On a conjecture of Nakai on Picard principle

By Michihiko Kawamura*)

(Received Nov. 30, 1977)

A nonnegative locally Hölder continuous function $P(z)$ on the punctured closed unit disk $0<|z| \leqq 1$ will be referred to as a density on $\Omega: 0<|z|<1$. We view Ω as interior of the bordered surface: $0<|z| \leqq 1$; so we consider the boundary $\partial \Omega$ to be the circle: $|z|=1$. The elliptic dimension of a density P on Ω at $z=0, \operatorname{dim} P$ in notation, is defined to be the dimension of the half module \mathscr{F}_{P} of nonnegative solutions of the equation $\Delta u=P u\left(\Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}\right)$ on Ω with vanishing boundary values on $\partial \Omega:|z|=1$. After Bouligand we say that the Picard principle is valid for P at $z=0$ if $\operatorname{dim} P=1$. We are interested in determining those densities P on Ω for which the Picard principle is valid. We observe the following example of Nakai [26, 29]: Let $P_{\mu}(z)=|z|^{-\mu}$ and $P_{-\infty}(z)=0$. Then

$$
\operatorname{dim} P_{\mu}= \begin{cases}1 & (\mu \in[-\infty, 2]) \tag{1}\\ c & (\mu \in(2,+\infty))\end{cases}
$$

where c is the cardinal number of continuum. In this connection Nakai conjectured that the Picard principle is valid for general densities $P(z)$ on Ω with $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$. The purpose of this paper is to prove this conjecture in the affirmative. Namely we shall prove the following

Main Theorem. The Picard principle is valid for any density $P(z)$ on Ω with $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$.

The proof of this theorem will be given in Section 1. A formulation of the Harnack inequality by S. Itô [11] will play an essential role in our proof. The author is grateful to Professor Itô for his advice on this inequality. In Section 2 we will discuss the order of the generator $g(z)$ of \mathscr{I}_{P} as $z \rightarrow 0$ for $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$. We will establish the following inequality :

$$
\begin{equation*}
C_{1} \log \frac{1}{|z|} \leqq g(z) \leqq C_{2}|z|^{-c} \tag{2}
\end{equation*}
$$

on Ω where C_{1} and C_{2} are positive constants and $c=\sup _{\Omega}|z| P(z)^{1 / 2}$. In the final Section 3 we will mention two generalizations of the main theorem. We will show that the condition $P(z) \leqq$ const. $|z|^{-2}$ on Ω in the main theorem can be relaxed to $P(z) \leqq$ const. $|z|^{-2}$ only on a sequence of disjoint concentric annuli A_{n}

[^0]in Ω converging to $z=0$ such that $\inf _{n} \bmod A_{n}>0$. In this form, the result will further be generalized to certain ends of Riemann surfaces.
§ 1. General densities $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$.
1.1. A density $P(z)$ on $\Omega: 0<|z|<1$ is, by definition, a locally Hölder continuous function $P(z)$ on $0<|z| \leqq 1$. We denote by \mathscr{F}_{P} the half module of nonnegative solutions of $\Delta u=P u$ on Ω with vanishing boundary values. We are interested in characterizing those densities P on Ω for which the Picard principle is valid, i. e. \mathscr{I}_{P} has a single generator. For rotation free densities $P(z)$, i. e. densities P with $P(z)=P(|z|)$ on Ω, the problem may be viewed as being almost brought to its completion (cf. Brelot [2,3], Nakai [26, 29], Kawa-mura-Nakai [14], Godefroid [6] etc.). For rotation free densities, we know ([29], [14]) that if two densities P_{1} and P_{2} are related as $P_{2}(z) \leqq P_{1}(z)$ or $P_{2}(z)=$ const. $P_{1}(z)$ on Ω, then the Picard principle is valid for P_{2} if it does for P_{1}. Hence for rotation free densities $P(z)$ with $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$ the Picard principle is valid since it does for $|z|^{-2}$. What happens to general densities $P(z)$ with $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$? For general densities $P(z)$, we only know two fragmentary results:
If
$$
\int_{\Omega-E} P(z) \log \frac{1}{|z|} d x d y<\infty
$$
for a closed subset E of Ω thin at $z=0$, then the Picard principle is valid (Nakai [28]);

If

$$
\int_{\Omega} P(z) d x d y<\infty,
$$

then the Picard principle is valid (Nakai [32], Kawamura [13]). None of these two results can take care of densities $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$ and we need some completely new device to establish the following

Theorem. For a general densities $P(z)$ on Ω satisfying

$$
\begin{equation*}
P(z) \leqq c^{2}|z|^{-2} \tag{3}
\end{equation*}
$$

with a suitable constant c the Picard principle is valid.
1.2. The duality theorem. The unique bounded solution $e=e_{P}$ of

$$
\begin{equation*}
L_{P} u \equiv \Delta u-P u=0 \tag{4}
\end{equation*}
$$

on $\Omega: 0<|z|<1$ with continuous boundary values 1 on $\partial \Omega:|z|=1$ will be referred to as the P-unit (cf. Singer [40]). Consider the associated operator \hat{L}_{P} with L_{P} which is introduced by Nakai [31, 32]:

$$
\begin{equation*}
\hat{L}_{P} u \equiv \Delta u+2 \nabla\left(\log e_{P}\right) \cdot \nabla u \tag{5}
\end{equation*}
$$

for $u \in C^{2}(\Omega)$ where e_{P} is the P-unit on $\bar{\Omega}=\Omega \cup \partial \Omega$, and $\nabla f=(\partial f / \partial x, \partial f / \partial y)$. We say that the Riemann theorem is valid for \hat{L}_{P} at $z=0$ if $\lim _{z \rightarrow 0} u(z)$ exists for every bounded solution u of

$$
\begin{equation*}
\hat{L}_{P} u=0 \tag{6}
\end{equation*}
$$

on Ω and continuous on $\partial \Omega$. Nakai ([31, 32]; cf. also Heins [8], Hayashi [7], Nakai [28]) showed the following duality theorem: The Picard principle is valid for an operator L if and only if the Riemann theorem is valid for the associated operator \hat{L}.
1.3. The maximum-minimum principle. Let Ω_{t} be $0<|z|<t$ and $\partial \Omega_{t}$ be $|z|=t$ for $t \in(0,1]$. And consider classes \mathscr{F}_{t} and \mathscr{B}_{t} of nonnegative and nonnegative bounded solution of (4) on Ω_{t} with boundary values zero and continuous boundary values on $\partial \Omega_{t}$, respectively. Then it is known that (cf. Brelot [2], Ozawa [33], Royden [36], Nakai [28])

$$
\begin{equation*}
\mathscr{F}_{t} \cap \mathscr{B}_{t}=\{0\} \tag{7}
\end{equation*}
$$

i. e. $z=0$ is of parabolic character.

For a nonnegative solution u of (4) the maximum principle is valid. On the other hand, Nakai [28] showed the following maximum-minimum principle for the solution of the associated equation (6): Let v be a bounded nonnegative solution of (6) on $\Omega_{s}(s \in(0,1])$. Then

$$
\begin{equation*}
\sup _{z \in Q_{t}} v(z)=\max _{z \in \partial Q_{t}} v(z), \quad \inf _{z \in \Omega_{t}} v(z)=\min _{z \in \partial \Omega_{t}} v(z) \tag{8}
\end{equation*}
$$

is valid for any $t \in(0, s)$.
1.4. Itô's form of the Harnack inequality. We denote by $\Delta\left(z_{0}, R\right)$ the open disk: $\left|z-z_{0}\right|<R$ and $\left.\overline{\Delta\left(z_{0}, R\right)}=\left(\left|z-z_{0}\right|\right) \leqq R\right)$. Suppose that a density $P(z)$ is given on $\Omega, \overline{\Delta\left(z_{0}, R\right)} \subset \Omega$, and $0 \leqq P(z) \leqq c$ on $\overline{\Delta\left(z_{0}, R\right)}$ for some $c>0$. Then S . Itô [11] showed the following:

The inequality

$$
\begin{equation*}
u(z) \leqq 4 e^{R \sqrt{ } \bar{c}} u\left(z_{0}\right) \tag{9}
\end{equation*}
$$

is valid for any $z \in \overline{\Delta\left(z_{0}, R / 2\right)}$ and for any nonnegative solution u of (4) on $\overline{\Delta\left(z_{0}, R\right)}$.

We include here an outline of the proof of Itô [11] for the sake of convenience to the reader. Let u be a nonnegative solution of (4) on $\overline{\Delta\left(z_{0}, R\right)}$ and let $e_{c, \rho}$ be the c-unit of $\Delta u=c u$ on $\overline{\Delta\left(z_{0}, \rho\right)}$ for $0<\rho \leqq R$. We first show the following inequality

$$
\begin{equation*}
e_{c, R}\left(z_{0}\right) \cdot(2 \pi)^{-1} \int_{0}^{2 \pi} u(\zeta) \rho d \theta \leqq u\left(z_{0}\right) \rho \tag{10}
\end{equation*}
$$

where $\zeta=z_{0}+\rho e^{i \theta}$. Let v be the solution of $\Delta u=c u$ with $u=v$ on $\partial \Delta\left(z_{0}, \rho\right)$, and let $G(z, \zeta)$ be the Green's function of $\Delta u=c u$ on $\Delta\left(z_{0}, \rho\right)$. Since the constant function c is rotation free, $\partial G\left(z_{0}, \zeta\right) / \partial n_{\zeta}$ (where n denotes inner normal) is also rotation free, we have that

$$
\begin{aligned}
v\left(z_{0}\right) & =(2 \pi)^{-1} \int_{0}^{2 \pi} v(\zeta) \rho\left(\partial G\left(z_{0}, \zeta\right) / \partial n_{\zeta}\right) d \theta \\
& =\rho(2 \pi)^{-1}\left(\partial G\left(z_{0}, \zeta\right) / \partial n_{\zeta}\right) \int_{0}^{2 \pi} u(\zeta) d \theta \\
& =e_{\sigma, \rho}\left(z_{0}\right) \cdot(2 \pi)^{-1} \int_{0}^{2 \pi} u(\zeta) d \theta
\end{aligned}
$$

Since $0 \leqq P(z) \leqq c$ and $u=v$ on $\partial \Delta\left(z_{0}, \rho\right)$, the comparison principle assures that $v\left(z_{0}\right) \leqq u\left(z_{0}\right)$. Observing that $e_{c, \rho}\left(z_{0}\right) \geqq e_{c, R}\left(z_{0}\right)$ we deduce (10).

Let z be any point in $\overline{\Delta\left(z_{0}, R / 2\right)}$ and set $\left|z-z_{0}\right|=r$. Integration of both sides of (10) by ρ on ($0,2 r$) yields

$$
\begin{equation*}
\iint_{\Delta\left(z_{0}, 2 r\right)} u d x d y \leqq 4 \pi r^{2}\left(e_{c, R}\left(z_{0}\right)\right)^{-1} u\left(z_{0}\right) . \tag{11}
\end{equation*}
$$

Since u is subharmonic in $\overline{\Delta(z, r)} \subset \overline{\Delta\left(z_{0}, 2 r\right)}$, we have that

$$
\begin{equation*}
u(z) \leqq\left(\pi r^{2}\right)^{-1} \iint_{\Delta(z, r)} u d x d y \leqq\left(\pi r^{2}\right)^{-1} \iint_{\Delta\left(z_{0}, 2 r\right)} u d x d y \tag{12}
\end{equation*}
$$

On the other hand c-unit $e_{c, R}(z)$ is represented by the modified Bessel function of the first kind of zero order I_{0} (cf. Bowman [1]), i. e. $e_{c, R}(z)=I_{0}\left(\sqrt{c}\left|z-z_{0}\right|\right)$ $/ I_{0}(\sqrt{c} R)$, where

$$
I_{0}(x)=1+2^{-2} x^{2}+2^{-2} \cdot 4^{-2} x^{4}+2^{-2} \cdot 4^{-2} \cdot 6^{-2} x^{6}+\cdots \leqq e^{x} \quad(0 \leqq x) .
$$

By (11), (12) and the above fact, we obtain (9).
1.5. Uniform Harnack inequality I. For a density $P(z)$ on $\Omega: 0<|z|<1$ with $P(z)=\mathcal{O}\left(|z|^{-2}\right)$ we shall reform Itô's form of the Harnack inequality as follows. We may assume that $0 \leqq P(z) \leqq c^{2}|z|^{-2}$ on $0<|z| \leqq 1$ for some nonnegative number c. Let a and s be real numbers such that $a \in(0,1)$ and $s \in(0,1]$. We maintain the following concentric circle form of the Harnack inequality:

Lemma. There exists a positive number K_{1} depending only on a and c such that

$$
\begin{equation*}
u(w) \leqq K_{1} u(z) \tag{13}
\end{equation*}
$$

for any nonnegative solution u of $L_{P} u=0$ on Ω_{s} and for any z and w with $|z|=|w|=t<s /(1+a)$.

To prove this assertion take arbitrary points z_{0} and w on the circle $\Gamma_{0}:|z|=t,(t<s /(1+a))$. Let Γ be a subarc of Γ_{0} with the initial point z_{0} and the terminal point $-z_{0}$ such that $w \in \Gamma$. Consider a finite sequence of the
closed disks $\overline{\Delta\left(z_{k}, a t / 2\right)}$ such that $z_{k} \in \Gamma \cap \partial \Delta\left(z_{k-1}, a t / 2\right)$ and $z_{k} \neq z_{k-2}$. We observe that

$$
\Gamma \subset \bigcup_{k=0}^{p} \overline{\overline{\left(z_{k}, a t / 2\right)}} \subset \Omega_{s},
$$

if $p=1+[\pi / 2 \arcsin (a / 4)]$, where [] denotes the Gauss symbol. Observe that the maximum of $c^{2}|z|^{-2}$ on $\overline{\Delta\left(z_{k}, a t\right)}$ is attained at the point $(1-a) z_{k}$ and that the maximum value equals $c^{2}(1-a)^{-2} t^{-2}$. Thus we have that $P(z) \leqq c^{2}(1-a)^{-2} t^{-2}$ on $\overline{\Delta\left(z_{k}, a t\right)}$ for each $k(k=0,1,2, \cdots, p)$. By applying Itô's form of the Harnack inequality to the disk $\overline{\Delta\left(z_{k}, a t\right)}$, we deduce that

$$
u(z) \leqq K_{0} u\left(z_{k}\right)
$$

if $z \in \overline{\Delta\left(z_{k}, a t / 2\right)}$ for any nonnegative solution u of (4) on Ω_{s}, where $K_{0}=4 \exp$ $\{c a /(1-a)\}$. In particular, by setting $z=z_{k+1}$ on the above inequality and using these inequalities k times ($k \leqq p$), we have that $u(w) \leqq K_{0}^{k} u\left(z_{0}\right)$. Since $K_{0}>1$, we deduce that $u(w) \leqq K_{0}^{p} u\left(z_{0}\right)$. We stress that K_{0}^{p} depends only on a and c. By setting $K_{1}=K_{0}^{p}$, we have the desired conclusion.
1.6. Uniform Harnack inequality II. Consider the associated equation (6) with (4). We shall prove that a similar inequality as in 1.5 is valid for nonnegative solutions of (6) on Ω_{s}. This inequality will play an essential role in the proof of the theorem.

Let a, c and s be real numbers as mentioned in 1.5. Then we have the following

Lemma. There exists a positive number K depending only on a and c such that

$$
\begin{equation*}
v(w) \leqq K v(z) \tag{14}
\end{equation*}
$$

for any nonnegative solution v of $\hat{L}_{P} v=0$ on Ω_{s}, and for any z and w with $|z|=|w|=t<s /(1+a)$.

To prove this take an arbitrary nonnegative solution v of (6) on Ω_{s} and let e_{P} be the P-unit of (4) on Ω and set $u=v e_{P}$. Observe that e_{P} and u are both nonnegative solutions of (4) on Ω_{s}. By Lemma in 1.5, we have that

$$
e_{P}(z) \leqq K_{1} e_{P}(w)
$$

and

$$
v(w) e_{P}(w) \leqq K_{1} v(z) e_{P}(z)
$$

for any z and w such that $|z|=|w|=t<s /(1+a)$. Since e_{P} is positive on Ω_{s}, the above two inequalities imply that $v(w) \leqq K_{1}^{2} v(z)$. By setting $K=K_{1}^{2}$ we have the desired conclusion.
1.7. Proof of the theorem. In view of the duality theorem in 1.2 , we only have to show that the Riemann theorem is valid for the associated operator
\hat{L}_{P} at $z=0$, i. e. $\lim _{z \rightarrow 0} v(z)$ exists for every bounded solution v of (6) on Ω with continuous boundary values on $\partial \Omega$.

Let v be an arbitrary bounded solution of (6) on Ω and take any $s \in(0,1]$. Set

$$
m(s)=\inf _{z \in \Omega_{s}} v(z)
$$

and

$$
v_{s}(z)=v(z)-m(s) .
$$

Since the associated operator \hat{L}_{P} is linear and a constant function is a solution of (6), the function v_{s} is a nonnegative bounded solution of (6) on Ω_{s}. Thus the maximum-mimimum principle in 1.3 is applicable to v_{s} on Ω_{s}. Then, there exist two points w_{t} and z_{t} on $\partial \Omega_{t}$ such that

$$
\sup _{z \in \Omega_{t}} v_{s}(z)=\max _{z \in \partial \Omega_{t}} v_{s}(z)=v_{s}\left(w_{t}\right)
$$

and

$$
\inf _{z \in \Omega_{t}} v_{s}(z)=\min _{z \in \partial \Omega_{t}} v_{s}(z)=v_{s}\left(z_{t}\right)
$$

for each t in $(0, s)$. From Lemma in 1.6, we have that $v_{s}\left(w_{t}\right) \leqq K v_{s}\left(z_{t}\right)$ for any t with $t<s /(1+a)$, where a and K are as in 1.6, i. e.

$$
\begin{equation*}
\sup _{z \in \Omega_{t}} v(z)-m(s) \leqq K\left(\inf _{z \in \Omega_{t}} v(z)-m(s)\right) \tag{15}
\end{equation*}
$$

For a fixed s, on letting $t \rightarrow 0$ in the above inequality, we have that

$$
\lim _{z \rightarrow 0} \sup v(z)-m(s) \leqq K\left(\lim _{z \rightarrow 0} \inf v(z)-m(s)\right)
$$

Since $\lim _{s \rightarrow 0} m(s)=\lim \inf _{z \rightarrow 0} v(z)$, again letting $s \rightarrow 0$ in the above inequality we deduce that $\lim \sup _{z \rightarrow 0} v(z)-\lim \inf _{z \rightarrow 0} v(z) \leqq 0$, i. e. $\lim _{z \rightarrow 0} v(z)$ exists.

The proof of the theorem is herewith complete.

§ 2. Order of generator of \mathscr{I}_{P}.

2.1. In view of Theorem in 1.1, if the density $P(z)$ on $\Omega: 0<|z|<1$ satisfies that $P(z)=\mathcal{O}\left(|z|^{-2}\right)(z \rightarrow 0)$, then $\operatorname{dim} P=1$, i. e. the half module \mathscr{I}_{P} of nonnegative solutions of (4) on Ω with vanishing boundary values on $\partial \Omega$ has a single generator g, i.e. $\mathscr{F}_{P}=\boldsymbol{R}^{+} g$. We are interested in the question to determine the rate of growth of g as $z \rightarrow 0$. For a density $P(z)=\mathcal{O}\left(|z|^{-2}\right)$, we first estimate the growth from the above as follows:

Theorem. If a density $P(z)$ satisfies $P(z) \leqq c^{2}|z|^{-2}$ on Ω, then the generator g of \mathscr{F}_{P} has the order $|z|^{-c}$, i. e. $g(z)=\mathcal{O}\left(|z|^{-c}\right)$ as $z \rightarrow 0$, where $c>0$.
2.2. To prove the theorem in 2.1 it is sufficient to show that there exist a positive solution $g \in \mathscr{F}_{P}$ and an $r \in(0,1)$ such that $g(z) \leqq v(z) \equiv|z|^{-c}-|z|^{c}$ on $\bar{\Omega}_{r}$ since $\operatorname{dim} P=1$. We observe that v is a rotation free positive solution of $\Delta v=c^{2}|z|^{-2} v$ on Ω and $v=0$ on $\partial \Omega$. Again observe that for a fixed $w \in \Omega$ there
exists a positive solution $u \in \mathscr{F}_{P}$ with $u(w)<v(w)$. Set $D=\{z \in \Omega ; u(z)<v(z)\}$. The set D is an open set in Ω containing w. Let G be a connected component of D containing w. Then we have that any circle $C:|z|=t(0<t<|w|)$ intersects G. In fact, contrary to the assertion assume that there exists a circle $C:|z|=t(0<t<|w|)$ such that $C \cap G=0$. Since G is a connected component of D containing w, G is contained in an annulus: $t<|z|<1$, i. e. \bar{G} is compact in $\bar{\Omega}$. Since $u=v$ on ∂G and $P(z) \leqq c^{2}|z|^{-2}$, by the comparison principle, we have that $u \geqq v$ in G. This contradicts the definition of G. Hence $C \cap G \neq 0$.

Let z_{t} be a point in $C \cap G$ for $t \in(0,|w|)$. Take an a such that $0<a<\min$ $(1,(1-|w|) /|w|)$ and determine the number K_{1} of (13) in 1.5 for a and c. Set $g=u / K_{1}$. Then, g is the required function. In fact, by (13) we have that $g(z) \leqq K_{1} g\left(z_{t}\right)=u\left(z_{t}\right)<v\left(z_{t}\right)=t^{-c}-t^{c}=v(z)$ for z with $|z|=t$ and for any $t \in(0, r)$ where $r=|w| /(1+a)$.
2.3. We have discussed in 2.1 and 2.2 about the upper order of a generator g of \mathscr{I}_{P} and obtained that $g(z)=\mathcal{O}\left(|z|^{-c}\right)(z \rightarrow 0)$ if $P(z) \leqq c^{2}|z|^{-2}$. We next proceed to the determination of the lower order of g as $z \rightarrow 0$.

Before doing this, we mention the following unpublished remark of Hideo Imai: For any density P on Ω and any nonzero $u \in \mathscr{T}_{P}$,

$$
\begin{equation*}
\liminf _{z \rightarrow 0}\left(\frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(z e^{i \theta}\right) d \theta\right) / \log \frac{1}{|z|}>0 . \tag{16}
\end{equation*}
$$

In particular, if P is rotation free with $\operatorname{dim} P=1$,

$$
\begin{equation*}
\lim _{z \rightarrow 0} \inf u(z) / \log \frac{1}{|z|}>0 . \tag{17}
\end{equation*}
$$

A typical example is the generator $\log (1 /|z|)$ of \mathscr{I}_{0}, i. e. \mathscr{I}_{P} with $P \equiv 0$. In view of these one might feel that for any density P on Ω with $\operatorname{dim} P=1$ (17) is always valid. It may be of some interest, in this connection, to recall the following result of Nakai [27] (cf. also Kawamura [12]) : There exists a finite density P (i. e. $\left.\int_{\Omega} P(z) d x d y<+\infty\right)$ such that $\lim \inf _{z \rightarrow 0} v(z)=0$ for any positive solution v of (4) on Ω. As already mentioned the Picard principle is valid for any finite, and hence for the above, P (Nakai [32]). Therefore (17) may not be valid for the generator g of \mathscr{I}_{P} even for P quite close to 0 in some sense such as finiteness. However, we are fortunate enough to obtain the following:

Theorem. If a density $P(z)$ satisfies $P(z) \leqq c^{2}|z|^{-2}$ on Ω, then

$$
\begin{equation*}
\lim _{z \rightarrow 0} \inf g(z) / \log \frac{1}{|z|}>0 \tag{18}
\end{equation*}
$$

for the generator g of \mathscr{F}_{P}. In particular $\lim _{z \rightarrow 0} u(z)=+\infty$ for any nonzero $u \in \mathscr{F}_{P}$.
2.4. The proof of the theorem in 2.3 goes on analogous way as in 2.2 .

Take a fixed point $w \in \Omega$. Then there exists a $u \in \mathscr{F}_{P}$ such that $\log (1 /|w|)$ $<u(w)$. Set $D=\{z \in \Omega ; \log (1 /|z|)<u(z)\}$ and let G be a connected component of D containing w. Then we have that any circle $C:|z|=t(0<t<|w|)$ intersects G as in 2.2. There exist an $r(0<r<|w|)$ and K_{1} as in (13) such that $u\left(z_{t}\right) \leqq K_{1} u(z)$ for $|z|=\left|z_{t}\right|=t, 0<t<r$, where $z_{t} \in C \cap G$. By setting $g=K_{1} u$, we have that $\log (1 /|z|)<g(z)$ for $|z|<r$ as in 2.2. Since g is a generator of \mathscr{F}_{P}, we have the desired conclusion.

§ 3. Generalizations of the main theorem.

3.1. Reexamining the proof in 1.7 of the theorem in 1.1 we naturally come to being aware of the following: In the implication of

$$
\begin{equation*}
\lim _{z \rightarrow 0} \sup v(z)-m(s) \leqq K\left(\lim _{z \rightarrow 0} \inf v(z)-m(s)\right) \tag{19}
\end{equation*}
$$

in 1.7 from (15) in 1.7, i. e.

$$
\begin{equation*}
\sup _{z \in \Omega_{t}} v(z)-m(s) \leqq K\left(\inf _{z \in \Omega_{t}} v(z)-m(s)\right), \tag{15}
\end{equation*}
$$

we only have to take the inferior limit in (15) as $t \rightarrow 0$ instead of taking, as was done in 1.7, the limit in (15) as $t \rightarrow 0$. Therefore having (15) for every $t \in(0,1)$ is superfluous for establishing (19). We only have to have (15) for a decreasing zero sequence $\left\{t_{n}\right\}$ with $t_{n}<s /(1+a)$. Supposing the validity of (15) for $t=t_{n}(n=1,2, \cdots)$, and letting $n \rightarrow \infty$, we deduce (19). Examination of the proof of (15) in 1.7, we at once see that (15) is valid for $t=t_{n}(n=1,2, \cdots)$ by only assuming $P(z) \leqq c^{2}|z|^{-2}$ on annuli

$$
\begin{equation*}
A_{n}: a_{n} \equiv(1-a) t_{n} \leqq|z| \leqq(1+a) t_{n} \equiv b_{n}, \tag{20}
\end{equation*}
$$

$n=1,2, \cdots$. Here observe that $\bmod A_{n}=\log \left(b_{n} / a_{n}\right)=\log ((1+a) /(1-a))$. Conversely, let $\left\{A_{n}\right\}$ be a sequence of closed disjoint concentric annuli A_{n} in Ω such that A_{n+1} separates $z=0$ from A_{n}. In order to obtain the above mentioned situation, i.e. A_{n} is represented as in (20), it is necessary and sufficient for $\left\{A_{n}\right\}$ to satisfy $\inf _{n} \bmod A_{n}>0$. Such a sequence $\left\{A_{n}\right\}$ will be referred to as satisfying the condition [A]. We then obtain the following generalization of the main theorem:

Theorem. If a density $P(z)$ on $\Omega: 0<|z|<1$ satisfies $P(z) \leqq c^{2}|z|^{-2}$ on $A=$ $\cup_{n=1}^{\infty} A_{n}$, where c is a nonnegative constant and $\left\{A_{n}\right\}$ is a sequence of annuli in Ω with the condition [A], then the Picard principle is valid for P.
3.2. Consider a parabolic end Ω of a Riemann surface in the sense of Heins [8], i. e. the relative boundary $\partial \Omega$ of Ω is a single analytic Jordan curve and Ω has an isolated single ideal boundary point δ of parabolic character. A density $P=P(z) d x d y(z=x+i y)$ on Ω is a 2-form on $\bar{\Omega}=\Omega \cup \partial \Omega$ with nonnegative
locally Hölder continuous coefficients $P(z)$. The elliptic dimension of a density at $\delta, \operatorname{dim} P$ in notation, is defined (Nakai [31,32]) to be the dimension of the half module \mathscr{I}_{P} of nonnegative solutions of the equation

$$
\begin{equation*}
\left.L_{P} u \equiv \Delta u-P u=0 \quad \text { (i. e. } d^{*} d u-u P=0\right) \tag{21}
\end{equation*}
$$

on Ω with the vanishing boundary values on $\partial \Omega$. The elliptic dimension of the particular density $P \equiv 0$ at δ, i.e. $\operatorname{dim} 0$, is called the harmonic dimension of δ. As in Section 1, we say that the Picard principle is valid for a density P at δ if $\operatorname{dim} P=1$.
3.3. Consider an end Ω with $\operatorname{dim} 0=1$ at δ. To further generalize the result in 3.1, we take an Evans harmonic function l on Ω (cf. e.g. Nakai [23, 24], Sario-Nakai [37], Sario-Noshiro [38]), i. e.
(a) $l \in \mathscr{F}_{0}$
(b) $\lim _{z \rightarrow o} l(z)=+\infty$
(c) $\int_{\partial \Omega} * d l=-2 \pi$.

Since $\operatorname{dim} 0=1$ at δ, such an l is unique on Ω and l is a generator of \mathscr{F}_{0}. Using l we introduce a polar coordinate differential ($d r, d \theta$) with its center δ :

$$
\left\{\begin{array}{l}
d r / r=-d l \\
d \theta=-* d l .
\end{array}\right.
$$

Then $r=e^{-l}$ is a single valued function on Ω but θ is a multi-valued function on Ω. We may use $r e^{i \theta}$ as local parameters at each point of Ω except for the isolated set of Ω where $r d r d \theta=r d r_{\wedge} d \theta=0$. We denote by E the set of $r \in(0,1)$ such that the level line $\{z \in \Omega ; r(z)=r\}$ is an analytic Jordan curve in Ω. Clearly E is an open subset of (0,1) with $0 \in \bar{E}$. Let $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ be two sequences in (0,1) such that $a_{n+1}<b_{n+1}<a_{n}<b_{n}$ and $\left[a_{n}, b_{n}\right] \subset E(n=1,2, \cdots)$. Then

$$
\begin{equation*}
A_{n}=\left\{z \in \Omega ; a_{n} \leqq r(z) \leqq b_{n}\right\} \tag{22}
\end{equation*}
$$

is an annulus with $\bmod A_{n}=\log \left(b_{n} / a_{n}\right)$. We say that $\left\{A_{n}\right\}$ satisfies the condition [A] if

$$
\begin{equation*}
\inf _{n} \bmod A_{n}>0 \tag{23}
\end{equation*}
$$

The existence of such a sequence $\left\{A_{n}\right\}$ is a property of Ω, which may not hold in general. A typical example of such an Ω is the punctured unit disk $0<|z|<1$.
3.4. Consider a density P on Ω. Then $P / r d r d \theta$ is a single valued function on Ω with values in $[0,+\infty]$ finite on Ω except for the set where $r d r d \theta$ $=0$. We can represent as

$$
\begin{equation*}
P=P(r, \theta) r d r d \theta=P\left(r e^{i \theta}\right) r d r d \theta . \tag{24}
\end{equation*}
$$

In particular, $r e^{i \theta}$ is a genuine polar coordinate on each of A_{n}. Then we have the following generalization of Theorem in 3.1 and, of course, of the main theorem:

ThEOREM. Suppose there exists a sequence $\left\{A_{n}\right\}$ of annuli as in (22) with the condition [A] in Ω. If a density $P=P\left(r e^{i \theta}\right) r d r d \theta$ on Ω satisfies $P\left(r e^{i \theta}\right) \leqq c^{2} r^{-2}$ on $\cup_{n=1}^{\infty} A_{n}$, then the Picard principle is valid for P at δ.

In fact, since the duality theorem and the maximum-minimum principle are also valid on Ω (cf. [31]) and since the Harnack principle is only used on $\cup_{n=1}^{\infty} A_{n}$, the proof for the theorem in 3.1 can be verbatim applied to the present one.
3.5. We remark that our first assumption $\operatorname{dim} 0=1$ in 3.3 is used to obtain the uniqueness of the Evans harmonic function, but actually the condition [A] (i. e. (23)) is stronger than the condition $\operatorname{dim} 0=1$. Heins [8] showed that $\operatorname{dim} 0=1$ if Ω satisfies the condition [H]: There exists a sequence $\left\{A_{n}\right\}$ of disjoint annuli with analytic Jordan boundaries on Ω satisfying the condition that for each n, A_{n+1} separates A_{n} from the ideal boundary δ, and A_{1} separates the relative boundary $\partial \Omega$ from the ideal boundary and

$$
\begin{equation*}
\sum_{n=1}^{\infty} \bmod A_{n}=\infty . \tag{25}
\end{equation*}
$$

We shall show that we cannot replace the condition [A] (i.e. (23)) by the Heins condition [H], i.e. (25), in the theorem in 3.4, by a counter example: there exist a rotation free density P on $0<|z|<1$ and a sequence of annuli $\left\{A_{n}\right\}$ with (25) such that $P(z)=0$ on $\cup_{n=1}^{\infty} A_{n}$ but $\operatorname{dim} P \neq 1$ (hence $\operatorname{dim} P=\mathrm{c}$ (cf. Nakai [26])).
3.6. To construct an example mentioned above, we recall the P-unit criterion for the rotation free densities $P(z)$ (Kawamura-Nakai [14]). The associated function $Q(t)$ to $P(r)$ is the function on $[0, \infty)$ defined by $Q(t)=e^{-2 t} P\left(e^{-t}\right)$. The Riccati component a_{Q} of Q is the unique nonnegative solution of the equation

$$
\begin{equation*}
-a^{\prime}(t)+a(t)^{2}=Q(t) \tag{26}
\end{equation*}
$$

on $[0, \infty$). It is known (cf. [14]) that $\operatorname{dim} P=1$ if and only if

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d t}{a_{Q}(t)+1}=+\infty \tag{27}
\end{equation*}
$$

Take three sequences $\left\{a_{n}\right\},\left\{b_{n}\right\}$ and $\left\{c_{n}\right\}$ such that $a_{n}=1+2 \sum_{k=1}^{n-1}(1 / k)$, ($a_{1}=1$), $b_{n}=a_{n}+1 / n, c_{n}=b_{n}+1 / n,(n=1,2, \cdots)$. With the aid of these sequences we define a continuous function $a(t)$ on $[0, \infty)$ by $a(t)=1 /\left(c_{n}-t\right)$ if $t \in\left[a_{n}, b_{n}\right]$, $a(t)$ is a polygonal line if $t \in\left[b_{n}, a_{n+1}\right]$, and $a(t)=1 / 2$ if $t \in[0,1]$. We observe that $-a^{\prime}(t)+a(t)^{2} \geqq 0$ for $t \neq a_{n}, b_{n}$ and the equality is valid in $\left(a_{n}, b_{n}\right)$. We compute

$$
\sum_{n=1}^{\infty} \int_{b_{n}}^{a_{n+1}} \frac{d t}{a(t)+1} \leqq 2 \sum_{n=1}^{\infty} \frac{1}{n(n+3)}<+\infty
$$

and

$$
\begin{aligned}
\sum_{n=1}^{k} \int_{a_{n}}^{b_{n}} \frac{d t}{a(t)+1} & =\sum_{n=1}^{k}\left(\frac{1}{n}+\log \frac{n+1}{n+2}\right) \\
& =C+\log 2+\log (k /(k+2))+d_{k}
\end{aligned}
$$

where C is the Euler constant and $d_{k} \rightarrow 0(k \rightarrow \infty)$. Therefore we deduce that $\int_{0}^{\infty}(a(t)+1)^{-1} d t<+\infty$. We replace $a(t)$ by the parabola on sufficiently small neighbourhoods of a_{n} and b_{n} which are tangent to $a(t)$ so that resulting function $a_{Q}(t)$ is of class C^{1} on $[0, \infty)$. We successively set $Q(t)=-a_{Q}^{\prime}(t)+a_{Q}(t)^{2}$ and $P(r)=r^{-2} Q(-\log r)$. This $P(r)$ is a required density.

References

[1] F. Bowman, Introduction to Bessel Function, Longmans, Green and Co. Ltd., 1938.
[2] M. Brelot, Étude de l'équation de la chaleur $\Delta u=c(M) u(M), c(M) \geqq 0$, au voisinage d'un point singulier du coefficient, Ann. Sci. École Norm. Sup., 48 (1931), 153-246.
[3] M. Brelot, Sur le principe des singularités positives et la notion de source pour l'équation (1) $\Delta u(M)=c(M) u(M),(c \geqq 0)$, Ann. Univ. Lyon Sci. Math. Astro., 11 (1948), 9-19.
[4] C. Constantinescu and A. Cornea, Über einige Problem von M. Heins, Rev. Roumaine Math. Pures Appl., 4 (1959), 277-281.
[5] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer, 1963.
[6] M. Godefroid, Sur un article de Kawamura et Nakai à propos du principe de Picard, Bull. Sci. Math., 102 (1978), 295-303.
[7] K. Hayashi, Les solutions positives de l'équation $\Delta u=P u$ sur une surface de Riemann, Kōdai Math. Sem. Rep., 13 (1961), 20-24.
[8] M. Heins, Riemann surfaces of infinite genus, Ann. of Math., 55 (1952), 296-317.
[9] S. Itô, On existence of Green function and positive superharmonic functions for linear elliptic operators of second order, J. Math. Soc. Japan, 16 (1964), 299-306.
[10] S. Itô, Martin boundary for linear elliptic differential operator of second order in a manifold, J. Math. Soc. Japan, 16 (1964), 307-334.
[11] S. Itô, Partial Differential Equations, Baifûkan, 1966 (in Japanese).
[12] M. Kawamura, Denseness of singular densities, Proc. Japan Acad. 50 (1974), 818 -820.
[13] M. Kawamura, Picard principle for finite densities on some end, Nagoya Math. J., 67 (1977), 35-40.
[14] M. Kawamura and M. Nakai, A test of Picard principle for rotation free densities II, J. Math. Soc. Japan, 28 (1976), 232-342.
[15] Z. Kuramochi, An example of a null-boundary Riemann surface, Osaka J. Math., 6 (1954), 83-91.
[16] A. Lahtinen, On the solutions of $\Delta u=P u$ for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn., 515 (1972).
[17] A. Lahtinen, On the equation $\Delta u=P u$ and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn., 553 (1973).
[18] A. Lahtinen, On the existence of singular solutions of $\Delta u=P u$ on Riemann surfaces, Ann. Acad. Fenn., 546 (1973).
[19] R. Martin, Minimal positive harmonic functions, Trans. Amer. Math. Soc., 49 (1941), 137-172.
[20] L. Myrberg, Über die Integration der Differentialgleichung $\Delta u=c(P) u$ auf offenen Riemannschen Flächen, Math. Scand., 2 (1954), 142-152.
[21] L. Myrberg, Über die Existenz der Greenschen Funktion der Gleichung $\Delta u=c(P) u$ auf Riemannschen Flächen, Ann. Sci. Fenn., 170 (1954).
[22] M. Nakai, The space of nonnegative solutions of the equation $\Delta u=P u$ on a Riemann surface, Kōdai Math. Sem. Rep., 12 (1960), 151-178.
[23] M. Nakai, On Evans potential, Proc. Japan Acad., 38 (1962), 624-629.
[24] M. Nakai, Evans' harmonic functions on Riemann surfaces, Proc. Japan Acad., 39 (1963), 74-78.
[25] M. Nakai, Order comparisons on canonical isomorphisms, Nagoya Math. J. 50 (1973), 67-87.
[26] M. Nakai, Martin boundary over an isolated singularity of rotation free density, J. Math. Soc. Japan, 26 (1974), 483-507.
[27] M. Nakai, Densities without Evans solutions, Tôhoku Math. J., 26 (1974), 363-370.
[28] M. Nakai, A test for Picard principle, Nagoya Math. J., 56 (1974), 105-119.
[29] M. Nakai, A test of Picard principle for rotation free densities, J. Math. Soc. Japan, 27 (1975), 412-431.
[30] M. Nakai, A remark on Picard principle II, Proc. Japan Acad., 51 (1975).
[31] M. Nakai, Picard principle and Riemann theorem, Tôhoku Math. J., 28 (1976), 277-292.
[32] M. Nakai, Picard principle for finite densities, Nagoya Math. J., 70 (1978) 714.
[33] M. Ozawa, Classification of Riemann surfaces, Kōdai Math. Sem. Rep., 4 (1952), 63-76.
[34] M. Ozawa, Some classes of positive solutions of $\Delta u=P u$ on Riemann surfaces I, Kōdai Math. Sem. Rep., 6 (1954), 121-126.
[35] M. Ozawa, Some classes of positive solutions of $\Delta u=P u$ on Riemann surfaces II, Kōdai Math. Sem. Rep., 7 (1955), 15-20.
[36] H. Royden, The equation $\Delta u=P u$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., 271 (1959).
[37] L. Sario and M. Nakai, Classification Theory of Riemann Surfaces, Springer, 1970.
[38] L. Sario and K. Noshiro, Value Distribution Theory, Van Nostrand, 1966.
[39] I. Singer, Dirichlet finite solutions of $\Delta u=P u$, Proc. Amer. Math. Soc., 32 (1972), 464-468.
[40] I. Singer, Boundary isomorphism between Dirichlet finite solutions and harmonic functions, Nagoya Math. J., 50 (1973), 7-20.
[41] M. Sur, The Martin boundary for a linear elliptic second order operator, Izv. Akad. Nauk SSSR, 27 (1963), 45-60, (in Russian).

Michihiko Kawamura
Department of Mathematics
Faculty of Education
Fukui University
Bunkyo, Fukui, Japan
Current Address
Department of Mathematics
Faculty of Education
Gifu University
Nagara, Gifu
Japan

[^0]: *) The author is grateful to Professor Nakai for the valuable discussions with him.

