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Abstract.

Let $(M, G, \alpha)$ be a continuous $W^{*}$ -dynamical system. Then, the predual
$(G\otimes aM)_{*}$ of the crossed product $G\otimes_{a}M$ of $M$ by $G$ can be turned into
a Banach algebra and some of the notions and theorems in harmonic
analysis on locally compact groups are extended to the corresponding ones
in the crossed products. Among others, one can get a criterion for $T$ in
$G\otimes_{\alpha}M$ to fall in $M;T=\pi_{\alpha}(x)$ for some $x\neq 0$ in $M$ if and only if the
support of $T$ reduces to the unit $e$ in $G$ .

1. Introduction.

Generalizing the so-called Pontryagin’s duality theorem for locally compact
abelian groups, K. Saito [6] proved that, for a general locally compact group $G$ ,
the predual $\mathfrak{M}(G)_{*}$ of $\mathfrak{M}(G)$ , the von Neumann algebra generated by the left
regular representation of $G$ , becomes an involutive commutative Banach algebra

by suitably introducing the multiplication in it and the spectrum space $\mathfrak{M}(G)_{*}\wedge$

of $\mathfrak{M}(G)_{*}$ is homeomorphic to the original group $G$ .
P. Eymard [3], on the other hand, regarded $\mathfrak{M}(G)_{*}$ as a regular function

algebra $A(G)$ on $G$ . He called it the Fourier algebra of $G$ and he showed,
by using techniques in function algebras and in von Neumann algebras, that
some of the notions and results of harmonic analysis on locally compact abelian
groups can be extended to the non-abelian case.

Recently, in order to have an explicit form of the element of a continuous
$W^{*}$-crossed product $G\otimes_{a}M$, H. Takai [8] introduced the notion of Fourier
spaces and, under the condition that $(M, G, \alpha)$ be a G-finite separable continu-
ous $W^{*}$-dynamical system, he showed that Gelfand-Raikov’s and Godement’s
theorems in harmonic analysis on locally compact groups can be generalized
in $(M, G, \alpha)$ . And he added a remark that the predual $(G\otimes_{\alpha}M)_{*}$ can be
regarded as the space of continuous functions of $G$ into the predual $M_{*}$ and
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this, in the case where $M$ is the complex number field, coincides with the
Fourier algebra $A(G)$ of $G$ in Eymard’s sense.

In the present paper, we define Fourier spaces in the most general cases.
They are Banach algebras as they were in the scalar case, and some of the
notions and results in harmonic analysis can be naturally extended. In particular,
a generalization of Beurling’s theorem, which is a criterion for an operator in
$G\otimes_{\alpha}M$ to fall in $M$, will be proved. Similar results are also found in [4], [5].

But one will see that we get the theorem as a natural extension of the har-
monic analysis to crossed products and the way we have followed is different
from theirs.

The author would like to express his heartiful thanks to Professor O. Take-
nouchi for fruitful discussions and constant encouragement, Dr. H. Takai for
guiding him to this study and Mr. Y. Katayama for many suggestions and
constant encouragement.

2. Notations and preliminaries.

In this section, we give some remarks on notations and recall some basic
Properties of Fourier algebras of P. Eymard which will be frequently used in
the sequel.

Let $G$ be a locally compact group. Concerning the Haar integrals on $G$ , we
follow the notations in [3]: the only exception is that we denote $\mathfrak{M}(G)$ the
von Neumann algebra generated by the left regular representation $\rho$ of $G$ on
$L^{2}(G)$ .

Let $(M, G, \alpha)$ be a continuous $W^{*}$-dynamical system (abbreviated as $W^{*}- d$ . $s.$).

This means that $G$ is a locally compact group, $M$ is a von Neumann algebra
and $\alpha$ is a homomorphism of $G$ into the group $Aut(M)$ of all $*$-automorphisms
of $M$ such that the function $G\ni g-\varphi\circ\alpha_{g}(x)$ is continuous for all $\varphi\in M_{*}$ (the

predual of $M$ ) and $x\in M$. We assume that $M$ acts on a Hilbert space $\mathfrak{H}$ .
Then, the continuous $W^{*}$-crossed product $G\otimes_{a}M$ of $M$ by $G$ is a von Neumann
algebra acting on the Hilbert space $L^{2}(G;\mathfrak{H})$ , which is generated by the opera-
tors of the following types;

i) $(\pi_{\alpha}(x)\xi)(h)=\alpha_{h}^{-1}(x)\xi(h)$ , $\xi\in L^{2}(G;\mathfrak{H})$ , $x\in M$

ii) $(\lambda(g)\xi)(h)=\xi(g^{-1}h)$ .
Then, $\pi_{\alpha}$ defines a faithful normal $*$-representation of $M$ into $G\otimes_{\alpha}M$ and $\lambda$ is
a continuous unitary representation of $G$ on $L^{2}(G;\mathfrak{H})$ . Moreover, $(\pi_{\alpha}, \lambda)$ is a
covariant representation of $M$, in the sense that

$\lambda(g)\pi_{\alpha}(x)\lambda(g)^{-1}=\pi_{\alpha}\circ\alpha_{g}(x)$ for any $x\in M$, $g\in G$ ,
(see [9]). We denote by $M(G)$ the von Neumann subalgebra of $G\otimes_{\alpha}M$

generated by $\lambda(g)$ for all $g\in G$ .
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Let $\Omega$ be a locally compact space and $X$ a Banach space. Then, we denote
by $C^{b}(\Omega;X)$ (resp. $C_{0}(\Omega;X),$ $K(\Omega;X)$ ) the space of all continuous and
bounded (resp. vanishing at infinity, with compact suPport) functions $f$ of $\Omega$

into $X$ with the norm $\Vert f\Vert_{\infty}=\sup_{s\in 9}|f(s)|$ . When $X$ is the complex number field,

we simply denote it by $C^{b}(\Omega)$ (resp. $C_{0}(\Omega),$ $K(\Omega)$ ).
Finally, we collect here some of the basic properties of Fourier algebra

$A(G)$ of $G$ which will be freely used in the sequel:

(i) $A(G)$ is the set of all complex valued functions on $G$ of the form
$f*\tilde{g}(f, g\in L^{2}(G))$ , where $\tilde{g}(a)=\overline{g(a^{-1})}$ .

(ii) $A(G)$ is a closed ideal of $B(G)$ , where $B(G)$ is the commutative
Banach algebra of finite linear combinations $u$ of continuous positive definite
functions on $G$ with the norm

$\Vert u\Vert=\sup_{\Vert\pi(f)\Uparrow\leqq 1,f\in K(G)}|\int f(g)u(g)dg|$ ,

where $\pi$ varies over all continuous unitary representations of $G$ , the multipli-
cation in $B(G)$ being the pointwise multiplication. When $u\in A(G)$ ,

$\Vert u||=\Uparrow\rho f)\Uparrow\xi 1.f\in K(G)\sup_{(}|\int f(g)u(g)dg|$ .

(iii) For every compact set $K$ and open set $U$ of $G$ such that $K\subset U$,
there exists $u\in A(G)$ with the properties

1) $0\leqq u(s)\leqq 1$ for all $s\in G$ ;

2) $u=1$ on $K$

3) $supp(u)\subset U$.

(iv) $K(G)\cap A(G)$ is dense in $A(G)$ .
For details, see [3]. For von Neumann algebras and $c*$-algebras, we refer to
[1] and [2].

3. The Banach algebra structure in Fourier spaces.

In this section, we shall define the Fourier space $F_{\alpha}(G;M_{*})$ associated
with a continuous $W^{*}- d$ . $s$ . $(M, G, \alpha)$ and the Banach algebra structure in
$F_{\alpha}(G;11I_{*})$ so that, when $M$ is the complex number field, $F_{\alpha}(G;M_{*})$ is reduced
to the Fourier algebra $A(G)$ . In general, $F_{\alpha}(G;M_{*})$ is not commutative. We
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study then the relation between $F_{\alpha}(G;M_{*})$ and $A(G)$ , and prove that $G$ is
homeomorphic to the space $ F_{\alpha}(G;M_{*})\wedge$ of all non-zero complex homomorphisms

of $F_{\alpha}(G;M_{*})$ , when $ F_{\alpha}(G;M_{*})\wedge$ is equiPped with the topology inherited from
the weak*-topology of $F_{\alpha}(G;M_{*})^{*}$ . We have also a generalization of Wiener’s
tauberian theorem concerning a dense left ideal in $F_{\alpha}(G;M_{*})$ .

Let $(M, G, \alpha)$ be a continuous $W^{*}- d$ . $s$ . and $M_{\alpha}$ be the set of all elements
$X\in M$ such that $G\ni g-,$ $\alpha_{g}(x)\in M$ is continuous by norm. Then, $M_{\alpha}$ is a
G-invariant $\sigma$ -weakly dense $C^{*}$-subalgebra of $M$ with identities in common.
Define in $K(G;M_{\alpha})$ the involutive normed algebra structure by

$x*y(g)=\int x(h)\alpha_{h}(y(h^{-1}g))dh$

$x^{*}(g)=\Delta(g)^{-1}\alpha_{g}(x(g^{-1})^{*})$

$\Vert x\Vert_{1}=\int\Vert x(g)\Vert dg$ $x,$ $y\in K(G;M_{*})$ .

For each $X\in K(G;M_{\alpha})$ , we associate an operator $\pi_{\alpha}(x)$ of $G\otimes_{\alpha}M$ by

$\hat{\pi}_{\alpha}(x)=\int\pi_{\alpha}(x(g))\lambda(g)dg$ ,

the integral being taken in the a-weak topology of $G\otimes_{\alpha}M$. Then, it is not
hard to see that $it_{\alpha}$ is a faithful *-representation of $K(G;M_{\alpha})$ into $G\otimes_{\alpha}M$ and
the image of $K(G;M_{\alpha})$ by $\hat{\pi}_{\alpha}$ is a $\sigma$ -weakly dense $*$-subalgebra of $G\otimes.M$.
For each continuous function $u$ on $G$ with values in the Banach space $M_{*}$ ,
dePne

(3. 1) $\Vert u\Vert=\Uparrow\pi_{a}(x)U\leqq 1x\in K(GM)\wedge\sup_{;\alpha}|\int u(g)(x(g))dg|$ .

Let $B_{\alpha}(G;M_{*})$ be the set of all continuous functions $u$ on $G$ into $M_{*}$ such
that $\Vert u\Vert<+\infty$ . Then, (3. 1) defines a norm on $B_{\alpha}(G;M_{*})$ and $B_{\alpha}(G;M_{*})$ is
a Banach space under this norm. Moreover,

$|Iu\Vert_{\infty}\leqq\Vert u\Vert$ ,

so that, in particular, $B_{\alpha}(G;M_{*})$ is contained in $C^{b}(G;M_{*})$ . This fact is
proved as follows; for each $g\in G$ , let $\mathfrak{B}(g)$ be a filter basis of neighborhoods
of $g$ in $G$ and, for each $V$ in $\mathfrak{B}(g)$ , let $\psi_{V}$ be a non-negative function in $K(G)$

with supp $(\psi_{V})\subset V$ and the integral equal to one. For $x\in M_{\alpha}$ , put
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$x(\psi_{V})(s)=\psi_{V}(s)x$ .
Clearly, $x(\psi_{V})\in K(G;M_{\alpha})$ and

$|1x(\psi_{V})\Vert_{1}=\Vert x\Vert$ .
Since $\Vert\hat{\pi}_{\alpha}(X)\Vert\leqq\Vert X\Vert_{1}$ for all $X\in K(G;M_{a})$ ,

$\Vert u\Vert\geqq|!u(s)(x(\psi_{V})(s))ds|=|\int\psi_{V}(s)u(s)(x)ds|$

if $x\in M_{\alpha}$ with $\Vert x\Vert\leqq 1$ . The function $G\ni s-u(s)(x)$ being continuous, we have

$\lim_{V}\int\psi_{V}(s)u(s)(x)ds=u(g)(x)$ ,

so that
$\Vert u\Vert\geqq|u(g)(x)|$

for all $g\in G$ and $\chi\in M_{\alpha}$ with $\Vert x\Vert\leqq 1$ . Now the $\sigma$ -weak continuity of $ M\ni x\mapsto$

$u(g)(x)$ and the $\sigma$ -weak density of $M_{\alpha}$ in $M$ implies $\Vert u\Vert\geqq\Vert u\Vert_{\infty}$ . The rest will
be almost clear and we omit the Proof.

On the other hand, each element $u$ of the predual $(G\otimes_{\alpha}M)_{*}$ of $G\otimes_{\alpha}M$

may be regarded as an element of $B_{a}(G;M_{*})$ by defining

$ u(g)(x)=\langle\pi_{\alpha}(x)\lambda(g), u\rangle$ $(\equiv u(\pi_{\alpha}(x)\lambda(g)))$ .

It is obvious by definition that the above map from $(G\otimes_{\alpha}M)_{*}$ into $B_{\alpha}(G;M_{*})$

is linear and isometric, and so there will be no confusion by using the same
notation whichever $u$ belongs to. The following definition is due to H.
Takai [8].

(3. 2) DEFINITION. The space $(G\otimes_{\alpha}M)_{*}$ considered as the closed subspace of
$B_{\alpha}(G;M_{*})$ by the above correspondence will be called the Fourier space asso-
ciated with $(M, G, \alpha)$ and will be denoted by $F_{\alpha}(G;M_{*})$ .

(3. 3) REMARK 1. When $M$ reduces to scalars, $B_{\alpha}(G;M_{*})=B_{\rho}(G)$ (see [3]).

2. The most general form of Proposition3.1 in [8] can be obtained in
the $C^{*}- d$ . $s$ . $(M_{\alpha}, G, \alpha)$ too, but we will not discuss it here.

Here we get the following lemma in the most general setting which plays
a fundamental role in the sequel;

(3. 4) LEMMA. The elements of $F_{\alpha}(G;M_{*})$ with compact suPport form a dense
subspace of $F_{\alpha}(G;M_{*})$ . Hence, in particular, $F_{\alpha}(G;M_{*})$ is contained in
$C_{0}(G;M_{*})$ .
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In fact, for $u=\omega_{\zeta\eta}\in F_{\alpha}(G;M_{*})$ , where $\eta=e_{1}\otimes\psi_{1},$ $\zeta=e_{2}\otimes\psi_{2}\in \mathfrak{H}\otimes L^{2}(G)$

$=L^{2}(G;\mathfrak{H})$ and $\psi_{1},$ $\psi_{2}\in K(G)$ ,

$|u(g)(x)|=|(\pi_{\alpha}(x)\lambda(g)\zeta|\eta)|$

$=|\int(\alpha_{h}^{-1}(x)\zeta(g^{-1}h)|\eta(h))dh|$

$=|\int(\alpha_{h}^{-1}(x)e_{2}|e_{1})\psi_{2}(g^{-1}h)\overline{\psi_{1}(h)}dh|$

$\leqq\Vert x\Vert\Vert e_{1}\Vert\Vert e_{2}\Vert|\psi_{1}|*|\psi_{2}|(g)\sim$ ,

so that we have
$|1u(g)\Vert\leqq\Vert e_{1}\Vert\Vert e_{2}\Vert|\psi_{1}|*|\psi_{2}|(g)\sim$ .

Since $|\psi_{1}|*|\psi_{2}|\sim$ has a compact support, so does $u$ . Next, let $E$ be the dense
subspace of $L^{2}(G;\mathfrak{H})$ generated algebraically by elements of the form $ e\otimes\psi$,
where $e\in \mathfrak{H},$ $\psi\in K(G)$ . Then, for each $\zeta,$ $\eta\in L^{2}(G;\mathfrak{H})$ , there exist sequences
$\zeta_{n},$

$\eta_{n}$ in $E$ such that $\zeta=\lim_{n\rightarrow\infty}\zeta_{n},$ $\eta=\lim_{n\rightarrow\infty}\eta_{n}$ . Since

$|\langle T, \omega_{\zeta\cdot\eta}\rangle-\langle T, \omega_{\zeta_{n}\cdot\eta_{n}}\rangle|$

$=|(T\zeta|\eta)-(T\zeta_{n}|\eta_{n})$ I
$\leqq\Vert T\Vert$ ( $\Vert\zeta-\zeta_{n}\Vert\Vert\eta\Vert+\Vert\eta-\eta_{n}\Vert$ I $\zeta_{n}\Vert$ ),

we obtain
$\Vert\omega_{\zeta,\eta}-\omega_{\zeta_{n’}\eta_{n}}\Vert\leqq\Vert\zeta-\zeta_{n}\Vert\Vert\eta\Vert+\Vert\eta-\eta_{n}\Vert\Vert\zeta_{n}\Vert\rightarrow 0$,

when $ n\rightarrow\infty$ . By the preceding argument, $\omega_{\zeta_{n}\cdot\eta_{n}}$ belongs to $ F_{\alpha}(G;M_{*})\cap$

$K(G;M_{*})$ , so that $\omega_{\zeta,\eta}$ belongs to the closure of $F_{\alpha}(G;M_{*})\cap K(G;M_{*})$ .
Every element of $F_{\alpha}(G;M_{*})$ being the limit of finite linear combinations of
such elements, $F_{\alpha}(G;M_{*})$ is contained in the closure of $F_{\alpha}(G;M_{*})\cap K(G;M_{*})$ .
Since $\Vert u\Vert_{\infty}\leqq\Vert u\Vert,$ $F_{a}(G;M_{*})$ is contained in $C_{0}(G;M_{*})$ .

Now, define a unitary operator $W$ of $L^{2}(G\times G;\mathfrak{H}\otimes \mathfrak{H})$ onto itself by

$(W\xi)(s, t)=\xi(s, st)$ ,

wbere $\xi\in L^{2}(G\times G;\mathfrak{H}\otimes \mathfrak{H})$ . Then, it is not hard to see that

$W^{-1}(\pi_{\alpha}(x)\lambda(g)\otimes 1)W=\pi_{\alpha}(x)\lambda(g)\otimes\lambda(g)$

for every $x\in M$ and $g\in G$ . Put

$\delta(T)=W^{-1}(T\otimes 1)W$ $T\in G\otimes_{\alpha}M$.
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Then, $\delta$ is a faithful normal $*$-representation of $G\otimes_{\alpha}M$ into $(G_{a}\otimes M)\otimes$

$(G\otimes_{\alpha}M)$ such that

$\delta(\pi_{\alpha}(x)\lambda(g))=\pi_{\alpha}(x)\lambda(g)\otimes\lambda(g)$ ,

$th_{\vee}^{\circ}refore$

$\delta(G\otimes_{\alpha}M)\subset(G\otimes_{\alpha}M)\otimes M(G)$ .

With the above preparations, we get the following

(3. 5) THEOREM. For $u,$ $v\in F_{\alpha}(G;M_{*})$ , define the product by

$u*v(g)(x)=u(g)(x)v(g)(1)$ $g\in G$ , $x\in M$.

Then, $u*v$ falls in $F_{\alpha}(G;M_{*})$ and makes $F_{\alpha}(G;M_{*})$ into an associative Banach
algebra. Clearly, when $M$ reduces to the complex number field, this product
coincides with the usual pointwise product of scalar functions in $A(G)$ . (For a
clear meaning of this theorem, see [7], p. 1429, 1. 6-7.)

PROOF. For each $u,$ $v\in F_{\alpha}(G;M_{*})$ , the functional given by the map
$ G\otimes_{\alpha}M\ni T\rightarrow\langle\delta(T), u\otimes v\rangle$ is in $(G\otimes_{\alpha}M)_{*}$ , where $ u\otimes v\in(G\otimes_{\alpha}M)_{*}\otimes_{\alpha_{0}}*\wedge$

$(G\otimes_{\alpha}M)_{*}$ in the sense of Turumaru [10]. Therefore there exists a unique
$w\in F_{\alpha}(G;M_{*})$ such that

$\langle T, w\rangle=\langle\delta(T), u\otimes v\rangle$

for all $T\in G\otimes_{\alpha}M$ and we have

(3. 6) $\Vert w\Vert\leqq\Vert u\Vert\Vert v\Vert$ .

Putting $T=\pi_{\alpha}(x)\lambda(g)$ ,

$\langle\pi_{\alpha}(x)\lambda(g), w\rangle=\langle\pi_{\alpha}(x)\lambda(g)\otimes\lambda(g), u:\otimes v\rangle$

$=\langle\pi_{\alpha}(x)\lambda(g), u\rangle\langle\lambda(g), v\rangle$ ,

so that we have

$w(g)(x)=u(g)(x)v(g)(1)=u*v(g)(x)$ .

By this expression, it is easily seen that $F_{\alpha}(G;M_{*})$ is an associative algebra
and also a Banach algebra by (3. 6), which completes the proof.

We now arrived at the starting point of the study of the algebra structure
of $F_{\alpha}(G;M_{*})$ , but before proceeding further, we notice the left and right
module structure of $G\otimes_{\alpha}M$ over $F_{\alpha}(G;M_{*})$ which will plav an essential
role in \S 4.
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(3. 7) DEFINITION. For $T\in G\otimes_{\alpha}M$ and $u\in F.(G;M_{*})$ , the mapping

$ F_{\alpha}(G;M_{*})\ni v-\langle T, u*v\rangle$

defines a bounded linear functional on $F_{a}(G;M_{*})$ and hence, by the duality
between $F_{a}(G;M_{*})$ and $G\otimes_{\alpha}M$, there exists a unique element of $G\otimes_{\alpha}M$,
denoted by Tu, such that

\langle Tu, $ v\rangle$ $=\langle T, u*v\rangle$

for all $v\in F_{\alpha}$ $(G ; M_{*})$ . Analogously, we define the product $vT$ of $T$ by $v$ on
the left by $\langle vT, u\rangle=\langle T, u*v\rangle$ .
(3. 8) REMARK. If $M$ is the complex number field, the above definition coin-
cides with that of [3] (Chap. 4, Definition 4. 1), and in that case $uT=Tu$ . But,
in general, this is not the case.
(3. 9) By the operation $G\otimes_{\alpha}M\times F_{\alpha}(G;M_{*})\ni(T, u)\mapsto Tu\in G\otimes_{a}M$, $G\otimes_{\alpha}M$

becomes a right module over $F_{\alpha}(G;M_{*})$ and

$\Vert Tu\Vert\leqq\Vert T\Vert\Vert u\Vert$ .

The left module structure of $G\otimes_{\alpha}M$ is to be similarly understood and

$\Vert uT\Vert\leqq\Vert u\Vert\Vert T\Vert$ .
Moreover,

$[\pi_{a}(x)\lambda(g)]u=u(g)(x)\lambda(g)$

(3. 10)
$u[\pi_{\alpha}(x)\lambda(g)]=u(g)(1)\pi_{\alpha}(x)\lambda(g)$

so that

(3. 11) $Tu\in M(G)$ for all $T\in G\otimes_{\alpha}M$ and $u\in F_{\alpha}(G;M_{*})$ .
(3. 12) LEMMA. Put $\tau(u)(g)=u(g)(1)(g\in G, u\in F_{\alpha}(G;M_{*}))$ . Then, $\tau$ defines
a continuous homomorphism of $F_{\alpha}(G;M_{*})$ onto $A(G)$ with norm $\Vert\tau\Vert\leqq 1$ . Moreover
$\tau$ maps the cone $F_{\alpha}(G;M_{*})_{+}$ of all $\alpha$ -positive definite functions (see [8], $p$ .
856) of $F_{\alpha}(G;M_{*})$ onto the $CO^{v}leA(G)_{+}$ of all positive definite functions of $A(G)$

isometrically.

REMARK. In the following, $\tau$ will always denote this homomorphism.

PROOF. First we remark the cone of all $\alpha$-positive definite (resp. positive
definite) functions in $F_{\alpha}(G;M_{*})$ (resp. $A(G)$ ) can be identiPed with the cone
of all positive normal linear functionals of $G\otimes_{\alpha}M$ (resp. $\mathfrak{M}(G)$ ). Since, for

each $u\in F_{\alpha}(G;M_{*})$ , the functional

$\mathfrak{M}(G)\ni t\leftrightarrow\langle 1\otimes t, u\rangle$
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is in $\mathfrak{M}(G)_{*}$ , there exists a unique $\overline{u}\in A(G)$ such that

$\langle t,\overline{u}\rangle=\langle 1\otimes t, u\rangle$ for all $t\in \mathfrak{M}(G)$ .
By making $t=\rho(g)(g\in G)$ , we have

$\tau(u)(g)=u(g)(1)=\overline{u}(g)$ .

Conversely, if $\omega\in A(G)_{+}$ , there exists an $f\in L^{2}(G)$ such that

$\omega(g)=\overline{f}*\check{f}(g)=(\rho(g)f|f)$ for all $g\in G$ , where $\check{f}(g)=f(g^{-1})$ .

Hence, if we take $e\in \mathfrak{H}$ with $\Vert e\Vert=1$ and put $u=\omega_{\eta\eta}(\eta=e\otimes f, e\otimes f\in L^{2}(G;\mathfrak{H}))$ ,
$u$ belongs to $F_{\alpha}(G;M_{*})_{+}$ and

$\tau(?l)=\omega$ .
Since every element of $F_{\alpha}(G;M_{*})$ (resp. $A(G)$ ) is a finite linear combination
of elements in $F_{\alpha}(G;M_{*})_{+}$ (resp. $A(G)_{+}$ ), we may conclude that $\tau$ is a map
of $F_{\alpha}(G;fW_{\star})$ onto $A(G)$ . The rest will be almost clear and this completes
the proof.

The following theorem may be regarded as a generalization of [3],

(3. 13) DEFINITION. If $A$ is a complex algebra, we denote by $\hat{A}$ the set of all
non-zero complex homomorphisms with $\sigma(A_{a}^{*}, A)- topology$ , where $A_{a}^{*}$ is the
algebraic dual of $A$ . Note that $\hat{A}$ is contained in the topological dual of $A$ if
$A$ is a Banach algebra.

Theorem 3. 34 (see also [6] p. 358, Theorem). We prove it by a reduction to
the scalar case so that the relation between $F_{\alpha}(G;A\#_{*})$ and $A(G)$ will get
clear.

(3. 14) THEOREM. $G$ is homeomorphic to $ F_{\alpha}(G;M_{*});\wedge$ the correspondence $ G\ni g\mapsto$

$\Phi_{g}\in F_{\alpha}(G:M_{*})\wedge$ is given by

$\Phi_{g}(u)=u(g)(1)$ for all $u\in F_{\alpha}(G;M_{*})$ .

PROOF. Let $J$ be the kernel of $\tau$ . Then, $J$ is a closed two-sided ideal of
$F_{\alpha}(G;M_{*})$ (Lemma 3. 12), and $F_{\alpha}(G;M_{*})/J$ is algebraically isomorphic to $A(G)$ ,

so that it is a commutative Banach algebra. Hence $ F_{\alpha}(G;M_{*})/J\wedge$ is homeomor-

phic to $\wedge A(G)$ in the canonical way. Since $\wedge A(G)$ is homeomorphic to $G$ ([3],

Theorem 3. 34), the only thing to be proved is that every $\Phi\in F_{\alpha}^{\backslash }(G;M_{*})\wedge$

vanishes on $J$ . By the duality between $F_{\alpha}(G;M_{*})$ and $G\otimes_{a}M$, we may
regard $\Phi$ as an element of $G\otimes_{\alpha}M$ . Tben, since $\Phi$ is a complex homomorphism
on $F_{\alpha}(G;M_{*})$ , we have
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$\langle\Phi, u*v\rangle=\langle\Phi, u\rangle\langle\Phi, v\rangle$

for all $u\in F_{\alpha}(G;t1I_{*})$ and $v\in F_{\alpha}(G;M_{*})$ , which implies

$\Phi_{\mathcal{U}}=\langle\Phi, u\rangle\Phi$ .

Since $\Phi\neq 0$ , there exists $u_{0}\in F_{\alpha}(G;M_{*})$ such that $\langle\Phi, u_{0}\rangle\neq 0$ . Hence we have,

by 3. 11,
$\Phi=\langle\Phi, u_{0}\rangle^{-1}\Phi u_{0}\in M(G)$ .

Noticing that $J=M(G)^{0}$ , where $M(G)^{0}$ is the polar of $M(G)$ in $F_{\alpha}(G;M_{*})$ we
have

$\langle\Phi, u\rangle=0$ for all $u\in J$,

which completes the proof.

(3. 15) COROLLARY. $F_{\alpha}(G;M_{*})/J$ is a semisimple commutative Banach algebra

which is algebraically isomorphic to $A(G)$ . In particular, $ F_{\alpha}(G, M_{*})/J\wedge$ is

homeomorphic to $ A(G)\wedge$ .
(3. 16) COROLLARY. Let $(M_{1}, G_{1}, \alpha_{1})$ and $(M_{2}, G_{2}, \alpha_{2})$ be two continuous $W^{*}- d$ . ss.
If $F_{\alpha_{1}}(G_{1} ; M_{1*})$ and $F_{\alpha_{2}}(G_{2} ; M_{2*})$ are algebraically isomorphic, $G_{1}$ and $G_{2}$ are
homeomorphic.

The following theorem may be seen as one version of Wiener’s tauberian
theorem, but it is not a direct consequence of Theorem 3. 14 (cf. [3]).

(3. 17) THEOREM. Let I be a left ideal of $F_{\alpha}(G;M_{*})$ . If, for every $g\in G$ ,

there exists $u\in I$ such that $u(g)(1)\neq 0$, then, I is dense in $F_{\alpha}(G;M_{*})$ .
PROOF. Since $\tau(I)$ is an ideal of $A(G)$ satisfying the same condition, $\tau(I)$

contains $A(G)\cap K(G)$ (see the proof of [3] Corollary 3. 38). Hence, the lemma
3. 2 of [3] implies that, for every compact set $K$ of $G$ , there exists $u\in I$ such
that $u(g)(1)=1$ for all $g\in K$. Therefore, for every $v\in F_{\alpha}(G;M_{*})\cap K(G;i1l_{*})$ ,

there exists $u\in I$ such that

$v*u=v$.
Since $I$ is a left ideal, $I$ must contain $F_{\alpha}(G;M_{*})\cap K(G;M_{*})$ . As $F_{\alpha}(G;M_{*})$

$\cap K(G;M_{*})$ is dense in $F_{\alpha}(G;M_{*})$ ($3.4$ Lemma) we get the theorem.

4. Generalized Beurling’s theorem.

In this section, we generalize the Beurling’s theorem in harmonic analysis
to the case of crossed products.

In [5], Section 5, Nakagami defined the ”spectrum” of an operator $T$ in
$G\otimes_{\alpha}M$ which corresponds to our notion of suPport given below. He also



Banach algebra structure in Fourier spaces 63

obtained a generalization of Beurling’s theorem in terms of his notion of
spectrum by making use of the theory of vector valued weights. Our method
here is a reduction to the scalar case whicb will make the whole argument
more transparent.

We begin by the following proposition.

(4. 1) PROPOSITION. (i) Let $g$ (resp. $T$ ) be an element of $G$ (resp. $G\otimes_{\alpha}M$).

Then, the following conditions are equivalent:

1. $\lambda(g)$ belongs to the $\sigma$ -weak closure of $TF_{\alpha}(G;M_{*})$ ;

2. $vT=0$ implies $\tau(v)(g)=0$ ;
$3^{o}$ . for every neighborhood $V$ of $g$, there exists $u\in F_{\alpha}(G;M_{*})$ with

$supp(u)\subset V$ such that $\langle T, u\rangle\neq 0$ .
(ii) Let $g(resP\cdot T)$ be an element of $G$ (resP. $G\otimes_{\alpha}M$). Then, the follow-

ing conditions are equivalent:

1. $\pi(x)\lambda(g)$ belongs to the $\sigma$ -weak closure of $F_{\alpha}(G;M_{*})T$ ;

2. $Tv=0$ implies $v(g)(x)=0$ .
Moreover, if $\chi\neq 0$, then 2 implies $(i)- 3^{o}$ .
PROOF. (i) Let $I_{T}$ be the set of all $u\in F.(G;M_{*})$ such that $uT=0$ and

$E_{T}$ the subspace of $G\otimes_{\alpha}M$ consisting of all elements of the form Tu ( $u\in F_{\alpha}(G$ ;
$M_{*}))$ . Note that $I_{T}$ forms a closed left ideal of $F_{\alpha}(G;M_{*})$ . And the polar
$E_{T}^{0}$ of $E_{T}$ in $F_{\alpha}(G;M_{*})$ is equal to $I_{T}$ . Therefore $\lambda(g)$ belongs to the $\sigma$ -weak
closure of $E_{T}$ if and only if $\langle\lambda(g), u\rangle=0$ for all $u\in I_{T}$ , which proves 1 $\Leftrightarrow 2^{o}$ .

Next we prove2 $\Rightarrow 3^{o}$ ; in fact, if 3 is not the case, there exists a
neighborhood $V$ of $g$ such that $\langle T, u\rangle=0$ for all $u\in F_{\alpha}(G;M_{*})$ with
$supp(u)\subset V$. On the other hand, there exists $u_{0}\in F_{ct}(G;M_{\star})$ such that
$supp(\tau(u_{0}))\subset V$ and $\tau(u_{0})(g)\neq 0$ (Lemma 3. 12). Hence, $supp(u*u_{0})\subset V$ for all
$u\in F_{\alpha}(G;M_{*})$ and, by assumption, we have

$\langle u_{0}T, u\rangle=\langle T, u*u_{0}\rangle=0$ for all $u\in F_{\alpha}(G;M_{*})$ .
Hence, $u_{0}T=0$ which is a contradiction and this proves2 $\Rightarrow 3^{O}$ .

Finally we prove3 $\Rightarrow 2^{o}$ ; for this purpose, it suffices to show $\tau(u)(g)\neq 0$

implies $uT\neq 0$ . We may assume $|\tau(u)(g)|>1$ . Then, there exists a compact
neighborhood $V$ of $g$ such that $|\tau(u)(s)|\geqq 1$ for all $s\in V$. Take then a
$w\in F_{\alpha}(G;M_{*})$ such that

$\tau(w)(s)=\tau(u)(s)^{-1}$ for all $s\in V$,

which is possible by $\tau(F_{\alpha}(G;M_{*}))=A(G)$ . By hypothesis, there exists
$h\in F_{\alpha}(G;M_{*})$ with $supp(h)\subset V$ and $\langle T, h\rangle\neq 0$ . Put $v=h*w$ . Then, it is not
hard to see
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$v*u=h$ ,
which implies

$\langle uT, v\rangle=\langle T, v*u\rangle=\langle T, h\rangle\neq 0$ .
Therefore $uT\neq 0$ .

Now, the proof of (i) is complete.
(ii) can be proved in a similar way.

This is a direct generalization of that given in [3] (Definition 4. 5).

In the following proposition, we show some basic properties of the suPport

of operators, some of which will be used in the proof of the next theorem.

(4. 2) DEFINITION. Let $T\in G\otimes_{\alpha}M$. Then the support of $T$ is defined as the
set of all $g\in G$ satisfying the equivalent conditions of Proposition 4. l-(i) and it
will be denoted by supp $(T)$ .

(4. 3) PROPOSITION. (i) Let $T\in G\otimes_{\alpha}$ M. Then,

1. $supp(T)$ is a closed subset of $G$ ;

2. $T=0$ if and only if $suPp(T)=\emptyset$ ($\emptyset=empty$ set).

(ii) Let $u\in F_{\alpha}(G;M_{*})$ . Then,

1. $supp(Tu)\subset supp(u)\cap supp(T)$ .
2. $supp(uT)\subset supp(\tau(u))\cap supp(T)$ .

(iii) supp $(T)$ is the smallest closed set $F$ of $G$ satisfying the following
condition:

$u\in F_{\alpha}(G;M_{*})\cap K(G;M_{*})$ and $supp(u)\cap F=0$ imply $\langle T, u\rangle=0$ .

(iv) supp $(T)$ is the smallest closed set $F$ of $G$ satisfying the following con-
dition:

for every closed neighborhood $\Omega$ of $F$ with a relatively comPact complement
$\Omega^{\prime}$ in $G,$ $T$ is the $\sigma$ -weak limit of operators of the form;

$\pi_{\alpha}(x_{1})\lambda(g_{1})+\cdots+\pi_{\alpha}(x_{n})\lambda(g_{n})$ ,

where $x_{i}\in_{1}?f$ and $g_{i}\in\Omega(i=1,2, \cdots, n)$ .

(v) Let $\Sigma$ be a closed subset of $G$ and $T_{\lambda}(\lambda\in\Lambda)$ , $T$ be in $G\otimes_{\alpha}$ M. If
$supp(T_{\lambda})\subset\Sigma$ for all $\lambda\in\Lambda$ and $T$ is the $\sigma$ -weak limit of $T_{\lambda}$ , supp $(T)\subset\Sigma$ .

(vi) 1. $supp(\pi_{\alpha}(x)T)\subset supp(T)$ for every $x\in M$ . Hence, if $x$ is in-
vertible in $M,$ $supp(\pi_{a}(x)T)=supp(T)$ .
2. supp $(T^{*})=supp(T)^{-1}$ .
3. supp $(T_{1}+T_{2})\subset supp(T_{1})U$ supp $(T_{2})$ , and if supp $(T_{1})\cap supp(T_{2})=$

$\emptyset$ , the equality holds.
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$4^{O}$ . Suppose $supp(T_{1})$ or $supp(T_{2})$ compoct. Then,

$supp(T_{1}T_{2})\subset supp(T_{1})$ supp $(T_{2})$ .

PROOF. This proposition is essentially the same as Proposition4.8 of [3],
so we only give the outline of the proof. Because of frequent use, we quote
Proposition 4. 8 of [3] as (E).

(i) 1o is obvious by Proposition4. $1-(i)- 2^{o}$ and $T=0$ implies $I_{T}=F_{\alpha}(G$ ;
$M_{*})$ . Since $\tau(F_{\alpha}(G;M_{*}))=A(G),$ $supp(T)=\emptyset$ if $T=0$ (Proposition 4. $1-(i)- 2^{o}$ ).
Conversely, if $T\neq 0$ , then $I_{T}\neq F_{\alpha}(G;M_{*})$ . This can be easily derived by an
argument similar to that in (E). Since $I_{T}$ is a closed left ideal of $F_{\alpha}(G;M_{*})$ ,
the validity of the tauberian theorem and Proposition4. $1-(i)- 2^{o}$ imply
supp $(T)\neq\emptyset$ , which proves 2.

(ii) can be easily derived from $(i)- 1^{o}$ and Proposition4. $1-(i)- 1^{o},$ $3^{o}$ by
an argument similar to that in (E).

(iii) is also deduced from (E) by noticing that for every $ u\in F_{\alpha}(G;M_{*})\cap$

$K(G;M_{*})$ , there exists $\omega\in F_{a}(G;M_{*})$ such that $u*\omega=u$ .
(iv) First we notice the following point; let $I_{\Omega}$ be the set of all $u\in F_{\alpha}(G$ ;

$M_{*})$ such that $u(g)(x)=0$ for all $ g\in\Omega$ and $x\in M$. Then, $I_{Q}$ is the polar of
$ C\langle\pi_{a}(M)\lambda(\Omega)\rangle$ in $F_{\alpha}(G;M_{*})$ , where $ C\langle\pi_{\alpha}(M)\lambda(\Omega)\rangle$ is the subspace $G\otimes_{\alpha}M$

generated by the set $\pi_{\alpha}(M)\lambda(\Omega)=\{\pi_{\alpha}(x)\lambda(g);g\in\Omega, x\in M\}$ . Hence, $T$ vanishes
on $I_{\Omega}$ if and only if $T$ belongs to the a-weak closure of $ C\langle\pi_{\alpha}(M)\lambda(\Omega)\rangle$ .
Now it is not hard to see that the closed sets of $G$ satisfying the condition
in (iv) are equal to those satisfying the condition in (iii) (cf. $(E)$ ) and this
completes the proof.

(v) is a consequence of (iii) (cf. $(E)$ ).

(vi) 1’ is a consequence of (iv). The use of (iv) proves2 and 3 by
noticing that the $*$-operation is a-weakly continuous and that $(\pi_{\alpha}, \lambda)$ is a
covariant representation of $M$ (cf. $(E)$ ). Finally we prove $4^{O}$ . First we remark
that $supp(\pi_{\alpha}(x)\lambda(g))=\{g\}$ if $x\neq 0$ : this is an easy consequence of $v[\pi_{\alpha}(x)\lambda(g)]$

$=v(g)(1)\pi_{ct}(x)\lambda(g)$ and Proposition4. $1-(i)- 2^{o}$ . Then, by using (iv) and noticing
that $(\pi_{a}, \lambda)$ is a covariant representation of $M$, we get

$supp(\pi_{\alpha}(x)\lambda(g)T)\subset supp(\pi_{\alpha}(x)\lambda(g))supp(T)$ .

Now the validity of (iv), (v), $(vi)- 2^{o}$ and $(vi)- 3^{o}$ completes the proof (cf. $(E)$ ).

At this stage, we can prove the following generalized version of Beurling’s
theorem (cf. [3] Theorem 4. 9) which gives a criterion that an operator
$T\in G\otimes_{\alpha}M$ falls in $M$.
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(4. 4) THEOREM. Let $T$ be an operator in $G\otimes_{a}$ M. Then, the suPport of $T$

reduces to one point $g$ in $G$ if and only if $T$ is of the. form $T=\pi_{\alpha}(x)\lambda(g)$ for
some $x\neq 0$ in $M$.

PROOF. First we prove the following; if $S=1\otimes S_{1}\in 1\otimes \mathfrak{M}(G)=M(G)$ ,
then

$supp(S)=supp(S_{1})$ .
The inclusion $supp(S)\subset supp(S_{1})$ can be easily derived from Proposition4.3-
(iv). Hence, we prove the oPposite inclusion. If $u\in F_{\alpha}(G;M_{*}),$ $\langle\lambda(g), u\rangle=$

$\tau(u)(g)=\langle\rho(g), \tau(u)\rangle$ , so that

$\langle S, u\rangle=\langle S_{1}, \tau(u)\rangle$ .
Put $F=supp(S)$ . Take $\omega\in A(G)\cap K(G)$ such that $supp(\omega)\cap F=\emptyset$ . Then,
there exists $u$ in $F_{\alpha}(G;M_{*})$ such that $\tau(u)=\omega$ . Since supp $(\omega)$ is compact and
$F$ is closed, there exists $v$ in $F_{\alpha}(G;M_{*})$ such that $\tau(v)(s)=1$ if $s\in supp(\omega)$ and
supp $(\tau(v))$ is compact and disjoint from $F$. Since supp $(u*v)\subset supp(\tau(v)),$ $u*v$

belongs to $F_{a}(G;M_{*})\cap K(G;M_{*})$ and supp $(u*v)\cap F=\emptyset$ . Hence, by Proposition
4. 3-(iii), $\langle S, u*v\rangle=0$ . Since

$\langle S, u*v\rangle=\langle S_{1}, \tau(u*v)\rangle=\langle S_{1}, \tau(u)_{T}(v)\rangle=\langle S_{1}, \omega\tau(v)\rangle=\langle S_{1}, \omega\rangle$ ,

we obtain $\langle S_{1}, \omega\rangle=0$ . Now, Proposition 4. 8 of [3] implies

$supp(S_{1})\subset F=supp(S)$ ,

which proves supp $(S)=supp(S_{1})$ .
The $t$ ‘ if ” part is already shown in the proof of Proposition 4. 3. So we

are to prove the ” only if ” part. By Proposition 4. $3-(vi)- 4^{o}$ , we may assume
supp $(T)=\{e\}$ . Then, by Proposition 4. $3-(ii)- 1^{o}$ ,

$supp$ $(Tu)=\{e\}$ or $\emptyset$

for all $u\in F_{\alpha}(G;M_{*})$ . Since $Tu$ belongs to $M(G)(3.11)$ , the argument in the
above and Theorem 4. 9 of [3] imply

$Tu=\nu(u)1$ ,

where $\nu(u)$ is a complex number. It is clear that $F_{\alpha}(G;M_{*})\ni u-,$ $\nu(u)$ is a
bounded linear functional. Let $u$ be an element of $F_{\alpha}(G;M_{*})\cap K(G;M_{*})$ .
Then, there exists $v\in F_{a}(G;M_{*})$ such that $\tau(v)(s)=1$ if $s\in supp(u)\cup\{e\}$ .
Thus we get

$\langle T, u\rangle=\langle T, u*v\rangle=\langle Tu, v\rangle=\nu(u)\langle 1, v\rangle=\nu(u)\tau(v)(e)=\nu(u)$ .
The above equality holds for every $u\in F_{\alpha}(G;M_{*})$ since $F_{\alpha}(G;M_{*})\cap K(G;M_{*})$

is dense in $F_{a}(G;M_{*})$ and $\nu$ is continuous. Hence, we get
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$\langle T, u*v\rangle=\langle T, u\rangle\langle 1, v\rangle$ ,

for all $u,$ $v\in F_{\alpha}(G;M_{*})$ , which implies

$\langle\delta(T), u\otimes v\rangle=\langle T\otimes 1, u\otimes v\rangle$ .
Hence, we get $\delta(T)=T\otimes 1$ . Therefore $T=\pi_{\alpha}(x)$ for some $x\in M$ by a slight
modification of [4] Proposition 2. 3 (cf. [5]) and this completes the proof.

REMARK. The author is informed the use of [4] Proposition 2. 3 by
Y. Katayama.
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