Injective envelopes of C^{*}-algebras

By Masamichi Hamana

(Received July 26, 1977)
(Revised Sept. 22, 1978)

§ 1. Introduction.

For a Banach space, the existence and uniqueness of its injective envelope was proved by Cohen [5], and the present author [9] generalized this result to the case of Banach modules over a unital Banach algebra. In this paper we show a C^{*}-algebraic version of these results, i.e. that any unital C^{*}-algebra has a unique injective envelope Theorem 4.1), where injectivity for C^{*}-algebras is understood as that considered by several authors, e.g. Hakeda and Tomiyama [8], Tomiyama [16], Choi and Effros [4], Loebl [12], et al. We also give two characterizations of injective C^{*}-algebras, one of which Proposition 4.8) is similar to that of injective Banach modules (cf. [9; Lemma 3 (iv)]) and another (Proposition 4.11) is similar to that of von Neumann algebras whose commutant has property P of Schwartz ([13]; cf. also Remark 4.13). In the last section we give an example of an injective non W^{*}-, $A W^{*}$-factor of type III.

We recall the above-mentioned result of Cohen [5]. He considered the category whose objects are Banach spaces and whose morphisms are contractive linear maps, and defined "injectivity" and an "injective envelope" of a Banach space as follows: A Banach space Y is injective if any continuous linear map of a linear subspace of a Banach space Z into Y extends to a continuous linear map of the same norm on all of Z. An injective envelope of a Banach space X is a pair (Y, κ) of an injective Banach space Y and a linear isometry κ of X into Y such that Y itself is the only subspace of Y which is injective and contains $\kappa(X)$ [or equivalently, the identity map id_{Y} on $Y\left(\operatorname{id}_{Y}(y)=y, y \in Y\right)$ is a unique contractive linear map of Y into itself which fixes each element of $\kappa(X)$ (cf. Isbell [10])]. This pair (Y, κ) is unique in the sense that if $\left(Y_{1}, \kappa_{1}\right)$ is another injective envelope of X, there exists a linear isometry c of Y onto Y_{1} such that $\odot \circ \kappa=\kappa_{1}$.

In contrast to the case of Banach spaces, we consider the category whose objects are unital C^{*}-algebras and whose morphisms are unit-preserving completely positive linear maps. Hereafter, unless otherwise specified, C^{*}-algebras
are unital, their C^{*}-subalgebras have the same units as the C^{*}-algebras containing them, and maps between C^{*}-algebras preserve units.

A C^{*}-algebra B is said to be injective if given any self-adjoint linear subspace S, containing the unit, of a C^{*}-algebra C, any completely positive linear map of S into B extends to a completely positive linear map of C into B (cf. Choi-Effros [4] and Loebl [12]). Let a C^{*}-algebra A be given. An extension of A is a pair (B, κ) of a C^{*}-algebra B and a *-monomorphism κ of A into B. The extension (B, κ) is called injective if B is injective, and it is called an injective envelope of A if it is an injective extension of A such that the identity map id_{B} on B is a unique completely positive linear map of B into itself which fixes each element of $\kappa(A)$. A result of Arveson [1; Theorem 1.2.3] says that the C^{*}-algebra $L(H)$ of all bounded linear operators on a Hilbert space H is injective, hence that each C^{*}-algebra, being represented faithfully on some Hilbert space, has an injective extension. The main result of this paper asserts that any C^{*}-algebra has a unique injective envelope (see Theorem 4 1).

For commutative C^{*}-algebras, their injective envelopes were studied by Gonshor ([6], [7]). His injective envelopes for commutative C^{*}-algebras coincide with their injective envelopes as Banach spaces (in fact, those become commutative $A W^{*}$-algebras which contain the original C^{*}-algebras as C^{*}-subalgebras) or those in the above sense.

The author would like to thank the referee for his valuable comments.

§ 2. Preliminaries.

This section is devoted to preparations for later use, most of which are known (cf. [3], [4]), but some of which are stated in a (possibly superficially) more general form (cf. Remark 2.5).

Definition 2.1 (Choi-Effros [4] and Loebl [12]). A C^{*}-algebra B is injective if given any self-adjoint linear subspace S, containing the unit, of a C^{*}-algebra C, any completely positive linear map of S into B extends to a completely positive linear map of C into B.

Definition 2.2. An extension of a C^{*}-algebra A is a pair (B, κ) of a C^{*}-algebra B and a *-monomorphism κ of A into B. The extension (B, κ) is injective if B is injective, and it is an injective envelope of A if it is an injective extension such that the identity map id_{B} on B is a unique completely positive linear map of B into itself which fixes each element of $\kappa(A)$.

Let B be a C^{*}-algebra and φ a unit-preserving contractive idempotent linear map of B into itself satisfying the Schwarz inequality :

$$
\varphi(x)^{*} \varphi(x) \leqq \varphi\left(x^{*} x\right), \quad x \in B .
$$

As in the proof of [4; Theorem 3.1], we define a multiplication "O" in $\operatorname{Im} \varphi=\varphi(B)$ by

$$
x \circ y=\varphi(x y), \quad x, y \in \operatorname{Im} \varphi
$$

and endow $\operatorname{Im} \varphi$ the involution and norm which are induced by those of B.
Theorem 2.3. In the above situation we have:
(i) $\operatorname{Im} \varphi$ is a unital C^{*}-algebra.

We denote this C^{*}-algebra by $C^{*}(\varphi)$ and the canonical map of $\operatorname{Im} \varphi$ onto $C^{*}(\varphi)$ by j_{φ}.
(ii) Let $B_{\varphi}=\left\{x \in B: \varphi\left(x^{*} x\right)=\varphi\left(\varphi\left(x^{*}\right) \varphi(x)\right), \varphi\left(x x^{*}\right)=\varphi\left(\varphi(x) \varphi\left(x^{*}\right)\right)\right\}$ and $I_{\varphi}=\left\{x \in B: \varphi\left(x^{*} x\right)=\varphi\left(x x^{*}\right)=0\right\}$. Then $B_{\varphi}=\operatorname{Im} \varphi+I_{\varphi}, B_{\varphi}$ is the largest C^{*} subalgebra of B restricted to which the map

$$
j_{\varphi} \circ \varphi: B \longrightarrow \operatorname{Im} \varphi \longrightarrow C^{*}(\varphi)
$$

becomes an onto *-homomorphism, and further $\operatorname{Ker}\left(j_{\varphi} \circ \varphi \mid B_{\varphi}\right)=I_{\varphi}$. Hence $C^{*}(\varphi)$ is *-isomorphic to the quotient C^{*}-algebra $B_{\varphi} / I_{\varphi}$.

Proof. As in the proof of [4; Theorem 3.1], we have for $x, y \in \operatorname{Im} \varphi$

$$
\begin{aligned}
& (x \circ y)^{*}=\varphi(x y)^{*}=\varphi\left(y^{*} x^{*}\right)=y^{*} \circ x^{*}, \\
& \|x \circ y\|=\|\varphi(x y)\| \leqq\|x y\| \leqq\|x\|\|y\|
\end{aligned}
$$

and

$$
\|x\|^{2}=\left\|x^{*} x\right\| \leqq\left\|\varphi\left(x^{*} x\right)\right\|=\left\|x^{*} \circ x\right\| \leqq\left\|x^{*} x\right\|=\|x\|^{2}
$$

since φ is positive, contractive and

$$
x^{*} x=\varphi(x)^{*} \varphi(x) \leqq \varphi\left(x^{*} x\right)=x^{*} \circ x
$$

by the Schwarz inequality. Thus $\operatorname{Im} \varphi$ satisfies the axioms of C^{*}-algebras except for the associativity of the multiplication.

Lemma 2.4. Let B be a C^{*}-algebra and φ a unit-preserving contractive idempotent linear map of B into itself. Then

$$
\begin{equation*}
\varphi\left(\varphi(x)^{*} \varphi(x)\right) \leqq \varphi\left(x^{*} x\right) \quad \text { for all } x \text { in } B \tag{*}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\varphi(\varphi(x) \varphi(y))=\varphi(\varphi(x) y)=\varphi(x \varphi(y)) \quad \text { for all } x, y \text { in } B . \tag{**}
\end{equation*}
$$

Proof of Lemma 2.4. Let f be a state on B. Then $g=f \circ \varphi$ is also a state on B. Consider the cyclic representation $\left\{\pi_{g}, H_{g}\right\}$ of B induced by g and define a densely defined linear operator P_{f} on H_{g} by

$$
P_{f} x_{g}=\varphi(x)_{g}, \quad x \in B,
$$

where x_{g} stands for the canonical image of x in H_{g}; then $P_{f}^{3}=P_{f}$. Hence φ satisfies (*) if and only if

$$
\left\|P_{f} x_{g}\right\|^{2}=f\left(\varphi\left(\varphi\left(x^{*}\right) \varphi(x)\right)\right) \leqq f\left(\varphi\left(x^{*} x\right)\right)=\left\|x_{g}\right\|^{2}
$$

for all x in B and all state f on B if and only if P_{f} can be extended to a (self-adjoint) projection on H_{g}, i. e.

$$
\begin{aligned}
& \left(P_{f} y_{g}, P_{f}\left(x^{*}\right)_{g}\right)=\left(y_{g}, P_{f}\left(x^{*}\right)_{g}\right)=\left(P_{f} y_{g},\left(x^{*}\right)_{g}\right) \\
& f(\varphi(\varphi(x) \varphi(y)))=f(\varphi(\varphi(x) y))=f(\varphi(x \varphi(y)))
\end{aligned}
$$

for all state f on B if and only if φ satisfies (${ }^{* *)}$.
q. e. d.

The Schwarz inequality for φ : $\varphi(x)^{*} \varphi(x) \leqq \varphi\left(x^{*} x\right)$ implies $\varphi\left(\varphi(x)^{*} \varphi(x)\right)$ $\leqq \varphi\left(x^{*} x\right)$, hence φ satisfies (**) in Lemma 2. 4, so that we have for x, y, z in $\operatorname{Im} \varphi$,

$$
\begin{aligned}
x \circ(y \circ z) & =\varphi(x \varphi(y z))=\varphi(\varphi(x) y z)=\varphi(x y z) \\
& =\varphi(x y \varphi(z))=\varphi(\varphi(x y) z)=(x \circ y) \circ z .
\end{aligned}
$$

(ii) First we show that $\operatorname{Im} \varphi+I_{\varphi}$ is a C^{*}-subalgebra of B.' The iterated use of the equalities (${ }^{* *)}$ in Lemma 2 4 shows
(1) if $x, y \in I_{\varphi}, x y \in I_{\varphi}$;
(2) if $x \in \operatorname{Im} \varphi$ and $y \in I_{\varphi}, x y, y x \in I_{\varphi}$;
(3) if $x, y \in \operatorname{Im} \varphi, x y-\varphi(x y) \in I_{\varphi}$.

In fact (1) $\varphi\left((x y)^{*} x y\right) \leqq\|x\|^{2} \varphi\left(y^{*} y\right)=0, \varphi\left(x y(x y)^{*}\right) \leqq\|y\|^{2} \varphi\left(x x^{*}\right)=0$; hence $x y \in I_{\varphi}$.
(2) $\varphi\left((x y)^{*} x y\right) \leqq\|x\|^{2} \varphi\left(y^{*} y\right)=0$ and $\varphi\left(x y(x y)^{*}\right)=\varphi\left(\varphi(x) y y^{*} x^{*}\right)=$ $\varphi\left(x \varphi\left(y y^{*} x^{*}\right)\right)=\varphi\left(x \varphi\left(y y^{*} \varphi\left(x^{*}\right)\right)\right)=\varphi\left(x \varphi\left(\varphi\left(y y^{*}\right) x^{*}\right)\right)=0$. Similarly for $y x$.
(3) $\varphi\left((x y-\varphi(x y))^{*}(x y-\varphi(x y))\right)$

$$
\begin{aligned}
& \quad=\varphi\left((x y)^{*} x y\right)-\varphi\left((x y)^{*} \varphi(x y)\right)-\varphi\left(\varphi(x y)^{*} x y\right)+\varphi\left(\varphi(x y)^{*} \varphi(x y)\right) \\
& \quad=\varphi\left((x y)^{*} x y\right)-\varphi\left((x y)^{*} \varphi(x y)\right) \text { and } \\
& \varphi\left((x y)^{*} x y\right)=\varphi\left(\varphi\left(y^{*}\right) x^{*} x y\right)=\varphi\left(y^{*} \varphi\left(x^{*} x y\right)\right)=\varphi\left(y^{*} \varphi\left(\varphi\left(x^{*}\right) x y\right)\right) \\
& \quad=\varphi\left(y^{*} \varphi\left(x^{*} \varphi(x y)\right)\right)=\varphi\left(\varphi\left(y^{*}\right) x^{*} \varphi(x y)\right)=\varphi\left(y^{*} x^{*} \varphi(x y)\right) ; \\
& \text { hence } \varphi\left((x y-\varphi(x y))^{*}(x y-\varphi(x y))\right)=0 \text {. }
\end{aligned}
$$

Similarly

$$
\varphi\left((x y-\varphi(x y))(x y-\varphi(x y))^{*}\right)=0
$$

We have for $x_{i} \in \operatorname{Im} \varphi, y_{i} \in I_{\varphi}(i=1,2)$,

$$
\begin{aligned}
\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right) & =\varphi\left(x_{1} x_{2}\right)+x_{1} x_{2}-\varphi\left(x_{1} x_{2}\right)+x_{1} y_{2}+y_{1} x_{2}+y_{1} y_{2} \\
& \in \operatorname{Im} \varphi+I_{\varphi} \quad \text { by }(1),(2),(3) .
\end{aligned}
$$

Further $\operatorname{Im} \varphi+I_{\varphi}$ is self-adjoint, closed since $I_{\varphi} \subset \operatorname{Ker} \varphi$ by the Schwarz inequality. Therefore $\operatorname{Im} \varphi+I_{\varphi}$ is a C^{*}-subalgebra of B and I_{φ} is its closed two-sided ideal by (1), (2).

Next we show that $B_{\varphi} \subset \operatorname{Im} \varphi+I_{\varphi}$. In fact, we have for x in B_{φ},

$$
\begin{aligned}
\varphi\left((x-\varphi(x))^{*}(x-\varphi(x))\right) & =\varphi\left(x^{*} x\right)-\varphi\left(x^{*} \varphi(x)\right)-\varphi\left(\varphi\left(x^{*}\right) x\right)+\varphi\left(\varphi\left(x^{*}\right) \varphi(x)\right) \\
& =\varphi\left(x^{*} x\right)-\varphi\left(\varphi\left(x^{*}\right) \varphi(x)\right)=0 .
\end{aligned}
$$

Similarly $\varphi\left((x-\varphi(x))(x-\varphi(x))^{*}\right)=0$; hence $x-\varphi(x) \in I_{\varphi}, \quad x=\varphi(x)+x-\varphi(x)$ $\in \operatorname{Im} \varphi+I_{\varphi}$.

Now, since the equalities defining the set B_{φ} are rewritten as

$$
j_{\varphi^{\circ}} \varphi\left(x^{*} x\right)=\left(j_{\varphi} \circ \varphi\left(x^{*}\right)\right) \circ\left(j_{\varphi} \circ \varphi(x)\right)
$$

and

$$
j_{\varphi} \circ \varphi\left(x x^{*}\right)=\left(j_{\varphi} \circ \varphi(x)\right) \circ\left(j_{\varphi} \circ \varphi\left(x^{*}\right)\right),
$$

it is clear that ${ }_{\perp}$ if C is a C^{*}-subalgebra of B such that $\left.j_{\varphi} \circ \varphi\right|_{C}$ is a ${ }^{*}$-homomorphism, then $C \subset B_{\varphi}$. On the other hand, $\left.j_{\varphi} \circ \varphi\right|_{\operatorname{Im} \varphi+I_{\varphi}}$ is a *-homomorphism because, for $x_{i} \in \operatorname{Im} \varphi$ and $y_{i} \in I_{\varphi}(i=1,2)$,

$$
\varphi\left(y_{1}\left(x_{2}+y_{2}\right)\right)=0=\varphi\left(\varphi\left(y_{1}\right)\left(x_{2}+y_{2}\right)\right)
$$

and so

$$
\begin{aligned}
j_{\varphi} \circ \varphi & \left(\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\right) \\
& =j_{\varphi} \circ \varphi\left(x_{1}\left(x_{2}+y_{2}\right)\right)+j_{\varphi} \circ \varphi\left(y_{1}\left(x_{2}+y_{2}\right)\right) \\
& =j_{\varphi} \circ \varphi\left(\varphi\left(x_{1}+y_{1}\right)\left(x_{2}+y_{2}\right)\right) \\
& =j_{\varphi} \circ \varphi\left(\varphi\left(x_{1}+y_{1}\right) \varphi\left(x_{2}+y_{2}\right)\right) \\
& =\left(j_{\varphi} \circ \varphi\left(x_{1}+y_{1}\right)\right) \circ\left(j_{\varphi} \circ \varphi\left(x_{2}+y_{2}\right)\right) .
\end{aligned}
$$

Thus $\operatorname{Im} \varphi+I_{\varphi} \subset B_{\varphi}$, so $\operatorname{Im} \varphi+I_{\varphi}=B_{\varphi}$.
Finally $\operatorname{Ker}\left(\left.j_{\varphi} \circ \varphi\right|_{B_{\varphi}}\right)=I_{\varphi}$ is immediate from $B_{\varphi}=\operatorname{Im} \varphi+I_{\varphi}$ and $I_{\varphi} \subset \operatorname{Ker} \varphi$.
q. e. d.

Remark 2.5. In the proof of [4; Theorem 3.1], to conclude the equalities of the form $\left({ }^{* *}\right)$ in Lemma 2. 4, Choi and Effros used 2-positivity of φ. On the other hand, we used the Schwarz inequality for φ, which is implied by 2-positivity of φ (Choi [3; Corollary 2.8]). But the author does not know whether or not there is a unit-preserving contractive idempotent linear map on a C^{*}-algebra which satisfies the Schwarz inequality but is not 2 -positive.

Following Arveson [1; Definition 1.2.1], we say that a linear map φ of a self-adjoint linear subspace S of a C^{*}-algebra B into another C^{*}-algebra C is completely isometric if, for each positive integer n, the map

$$
\varphi \otimes 1: S \otimes M_{n} \longrightarrow C \otimes M_{n}
$$

is isometric, where M_{n} is the algebra of $n \times n$ matrices over C and 1 denotes the identity map on M_{n}. Obviously when φ is unit-preserving, φ is completely isometric if and only if φ is isometric and both φ and $\varphi^{-1}: \varphi(S) \rightarrow B$ are completely positive.

Lemma 2.6 (cf. the proof of [4; Theorem 3.1]). Let $B, \varphi, C^{*}(\varphi)$ and j_{φ} be as in Theorem 2.3. If B is injective and φ is completely positive, then $j_{\varphi}{ }^{-1}: C^{*}(\varphi) \rightarrow \operatorname{Im} \varphi \subset B$ is completely isometric and $C^{*}(\varphi)$ is an injective C^{*} algebra.

Lemma 2.7 (cf. the proof of [4; Theorem 3.1]). A unit-preserving completely isometric linear map of a C^{*}-algebra onto another C^{*}-algebra is a *-isomorphism.

Lemma 2.8 (cf. Choi [3; Theorem 3.1]). Let φ be a unit-preserving completely positive linear map of a C^{*}-algebra B into another C^{*}-algebra C. Then the set

$$
D=\left\{x \in B: \varphi\left(x^{*} x\right)=\varphi\left(x^{*}\right) \varphi(x), \varphi\left(x x^{*}\right)=\varphi(x) \varphi\left(x^{*}\right)\right\}
$$

is the largest C^{*}-subalgebra of B restricted to which φ becomes a *-homomorphism, and moreover

$$
\varphi(a x b)=\varphi(a) \varphi(x) \varphi(b) \quad \text { for } \quad a, b \in D \quad \text { and } \quad x \in B
$$

§ 3. Minimal projections on injective C^{*}-algebras.

Let B be a C^{*}-algebra and A its C^{*}-subalgebra.
Definition 3.1. A linear map φ of B into itself is called a projection (resp. A-projection) on B if it is unit-preserving, completely positive and idempotent (resp. and further $\varphi(a)=a$ for all a in A).

Definition 3.2. In the family of all A-projections on B we define a partial ordering $<$ by the rule $\varphi<\psi$ if $\varphi \circ \psi=\psi \circ \varphi=\varphi$. An A-projection on B which is minimal under this partial ordering is called a minimal A-projection.

Definition 3.3. A seminorm p on B is called an A-seminorm if

$$
p(x) \leqq\|x\|, \quad p(a x b) \leqq\|a\| p(x)\|b\|
$$

and

$$
p(a)=\|a\| \quad \text { for } a, b \text { in } A \text { and } x \text { in } B .
$$

In the family of all A-seminorms on B we define a partial ordering \leqq by the rule $p \leqq q$ if $p(x) \leqq q(x)$ for all x in B.

Tomiyama's projection of norm one from a C^{*}-algebra B onto its C^{*}-subalgebra $A[14]$ is an A-projection on B since it is completely positive ($[15]$, [18]). Although the image of a projection on a C^{*}-algebra need not be a C^{*} subalgebra, by Theorem 2, 3, it is made into a C^{*}-algebra which is *-isomorphic to a quotient C^{*}-algebra of some C^{*}-subalgebra.

It is an immediate consequence of Zorn's lemma that there exists a minimal A-seminorm on B.

Theorem 3.4. Let B be an injective C^{*}-algebra and A its C^{*}-subalgebra. Then there exists a minimal A-projection on B.

Proof. Let p_{0} be a minimal A-seminorm on B. Take a family $\left\{f_{i}\right\}_{i \in I}$ of pure states on A such that the direct sum $\sum_{i \in I}^{\oplus}\left\{\pi_{f_{i}}, H_{f_{i}}\right\}$ of the cyclic representations $\left\{\pi_{f_{i}}, H_{f_{i}}\right\}$ of A induced by f_{i} is faithful. By the Hahn-Banach theorem and the definition of A-seminorms, there exists a state extension g_{i} of each f_{i} to B such that

$$
\left|g_{i}(x)\right| \leqq p_{0}(x) \quad \text { for all } x \text { in } B
$$

Let $\{\pi, H\}=\sum_{i \in I}^{\oplus}\left\{\pi_{g_{i}}, H_{g_{i}}\right\}$ be the direct sum of the cyclic representations $\left\{\pi_{g_{i}}, H_{g_{i}}\right\}$ of B induced by g_{i} and let E be the projection of H onto $\sum_{i \in I}^{\oplus} A_{g_{i}}$. Then $E \in \pi(A)^{\prime}$, and by the choice of the family $\left\{f_{i}\right\}_{i \in I}$, the map

$$
\kappa: \pi(A) E \longrightarrow A
$$

given by $\kappa(\pi(a) E)=a, a \in A$, is a *-isomorphism and $\pi(A)$ acts irreducibly on each $A_{g_{i}} \subset H_{g_{i}}$. Since κ is completely positive and B is injective, there exists a completely positive map $\hat{\kappa}$ of $E \pi(B) E$ into B such that $\left.\hat{\kappa}\right|_{\pi(A) E}=\kappa$.

Let $\varphi(x)=\hat{\kappa}(E \pi(x) E)$ for x in B. Then $\left.\varphi\right|_{A}=\mathrm{id}_{A}$ and so φ is an A-module homomorphism, i. e. $\varphi(a x b)=a \varphi(x) b, a, b \in A, x \in B$ by Lemma 2, 8. We will show that $\|\varphi(x)\| \leqq p_{0}(x), x \in B$. To this end we need only show that
$\|E \pi(x) E\| \leqq p_{0}(x), x \in B$ since $\|\varphi(x)\| \leqq\|E \pi(x) E\|$. Take an $\varepsilon>0$ and an x in B. Then there exist families $\left\{a_{i}\right\}_{i \in I},\left\{b_{i}\right\}_{i \in I}\left(a_{i}, b_{i} \in A\right)$ such that

$$
\left\|\sum_{i \in I}\left(a_{i}\right)_{g_{i}}\right\|=\left\|\sum_{i \in I}\left(b_{i}\right)_{g_{i}}\right\|=1
$$

and

$$
\left|\left(\pi(x) \sum_{i}\left(a_{i}\right)_{g_{i}}, \Sigma_{j}\left(b_{j}\right)_{g_{j}}\right)\right| \geqq\|E \pi(x) E\|-\varepsilon .
$$

Since $\pi(A)$ acts irreducibly on $A_{g_{i}}$, we may assume that

$$
\left\|\left(a_{i}\right)_{g_{i}}\right\|=\left\|a_{i}\right\| \quad \text { and } \quad\left\|\left(b_{j}\right)_{g_{j}}\right\|=\left\|b_{j}\right\| \quad(i, j \in I)
$$

We have then

$$
\begin{aligned}
& \left|\left(\pi(x) \sum_{i}\left(a_{i}\right)_{g_{i}}, \Sigma_{j}\left(b_{j}\right)_{g_{j}}\right)\right| \\
& \quad=\left|\sum_{i} g_{i}\left(b_{i}^{*} x a_{i}\right)\right| \leqq \sum_{i}\left|g_{i}\left(b_{i}^{*} x a_{i}\right)\right| \leqq \sum_{i} p_{0}\left(b_{i}^{*} x a_{i}\right) \\
& \quad \leqq p_{0}(x) \sum_{i}\left\|b_{i}^{*}\right\|\left\|a_{i}\right\|=p_{0}(x) \sum_{i}\left\|\left(a_{i}\right)_{g_{i}}\right\|\left\|\left(b_{i}\right)_{g_{i}}\right\| \\
& \quad \leqq p_{0}(x)\left(\sum_{i}\left\|\left(a_{i}\right)_{g_{i}}\right\|^{2}\right)^{1 / 2}\left(\sum_{i}\left\|\left(b_{i}\right)_{g_{i}}\right\|^{2}\right)^{1 / 2}=p_{0}(x) .
\end{aligned}
$$

Hence $\|E \pi(x) E\| \leqq p_{0}(x)$ and so $\|\varphi(x)\| \leqq p_{0}(x)$.
The seminorms p_{1}, p_{2} on B defined by

$$
\begin{aligned}
& p_{1}(x)=\|\varphi(x)\| \\
& p_{2}(x)=\lim _{n \rightarrow \infty} \sup \left\|\left(\varphi+\varphi^{2}+\cdots+\varphi^{n}\right)(x) / n\right\|
\end{aligned}
$$

are A-seminorms $\leqq p_{0}$, so that the minimality of p_{0} implies that $p_{1}=p_{2}=p_{0}$. Thus we have for each x in B,

$$
\begin{aligned}
\left\|\varphi(x)-\varphi^{2}(x)\right\| & =p_{1}(x-\varphi(x))=p_{2}(x-\varphi(x)) \\
& =\lim _{n \rightarrow \infty} \sup \left\|\left(\varphi(x)-\varphi^{n+1}(x)\right) / n\right\|=0,
\end{aligned}
$$

i. e. $\varphi=\varphi^{2}$, so that φ is an A-projection on B.

To see the minimality of φ take an A-projection ψ on B with $\psi<\varphi$. Then, since $\|\psi(x)\|=\|\psi(\varphi(x))\| \leqq\|\varphi(x)\|=p_{0}(x)$, the minimality of p_{0} implies that $\|\psi(x)\|=\|\varphi(x)\|=p_{0}(x)$, so that $\operatorname{Ker} \psi=p_{0}^{-1}(0)=\operatorname{Ker} \varphi$. On the other hand, $\varphi \circ \psi=\psi$ implies $\operatorname{Im} \psi \subset \operatorname{Im} \varphi$. Hence we have $\operatorname{Im} \psi=\operatorname{Im} \varphi$ and $\operatorname{Ker} \psi=\operatorname{Ker} \varphi$, i. e. $\psi=\varphi$.
q. e.d.

REMARK 3.5. The above argument to conclude that $\varphi=\varphi^{2}$ is a modification of the one by Kaufman [11; the proof of Theorem 1].

Remark 3.6. It follows from the argument analogous to the one in the proof of Theorem 3, 4 that if we denote by p_{φ} the seminorm on B defined by $p_{\varphi}(x)=\|\varphi(x)\|$, then the map $\varphi \mapsto p_{\varphi}$ is a map of the set of all minimal A-projections on B onto the set of all minimal A-seminorms on B, and that if φ, ψ are minimal A-projections on B, then

$$
\varphi \circ \psi \circ \varphi=\varphi
$$

and $\varphi \circ \psi$ is a minimal A-projection on B such that

$$
\operatorname{Im} \varphi \circ \psi=\operatorname{Im} \varphi \quad \text { and } \quad \operatorname{Ker} \varphi \circ \psi=\operatorname{Ker} \psi .
$$

Lemma 3.7. Let B be an injective C^{*}-algebra, A its C^{*}-subalgebra and φ a minimal A-projection on B. Then the identity map $\mathrm{id}_{C^{*}(\varphi)}$ on the C^{*}-algebra $C^{*}(\varphi)$ is a unique completely positive linear map of $C^{*}(\varphi)$ into itself whose restriction to A coincides with id_{A}.

Proof. Let $\psi: C^{*}(\varphi) \rightarrow C^{*}(\varphi)$ be a completely positive linear map such that $\left.\psi\right|_{A}=\mathrm{id}_{A}$. Since the seminorm p_{φ} is a minimal A-seminorm on B (Remark 3.6), the norm on $C^{*}(\varphi)$ is a unique A-seminorm on it, so that a reasoning similar to that of the proof of Theorem 3.4 shows that

$$
\lim _{n \rightarrow \infty} \sup \left\|\left(\psi+\cdots+\psi^{n}\right)(x) / n\right\|=\|x\| \quad \text { for } x \text { in } C^{*}(\varphi)
$$

Hence we have for each x in $C^{*}(\varphi)$

$$
\|x-\psi(x)\|=\lim _{n \rightarrow \infty} \sup \left\|\left(\psi+\cdots+\psi^{n}\right)(x-\psi(x)) / n\right\|=0
$$

i. e. $\psi=\mathrm{id}_{C^{*}(\varphi)}$.
q. e. d.

Lemma 3.8. Let $A\left(\right.$ resp. $\left.A_{1}\right)$ be a C^{*}-subalgebra of an injective C^{*}-algebra $B\left(\right.$ resp. $\left.B_{1}\right)$ and $\varphi\left(\right.$ resp. $\left.\varphi_{1}\right)$ a minimal A - (resp. $A_{1}-$) projection on $B\left(\right.$ resp. $\left.B_{1}\right)$. Suppose that there exists a *-isomorphism α of A onto A_{1}. Then α extends uniquely to $a{ }^{*}$-isomorphism $\hat{\alpha}$ of $C^{*}(\varphi)$ onto $C^{*}\left(\varphi_{1}\right)$.

Proof. Since $C^{*}(\varphi)$ [resp. $\left.C^{*}\left(\varphi_{1}\right)\right]$ is injective Lemma 2.6), there exists a completely positive linear map $\hat{\alpha}\left[\right.$ resp. $\left.\left(\alpha^{-1}\right)^{\wedge}\right]$ of $C^{*}(\varphi)$ into $C^{*}\left(\varphi_{1}\right)$ [resp. $C^{*}\left(\varphi_{1}\right)$ into $\left.C^{*}(\varphi)\right]$ extending α (resp. α^{-1}).

Then Lemma 3. 7 implies that $\left(\alpha^{-1}\right)^{\wedge} \circ \hat{\alpha}=\operatorname{id}_{C^{*}(\varphi)}$ and $\hat{\alpha} \circ\left(\alpha^{-1}\right)^{\wedge}=\operatorname{id}_{C^{*}\left(\varphi_{1}\right)}$, so that by Lemma 2, $7 \hat{\alpha}$ is a ${ }^{*}$-isomorphism of $C^{*}(\varphi)$ onto $C^{*}\left(\varphi_{1}\right)$. The uniqueness of $\hat{\alpha}$ follows again from Lemma 3, 7.
q. e.d.

§ 4. The main results.

With above preparations we can prove the following
Theorem 4.1. Any C^{*}-algebra A has an injective envelope ($B, \boldsymbol{\kappa}$), which is unique in the sense that if another injective envelope $\left(B_{1}, \kappa_{1}\right)$ is given, there exists a unique *-isomorphism c of B onto B_{1} such that $\iota \circ \kappa=\kappa_{1}$.

Proof. As stated before, there exists an injective C^{*}-algebra C containing A as a C^{*}-subalgebra. Let φ be a minimal A-projection on C Theorem 3.4). Let $B=C^{*}(\varphi)$ and let κ be the canonical inclusion of A into B. Then, by Lemmas 2.6 and 3.7, (B, κ) is an injective envelope of A. If (B_{1}, κ_{1}) is another injective envelope of A, then $\operatorname{id}_{B_{1}}$ is a unique $\kappa_{1}(A)$-projection on B_{1}. Hence Lemma 3.8 implies the existence of a unique ${ }^{\text {-isomorphism } c \text { of } B \text { onto } B_{1}, ~}$ such that $\subset \circ \kappa=\kappa_{1}$.

The next corollaries are immediate consequences of Theorem 4.1 and Lemma 3.8:

Corollary 4.2. Let A be a C^{*}-algebra and (B, κ) its injective envelope. Then, for each *-automorphism α of A, there exists a unique *-automorphism $\hat{\alpha}$ of B such that $\kappa \circ \alpha=\hat{\alpha} \circ \kappa$. Hence the map $\alpha \mapsto \hat{\alpha}$ is a group-monomorphism of Aut A (=the group of all *-automorphisms of A) into Aut B, whose image consists of elements β such that $\beta(\kappa(A))=\kappa(A)$.

Corollary 4.3. With $A,(B, \kappa)$ as in Corollary 4.2, the relative commutant $\kappa(A)^{\prime} \cap B$ of $\kappa(A)$ in B coincides with the center of B.

Proof. Let u be a unitary element in $\kappa(A)^{\prime} \cap B$. Then the map $x \mapsto u x u^{*}$ defines a *-automorphism of B which fixes each element of $\kappa(A)$, so it is the identity map on B. This shows that $\kappa(A)^{\prime} \cap B \subset$ the center of B, and the converse inclusion is clear.

Remark 4.4. By the construction it is obvious that a pair (B, κ) is the injective envelope of a C^{*}-algebra A if and only if B is an injective C^{*}-algebra and κ is a *-monomorphism of A into B such that the norm on B is a unique $\kappa(A)$-seminorm on B (cf. the proofs of Theorems 3.4 and 4.1).

We will give a characterization of the injective envelope of a C^{*}-algebra, which is similar to that of the injective envelope of a Banach module (cf. [9]).

Definition 4.5. An extension (B, κ) of a C^{*}-algebra A is essential if for any completely positive linear map φ of B into a C^{*}-algebra C, φ is completely isometric whenever $\varphi \circ \kappa$ is.

Lemma 4.6. Let (C, λ) be an injective envelope of a C^{*}-algebra A. Then an extension (B, κ) of A is essential if and only if there exists $a{ }^{*}$-monomorphism μ of B into C such that $\mu \circ \kappa=\lambda$.

Proof. Necessity : Suppose that (B, κ) is essential. Since C is injective, we have a completely positive linear map μ of B into C such that $\mu \circ \kappa=\lambda$. Then, by hypothesis, μ is completely isometric. We will show that μ is a *-monomorphism. Let (D, ν) be the injective envelope of B. Since C and D are injective and μ is completely isometric, we have completely positive linear maps $\hat{\mu}: D \rightarrow C$ and $\left(\mu^{-1}\right)^{\wedge}: C \rightarrow D$ such that $\hat{\mu} \circ \nu=\mu$ and $\left.\left(\mu^{-1}\right)^{\wedge}\right|_{\mu(B)}=\nu \circ \mu^{-1}$.

Hence $\left(\mu^{-1}\right)^{\wedge} \circ \hat{\mu}: D \rightarrow D$ and $\hat{\mu} \circ\left(\mu^{-1}\right)^{\wedge}: C \rightarrow C$ are completely positive linear maps such that

$$
\left.\left(\mu^{-1}\right)^{\wedge} \circ \hat{\mu}\right|_{\nu(B)}=\operatorname{id}_{\nu(B)} \quad \text { and }\left.\quad \hat{\mu} \circ\left(\mu^{-1}\right)^{\wedge}\right|_{\lambda(A)}=\operatorname{id}_{\lambda(A)},
$$

so that by the definition of the injective envelope,

$$
\left(\mu^{-1}\right)^{\wedge} \circ \hat{\mu}=\operatorname{id}_{D} \text { and } \hat{\mu} \circ\left(\mu^{-1}\right)^{\wedge}=\mathrm{id}_{C} .
$$

Thus $\left(\mu^{-1}\right)^{\wedge}=\hat{\mu}^{-1}$ and by Lemma 2.7, $\hat{\mu}$ is a *-isomorphism of D onto C, so that $\mu=\hat{\mu} \circ \nu$ is a *-monomorphism.

Sufficiency: Suppose that there exists a ${ }^{*}$-monomorphism μ of B into C such that $\mu \circ \kappa=\lambda$ and let $\varphi: B \rightarrow E$ be a completely positive linear map of B into a C^{*}-algebra E such that $\varphi \circ \kappa$ is completely isometric. By replacing E by an injective C^{*}-algebra containing it as a C^{*}-subalgebra, we may assume that E itself is injective. Then an argument similar to above shows the existence of a completely isometric linear map $\psi: C \rightarrow E$ such that $\psi \circ \mu=\varphi$; hence φ is completely isometric. q. e.d.

Proposition 4.7. An extension (B, κ) of a C^{*}-algebra A is the injective envelope of A if and only if it is both injective and essential.

Proof. Necessity follows immediately from Lemma 4.6.
Sufficiency: Let (C, λ) be the injective envelope of A. Then Lemma 4.6 implies the existence of a *-monomorphism μ of B into C such that $\mu \circ \kappa=\lambda$. Since B is injective, we have a completely positive linear map $\left(\mu^{-1}\right)^{\wedge}$ of C into B such that $\left.\left(\mu^{-1}\right)^{\wedge}\right|_{\mu(B)}=\mu^{-1}$.

Hence $\mu \circ\left(\mu^{-1}\right)^{\wedge}: C \rightarrow C$ is a completely positive linear map such that $\left.\mu \circ\left(\mu^{-1}\right)^{\wedge}\right|_{\chi(A)}$ $=\mathrm{id}_{\lambda(A)}$, so that $\mu \circ\left(\mu^{-1}\right)^{\wedge}=\mathrm{id}_{C}$ and consequently μ is a ${ }^{*}$-isomorphism of B onto C.
q. e.d.

Proposition 4.8. $A C^{*}$-algebra B is injective if and only if it has no proper essential extension [i.e. if (C, λ) is an essential extension of B, then λ is $a{ }^{*}$-isomorphism of B onto $\left.C\right]$.

Proof. Necessity: Let (C, λ) be an essential extension of B. Since B is injective, there exists a completely positive linear map $\left(\lambda^{-1}\right)^{\wedge}$ of C onto B such that $\left.\left(\lambda^{-1}\right)^{\wedge}\right|_{\lambda(B)}=\lambda^{-1}$, i. e. $\left(\lambda^{-1}\right)^{\wedge} \circ \lambda=\mathrm{id}_{B}$. By hypothesis $\left(\lambda^{-1}\right)^{\wedge}$ is completely isometric, and $\left(\lambda^{-1}\right)^{\wedge} \circ\left(\lambda 0\left(\lambda^{-1}\right)^{\wedge}-\mathrm{id}_{C}\right)=0$. Hence $\lambda 0\left(\lambda^{-1}\right)^{\wedge}=\mathrm{id}_{C}$, so λ is a *-isomorphism of B onto C.

Sufficiency: Let (C, λ) be an injective envelope of B. By Proposition 4.7, (C, λ) is an essential extension of B, so if B has no proper essential extension, then λ is a ${ }^{*}$-isomorphism of B onto C. Hence B is injective. q.e.d.

Definition 4.9. A self-adjoint linear subspace S, containing the unit, of a C^{*}-algebra B is called a C^{*}-subspace of B if there exist a C^{*}-algebra A and a completely isometric linear map φ of A into B with $\operatorname{Im} \varphi=S$.

We note that if there exists another completely isometric linear map φ_{1} of a C^{*}-algebra A_{1} into B with $\operatorname{Im} \varphi_{1}=S, A$ and A_{1} are ${ }^{*}$-isomorphic by Lemma 2, 7.

Proposition 4.10. Let B be an injective C^{*}-algebra and S a closed selfadjoint linear subspace, containing the unit, of B. Then S is a C^{*}-subspace of B if and only if there exists a projection φ on B such that $\varphi\left(S^{2}\right) \subset S \subset \operatorname{Im} \varphi$.

Proof. Sufficiency: By Theorem 2.3 and Lemma 2.6, $j_{\varphi}{ }^{-1}: C^{*}(\varphi) \rightarrow \operatorname{Im} \varphi$ $\subset B$ is a completely isometric linear map of the C^{*}-algebra $C^{*}(\varphi)$ onto $\operatorname{Im} \varphi$. Noting the definition of the multiplication in $C^{*}(\varphi)$, we see that $\varphi\left(S^{2}\right) \subset S \subset$ $\operatorname{Im} \varphi$ if and only if $j_{\varphi}(S)$ is a C^{*}-subalgebra of $C^{*}(\varphi)$. Hence $\left.j_{\varphi}{ }^{-1}\right|_{j_{\varphi}(S)}: j_{\varphi}(S)$ $\rightarrow S \subset B$ is a completely isometric linear map of the C^{*}-algebra $j_{\varphi}(S)$ onto S, so that S is a C^{*}-subspace of B.

Necessity: Suppose that there exists a completely isometric linear map ψ of a C^{*}-algebra A onto S and let (C, λ) be the injective envelope of A. Since
B is injective and (C, λ) is essential (Proposition 4.7), we have a completely isometric linear map $\hat{\psi}$ of C into B such that $\hat{\phi} \circ \lambda=\psi$. Then there exists a projection φ on B such that $\operatorname{Im} \varphi=\operatorname{Im} \hat{\psi}$.

Since $j_{\varphi} \circ \hat{\psi}$ is a *-isomorphism of C onto $C^{*}(\varphi)$ Lemma 2.7), $j_{\varphi}(S)=\left(j_{\varphi} \circ \hat{\psi}\right) \circ \lambda(A)$ is a C^{*}-subalgebra of $C^{*}(\varphi)$, so that the condition in the statement of this proposition is satisfied.
q. e.d.

We will give a necessary and sufficient condition that a C^{*}-subalgebra of an injective C^{*}-algebra be injective: Let $A \subset B$ be C^{*}-algebras with B injective. For each x in B, set

$$
\begin{aligned}
& C_{A}(x)=\left\{y \in B:\left\|a+\sum_{i=1}^{n} b_{i} y c_{i}\right\| \leqq\left\|a+\sum_{i=1}^{n} b_{i} x c_{i}\right\|\right. \\
& \left.\quad \text { for all } a, b_{i}, c_{i} \text { in } A, n=1,2, \cdots\right\} .
\end{aligned}
$$

Proposition 4.11. With notations as above A is injective if and only if $C_{A}(x) \cap A \neq \emptyset$ for all x in B.

Proof. Take a minimal A-projection φ on B (Theorem 3.4). Then obviously A is injective if and only if $\operatorname{Im} \varphi=A$.

Necessity: If $\operatorname{Im} \varphi=A$, then φ is a contractive A-module homomorphism (Lemma 2.8), so that $\varphi(x) \in C_{A}(x) \cap A$ for all x in B.

Sufficiency: Suppose that the above condition is satisfied, but A is not injective. Then there exist an $x_{0} \in \operatorname{Im} \varphi \backslash A$ and an $a_{0} \in C_{A}\left(x_{0}\right) \cap A$. Let X be the Banach A-bimodule generated by A and x_{0}, i. e. X is the norm closure of the subset

$$
\left\{a+\sum_{i=1}^{n} b_{i} x_{0} c_{i}: a, b_{i}, c_{i} \in A, n=1,2, \cdots\right\}
$$

of B. Define a seminorm p on X by

$$
p\left(a+\sum_{i=1}^{n} b_{i} x_{0} c_{i}\right)=\left\|a+\sum_{i=1}^{n} b_{i} a_{0} c_{i}\right\| .
$$

Then

$$
p(a x b) \leqq\|a\| p(x)\|b\| \quad \text { for } \quad a, b \in A \quad \text { and } \quad x \in X,
$$

$$
\begin{aligned}
p\left(a+\sum_{i=1}^{n} b_{i} x_{0} c_{i}\right) & =\| a+\sum_{i=1}^{n} b_{1} a \\
& \leqq \| a+\sum_{i=1}^{n} b_{i} x_{0} c_{2}, \\
& =\left\|\varphi\left(a+\sum_{i=1}^{n} b_{i} x_{0} c_{i}\right)\right\| \\
& =p_{\varphi}\left(a+\sum_{i=1}^{n} b_{i} x_{0} c_{i}\right)
\end{aligned}
$$

(p_{φ} denotes the seminorm on B defined in Remark 3.6)
for all $a+\sum_{i=1}^{n} b_{i} x_{0} c_{i} \in X, \quad a, b_{i}, c_{i} \in A$, and

$$
p(a)=\|a\| \quad \text { for } \quad a \in A .
$$

On the other hand,

$$
p\left(-a_{0}+x_{0}\right)=\left\|-a_{0}+a_{0}\right\|=0<\left\|-a_{0}+x_{0}\right\|=p_{\varphi}\left(-a_{0}+x_{0}\right) .
$$

Since p_{φ} is a minimal A-seminorm (Remark 3.6), this inequality and the following lemma would yield a contradiction:

Lemma 4.12. There exists an A-seminorm p_{1} on B such that

$$
\left.p_{1}\right|_{X}=p \quad \text { and } \quad p_{1} \leqq p_{\varphi} .
$$

Proof of Lemma 4.12. Let $U=\{x \in X: p(x) \leqq 1\}, V=\left\{y \in B: p_{\varphi}(y) \leqq 1\right\}$ and W the convex hull of $U \cup V$ in B. Then the Minkowski functional p_{1} of W :

$$
p_{1}(y)=\inf \{\lambda>0: y \in \lambda W\}, \quad y \in B
$$

is the desired seminorm. In fact $\left.p_{1}\right|_{X}=p$ follows from $V \cap X \subset U$, and the remainder of the proof is immediate.
q. e.d.

Remark 4.13. In the above proposition, let A be a von Neumann algebra on a Hilbert space H and let $B=L(H)$. Then Schwartz's property P [13] for the commutant A^{\prime} of A implies the above condition for A, hence the existence of a projection of norm one from B onto A (cf. [13; Lemma 5]).

Let A be a C^{*}-algebra, B an injective C^{*}-algebra containing A as a C^{*} subalgebra, and (C, λ) an injective envelope of A. We know that C can be embedded in B as a C^{*}-subspace of B, i. e. there exists a completely isometric linear map φ of C into B such that $\varphi \circ \lambda=\mathrm{id}_{A}$ (cf. Proposition 4.7). But the author does not know whether or not C can be embedded in B as a C^{*}-subalgebra of B, i.e. the above φ can be chosen as a *-monomorphism. (Added March 1978: This is not the case for a general C^{*}-algebra A.) A necessary condition for this is stated as follows:

Proposition 4.14. Let A, B and C be as above and let K be the set of all completely isometric linear maps φ of C into B such that $\varphi \circ \lambda=\mathrm{id}_{A}$. Then K is
a convex subset of $L(C, B)$, the Banach space of all continuous linear maps of C into B, and if $\varphi_{0} \in K$ is a^{*}-monomorphism, then φ_{0} is an extreme point of K.

Proof. Let $\varphi=\mu \varphi_{1}+(1-\mu) \varphi_{2}$, where $\varphi_{1}, \varphi_{2} \in K$ and $0<\mu<1$. Then $\varphi: C$ $\rightarrow B$ is completely positive and $\varphi \circ \lambda=\mathrm{id}_{A}$, so by Proposition 4.7, φ is completely isometric ; hence $\varphi \in K$.

Suppose that $\varphi_{0} \in K$ is a ${ }^{*}$-monomorphism and that $\varphi_{0}=\left(\varphi_{1}+\varphi_{2}\right) / 2, \varphi_{1}, \varphi_{2}$ $\in K$. Then the Schwarz inequality shows that for each x in C,

$$
\begin{aligned}
&\left\{\frac{1}{2}\left(\varphi_{1}(x)+\varphi_{2}(x)\right)\right\}^{*}\left\{\frac{1}{2}\left(\varphi_{1}(x)+\varphi_{2}(x)\right)\right\}=\varphi_{0}(x)^{*} \varphi_{0}(x) \\
&=\varphi_{0}\left(x^{*} x\right)= \frac{1}{2}\left(\varphi_{1}\left(x^{*} x\right)+\varphi_{2}\left(x^{*} x\right)\right) \geqq \frac{1}{2}\left(\varphi_{1}(x)^{*} \varphi_{1}(x)+\varphi_{2}(x)^{*} \varphi_{2}(x)\right), \\
& \geqq\left(\varphi_{1}(x)-\varphi_{2}(x)\right)^{*}\left(\varphi_{1}(x)-\varphi_{2}(x)\right) ;
\end{aligned}
$$

hence

$$
\varphi_{1}(x)=\varphi_{2}(x)=\varphi_{0}(x), \quad \varphi_{1}=\varphi_{2}=\varphi_{0} .
$$

Proposition 4.15. Let A be a unital C^{*}-algebra and (B, κ) its injective envelope. Then if A is simple, so is B too. Hence, in particular, B is an $A W^{*}$-factor.

Proof. Let I be a proper closed two-sided ideal of B. Since A is unital and simple, $A \cap I=\{0\}$. Hence the map $\pi \circ \kappa: A \rightarrow B \rightarrow B / I$, where $\pi: B \rightarrow B / I$ is the quotient map, is a ${ }^{*}$-monomorphism, so that the seminorm $x \mapsto\|\pi(x)\|$ on B defines a $\kappa(A)$-seminorm. Thus Remark 4.4 implies that $I=\operatorname{Ker} \pi=\{0\}$, hence that B is simple. An injective C^{*}-algebra is monotone closed (Tomiyama [16; Theorem 7.1]); in particular, it is an $A W^{*}$-algebra. Hence the simple $A W^{*}$-algebra B is an $A W^{*}$-factor.
q. e.d.

§ 5. An example.

We give an example of an injective non W^{*}-, $A W^{*}$-factor of type III.
Example 5.1. Let $A=L(H) / L C(H)$ be the Calkin algebra, where H is a separable infinite dimensional Hilbert space, and let (B, κ) be the injective envelope of A. Then B is an injective non W^{*}-, $A W^{*}$-factor of type III.

Proof. Since A is simple, Proposition 4.15 implies that B is a simple $A W^{*}$-factor. Hence B must be of type $\mathrm{I}_{n}(n<\infty)$ or I_{1} or III. The first two cases are excluded since A is infinite dimensional and contains an infinite projection; so B is of type III. To see that B is non W^{*}, we follow the argument of Birrell [2; Example (c)]: If B were W^{*}, since it is simple, it
must be a countably decomposable W^{*}-factor of type III. But there exists an uncountable orthogonal family of non-zero projections in A, hence in B, a contradiction.
q. e. d.

Remark 5.2. Professor Sakai kindly pointed out to the author that a result of Voiculescu can be applied to show that the Calkin algebra A is not $A W^{*}$, hence that the injective envelope B of A, being $A W^{*}$, contains $\kappa(A)$ properly: In fact, let C be the C^{*}-subalgebra of $A=L(H) / L C(H)$ generated by $S+L C(H)$, where S is the simple unilateral shift on H. Then Voiculescu [17; Corollary 1.9] implies that C, being separable, is equal to its bicommutant. Hence if A were $A W^{*}$, then C also would be so. But this is absurd since $C \cong C(T)$, the C^{*}-algebra of continuous functions on the 1 dimensional torus T.

References

[1] W. Arveson, Subalgebras of C^{*}-algebras, Acta Math., 123 (1969), 141-224.
[2] I.D. Birrell, Maximal simple C^{*}-algebras I, Bull. London Math. Soc., 6 (1974), 141-144.
[3] M.-D. Choi, A Schwarz inequality for positive linear maps on C^{*}-algebras, Illinois J. Math., 18 (1974), 565-574.
[4] M.-D. Choi and E.G. Effros, Injectivity and operator spaces, J. Functional Analysis, 24 (1977), 156-209.
[5] H.B. Cohen, Injective envelopes of Banach spaces, Bull. Amer. Math. Soc., 70 (1964), 723-726.
[6] H. Gonshor, Injective hulls of C^{*}-algebras, Trans. Amer. Math. Soc., 131 (1968), 315-322.
[7] H. Gonshor, Injective hulls of C^{*}-algebras II, Proc. Amer. Math. Soc., 24 (1970), 486-491.
[8] J. Hakeda and J. Tomiyama, On some extension property of von Neumann algebras, Tôhoku Math. J., 19 (1967), 315-323.
[9] M. Hamana, Injective envelopes of Banach modules, to appear in Tôhoku Math. J.
[10] J. R. Isbell, Three remarks on injective envelopes of Banach spaces, J. Math. Anal. Appl., 27 (1969), 516-518.
[11] R. Kaufman, A type of extension of Banach spaces, Acta Sci. Math. (Szeged), 27 (1966), 163-166.
[12] R. I. Loebl, Injective von Neumann algebras, Proc. Amer. Math. Soc., 44 (1974), 46-48.
[13] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math., 16 (1963), 19-26.
[14] J. Tomiyama, On the projection of norm one in W^{*}-algebras, Proc. Japan Acad., 32 (1957), 608-612.
[15] J. Tomiyama, On the product projection of norm one in the direct product of operator algebras, Tôhoku Math. J., 11 (1959), 303-313.
[16] J. Tomiyama, Tensor products and projections of norm one in von Neumann algebras, Lecture notes for seminar given at University of Copenhagen, 1970.
[17] D. Voiculescu, A non-commutative Weyl-von Neumann theorem, Rev. Roumaine Math. Pures Appl., 21 (1976), 97-113.
[18] M. Nakamura, M. Takesaki and H. Umegaki, A remark on the expectation of operator algebras, Kōdai Math. Sem. Rep., 12 (1960), 82-90.

Masamichi Hamana
Mathematical Institute
Tôhoku University
Current Address:
Department of Mathematics
Faculty of Education
Toyama University
Toyama, Japan

