overline{h})$ as a homotopy smoothing of $(P^{2}\times D^{2}, \partial)$ .
Now we can state our result on 4-dimensional homotopy smoothings.

THEOREM 2. $/l;-(Q^{\prime}, \partial)\rightarrow(Q, \partial)$ is not homotopic to a diffeomorphism fixing
the boundary.

Identifying $(Q, \partial)$ with $(P^{2}\times D^{2}, \partial)$ , we have the following corollary.
COROLLARY. There is a nontrivial element in $\mathcal{H}\mathcal{S}(P^{2}\times D^{2}, \partial)$ .
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PROOF OF THEOREM 2. We shall prove by reduction to absurdity. Suppose
$\overline{h}$ is homotopic to a diffeomorphism by a homotopy $H:Q^{\prime}\times I\rightarrow Q$ where $H_{0}=\overline{h}$

and $H_{1}$ is a diffeomorphism and $ H_{t}|\partial=\overline{h}|\partial$ for $0\leqq t\leqq 1$ . Let $Q_{0}=$ ( $S^{3}$-int $N_{0}$) $/A_{0}$ .
Then $Q_{0}$ is a properly embedded submanifold in $Q$ and diffeomorphic to $S^{1}\times D^{2}$ .
We can assume $H$ is t-regular at $Q_{0}$ . Let $E=H^{-1}(Q_{0})$ . Then we have:

LEMMA 4. $w_{1}(E)=w_{2}(E)=0$ .
PROOF OF LEMMA 4. Let $\gamma,$

$\eta$ be normal bundles of $E$ and $Q_{0}$ in $Q^{\prime}\times Iand$

$Q$ respectively. Let $i:E\rightarrow Q^{f}\times I$ and $j:Q_{0}\rightarrow Q$ be inclusion maps. We have
a commutative diagram

$H$

$Q^{\prime}\times I\rightarrow Q$

$ iJ\gamma$ $ j\int\eta$ and
$H|E$

$E$ $\rightarrow Q_{0}$

$i^{*}W(Q^{\prime}\times I)=W(E)W(\gamma)=W(E)(H|E)^{*}W(\eta)$ $(^{**})$

where $W()$ means the total Stiefel-Whitney class.
Comparing l-dimensional classes in $(^{**})$ , we obtain $i^{*}w_{1}(Q^{\prime}\times I)=w_{1}(E)+$

$(H|E)^{*}w_{1}(\eta)$ . Let $\alpha$ be the generator of $H^{1}(Q;Z_{2})\cong Z_{2}$ . Since $ w_{1}(\eta)=j^{*}\alpha$

and $ w_{1}(Q^{\prime}\times I)=H^{*}w_{1}(Q)=H^{*}\alpha$ , we have $w_{1}(E)=i^{*}w_{1}(Q^{\prime}\times I)+(H|E)^{*}w_{1}(\eta)=$

$i^{*}H^{*}\alpha+(H|E)^{*}j^{*}\alpha=2i^{*}H^{*}\alpha=0$.
Comparing 2-dimensional classes in $(**)$ , we have $i^{*}w_{2}(Q^{\prime}xI)=w_{2}(E)$ . From

the homotopy invariance of $w_{2},$ $w_{2}(Q^{\prime}\times I)=H^{*}w_{2}(Q)$ . Hence $i^{*}w_{2}(Q^{f}\times I)=$

$i^{*}H^{*}w_{2}(Q)=(H|E)^{*}j^{*}w_{2}(Q)$ . Since $H^{2}(Q_{0} ; Z_{2})=0,$ $j^{*}w_{2}(Q)=0$, and we have
$w_{2}(E)=0$. This completes the proof of Lemma 4.

We proceed the proof of Theorem 2. Let $F$ be a subspace of $(\Sigma/T)\times I$

which is defined by $F=E\cup(N^{\prime}/\tau_{2})\times I$ (See Figure 6.).

Figure 6.

Then $F$ has the structure of a 4-manifold and possesses the followlng pro-
perties in Lemma 5.

LEMMA 5. (1) $\partial F\cong V_{z/}^{\prime}\tau_{2}\cup S^{3}/A_{0}$ .
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(2) $w_{1}(F)=w_{2}(F)=0$ .
(3) sign $(F)\equiv 0$ mod 16.

PROOF OF LEMMA 5. From the construction, (1) and $w_{1}(F)=0$ hold. We
shall prove $w_{2}(F)=0$ . Consider the Mayor-Vietoris sequence and the diagram:

$j$

$ H^{1}(E;Z_{2})\oplus H^{1}((N_{0}^{\prime}/\tau_{2})\times I;Z_{2})\rightarrow H^{1}(\partial(N_{0}^{f}/\tau_{2})\times I;Z_{2})\rightarrow$

$\uparrow$ $\uparrow$

$H^{1}((S^{3}- intN_{0})/A_{0} ; Z_{2})\oplus H^{1}(N_{0}/A_{0} ; Z_{2})\rightarrow H^{1}(N_{0}/A_{0} ; Z_{2})$

$i$

$H^{2}(F;Z_{2})\rightarrow H^{2}(E ; Z_{2})\oplus H^{2}((N_{0}^{\prime}/\tau_{2})\times I ; Z_{2})$ .

Observing the commutative diagram above, we obtain $j$ is epic and therefore $i$

is monic. Since $i_{1}^{*}w_{2}(F)=w_{2}(E)=0$ and $i_{2}^{*}w_{2}(F)=w_{2}(N_{0}^{f}/\tau_{2}\times I)=0$ for inclusion
maps $i_{1}$ : $E\rightarrow F$ and $i_{2}$ : $(N_{0}^{\prime}/\tau_{2})\chi I\rightarrow F$, we have $w_{2}(F)=0$ .

Since $V_{2}/\tau_{2}$ and $S^{3}/A_{0}$ are both diffeomorphic to 3-spheres and $w_{2}(F)=0$ ,
we can conclude that sign $(F)\equiv 0$ mod 16 by the well known theorem of Rochlin.
This completes the proof.

We return to the proof of Theorem 2. Let $\pi$ : $\Sigma\times I\rightarrow(\Sigma/T)\times I$ be a
canonical projection and let $F=\pi^{-1}(F)$ . Then fl is a branched covering space
on $F$ with $((Fix\tau_{2})\times I)\subset(N_{0}^{\prime}/\tau_{2})\times I\subset F$ as branching locus. $F$ separates $\Sigma\times I$

into two parts, say $X$ and $T\times id_{I}(X)$ , such that $X\cap T\times id_{I}(X)=F$ (See Figure 7.).

Figure 7.

Let $U=X\cap\Sigma\times\{1\}$ . Note that $U$ is diffeomorphic to a 4-disk. Then, the
4-manifold $W\cup\tilde{F}\cup U$ bounds a compact oriented 5-manifold $X$ . Therefore
sign $(W\cup\tilde{F}\cup U)=0$ . Hence sign $(F)=0$ . Since $\partial(flT)\cong(V_{2}, \tau_{2})\cup(S^{3}, A_{0})$ and
$\sigma(S^{3}, A_{0})=0$ , we have

$\sigma(V_{2}, \tau_{2})=\frac{1}{8}$ {sign $(F)$–sign $(F)$ } $\equiv 0$ mod 4.

But, as we proved in \S 3, $\sigma(V_{2}, \tau_{2})=2$ . This is a contradiction, and this com-
pletes the proof of Theorem 2.
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