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1. In this note, we study the fundamental groups of the complement of
reducible curves and we prove the following generalization of the result of [2].

THEOREM. Let $C_{1}$ and $C_{2}$ be plane algebraic curves in $C^{2}$ . Assume that the
intersection $C_{1}\cap C_{2}$ consists of distinct $d_{1}d_{2}$ Points where $d_{i}(i=1,2)$ are resPective
degrees of $C_{1}$ and $C_{2}$ . Then the fundamental group $\pi_{1}(C^{2}-C_{1}\cup C_{2})$ is isomorPhic
to the product of $\pi_{1}(C^{2}-C_{1})$ and $\pi_{1}(C^{2}-C_{2})$ .

2. PROOF.
Let $(x, y)$ be a coordinate of $C^{2}$ , and let $f(x, y)$ and $g(x, y)$ be defining poly-

nomials of $C_{1}$ and $C_{2}$ respectively. We can assume that the x-axis and y-axis
are in general position with respect to $C_{1}$ and $C_{2}$ . Consider the deformations
$C_{1}(t)$ and $C_{2}(\tau)(t, \tau\in C)$ of $C_{1}$ and $C_{2}$ defined by,

$C_{1}(t):f(x, ty)=0$ ,

$C_{2}(\tau):g(\tau x, y)=0$ .

Obviously, each deformation is biholomorphic if $t\neq 0$ or $\tau\neq 0$ , and $C_{i}(1)=C_{i}$

$(i=1,2)$ , so that $C^{2}-C_{i}(t)$ is homeomorphic to $C^{2}-C_{i}$ for all $t\neq 0$ . The intersec-
tion $C_{1}(t)\cap C_{2}(\tau)$ consists of distinct $d_{1}d_{2}$ points for $(t, \tau)\in U$ where $U$ is a Zariski
open set of $C^{2}$ . For any $(t_{0}, \tau_{0})$ in $U$ we can construct a one parameter family
of curves $\{C_{1}(t(s))\cup C_{2}(\tau(s));0\leqq s\leqq 1\}$ such that $(t(s), \tau(s))$ is contained in $U$ for
each $0\leqq s\leqq 1$ , and $t(O)=\tau(O)=1,$ $t(1)=t_{0},$ $\tau(1)=\tau_{0}$ . Hence, $C^{2}-C_{1}\cup C_{2}$ is homeo-
morphic to $C^{2}-C_{1}(t_{0})\cup C_{2}(\tau_{0})$ . (See [2], for the precise proof.) So it is enough
to show that $\pi_{1}(C^{2}-C_{1}(t_{0})\cup C_{2}(\tau_{0}))$ is isomorphic to the product of $\pi_{1}(C^{2}-C_{1}(t_{0}))$

and $\pi_{1}(C^{2}-C_{2}(\tau_{0}))$ , for a suitable $(t_{0}, \tau_{0})\in U$ .
The curve $C_{1}(0)$ consists of distinct $d_{1}$ lines which are parallel to the y-axis,

and $C_{2}(0)$ consits of distinct $d_{2}$ lines which are parallel to the x-axis, because,
by the assumption, the equations $f(x, 0)=0$ and $g(O, y)=0$ have distinct $d_{1}$ and
$d_{2}$ roots respectively. We consider the following parallel lines: $L_{\lambda}$ : $ y=x+\lambda$

$(\lambda\in C)$ . For a fixed general $\lambda_{0}$ , we can take loops $a_{j}(j=1, \cdots , d_{1})$ and $b_{k}(k=1$ ,
... , $d_{2}$) generating $\pi_{1}(L_{\lambda_{0}}-L_{\lambda_{0}}\cap(C_{1}(0)\cup C_{2}(0)))$ , so that $[a_{j}, b_{k}]=a_{j}b_{k}a_{j}^{-1}b_{k}^{-1}$ becomes
the unit element in $\pi_{1}(C^{2}-C_{1}(0)\cup C_{2}(0))$ . Here $a_{j}$ (respectively $b_{k}$ ) is a small



600 M. OKA and K. SAKAMOTO

loop which goes around a point of $L_{\lambda_{0}}\cap C_{1}(0)$ (resp. $L_{\lambda_{0}}\cap C_{2}(0)$), and is joined to
the base point. (To see this, one notes that $C^{2}-C_{1}(0)\cup C_{2}(0)$ is homeomorphic
to $(C-d_{1}points)\times$ ($C-d_{2}$ points). See Figure 1 and Figure 2.)

$\underline{C_{1}(0)}$

$C_{2}(0)\{$

Figure 1

$L_{\lambda_{\theta}}$ -plane

$\}L_{\lambda_{0}\cap}C_{1}(0)$

Figure 2

Let $D=\{(x, y)\in C^{2}||x|^{2}+|y|^{2}<R\}$ be a sufficiently large disc which contains
the intersections $C_{1}(0)\cap C_{2}(0)$ and $(C_{1}(0)\cup C_{2}(0))\cap L_{\lambda_{0}}$ . We can see easily that
$C^{2}-C_{1}(0)\cup C_{2}(0)$ is homeomorphic to $D-C_{1}(0)\cup C_{2}(0)$ . Now we can take $(t_{0}, \tau_{0})$

near enough to the origin so that $D-C_{1}(t_{0})\cup C_{2}(\tau_{0})$ is homeomorphic to $ D-C_{1}(0\rangle$

$\cup C_{2}(0)$ and the same loops $a_{j}(j=1, \cdots , d_{1})$ and $b_{k}(k=1, \cdots , d_{2})$ generate
$\pi_{1}(L_{\lambda_{0}}-L_{\lambda_{0}\cap(C_{1}(t_{0})\cup C_{2}(\tau_{0})))}$ . The generating relations are given by the mono-
dromy relations around the singular fibers $L_{\xi}$ . ( $L_{\xi}\cap(C_{1}(t_{0})\cup C_{2}(\tau_{0}))$ consists of
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less than $d_{1}d_{2}$ points.) ([1]). At those lines $L_{\xi}$ which pass through a point of
the intersection $C_{1}(t_{0})\cap C_{2}(\tau_{0})$ , we get:

a $!b_{k}=b_{k}a_{j}$ $(j=1, \cdots , d_{1}, k=1, \cdots , d_{2})$ . (1)

For other $L_{\xi}’ s$, the monodromy relations are following types:

$a_{j}=A_{\xi,j}a_{\sigma_{\xi^{(j)}}}A_{\xi,j}^{-1}$

$k=1j=1,$

,

$d_{1}d_{2}\}$ (2)
$b_{k}=B_{\xi,k}b_{\tau_{\xi^{(k)}}}B_{\overline{\xi}},t$

where $A_{\hat{\sigma}j}$ and $B_{\xi.k}$ are words of $a_{l}’ s$ and $b_{h}’ s$ and $\sigma_{\xi}$ and $\tau_{\xi}$ are permutations
of the sets $\{$ 1, $\cdots$ , $d_{1}\}$ and $\{$ 1, $\cdots$ , $d_{2}\}$ respectively. Since $a_{j}b_{k}=b_{k}a_{j}$, we can
express $A_{\xi,j}=A_{\xi,j}(a)\cdot A_{\xi,j}(b)$ and $B_{\xi.k}=B_{\xi.k}(a)B_{\xi.k}(b)$ , where $A_{\xi.j}(a)$ and $B_{\xi.k}(a)$

(resp. $A_{\xi,j}(b)$ and $B_{\xi,k}(b)$) $al\cdot e$ words of $a_{l}’ s$ (resp. $b_{h}’ s$). Hence the relations (2)

become
$a_{j}=A_{\xi.j}a_{\sigma_{\xi^{(j)}}}A_{\xi,j}^{-1}=A_{\xi.j}(a)a_{\sigma_{\xi}(j)}A_{\xi.j}(a)^{-1}$

$b_{k}=B_{\xi,k}b_{\tau_{\xi}(k)}B_{\xi.k}^{-1}=B_{\xi.k}(b)b_{\tau_{\xi}(k)}B_{\xi.k}(b)^{-1}$ .
Therefore, we may assume that the words $A_{\xi,j}$ are generated by $a_{l}(l=1,$ $\cdots$ ,
$d_{1})$ and $B_{\xi.k}$ are generated by $b_{h}(h=1, \cdots , d_{2})$ for each $\xi,$ $j$ and $k$ . On the
other hand, the group $\pi_{1}(C^{2}-C_{1}(t_{0}))$ is generated by $a_{j}(j=1,2, \cdots , d_{1})$ and the
generating relations are given by

$a_{j}=A_{\xi.j}a_{\sigma_{\xi^{(j)}}}A_{\xi,j}^{-1}$ $(j=1, \cdots , d_{1})$ (3)

and $\pi_{1}(C^{2}-C_{2}(\tau_{0}))$ is generated by $b_{k}(k=1,2, \cdots , d_{2})$ and the generating rela-
tions are given by

$b_{k}=B_{\xi,k}b_{\tau_{\xi}(k)}B_{\overline{\xi}^{1}k}$ $(k=1, \cdots , d_{2})$ . (4)

Thus we obtain

$\pi_{1}(C^{2}-C_{1}(t_{0})\cup C_{2}(\tau_{0}))\cong\langle a_{j}, b_{k} ; $(1) $, $(3) $, $(4)$ \rangle$

$\cong\langle a_{j} ; $(3)$ \rangle\times\langle b_{k} ; $(4)$ \rangle$

$\cong\pi_{1}(C^{2}-C_{1}(t_{0}))\times\pi_{1}(C^{2}-C_{2}(\tau_{0}))$ .
This completes the proof.

3. REMARK.
Let $C_{1}$ and $C_{2}$ be projective algebraic curves in $CP^{2}$ . If the line $z=0$ is in

general position to $C_{1}$ and $C_{2}$ , then $\pi_{1}(CP^{2}-C_{1}\cup C_{2})$ is decided by the following
central extension

$1\rightarrow Z\rightarrow\pi_{1}(C^{2}-C_{1}\cup C_{2})\rightarrow\pi_{1}(CP^{2}-C_{1}\cup C_{2})\rightarrow 1$

where $C^{2}=CP^{2}-\{z=0\}$ . The generator of inPnite cyclic group $Z$ corresponds
to a large circle in a general affine line $L$ which contains $L\cap(C_{1}\cup C_{2})$ ([2]).
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