On the deficiencies of algebroid functions

By Yûji Hashimoto

(Received Sept. 27, 1976)
(Revised March 23, 1978)

1. Introduction. Let R be an n-sheeted covering surface of $|z|<\infty$ and $M(R)$ the field of meromorphic functions on R. Then, according to Selberg [2], the deficiency relation for $w \in M(R)$ (In all what follows, we assume that w is not constant.) is

$$
\sum_{a} \delta(a, w) \leqq 2+\xi,
$$

where $\xi=\lim _{r \rightarrow \infty} \sup N(r, R) / T(r, w)$. However, it is difficult for us to calculate ξ for each $w \underset{\in}{w \rightarrow \infty}(R)$. In this respect, when $w \in M(R)$ is proper on R (that is, R is the proper existence surface of w), Ullrich [4] showed by the branch point theorem that

$$
\xi \leqq 2 n-2
$$

Therefore, combining these two inequalities, we obtain an explicit upper bound for the deficiency sum in case that $w \in M(R)$ is proper on R;

$$
\begin{equation*}
\sum_{a} \delta(a, w) \leqq 2 n \tag{*}
\end{equation*}
$$

On the other hand, the value distribution of algebroid functions has been studied through the systems of their coefficients which are entire functions on $|z|<\infty$. Along this line, Cartan [1] and Toda [3] have given another form of the deficiency relation

$$
\sum_{a} \delta(a, w) \leqq n+1+\lambda(n-\lambda),
$$

where λ is the maximum number of \boldsymbol{C}-independent linear relations among these coefficients.

In this paper, we shall give some extentions of these studies. In 2, we shall show the deficiency relation for $w \in M(R)$ which is not proper on R. In 3, we shall extend the Nevanlinna theory of systems in the case of algebroid functions. In 4 and 5 , we shall consider the case where R is also an m-sheeted covering surface of another covering surface S which is k-sheeted over $|z|<\infty$, and show that, on such a surface R, the deficiency sum for $w \in M(R)$ being
proper on R is estimated somewhat better. For instance, if $\lim \sup N(r, S) /$ $N(r, R)=0$ (that is, the ramification of S is negligible compared with that of R), then,

$$
\sum_{a} \delta(a, w) \leqq m+1+\lambda(m-\lambda),
$$

or

$$
\sum_{a} \delta(a, w) \leqq 2 m,
$$

and if the sheet number k of S is prime and $\lim _{r \rightarrow \infty} \sup N\left(r, R_{s}\right) / N(r, R)=0$ (that is, the ramification of R over S is negligible compared with that of R), then,

$$
\sum_{a} \delta(a, w) \leqq 2 n-2 m+2 .
$$

In 6, we shall give an example which illustrates these two consequences.
We shall use the standard symbols of the Nevanlinna theory of algebroid functions except when the remark should be necessary (see Selberg [2]).

The author wishes to express his deep gratitude to professors K. Matsumoto and N . Toda for their valuable advices and encouragements.
2. First we summarize some theorems that are necessary for later use.

Theorem A (Selberg [2]). Let R and $M(R)$ be as in $\mathbf{1}$. Then, for $w \in M(R)$, we have

$$
\| m\left(r, w^{\prime} / w\right)=O(\log r T(r, w)),
$$

where "\|" means that this relation holds for $r \rightarrow \infty$ except for the intervals of finite linear measure.

Theorem B (Selberg [2]). For $w \in M(R)$ and arbitrary $a_{1}, \cdots, a_{q} \in \boldsymbol{C}$, we have

$$
\|(q-2) T(r, w) \leqq \sum_{j=1}^{q} N\left(r, a_{j}, w\right)+N(r, R)+O(\log r T(r, w)) .
$$

Theorem C (Ullrich [4]). Let $w \in M(R)$ be proper on R. Then, for $N(r, R)$, we have

$$
N(r, R) \leqq(2 n-2) T(r, w)+O(1) .
$$

Theorem D (Valiron [5]). As for the derivative w^{\prime} of $w \in M(R)$, we have

$$
\| T\left(r, w^{\prime}\right) \leqq 2 T(r, w)+N(r, R)+O(\log r T(r, w)) .
$$

Now, we give the following proposition.
Proposition 1. Let R and $M(R)$ be as above and $f \in M(R)$ be not proper on R. We denote by S the proper existence surface of f. Then, R is a covering surface of S and f is the lift of the meromorphic function on S. Here, if S is
k-sheeted over $|z|<\infty$, then, k is a divisor of n and R is $m(=n / k)$-sheeted over S.

According to Proposition 1, Theorems B and C, we obtain the following theorem.

Theorem 1. Let $f \in M(R)$ be not proper on R. Then, the deficiency relation for f becomes

$$
\sum_{a} \delta(a, f) \leqq 2 k
$$

where k is the sheet number of S over $|z|<\infty$.
3. Let S be a k-sheeted covering surface of $|z|<\infty$. We call

$$
f=\left(f_{0}, \cdots, f_{m}\right)
$$

a system on S if f_{0}, \cdots, f_{m} are holomorphic functions on S without common zeros. We define the characteristic function of f by

$$
T(r, f)=\frac{1}{2 \pi k} \int_{\Gamma^{(r)}} \log u(y) d \theta
$$

where $y=r e^{i \theta} \in S, u(y)=\max _{0 \leq j \leq m}\left|f_{j}(y)\right|$ and $\Gamma(r)$ is the part of S over $|z|=r$. Let

$$
X=\left\{F \mid F=a_{0} f_{0}+\cdots+a_{m} f_{m}, a_{j} \in \boldsymbol{C}\right\}
$$

be the family of homogeneous linear combinations of f_{0}, \cdots, f_{m} with constant coefficients whose arbitrary $m+1$ coefficient vectors $\left\{\left(a_{0}, \cdots, a_{m}\right)\right\}$ are linearly independent. We denote by λ the maximum number of \boldsymbol{C}-independent linear relations among f_{0}, \cdots, f_{m} (see Cartan [1]).

We shall denote by $\tilde{m}(r, g), \tilde{N}(r, g)$ and $\tilde{T}(r, g)$, respectively, the proximity, counting and characteristic functions of $g \in M(S)$.

As in the case of systems on $|z|<\infty$, we obtain the following propositions.
Proposition 2. For $F_{1}, F_{2} \in X$, we have

$$
\widetilde{T}\left(r, F_{2} / F_{1}\right) \leqq T(r, f)+O(1)
$$

In proving Proposition 2, we use Florack's theorem when F_{1} and F_{2} have common zeros.

Proposition 3. From f_{0}, \cdots, f_{m}, we can choose $m+1-\lambda$ functions $f_{a_{1}}, \cdots$, $f_{a_{m+1-\lambda}}$ which satisfy the following conditions:
(1) $f_{a_{1}}, \cdots, f_{a_{m+1-\lambda}}$ are linearly independent over \boldsymbol{C}.
(2) Each $F \in X$ can be represented as a C-linear combination of $f_{a_{1}}, \cdots$, $f_{a_{m+1-\lambda}}$.

We call $f_{a_{1}}, \cdots, f_{a_{m+1-\lambda}}$ a basis of f_{0}, \cdots, f_{m}.
Proposition 4. For $F_{1}, \cdots, F_{q}(q \geqq m+1)$ and a fixed $y \in S$, we define $F_{b_{j}}$ as $\left|F_{b_{1}}(y)\right| \leqq \cdots \leqq\left|F_{b_{q}}(y)\right|$. Then, there exists a constant K which is independent of y and satisfies

$$
u(y) \leqq K\left|F_{b_{j}}(y)\right|
$$

for $j=m+1, \cdots, q$.
Propositions 3 and 4 are consequences of linear algebra.
Proposition 5. Setting $\Delta=\left\|F_{1}, \cdots, F_{p}\right\| / F_{1} \cdots F_{p}$ for $F_{1}, \cdots, F_{p} \in X$, we have

$$
\| \tilde{m}(r, \Delta)=O(\log r T(r, f)),
$$

where $\left\|F_{1}, \cdots, F_{p}\right\|$ is the Wronskian of F_{1}, \cdots, F_{p}.
Proof. Let $\varphi_{j}=F_{j+1} / F_{j}(j=1, \cdots, p-1)$. Then,

$$
\tilde{m}(r, \Delta) \leqq \sum_{j=1}^{p-1} \sum_{n=1}^{p-1} K_{h} \tilde{m}\left(r, \varphi_{j}^{(h)} / \varphi_{j}^{(h-1)}\right)+O(1),
$$

where K_{h} are constants. Here, by Theorem A, we have

$$
\| \tilde{m}\left(r, \varphi_{j}^{(h)} / \varphi_{j}^{(h-1)}\right)=O\left(\log r \tilde{T}\left(r, \varphi_{j}^{(h-1)}\right)\right),
$$

and by Proposition 1, Theorems D and C,

$$
\begin{aligned}
\| \tilde{T}\left(r, \varphi_{j}^{\prime}\right) & \leqq 2 \tilde{T}\left(r, \varphi_{j}\right)+N\left(r, S_{j}\right)+O\left(\log r \tilde{T}\left(r, \varphi_{j}\right)\right) \\
& =O\left(\tilde{T}\left(r, \varphi_{j}\right)\right)
\end{aligned}
$$

where S_{j} is the proper existence surface of φ_{j}. Further, by Proposition 2, we have

$$
\tilde{T}\left(r, \varphi_{j}\right) \leqq T(r, f)+O(1) .
$$

Combining these inequalities, we obtain the proposition.
Q. E. D.

Now, we shall show the following theorem. The proof will be given along the same line as in Cartan [1] and Toda [3].

Theorem 2. Let f, X and λ be as above. Then, for arbitrary $F_{1}, \cdots, F_{q} \in$ X, we have

$$
\begin{aligned}
& \|(q-m-1-\lambda(m-\lambda)) T(r, f) \\
& \quad \leqq \sum_{j=1}^{q} \tilde{N}\left(r, 0, F_{j}\right)+(\lambda+1)(m-\lambda)(m+1-\lambda) N(r, S)+O(\log r T(r, f))
\end{aligned}
$$

Proof. By Proposition 3, we choose a basis $f_{a_{1}}, \cdots, f_{a_{m+1-2}}$ of f_{0}, \cdots, f_{m} and set

$$
H(y)=F_{1} \cdots F_{q} /\left\|f_{a_{1}}, \cdots, f_{a_{m+1-\lambda}}\right\|^{2+1} .
$$

Then, according to the first main theorem of Selberg [2], we have

$$
\frac{1}{2 \pi k} \int_{\Gamma(r)} \log |H(y)| d \theta \leqq \tilde{N}(r, 0, H)+O(1)
$$

So, we may estimate these two terms. To estimate the first, according to Proposition 3, we rewrite $H(y)$ as

$$
\begin{aligned}
& K \frac{F_{b_{1}} \cdots F_{b_{q}}}{\left\|F_{b_{1}}, \cdots, F_{b_{m+1}-\lambda}\right\| \prod_{j=m+2-\lambda}^{m+1}}\left\|F_{b_{j}}, F_{b_{2}}, \cdots, F_{b_{m+1-\lambda}}\right\| \\
& \quad=K \frac{F_{b_{m+2}} \cdots F_{b_{q}}}{\frac{\left\|F_{b_{1}}, \cdots, F_{b_{m+1-\lambda}}\right\|}{F_{b_{1}} \cdots F_{b_{m+1-\lambda}}} \prod_{j=m+2-\lambda}^{m+1}} \frac{\left\|F_{b_{j},}, F_{b_{2}}, \cdots, F_{b_{m+1-\lambda}}\right\|}{F_{b_{j}} F_{b_{2}} \cdots F_{b_{m+1-\lambda}}}\left[F_{b_{2}} \cdots F_{b_{m+1-\lambda}}\right]^{\lambda}
\end{aligned},
$$

where K is a constant. Therefore, by using Propositions 4 and 5 and the definition of $T(r, f)$, we have

$$
\begin{aligned}
& \|(q-m-1-\lambda(m-\lambda)) T(r, f) \\
& \quad \leqq \frac{1}{2 \pi k} \int_{\Gamma(r)} \log |H(y)| d \theta+O(\log r T(r, f)),
\end{aligned}
$$

(see [1] and [3]). To estimate the second, we rewrite $H(y)$ as

$$
K \frac{F_{b_{m+2}} \cdots F_{b_{q}}}{\frac{\left\|F_{b_{1}}, \cdots, F_{b_{m+1-\lambda}}\right\|}{F_{b_{1}} \cdots F_{b_{m+1}-\lambda}} \prod_{j=m+2-\lambda}^{m+1}} \frac{\left\|F_{b_{j}}, F_{b_{b_{2}}}, \cdots, F_{b_{m+1-\lambda}}\right\|}{F_{b_{j}}},
$$

and count the multiplicities of the poles of the denominator. Now, let $y \in S$ be an ordinary point, then, the estimate is as usual. Let $y \in S$ be a branch point of order $k^{\prime}-1$, then, $F_{j}^{(h)} / F_{j}$ may have a pole of order $h \cdot k^{\prime}$ at y, so that the multiplicity of the pole of the denominator is at most $(1 / 2)(\lambda+1)(m-\lambda)$. $(m+1-\lambda) k^{\prime}$. Therefore, taking ($1 / 2$) $k^{\prime} \leqq k^{\prime}-1$ into account, we have

$$
\tilde{N}(r, 0, H) \leqq \sum_{j=1}^{q} \tilde{N}\left(r, 0, F_{j}\right)+(\lambda+1)(m-\lambda)(m+1-\lambda) N(r, S)
$$

Combining these inequalities, we obtain the theorem.
Q. E. D.
4. Let R be an n-sheeted covering surface of $|z|<\infty$. We consider the case where R is also an m-sheeted covering surface of another covering surface S which is k-sheeted over $|z|<\infty$. Now, let $w \in M(R)$ be proper on R. Then, w satisfies an irreducible equation of degree m whose coefficients are holomorphic functions on S without common zeros;

$$
P(w, y)=f_{0}(y) w^{m}+\cdots+f_{m}(y)=0, \quad y \in S
$$

Let $f=\left(f_{0}, \cdots, f_{m}\right)$ be the system on S given by these coefficients.
Under these circumstances, we obtain the following proposition using the same method as in Valiron [5].

Proposition 6. $T(r, w)=(1 / m) T(r, f)+O(1)$.
According to this proposition combined with Theorem 2 and Theorem C , we obtain the following theorem.

THEOREM 3. Let R and S be as above and $\lim _{r \rightarrow \infty} \sup N(r, S) / N(r, R)=0$. Then, the deficiency relation for $w \in M(R)$ being proper on R is

$$
\sum_{a} \delta(a, w) \leqq m+1+\lambda(m-\lambda) .
$$

5. Let R, S and w be as in 4 . We define the following counting function

$$
N\left(r, R_{s}\right)=\frac{1}{n}\left[\int_{0}^{r} \frac{n\left(t, R_{s}\right)-n\left(0, R_{s}\right)}{t} d t+n\left(0, R_{s}\right) \log r\right],
$$

where $n\left(r, R_{s}\right)$ is the sum of the orders of the branch points of R over the part of S over $|z| \leqq r$. Then, we obtain the following two propositions.

Proposition 7. $N(r, R)=N\left(r, R_{s}\right)+N(r, S)$.
Proof. Here, we look upon the ordinary point as the branch point of order 0 . Now, let $y \in S$ be a branch point of order $k^{\prime}-1$ and assume that there exist p branch points x_{1}, \cdots, x_{p} over y of order $m_{1}-1, \cdots, m_{p}-1$ with respect to $S\left(m_{1}+\cdots+m_{p}=m\right)$. Then, we can easily see that

$$
\begin{aligned}
& n(r, R)=\sum_{y}\left(\sum_{j=1}^{p}\left(k^{\prime} m_{j}-1\right)\right)=\sum_{y}\left(k^{\prime} m-p\right), \\
& n\left(r, R_{s}\right)=\sum_{y}\left(\sum_{j=1}^{p}\left(m_{j}-1\right)\right)=\sum_{y}(m-p), \\
& n(r, S)=\sum_{y}\left(k^{\prime}-1\right),
\end{aligned}
$$

where the sum \sum_{y} extends over all $y \in S$ over $|z| \leqq r$. Thus, we obtain the equality

$$
n(r, R)=n\left(r, R_{s}\right)+m \cdot n(r, S) .
$$

Dividing this equality by $n \cdot r$ and integrating it for r, we obtain the proposition. Q.E.D.

Proposition 8. $N\left(r, R_{s}\right) \leqq(2 m-2) T(r, w)+O(1)$.

Proposition 8 is proved by using the same method as in Ullrich [4].

Now, we shall show the following theorems.
Theorem 4. Let $\lim _{r \rightarrow \infty} \sup N(r, S) / N(r, R)=u$. If $u<1$, then the deficiency relation for w is

$$
\sum_{a} \delta(a, w) \leqq 2+(2 m-2) /(1-u) .
$$

Proof. By Proposition 7, we have

$$
\liminf _{r \rightarrow \infty} N\left(r, R_{s}\right) / N(r, R)=1-u .
$$

Therefore, combining this equality with Theorem B, we have for arbitrary small ε

$$
\begin{aligned}
& \|(q-2) T(r, w) \\
& \quad \leqq \sum_{j=1}^{q} N\left(r, a_{j}, w\right)+N\left(r, R_{s}\right) /(1-u-\varepsilon)+O(\log r T(r, w)) .
\end{aligned}
$$

Here, by using Proposition 8, we obtain the theorem.
Q. E. D.

Theorem 5. Let the sheet number k of S be prime and $\lim _{r \rightarrow \infty} \sup N\left(r, R_{s}\right) /$ $N(r, R)=v$. If $v<1$, then, the deficiency relation for w is

$$
\sum_{a} \delta(a, w) \leqq 2+(2 n-2 m) /(1-v)
$$

Proof. As in the proof of Theorem 4, by Proposition 7 and Theorem B, we have for arbitrary small ε

$$
\begin{aligned}
& \|(q-2) T(r, w) \\
& \quad \leqq \sum_{j=1}^{q} N\left(r, a_{j}, w\right)+N(r, S) /(1-v-\varepsilon)+O(\log r T(r, w)) .
\end{aligned}
$$

Let

$$
P(w, y)=f_{0}(y) w^{m}+\cdots+f_{m}(y)=0, \quad y \in S
$$

be an irreducible defining equation of w. Then, by Proposition 1, since k is prime, there exists at least one ratio f_{j} / f_{0} that is proper on S. According to Theorem C, we have

$$
N(r, S) \leqq(2 k-2) T\left(r, f_{j} / f_{0}\right)+O(1),
$$

and by Propositions 2 and 6,

$$
T\left(r, f_{j} / f_{0}\right) \leqq m \cdot T(r, w)+O(1) .
$$

Combining these inequalities, we obtain the theorem.
Q. E. D.

We remark that in Theorems 4 and 5, these estimates are better than the usual ones when $u<n(k-1) / k(n-1)$ and $v<(m-1) /(n-1)$. The case $u=$ $n(k-1) / k(n-1)$ and $v=(m-1) /(n-1)$ can occur, for example, when R is regularly branched.
6. Example. Let S_{1} be a 2 -sheeted covering surface of $|z|<\infty$ whose branch points are above $z=n \cdot i(n=0, \pm 1, \cdots)$ and let R be a 2 -sheeted covering surface of S_{1} whose branch points are above the points of S_{1} above $z=\sqrt{n}$ $(n=1,2, \cdots)$. Then, $N\left(r, S_{1}\right) \sim r$ and $N(r, R) \sim r^{2} / 4$, so that the condition of Theorem 3 " $\lim _{r \rightarrow \infty} \sup N\left(r, S_{1}\right) / N(r, R)=0$ " is satisfied. Now, let $w \in M(R)$ be proper on R, then, according to Theorem 3,

$$
\sum_{a} \delta(a, w) \leqq 2+1+\lambda(2-\lambda)
$$

Here, since $\lambda=0$ or 1 , the deficiency relation for w is

$$
\sum_{a} \delta(a, w) \leqq 4
$$

This result can also be obtained by using Theorem 4.
On the other hand, from another point of view, R is a 2 -sheeted covering surface of S_{2} which is a 2 -sheeted covering surface of $|z|<\infty$ whose branch points are above $z=\sqrt{n}(n=1,2, \cdots)$. Then, $N\left(r, R_{s_{2}}\right) \sim r$, and the conditions of Theorem 5 " k is prime and $\lim _{r \rightarrow \infty} \sup N\left(r, R_{s_{2}}\right) / N(r, R)=0$ " are satisfied. So, let $w \in M(R)$ be proper on R, then, according to Theorem 5 , the deficiency relation for w is

$$
\sum_{a} \delta(a, w) \leqq 6
$$

In this case, the former estimate is better.
Now, let $f \in M(R)$ be not proper on R. Then, the proper existence surface of f is reduced to a 2 -sheeted covering surface of $|z|<\infty$ or $|z|<\infty$ itself. According to Theorem 1, the deficiency relation for f becomes

$$
\sum_{a} \delta(a, w) \leqq 4 \text { or } 2
$$

Thus, for all $w \in M(R)$, the deficiency sum for w is at most equal to 4 . This result is better than the usual one obtained by ($*$).

References

[1] H. Cartan, Sur les zéros des combinaisons linéaires de p fonctions holomorphes données, Mathematica, 7 (1933), 5-31.
[2] H.L. Selberg, Algebroide Funktionen und Umkehrfunktionen Abelscher Integrale, Avh. Norske Vid. Akad. Oslo, 8 (1934), 1-72.
[3] N. Toda, Sur les combinaisons exceptionnelles de fonctions holomorphes; applications aux fonctions algébroïdes, Tôhoku Math. J., 22 (1970), 290-319.
[4] F.E. Ullrich, Uber den Einfluss der Verzweigtheit einer Algebroide auf ihre Wertverteilung, J. Reine Angew. Math., 167 (1932), 198-220.
[5] G. Valiron, Sur la dérivée des fonctions algébroïdes, Bull. Soc. Math. France, 59 (1931), 17-39.

Yûji Hashimoto
Mathematical Institute
Nagoya University
Furo-cho, Chikusa-ku
Nagoya, Japan
Present address :
Department of General Education Aichi Institute of Technology Toyota, Aichi
Japan

