Comparison theorems for Banach spaces of solutions of $\Delta u=P u$ on Riemann surfaces

By Takeyoshi Satō

(Received Aug. 26, 1977)

§ 1. Introduction.

Let R be an open Riemann surface and P a density on R, that is, a nonnegative Hölder continuous function on R which depends on the local parameter $z=x+i y$ in such a way that the partial differential equation

$$
\begin{equation*}
\Delta u=P u, \quad \Delta=\partial^{2} / \partial x^{2}+\partial^{2} / \partial y^{2}, \tag{1.1}
\end{equation*}
$$

is invariantly defined on R. A real valued function f is said to be a P-harmonic function in an open set U of R, if f has continuous partial derivatives up to the order 2 and satisfies the equation (1.1) on U. The totality of bounded P harmonic functions on R is denoted by $P B(R)$. Then, $P B(R)$ is a Banach space with the uniform norm

$$
\begin{equation*}
\|f\|=\sup _{z \in R}|f(z)| . \tag{1.2}
\end{equation*}
$$

H. L. Royden [1] studied the comparison problem of Banach space structures of $P B(R)$ for different choices of densities P on a hyperbolic Riemann surface R and proved the following comparison theorem: If P and Q are non-negative densities on R such that there is a constant $c \geqq 1$ with

$$
\begin{equation*}
c^{-1} Q \leqq P \leqq c Q \tag{1.3}
\end{equation*}
$$

outside some compact subset of R, then the Banach spaces $P B(R)$ and $Q B(R)$ are isomorphic. On the other hand, concerning this comparison problem M. Nakai [1] gave a different criterion for $P B(R)$ and $Q B(R)$ to be isomorphic and proved the following theorem: If two densities P and Q on R satisfy the condition

$$
\begin{equation*}
\int_{R}|P(z)-Q(z)|\left\{G^{P}\left(z, w_{1}\right)+G^{Q}\left(z, w_{0}\right)\right\} d x d y<+\infty \tag{1.4}
\end{equation*}
$$

for some points w_{0} and w_{1} in R, where $G^{P}(z, w)$ and $G^{Q}(z, w)$ are Green's functions of R associated with (1.1) and the equation $\Delta u=Q u$ respectively, then Banach spaces $P B(R)$ and $Q B(R)$ are isomorphic.
A. Lahtinen [1] considered the equation (1.1) for densities P which he called acceptable densities. Acceptable densities can also have negative values, and so, P-harmonic functions do not obey the usual maximum principle. Lahtinen gave generalizations of Nakai's comparison theorem for acceptable densities and also showed, in Lahtinen [2], that for non-negative densities Royden's condition (1.3) is a special case of Nakai's condition (1.4), Recently, M. Nakai [4] and M. Glasner [1] gave, simultaneously, a necessary and sufficient condition for the existence of an isomorphism T between $P B(R)$ and $Q B(R)$ such that $|f-T(f)|$ is bounded by a potential on R.
$P X(R)$ is the space consisting of P-harmonic functions f on R with a certain boundedness property X. As for X we can take D to mean the finiteness of the Dirichlet integral

$$
D(f)=\int_{R}\left\{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}\right\} d x d y<+\infty,
$$

E the finiteness of the energy integral

$$
E(f)=D(f)+\int_{R} f^{2}(z) P(\boldsymbol{z}) d x d y<+\infty
$$

B the finiteness of the supremum norm (1.2), and their non-trivial combinations $B D$ and $B E$. In the connection with Royden's comparison theorem, Nakai [3] discussed whether the condition (1.3) is also sufficient for $P X(R)$ and $Q X(R)$ to be isomorphic for $X=D, E, B D$ and $B E$, and he actually showed that the answer to this question is affirmative.

In this paper we consider the equation (1.1) with $P \not \equiv 0$ on R, and give a new boundedness property $H_{p}^{\prime}(1 \leqq p<+\infty)$ to P-harmonic functions so that the space $\mathrm{PH}_{p}^{\prime}(R)$, which consists of P-harmonic functions with this boundedness property, may have the comparison theorem. Hardy spaces on Riemann surfaces have been studied by M. Parreau [1], and in the general context of harmonic spaces by L.L. Naim [1]. The Hardy space for the equation (1.1), which is denoted by $P H_{p}(R)$ in this paper, falls within the framework of Naim [1]. By Naim, a P-harmonic function f belongs to the Hardy space $P H_{p}(R)$ for the equation (1.1), if and only if $|f|^{p}$ has a P-harmonic majorant on R. We denote by ${ }_{p} f$ the smallest P-harmonic majorant of $|f|^{p}$ on R, and take H_{p}^{\prime} to mean the finiteness of the expression

$$
\begin{equation*}
\|f\|_{p}^{P}=\sup _{w \in R}\left\{\frac{1}{2 \pi} \int_{R^{p}} f(z) G^{P}(z, w) P(z) d x d y\right\}^{1 / p} \tag{1.5}
\end{equation*}
$$

where $G^{P}(z, w)$ is the Green function of the equation (1.1) on R. Then, we have that, for $1 \leqq p<+\infty$,

$$
P B(R) \subset P H_{p}^{\prime}(R) \subset P H_{p}(R) .
$$

In $\S 2$, we show that, for $1 \leqq p<+\infty, P H_{p}^{\prime}(R)$ is a Banach space under the
norm (1.5), and, in $\$ 3$, that $P H_{p}^{\prime}(R)$ is determined by the behavior of the density P near the ideal boundary of R. In $\S 4$, it is proved that the condition (1.3) is also sufficient for $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)$ to be isomorphic.

For the properties of P-harmonic functions we refer to Myrberg's fundamental works (Myrberg [1], [2]), and for the theory of Green potentials with kernel $G^{P}(z, w)$ to Nakai [2].
§ 2. Definition of the Banach spaces $P H_{p}^{\prime}(R)$.
Let R be a connected Riemann surface and let N be the set $\{0,1,2, \cdots\}$. By $\left\{R_{n}\right\}_{n \in N}$ we denote an exhaustion of R, which has the following properties: (1) R_{n} is a regular region, that is, an open set whose closure \bar{R}_{n} is compact and whose relative boundary ∂R_{n} consists of a finite number of closed analytic curves, (2) $\bar{R}_{n} \subset R_{n+1}$ for $n \in N$, (3) $R=\cup_{n=0}^{\infty} R_{n}$. By the solvability of Dirichlet problem on the regular region R_{n} with continuous boundary values, for any continuous function f on ∂R_{n} there exists a unique continuous function P_{f}^{n} on \bar{R}_{n} such that $P_{f}^{n}=f$ on ∂R_{n} and P_{f}^{n} is a P-harmonic function on R_{n}. Let z_{0} be a fixed point on R_{n}. Since the mapping $f \rightarrow P_{f}^{n}\left(z_{0}\right)$ of the space of all finitely continuous functions f on ∂R_{n} is a non-negative linear functional on this space of functions on ∂R_{n}, there exists a non-negative Radon measure $\mu_{n, z_{0}}^{P}$ on ∂R_{n} such that

$$
\int f d \mu_{n, z_{0}}^{P}=P_{f}^{n}\left(z_{0}\right)
$$

for all finitely continuous functions f on ∂R_{n}. This measure is the P-harmonic measure on ∂R_{n} relative to $z_{0} \in R_{n}$ and R_{n}.

Definition 2.1. A P-harmonic function f on R belongs to the space $P H_{p}(R)$, $1 \leqq p<+\infty$, if and only if there exists a constant $m\left(z_{0}\right)$ independent of $n \in N$ such that

$$
\|f\|_{p, n}^{P}\left(z_{0}\right) \leqq m\left(z_{0}\right)
$$

for all $n \in N$, where $z_{0} \in R$ and

$$
\|f\|_{n, z_{0}}^{P}\left(z_{0}\right)=\left\{\int|f|^{p} d \mu_{n, z_{0}}^{P}\right\}^{1 / p} .
$$

This space $P H_{p}(R)$ has been studied in the general context of harmonic spaces by Lumer-Naim [1]. Hence the results contained therein may be applicable to our studies of the space $P H_{p}(R)$. For convenience, some results of Naim [1] are quoted in the following. A P-harmonic function f belongs to the space $P H_{p}(R), 1 \leqq p<+\infty$, if and only if $|f|^{p}$ has a P-harmonic majorant on R. By this proposition the definition of $P H_{p}(R)$ is independent of the choice of $z_{0} \in R$ and the particular exhaustion $\left\{R_{n}\right\}$ of R. Any P-harmonic function $f \in P H_{p}(R)$ is the difference of two positive P-harmonic functions in $P H_{p}(R)$,
$1 \leqq p<+\infty$, and conversely. For $1 \leqq p<+\infty, P H_{p}(R)$ is a Banach space under the norm

$$
\|f\|_{p}^{P}=\sup _{n \in N}\|f\|_{p, n}^{P}\left(z_{0}\right) .
$$

This norm equals $\left\{_{p} f\left(z_{0}\right)\right\}^{1 / p}$, where ${ }_{p} f$ denotes the smallest P-harmonic majorant of $|f|^{p}$ in R.

In the theory of $P H_{p}(R)$ we admit the case $P \equiv 0$, but we assume $P \not \equiv 0$ on R in the following. The P-Green function for R_{n} is an extended real valued function $G^{P}\left(R_{n}, z, w\right)$ on $R_{n} \times R_{n}$ such that for each $w \in R_{n}$, (1) $G^{P}\left(R_{n}, z, w\right)$ is P-harmonic on $R_{n}-\{w\}$; (2) $G^{P}\left(R_{n}, z, w\right)+\log |w-z|$ is bounded in a neighborhood of w; (3) $\lim _{z \rightarrow b} G^{P}\left(R_{n}, z, w\right)=0$ for every $b \in \partial R_{n}$. The increasing sequence $\left\{G^{P}\left(R_{n}, z, w\right)\right\}$ converges uniformly on every compact subset of R to a function $G^{P}(z, w)$ which we call the P-Green function on $R . G^{P}(z, w)$ is the smallest function of $u(z, w)$ such that (1) $u(z, w)$ is a non-negative P-harmonic function on $R-\{w\}$; (2) $u(z, w)+\log |z-w|$ is bounded in a neighborhood of w. For these and other properties of the P-Green function we refer to Myrberg [1] and [2]. An inequality which is a result of Myrberg [2] is quoted here as it is useful in the following :

$$
\begin{equation*}
\int_{R} G^{P}(z, w) P(z) d x d y \leqq 2 \pi \tag{2.1}
\end{equation*}
$$

for every $w \in R$.
Now, we make some preliminaries on P-superharmonic functions. For any disk V on R we have the P-harmonic measure $\mu_{2}^{P, V}$ on the boundary ∂V of V with respect to $z \in V$ satisfying

$$
P_{f}^{\nu}(z)=\int f d \mu_{z}^{P, V}
$$

for any continuous function f on ∂V, where P_{f}^{V} is a continuous function on the closure \bar{V} of V such that $P_{f}^{V}=f$ on ∂V and P_{f}^{V} is P-harmonic on V. A P superharmonic function s on an open set of R is then defined as a function with the following properties:
a) $s(z)>-\infty$ at each $z \in S ; s \not \equiv+\infty$ on any component of S;
b) s is lower semi-continuous on S;
c) For any disk V such that $\bar{V} \subset S$,

$$
s(z) \geqq \int s d \mu_{z}^{P, V}
$$

for all $z \in V$.
If s and $-s$ are P-superharmonic on an open set S of R, then s is P harmonic on S.

If $-s$ is P-superharmonic on S, then s is said to be P-subharmonic on S. For example, if f is P-harmonic on an open set S of R, then $|f|^{p}, 1 \leqq p<+\infty$,
is P-subharmonic on S, and $\max (f, 0),-\min (f, 0)$ are P-subharmonic on S. The following well-known fact is called the maximum principle and used repeatedly in proofs in this paper. Let u be a P-subharmonic function on G, and f a P-harmonic function on G with continuous boundary values. If G is a relative compact set of R and

$$
\lim \sup _{z \rightarrow b} u(z) \leqq \lim _{z \rightarrow b} f(z)
$$

for all $b \in \partial G$, then $u<f$ on G or $u \equiv f$ on G. This principle is a consequence of the general theory on harmonic space. In the case of a continuous P-subharmonic function it is given in Myrberg [3].

Definition 2.2. A P-harmonic function f on a connected Riemann surface R belongs to the space $P H_{p}^{\prime}(R), 1 \leqq p<+\infty$, if and only if there exists a constant M independent of $n \in N$ such that

$$
\int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \leqq M, \quad w \in R_{n}
$$

for all $n \in N$.
We shall see that this space $P H_{p}^{\prime}(R)$ is independent of the exhaustion $\left\{R_{n}\right\}$ of R.

From now on in this section we shall give properties of our space $P H_{p}^{\prime}(R)$ of P-harmonic functions on a connected Riemann surface R.

Theorem 2.1. A P-harmonic function f on R belongs to the space $P H_{p}^{\prime}(R)$, $1 \leqq p<+\infty$, if and only if $|f|^{p}$ has a P-harmonic majorant u on R such that

$$
\begin{equation*}
\int_{R} u(z) G^{P}(z, w) P(z) d x d y \leqq M \tag{2.2}
\end{equation*}
$$

for every $w \in R$, where M is a positive constant.
Proof. If such a majorant u does exist on R, then for each $n \in N$

$$
\begin{aligned}
\|f\|_{p, n}^{P}(z) & =\left\{\int|f|^{p} d \mu_{n, z}^{p}\right\}^{1 / p} \\
& \leqq\left\{P_{u}^{n}(z)\right\}^{1 / p} \\
& =\{u(z)\}^{1 / p}, z \in R_{n},
\end{aligned}
$$

that is, $f \in P H_{p}(R)$. Furthermore,

$$
\begin{aligned}
& \int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \quad \leqq \int_{R_{n}} u(z) G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \quad \leqq \int_{R} u(z) G^{P}(z, w) P(z) d x d y \\
& \leqq M, \quad w \in R_{n}
\end{aligned}
$$

for all $n \in N$, from which it follows that f is in the space $P H_{p}^{\prime}(R)$.
Next, let $f \in P H_{p}^{\prime}(R)$. Since the sequence $\left\{\left(\|f\|_{p, n}^{P}\right)^{p}\right\}_{n \in N}$ of P-harmonic functions is increasing, Definition 2.2 and Harnack's principle imply that

$$
\begin{equation*}
\lim _{n \rightarrow+\infty}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p}, \quad z \in R \tag{2.3}
\end{equation*}
$$

is P-harmonic by Beppo-Levi's theorem, which is denoted by u. The maximum principle gives that

$$
\begin{aligned}
|f(z)|^{p} & \leqq P_{|f|}^{n}{ }^{p}(z) \\
& =\left(\|f\|_{p, n}^{P}(z)\right)^{p}
\end{aligned}
$$

from which it follows that u is a P-harmonic majorant of $|f|^{p}$ on R. Since there exists a constant M independent of $n \in N$ such that

$$
\int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \leqq M, \quad w \in R_{n},
$$

for all $n \in N$, it follows from Beppo-Levi's theorem, that

$$
\begin{aligned}
& \int_{R} u(z) G^{P}(z, w) P(z) d x d y \\
& \quad=\lim _{n \rightarrow+\infty} \int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \leqq M, \quad w \in R . \quad \text { Q.E.D. }
\end{aligned}
$$

Theorem 2.2. Every $f \in P H_{1}^{\prime}(R)$ is the difference of two positive P-harmonic functions in $\operatorname{PH}_{1}^{\prime}(R)$, and conversely.

Proof. Let $f \in P H_{1}^{\prime}(R)$. By Theorem 2.1, there is a P-harmonic majorant u of $|f|$ on R such that

$$
\begin{aligned}
\int_{R} u(z) G^{P}(z, w) P(z) d x d y & \leqq M \\
& <+\infty
\end{aligned}
$$

for all $w \in R$. The sequences

$$
\left\{\int \max (f, 0) d \mu_{n, z}^{p}\right\}
$$

and

$$
\left\{\int-\min (f, 0) d \mu_{n, z}^{P}\right\}
$$

are monotone increasing by the maximum principle and bounded as n increases. Then, we can define

$$
f_{1}(z)=\lim _{n \rightarrow+\infty} \int \max (f, 0) d \mu_{n, z}^{P}
$$

and

$$
f_{2}(z)=\lim _{n \rightarrow+\infty} \int-\min (f, 0) d \mu_{n, z}^{P}, \quad z \in R .
$$

Here, we have, for $i=1,2$,

$$
\begin{aligned}
& \int_{R} f_{i}(z) G^{P}(z, w) P(z) d x d y \\
& \quad \leqq \int_{R} u(z) G^{P}(z, w) P(z) d x d y \\
& \leqq M<+\infty, \quad w \in R,
\end{aligned}
$$

and

$$
\begin{aligned}
f(z) & =\lim _{n \rightarrow+\infty} \int f d \mu_{2, n}^{P} \\
& =f_{1}(z)-f_{2}(z), \quad z \in R .
\end{aligned}
$$

Next, we assume that

$$
f(z)=f_{1}(z)-f_{2}(z),
$$

where f_{1} and f_{2} are positive P-harmonic functions in $P H_{1}^{\prime}(R)$. Let u_{i} be the P-harmonic majorant of f_{i} on $R, i=1,2$, such that, for $w \in R$,

$$
\begin{aligned}
\int_{R} u_{i}(z) G^{P}(z, w) P(z) d x d y & \leqq M_{i} \\
& <+\infty, \quad i=1,2 .
\end{aligned}
$$

Then,

$$
\begin{aligned}
|f(z)| & \leqq f_{1}(z)+f_{2}(z) \\
& \leqq u_{1}(z)+u_{2}(z), \quad z \in R
\end{aligned}
$$

and

$$
\begin{aligned}
& \int_{R}\left\{u_{1}(z)+u_{2}(z)\right\} G^{P}(z, w) P(z) d x d y \\
& \quad \leqq M_{1}+M_{2}
\end{aligned}
$$

for all $w \in R$, which implies, by Theorem 2.1, that $f \in P H_{1}^{\prime}(R)$.
Q.E.D.

We denote by $P B(R)$ the space consisting of P-harmonic functions on R with finite supremum norms:

$$
\|f\|_{R}=\sup _{z \in R}|f(z)| .
$$

Theorem 2.3. For any finite $1 \leqq p \leqq q$, we have the inclusions

$$
P B(R) \subset P H_{q}^{\prime}(R) \subset P H_{p}^{\prime}(R) \subset P H_{1}^{\prime}(R) .
$$

Proof. Let $f \in P B(R)$. Since

$$
\|f\|_{q, n}^{P}(z)=\left\{\int|f|^{q} d \mu_{n, z}^{P}\right\}^{1 / q}
$$

$$
\begin{aligned}
& \leqq\|f\|_{R}\left\{\int d \mu_{n, z}^{P}\right\}^{1 / q} \\
& \leqq\|f\|_{R}, \quad z \in R_{n}
\end{aligned}
$$

we have that $f \in P H_{q}(R)$. Moreover, the inequality (2.1) implies that, for all $n \in N$,

$$
\begin{aligned}
& \int_{R_{n}}\left\{\|f\|_{q, n}^{P}(z)\right\}^{q} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \leqq\left(\|f\|_{R}\right)^{q} \int_{R_{n}} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \leqq 2 \pi\left(\|f\|_{R}\right)^{q}, \quad w \in R_{n} .
\end{aligned}
$$

And so, we have $f \in P H_{q}^{\prime}(R)$, that is, $P B(R) \subset P H_{q}^{\prime}(R)$.
Next, we assume that $1 \leqq p \leqq q$. From the inequality

$$
|a|^{p} \leqq 1+|a|^{q}
$$

for a real number a, it follows that

$$
\begin{aligned}
\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} & =\int|f|^{p} d \mu_{n, z}^{P} \\
& \leqq 1+\left\{\|f\|_{q, n}^{P}(z)\right\}^{q},
\end{aligned}
$$

and that

$$
\begin{aligned}
& \int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \quad \leqq \int_{R_{n}} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \quad+\int_{R_{n}}\left\{\|f\|_{q_{, n}}^{P}(z)\right\}^{q} G^{P}\left(R_{n}, z, w\right) P(z) d x d y \\
& \quad \leqq 2 \pi+\int_{R_{n}}\left\{\|f\|_{q, n}^{P}(z)\right\}^{q} G^{P}\left(R_{n}, z, w\right) P(z) d x d y, \quad w \in R .
\end{aligned}
$$

Therefore, we have

$$
P H_{q}^{\prime}(R) \subset P H_{p}^{\prime}(R) . \quad \text { Q. E. D. }
$$

Theorem 2.4. Any f in $P H_{p}^{\prime}(R)$ is the difference of two positive P-harmonic functions in $P H_{p}^{\prime}(R)$, and conversely.

Proof. We consider the same functions f_{1} and f_{2} on R as that in the proof of Theorem 2.2, that is,

$$
\begin{aligned}
& f_{1}(z)=\lim _{n \rightarrow+\infty} \int \max (f, 0) d \mu_{n, z}^{P}, \\
& f_{2}(z)=\lim _{n \rightarrow+\infty} \int-\min (f, 0) d \mu_{n, z}^{P}
\end{aligned}
$$

for $z \in R$. Since $f \in P H_{p}^{\prime}(R)$, there exists a P-harmonic majorant u of $|f|^{p}$ satisfying (2.2) in Theorem 2.1. Then, Hölder's inequality gives that, for p and q satisfying $1<p<+\infty, 1<q<+\infty$ and $1 / p+1 / q=1$,

$$
\begin{aligned}
& \int \max (f, 0) d \mu_{n, z}^{P} \\
& \quad \leqq\left[\int\{\max (f, 0)\}^{p} d \mu_{n, z}^{P}\right]^{1 / p}\left(\int d \mu_{n, z}^{P}\right)^{1 / q} \\
& \leqq\left(\int \max (f, 0)^{p} d \mu_{n, z}^{P}\right)^{1 / p} \\
& \leqq\left(\int u d \mu_{n, z}^{P}\right)^{1 / p} \\
& \leqq\{u(z)\}^{1 / p},
\end{aligned}
$$

that is, $f_{1}(z)^{p} \leqq u(z)$ on R. And, similarly, we have $f_{2}(z)^{p} \leqq u(z)$ on R. Then, we complete the proof of the first assertion.

Let $f=f_{1}-f_{2}$, where f_{1} and f_{2} are positive P-harmonic functions in $P H_{p}^{\prime}(R)$. By Theorem 2.1 there exists P-harmonic majorants u_{1} and u_{2} of $f_{1}{ }^{p}$ and $f_{2}{ }^{p}$ on R, respectively, which satisfy the condition (2.2) in Theorem 2.1. Then, the inequality

$$
(a+b)^{p} \leqq 2^{p}\left(a^{p}+b^{p}\right), 1 \leqq p<+\infty,
$$

gives

$$
\begin{aligned}
|f|^{p} & \leqq\left(f_{1}+f_{2}\right)^{p} \\
& \leqq 2^{p}\left(f_{1}{ }^{p}+f_{2}^{p}\right) \\
& \leqq 2^{p}\left(u_{1}+u_{2}\right),
\end{aligned}
$$

and

$$
\int_{R}\left(u_{1}(z)+u_{2}(z)\right) G^{P}(z, w) P(z) d x d y \leqq M+M
$$

for all $w \in R$, where M is a constant independent of $w \in R$. Therefore, Theorem 2.1 implies $f \in P H_{p}^{\prime}(R)$.
Q.E.D.

Theorem 2.5. Let R be a connected Riemann surface on which $P \not \equiv 0$. And, let

$$
\begin{equation*}
\|f\|_{p}^{P}=\sup _{w \in R}\left\{\lim _{n \rightarrow+\infty} \frac{1}{2 \pi} \int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y\right\}^{1 / p} \tag{2.4}
\end{equation*}
$$

for $f \in R H_{p}^{\prime}(R)$. Then, for $1 \leqq p<+\infty, P H_{p}^{\prime}(R)$ is a Banach space under the norm $\|f\|_{p}^{P}, f \in P H_{p}^{\prime}(R)$. This norm equals

$$
\begin{equation*}
\sup _{w \in R}\left\{\frac{1}{2 \pi} \int_{R^{p}} f(z) G^{p}(z, w) P(z) d x d y\right\}^{1 / p}, \tag{2.5}
\end{equation*}
$$

where ${ }_{p} f$ denotes the smallest P-harmonic majorant of $|f|^{p}$ in R.

Proof. The function u defined by (2.3) in the proof of Theorem 2.1, that is,

$$
u(z)=\lim _{n \rightarrow+\infty}\left\{\|f\|_{p, n}^{p}(z)\right\}^{p}, \quad z \in R,
$$

is the smallest P-harmonic majorant of $|f|^{p}$ in R, since, for any P-harmonic majorant s of $|f|^{p}$ in R, we have

$$
\begin{aligned}
\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} & =\left.P^{n}| | f\right|^{p}(z) \\
& \leqq P_{s}^{n}(z)=s(z), \quad z \in R_{n},
\end{aligned}
$$

which gives $u(z) \leqq s(z)$ on R. By Definition 2.2 and ${ }_{p} f=u$, Lebesgue's monotone convergence theorem shows that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{R^{p}} f(z) G^{P}(z, w) P(z) d x d y \\
& =\lim _{n \rightarrow+\infty} \frac{1}{2 \pi} \int_{R_{n}}\left\{\|f\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y,
\end{aligned}
$$

from which the expression (2.5) of $\|f\|_{p}^{P}$ follows.
Next, we have to show that $P H_{p}^{\prime}(R), 1 \leqq p<+\infty$, is a vector space with respect to the usual definitions of addition and scalar multiplication of real numbers, and that the non-negative real valued function (2.4) is a norm on $P H_{p}^{\prime}(R)$. Minkowski's inequality gives that, for f and g in $P H_{p}^{\prime}(R)$,

$$
\begin{aligned}
& {\left[\int_{R_{n}}\left\{\|f+g\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y\right]^{1 / p} } \\
\leqq & {\left[\int_{R_{n}}\left\{\|f\|_{p, n}^{p}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y\right]^{1 / p} } \\
& +\left[\int_{R_{n}}\left\{\|g\|_{p, n}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y\right]^{1 / p},
\end{aligned}
$$

which implies that $f+g \in P H_{p}^{\prime}(R)$ and

$$
\|f+g\|_{p}^{P} \leqq\|f\|_{p}^{P}+\|g\|_{p}^{P} .
$$

It is clear that, for $f \in P H_{p}^{\prime}(R)$ and a real number $\alpha, \alpha f \in P H_{p}^{\prime}(R)$ and

$$
\|\alpha f\|_{p}^{P}=|\alpha|\|f\|_{p}^{P} .
$$

If $f \in P H_{p}^{\prime}(R)$ satisfies the condition $\|f\|_{p}^{P}=0$, then the smallest P-harmonic majorant ${ }_{p} f$ of f satisfies that ${ }_{p} f=0$ everywhere on R, since $P \not \equiv 0$ on R. So, $f=0$ everywhere on R.

To prove that $\mathrm{PH}_{p}^{\prime}(R)$ is complete with respect to the norm (2.4), let $\left\{f_{j}\right\}$ be a Cauchy sequence in $P H_{p}^{\prime}(R)$ with respect to the norm (2.4). Then, we can find a subsequence $\left\{f_{j(i)}\right\}, j(1)<j(2)<\cdots$, of $\left\{f_{j}\right\}$ such that

$$
\left\|\left\|f_{j(i+1)}-f_{j(i)}\right\|_{p}^{P}<1 / 2^{i}, \quad i=1,2, \cdots\right.
$$

Hölder's inequality and the inequality (2.1) give that, for $p>1$,

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{R}\left\{p\left(f_{j(i+1)}-f_{j(i)}\right)(z)\right\}^{1 / p} G^{P}(z, w) P(z) d x d y \\
\leqq & \left\{\frac{1}{2 \pi} \int_{R^{p}}\left(f_{j(i+1)}-f_{j(i)}\right)(z) G^{P}(z, w) P(z) d x d y\right\}^{1 / p} \\
= & \left\|f_{j(i+1)}-f_{j(i)}\right\|_{p}^{P}
\end{aligned}
$$

which is evident for $p=1$. Therefore, since

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{R} \sum_{i=1}^{k}\left\{p_{p}\left(f_{j(i+1)}-f_{j(i)}\right)(z)\right\}^{1 / p} G^{P}(z, w) P(z) d x d y \\
\leqq & \sum_{i=1}^{k} 1 / 2^{i}<1
\end{aligned}
$$

for every positive integer k, Lebesgue's monotone convergence theorem implies that the series

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left\{p\left(f_{j(i+1)}-f_{j(i)}\right)\right\}^{1 / p} \tag{2.6}
\end{equation*}
$$

converges almost everywhere on the support of P.
Let z_{0} be a point of the support of the density P at which (2.6) converges. Then, from the inequality

$$
\begin{aligned}
\left\|f_{j(l)}-f_{j(k)}\right\|_{p}^{P} & =\left\|\sum_{i=k}^{l-1}\left(f_{j(i+1)}-f_{j(i)}\right)\right\|_{p}^{P} \\
& \leqq \sum_{i=k}^{l-1}\left\|f_{j(i+1)}-f_{j(i)}\right\|_{p}^{P} \\
& =\sum_{i=k}^{l-1}\left\{p\left(f_{j(i+1)}-f_{j(i)}\right)\left(z_{0}\right)\right\}^{1 / p}
\end{aligned}
$$

for $k<l$, it follows that the sequence $\left\{f_{j(i)}\right\}$ is a Cauchy sequence in $P H_{p}(R)$, for the series (2.6) converges at z_{0}. So, there exists a function f in $P H_{p}(R)$ such that

$$
\lim _{i \rightarrow+\infty}\left\|f_{j(i)}-f\right\|_{p}^{P}=0,
$$

which implies that the sequence $\left\{f_{j(i)}\right\}$ converges, uniformly on every compact subset of R, to f (L. L. Naim [1]).

We now have to prove that f is contained in $P H_{p}^{\prime}(R)$ and

$$
\lim _{j \rightarrow+\infty}\| \| f_{j}-f \|_{p}^{P}=0 .
$$

Since

$$
f_{j(k)}=\sum_{i=1}^{k-1}\left(f_{j(i+1)}-f_{j(i)}\right)+f_{j(1)},
$$

Fatou's lemma gives that

$$
\begin{aligned}
& {\left[\frac{1}{2 \pi} \int_{R_{n}}\left\{\left\|f-f_{j(l)}\right\|_{p}^{P}(z)\right\}^{p} G^{P}\left(R_{n}, z, w\right) P(z) d x d y\right]^{1 / p}} \\
& \leqq\left[\lim _{\inf }^{k \rightarrow+\infty}\right. \\
& \\
& \quad \frac{1}{2 \pi} \int_{R_{n}}\left\{\left\|f_{j(k)}-f_{j(l)}\right\|_{p}^{P}(z)\right\}^{p} \\
& \left.\quad \times G^{P}\left(R_{n}, z, w\right) P(z) d x d y\right]^{1 / p} \\
& \leqq \lim _{\inf }^{k \rightarrow+\infty} \boldsymbol{\|}\left\|f_{j(k)}-f_{j(l)}\right\|_{p}^{P} \\
& \leqq \sum_{i=l}^{\infty}\left\|f_{j(i+1)}-f_{j(i)}\right\|_{p}^{P} \\
& \leqq \sum_{i=l}^{\infty} 1 / 2^{i}=1 / 2^{l-1}
\end{aligned}
$$

and so,

$$
\begin{equation*}
\left\|f-f_{j(l)}\right\|_{p}^{P}<1 / 2^{l-1} . \tag{2.7}
\end{equation*}
$$

We can conclude from this inequality that $f-f_{j(l)}$ is in $P H_{p}^{\prime}(R)$. Hence, f is in $P H_{p}^{\prime}(R)$, since

$$
f=\left(f-f_{j(l)}\right)+f_{j(l)} .
$$

And, furthermore it follows, from (2.7), that
which gives that

$$
\lim _{l \rightarrow+\infty}\| \| f-f_{j(l)} \|_{p}^{P}=0,
$$

$$
\lim _{j \rightarrow+\infty}\left\|f f-f_{j}\right\|_{p}^{p}=0,
$$

for $\left\{f_{j}\right\}$ is a Cauchy sequence in $P H_{p}^{\prime}(R)$.
Q.E.D.

It will be necessary to consider a disconnected Riemann surface in $\S 3$ and §4. Let

$$
R=\bigcup_{k=1}^{K} W^{k}
$$

be the decomposition of R into connected components W^{k} of R. We can assume, without loss of generality, that the density P on R satisfies $P \not \equiv 0$ on $W^{1}, W^{2}, \cdots, W^{L}, 1 \leqq L \leqq K$, and $P \equiv 0$ on $W^{L+1}, W^{L+2}, \cdots, W^{K}$. Since $P \equiv 0$ on W^{k}, $L<k \leqq K, P H_{p}\left(W^{k}\right), L<k \leqq K$, is the space of harmonic functions on W^{k} such that $|f|^{p}$ has a harmonic majorant on W^{k}, that is, $P H_{p}\left(W^{k}\right), L<k \leqq K$, is the Hardy space of harmonic functions on W^{k}. This space of harmonic functions on W^{k} is denoted by $H_{p}\left(W^{k}\right)$. It is a result of Parreau [1] that the space $H_{p}\left(W^{k}\right)$ is a Banach space under the norm

$$
\|f\|_{p}=\left\{{ }_{p} f\left(z_{0}\right)\right\}^{1 / p}, \quad f \in H_{p}\left(W^{k}\right),
$$

where z_{0} is a point in W^{k}. Now, we define the space $P H_{p}^{\prime}(R)$ for the disconnected Riemann surface R as follows.

Definition 2.3. A P-harmonic function f on the disconnected Riemann surface R belongs to the space $P H_{p}^{\prime}(R), 1 \leqq p<+\infty$, if and only if each restriction $f \mid W^{k}$ to W^{k} of f belongs to $P H_{p}^{\prime}\left(W^{k}\right)$ or $H_{p}\left(W^{k}\right)$ according as $1 \leqq k \leqq L$ or $L<k \leqq K$.

Theorem 2.6. Let R be the disconnected Riemann surface on which $p \not \equiv 0$. And, let

$$
\begin{equation*}
\|f\|_{p}^{P}=\sum_{k=1}^{L}\left\|f\left|W^{k}\left\|_{p}^{P}+\sum_{k=L+1}^{K}\right\| f\right| W^{k}\right\|_{p} \tag{2.8}
\end{equation*}
$$

for $f \in P H_{p}^{\prime}(R)$. Then, for $1 \leqq p<+\infty, P H_{p}^{\prime}(R)$ is a Banach space under the norm (2.8). This norm equals

$$
\begin{aligned}
& \sum_{k=1}^{L} \sup _{w \in W}\left\{\frac{1}{2 \pi} \int_{W^{k}} p\left(f \mid W^{k}\right)(z) G^{P}\left(W^{k}, z, w\right) P(z) d x d y\right\}^{1 / p} \\
& \quad+\sum_{k=L+1}^{K}\left\{p\left(f \mid W^{k}\right)\left(z^{k}\right)\right\}^{1 / p}
\end{aligned}
$$

where $p\left(f \mid W^{k}\right), 1 \leqq k \leqq K$, denotes the smallest P-harmonic majorant of $\left.|f| W^{k}\right|^{p}$ on W^{k} and $z^{k}, L<k \leqq K$, is a point in W^{k}.

Proof. This is clear by the preceding lemma.
Q.E.D.

In the following of this section we consider the relation between two Banach spaces $P H_{p}(R)$ and $P H_{p}^{\prime}(R)$ under the assumption that the density P vanishes outside a compact subset of the connected Riemann surface R.

Lemma 2.7. If the density P vanishes outside a compact subset of R, then $P H_{p}^{\prime}(R)=P H_{p}(R)$ and there exists a positive constant C such that

$$
\|f\|_{p}^{P} \leqq C\|f\|_{p}^{P}
$$

for every $f \in P H_{p}(R)$.
Proof. We assume that P vanishes outside a compact subset K of R. Let z_{0} be a point of R with $z_{0} \oplus K$. Then, there exists, by Harnack's theorem (Myrberg [1]), a constant c such that

$$
{ }_{p} f(z) \leqq c \times{ }_{p} f\left(z_{0}\right)
$$

for every $z \in K$ and every $f \in P H_{p}(R)$. Therefore, the inequality (2.1) gives that

$$
\begin{aligned}
& \frac{1}{2 \pi} \int_{R^{p}} f(z) G^{P}(z, w) P(z) d x d y \\
& =\frac{1}{2 \pi} \int_{K^{p}} f(z) G^{P}(z, w) P(z) d x d y \\
& \leqq \frac{1}{2 \pi} c \times_{p} f\left(z_{0}\right) \int_{R} G^{P}(z, w) P(z) d x d y \\
& \leqq c \times_{p} f\left(z_{0}\right),
\end{aligned}
$$

and so,

$$
\|f\|_{p}^{P} \leqq(c)^{1 / p} \times\|f\|_{p}^{P},
$$

which completes the proof.
Q.E.D.

Theorem 2.6. If the density P vanishes outside a compact subset of R, then the Banach space $\left(P H_{p}^{\prime}(R),\| \| \cdot \|_{p}^{P}\right)$ is isomorphic to the Banach space $\left(P H_{p}(R)\right.$, $\left.\|\cdot\|_{p}^{P}\right)$.

Proof. The identity map of $\left(P H_{p}(R),\|\cdot\|_{p}^{P}\right)$ onto $\left(P H_{p}^{\prime}(R),\|\cdot\| \|_{p}^{P}\right)$ is a one-to-one continuous linear transformation and so must be an isomorphism by the open mapping theorem.
Q.E.D.

§ 3. The structure of $P H_{p}^{\prime}(R)$.

Let W be a connected or disconnected open subset of R whose complement is a regular region. Hereafter we always use W for such a subset of R. To show that the Banach space structure of $P H_{p}^{\prime}(R)$ is determined by the behavior of the density P on a neighborhood of the ideal boundary of R, we define the subset $P H_{p}^{\prime}(W ; \partial W)$ of $P H_{p}^{\prime}(R)$ as follows.

Definition 3.1. $P H_{p}^{\prime}(W ; \partial W), 1 \leqq p<+\infty$, is the class of all functions f in $P H_{p}^{\prime}(W)$ such that there exists a continuous extension of f to the closure \bar{W} of W whose restriction to the boundary ∂W of W vanishes.

Then, $P H_{p}^{\prime}(W ; \partial W)$ is a vector space with respect to the usual definitions of addition and scalar multiplication of real numbers. And, $P H_{p}^{\prime}(W ; \partial W)$ is a subspace of the Banach space $P H_{p}^{\prime}(W)$ with the norm (2.8) in Theorem 2.6:

Theorem 3.1. $P H_{p}^{\prime}(W ; \partial W)$ is a closed linear subspace of $P H_{p}^{\prime}(W)$.
Proof. Let $f \in P H_{p}^{\prime}(W)$ be the limit of a sequence $\left\{f_{n}\right\}$ in $P H_{p}^{\prime}(W ; \partial W)$:

$$
\lim _{n \rightarrow+\infty}\| \| f-f_{n} \|_{p}^{P}=0
$$

It is sufficient to show that $f \mid W^{k}$ has a continuous extension to \bar{W}^{k} whose restriction to ∂W^{k} vanishes for each connected component W^{k} of W. If $P \not \equiv 0$ on W^{k}, then there exists a subsequence $\left\{f_{n(i)}\right\}$ of $\left\{f_{n}\right\}$ which converges, uniformly on every compact subset of W^{k}, to f, by the proof of Theorem 2.5, If $P \equiv 0$ on W^{k}, the existence of such a subsequence $\left\{f_{n(i)}\right\}$ follows from the fact

$$
\lim _{n \rightarrow+\infty}\left\|f\left|W^{k}-f_{n}\right| W^{k}\right\|_{p}^{P}=0
$$

Let G^{k} be a regular region which contains the boundary of W^{k}, and let w be a continuous function on the closure of $G^{k} \cap W^{k}$ such that w is P-harmonic on $G^{k} \cap W^{k}$ and w have $w\left|\partial G^{k}=m^{k}, w\right| \partial W^{k}=0$, where

$$
m^{k}=\sup _{z \in G k \cap W^{k}}|f| W^{k}(z) \mid+1
$$

Then, by the maximum principle we have that

$$
\left|f_{n(i)}(z)\right| \leqq w(z), \quad z \in G^{k} \cap W^{k}
$$

for sufficiently large $i \in N$, and so,

$$
\begin{aligned}
|f(z)| & =\lim _{i \rightarrow+\infty}\left|f_{n(i)}(z)\right| \\
& \leqq w(z), \quad z \in G^{k} \cap W^{k} .
\end{aligned}
$$

This shows that $\lim _{z \rightarrow b} f(z)=0$ for all $b \in \partial W^{k}$, that is, if we extend f on ∂W^{k} so that $f(b)=0$ for $b \in \partial W^{k}$, then f belongs to $P H_{p}^{\prime}(W ; \partial W)$, which complets the proof.
Q.E.D.

Lemma 3.2. Let f be in $P H_{p}^{\prime}(W ; \partial W)$. Then, the smallest P-harmonic majorant ${ }_{p} f$ of $|f|^{p}$ has a continuous extension to \bar{W} whose restriction to ∂W vanishes.

Proof. It is sufficient to prove only that ${ }_{p} f \mid W^{k}$ have this property. The sequence $\left\{\left(\left\|f \mid W^{k}\right\|_{p, n}^{P}(z)\right)^{p}\right\}$, which is a monotone increasing sequence of P-harmonic functions on $R_{n} \cap W^{k}$, converges to ${ }_{p} f \mid W^{k}$. Harnack's principle implies that the convergence is locally uniform in W^{k}. Let G^{k} be the same subset of R as that in Theorem 3.1, and let w be the P-harmonic function on $G^{k} \cap W^{k}$ which have a continuous extension to the closure of $G^{k} \cap W^{k}$ such that $w \mid \partial W^{k}=0$ and $w \mid \partial G^{k}=1$. Then, by the same way as that in the proof of Theorem 3.1, we can show that

$$
\left\{\left\|f \mid W^{k}\right\|_{p, n}^{P}(z)\right\}^{p} \leqq \beta^{k} w(z), \quad z \in W^{k} \cap G^{k},
$$

for sufficiently large $n \in N$, where

$$
\beta^{k}=\sup _{z \in \partial G k \cap W k} \quad{ }_{p} f(z) .
$$

Therefore,

$$
{ }_{p} f \mid W^{k}(z) \leqq \beta^{k} w(z), \quad z \in W^{k} \cap G^{k},
$$

which implies the conclusion.
Q. E. D.

In Rodin and Sario [1] they discussed the problem of finding on a given harmonic space a harmonic function which imitates the behavior of a given harmonic function on a neighborhood of the ideal boundary of the harmonic space. We quote from Chapter VII of Rodin and Sario [1] the method of finding a P-harmonic function which imitates the behavior of a given P-harmonic function on a neighborhood of the ideal boundary of the connected Riemann surface R. This problem of finding such a P-harmonic function on R can be stated as the following: Given a continuous function f on the closure \bar{W} of W which is P-harmonic on W, find a P-harmonic function F on R with

$$
\sup _{z \in W}|F(z)-f(z)|<+\infty,
$$

where W is a neighborhood of the ideal boundary of R : in particular, an open subset of R whose complement is a regular region of R.

Let $\left\{R_{n}\right\}$ be an exhaustion of R with $\partial R_{n} \subset(W-\partial W)$. Then, we can find a unique continuous function $B_{n}(f)$ on the closure of $R_{n} \cap(W-\partial W)$ which is
P-harmonic on $R_{n} \cap(W-\partial W)$ and which takes the boundary values f and 0 on the boundaries ∂W and ∂R_{n}, respectively. Since $\lim _{n \rightarrow+\infty} B_{n}(f)$ exists, an operator $f \rightarrow B(f)$ from the space of all continuous functions on ∂W into the space of continuous functions on \bar{W} which is P-harmonic on $W-\partial W$ is defined by

$$
B(f)=\lim _{n \rightarrow+\infty} B_{n}(f) .
$$

The operator B has the following properties:
(B1) $B(f+g)=B(f)+B(g), B(c f)=c B(f)$,
(B2) $B(f) \mid \partial W=f$,
(B3) $\min \left(0, \min _{\partial W} f\right) \leqq B(f) \leqq \max \left(0, \max _{\partial W} f\right)$, where f and g are continuous functions on ∂W and c is a real number.

Since the density P of our equation (1.1) does not vanish constantly, the harmonic space defined by the equation (1.1) is hyperbolic, that is, $B(1) \not \equiv 1$ for some choice of $W \subset R$, or there is an open set in R on which the constant function 1 is not P-harmonic. Therefore, as a special case of principal function problem solved by Nakai, we have the following existence theorem; Let f be a continuous function on \bar{W} which is P-harmonic on W. Then there always exists a unique (f, B)-principal function, that is, a P-harmonic function F on R with

$$
B(F|\partial W-f| \partial W)=F \mid W-f \text { on } W .
$$

By reformulation this theorem we obtain the complete solution of the above problem.

To show that the Banach spaces $P H_{p}^{\prime}(R)$ and $P H_{p}^{\prime}(W ; \partial W)$ are isomorphic we define an operator λ_{P}^{W} as follows. Let $P(R)$ be the space of all P-harmonic function on R. And, consider the linear space $P(W ; \partial W)$ of continuous functions on \bar{W} which are P-harmonic on W and whose restriction to ∂W vanish constantly.

Definition 3.2. We define an operator λ_{P}^{W} by

$$
\lambda_{P}^{W}(f)=\lim _{n \rightarrow+\infty} P_{f}^{n}
$$

for $f \in P(W ; \partial W)$ which is the difference of two non-negative functions in $P(W$; ∂W), where P_{f}^{n} is the solution of Dirichlet problem of the equation (1.1) with the boundary value f on ∂R_{n}.

To see that the operator λ_{P}^{W} is well-defined for such a f in $P(W ; \partial W)$, let

$$
f=f_{1}-f_{2}, f_{i} \in P(W ; \partial W), f_{i} \geqq 0, \quad i=1,2
$$

We can find, by the existence theorem of the principal function problem, P harmonic functions F_{1}, F_{2} defined on R satisfying

$$
\sup _{z \in W}\left|F_{i}(z)-f_{i}(z)\right|<+\infty, \quad i=1,2
$$

These supremums are denoted by m_{1} and m_{2}, respectively. Since

$$
F_{i}+m_{i} \geqq P_{f_{i}}^{n} \text { on } R_{n}(i=1,2)
$$

for every $n \in N$ and the sequences $\left\{P_{f_{1}}^{n}\right\}$ and $\left\{P_{f_{2}}^{n}\right\}$ are monotone increasing sequences of P-harmonic functions, the $\lim _{n \rightarrow+\infty} P_{f_{i}}^{n}(i=1,2)$ is a P-harmonic function by Harnak's theorem. Therefore, we have

$$
\lim _{n \rightarrow+\infty} P_{f}^{n}=\lim _{n \rightarrow+\infty} P_{f_{1}}^{n}-\lim _{n \rightarrow+\infty} P_{f_{2}}^{n},
$$

that is, $\lambda_{P}^{W}(f)$ is well-defined for any difference $f=f_{1}-f_{2}$ of two non-negative functions in $P(W ; \partial W)$ and is a P-harmonic function on R.

This operator λ_{P}^{W} is referred to as the canonical extension, and was defined by Nakai [3] on the smaller domain than that of our definition. The domain in his definition was the class $P B(W ; \partial W)$ of bounded continuous functions on $\bar{W} P$-harmonic on W and vanishing on ∂W.

Since the P-Green function $G^{P}(z, W)$ is strictly positive, symmetric and continuous on $R \times R$ and is finite unless $z=w, G^{P}(z, w)$ is taken as a kernel in the sense of potential theory. If μ is a measure on R and

$$
G^{P}(z, \mu)=\int_{R} G^{P}(z, w) d \mu(w)
$$

is P-superharmonic on R, then $G^{P}(z, \mu)$ is called the P-Green potential of μ. The P-Green potentials are quite similar to the harmonic Green potentials. Since the potential theoretic method is a powerful tool for the study of the operator λ_{P}^{W} and is extensively used in this section, we list some important potential theoretic principles in the following. The theory of P-Green potentials is developed in Nakai [2].

Frostman's maximum principl. If the inequality $G^{P}(z, \mu) \leqq 1$ holds on the compact support S_{μ} of μ, then the same inequality holds on the whole space R.

Eequilibrium principle. For an arbitrary compact subset K of R there always exists a unique measure called equilibrium measure of K satisfying $S_{\mu} \subset K$ and $G^{P}(z, \mu)=1$ on K except for a subset of ∂K of capacity zero and $G^{P}(z, \mu) \leqq 1$ on R.

To show that the range $\lambda_{P}^{W}\left(P H_{p}^{\prime}(W ; \partial W)\right)$ of λ_{P}^{W} is contained in $P H_{p}^{\prime}(R)$, we shall prepare three lemmas.

Lemma 3.3. Let S and T be open subsets of R and H a non-negative function on $S \times T$. If (a) for each $w \in T, H(\cdot, w)$ is continuous on S, (b) for each $z \in S, H(z, \cdot)$ is P-harmonic on T and (c)

$$
h(w)=\int_{S} H(z, w) d \mu(z)<+\infty
$$

for each $w \in T$, then h is P-harmonic on T.
Proof. It can be shown that $H(z, w)$ is a non-negative measurable function on $S \times T$ to which Fubini's theorem can be applied. Then, for any disk
V such that $\bar{V} \subset T$

$$
\int h d \mu_{w}^{P, V}=\int_{S}\left\{\int_{\partial V} H(z, \cdot) d \mu_{w}^{P, V}\right\} d \mu(z),
$$

where $\mu_{w}^{P, V}$ is the P-harmonic measure with respect to V and $w \in V$. This shows that h is P-harmonic on T.
Q.E.D.

The following lemma gives a relation between P-Green's potentials for different regions, when one is a subset of the other. For the harmonic case, this fact is stated in Helmes [1]. So we only restate it for our case.

Lemma 3.4. Let S and T be regular regions such that $S \supset T$, and let μ be a measure on S such that $\mu(S-T)=0$ and $G^{P}(S, z, \mu)$ is a finite P-Green's potential. Then, there is a non-negative P-harmonic function h on T which satisfies

$$
G^{P}(S, z, \mu)=G^{P}(T, z, \mu \mid T)+h(z)
$$

on T, where $\mu \mid T$ is the restriction of μ on T and $G^{P}(S, z, w)$ is the P-Green's function of S.

Proof. For $z, w \in T$ with $z \neq w$, let

$$
H(z, w)=G^{P}(S, z, w)-G^{P}(T, z, w),
$$

which is positive. Then, for each $z \in T, H(z, w)$ is a P-harmonic function on T, since z is a removable singular point, and so, $H(z, \cdot)$ is a continuous function for each $z \in T$. Also, $H(\cdot, w)$ is a P-harmonic function for each $w \in T$, for $H(z, w)$ is symmetric. Since $G^{P}(S, z, \mu) \geqq G^{P}(T, z, \mu \mid T)$ on T by $G^{P}(S, z, w) \geqq$ $G^{P}(T, z, w)$ on $T \times T$,

$$
G^{P}(S, z, \mu)-G^{P}(T, z, \mu \mid T)=\int_{T} H(z, w) d \mu(w)<+\infty,
$$

where the last integral is a P-harmonic function on T by the preceding lemma.

> Q.E.D.

Let W be an open subset of R whose complement is a regular region. We assume that $P \not \equiv 0$ on $W^{1}, W^{2}, \cdots, W^{L},(1 \leqq L \leqq K)$ and $P \equiv 0$ on W^{L+1}, W^{L+2}, \cdots, W^{K}, where

$$
W=\bigcup_{i=1}^{K} W^{i}
$$

is the decomposition of W into connected components $W^{1}, W^{2}, \cdots, W^{K}$.
Lemma 3.5. If a nonnegative P-harmonic function f in $P(W ; \partial W)$ satisfies that, for every $i, 1 \leqq i \leqq L$,

$$
\sup _{w \in W^{i}} \int_{W^{i}} f \mid W^{i}(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y<+\infty
$$

then

$$
\sup _{w \in R} \int_{R} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y<+\infty
$$

Proof. Let $\left\{R_{n}\right\}$ be an exhaustion of R such that $\partial R_{0} \subset W$. Then, since the sequence $\left\{P_{f}^{n}\right\}$ converges increasingly to $\lambda_{P}^{W}(f)$ on R, the maximum principle gives that

$$
P_{f}^{n} \leqq \max _{\partial W} \lambda_{P}^{W}(f)+f
$$

on $R_{n} \cap W^{i}$ for each $n \in N$. Therefore, for $1 \leqq i \leqq L$,

$$
\begin{aligned}
& \int_{R_{n} \cap W^{i}} P_{f}^{n}(z) G^{P}\left(R_{n} \cap W^{i}, z, w\right) P(z) d x d y \\
\leqq & \max _{\partial W} \lambda_{P}^{W}(f) \times \int_{R_{n} \cap W^{i}} G^{P}\left(R_{n} \cap W^{i}, z, w\right) P(z) d x d y \\
& +\int_{R_{n} \cap W^{i}} f(z) G^{P}\left(R_{n} \cap W^{i}, z, w\right) P(z) d x d y \\
\leqq & 2 \pi \times \max _{\partial W} \lambda_{P}^{W}(f)+\sup _{w \in W^{i}} \int_{W^{i}} f(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y \\
< & +\infty
\end{aligned}
$$

Let

$$
\begin{equation*}
M^{i}=\sup _{w \in W i} \int_{W^{i}} \lambda_{P}^{W}(f) \mid W^{i}(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y \tag{3.1}
\end{equation*}
$$

Then, Lebesgue's monotone convergence theorem gives that

$$
\begin{aligned}
& \int_{W^{i}} \lambda_{P}^{W}(f) \mid W^{i}(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y \\
= & \lim _{n \rightarrow+\infty} \int_{R_{n} \cap W^{i}} P_{f}^{n}(z) G^{P}\left(R_{n} \cap W^{i}, z, w\right) P(z) d x d y \\
\leqq & 2 \pi \times \max _{\partial W} \lambda_{P}^{W}(f)+\sup _{w \in W^{i}} \int_{W^{i}} f \mid W^{i}(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y,
\end{aligned}
$$

from which it follows that $M^{i}<+\infty, 1 \leqq i \leqq L$.
To show that the integral

$$
\begin{equation*}
\int_{R} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \tag{3.2}
\end{equation*}
$$

is a P-Green's potential, that is, $\not \equiv+\infty$, let α be a number such that

$$
\sup _{z \in \partial R_{0}} G^{P}\left(z, w_{0}\right)<\alpha
$$

and let

$$
\beta^{i}=\inf _{z \in \partial R_{0} \cap W^{i}} G^{P}\left(W^{i}, z, w_{0}\right)
$$

where w_{0} is a fixed point in $\left(W^{i}-\partial W^{i}\right) \cap R_{0}$. Since the sequence $\left\{G^{P}\left(R_{n}, z, w\right)\right\}$ converges increasingly to $G^{P}(z, w)$ on R, we have

$$
\sup _{z \in \partial R_{0}} G^{P}\left(R_{n}, z, w_{0}\right)<\alpha
$$

for every $n \in N$. Then, the maximum principle gives that

$$
G^{P}\left(R_{n}, z, w_{0}\right) \leqq \delta^{i} G^{P}\left(W^{i}, z, w_{0}\right)
$$

on $\left(R_{n}-\bar{R}_{0}\right) \cap W^{i}$, where $\delta^{i}=\alpha / \beta^{i}$. So, we have

$$
\begin{align*}
G^{P}\left(z, w_{0}\right) & =\lim _{n \rightarrow+\infty} G^{P}\left(R_{n}, z, w_{0}\right) \tag{3.3}\\
& \leqq \delta^{i} G^{P}\left(W^{i}, z, w_{0}\right)
\end{align*}
$$

on $\left(R-R_{0}\right) \cap W^{i}$. Since (3.1) and (3.3) give that

$$
\begin{aligned}
& \int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(z, w_{0}\right) P(z) d x d y \\
\leqq & \delta^{i} \times \sup _{w \in W^{i}} \int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(W^{i}, z, w_{0}\right) P(z) d x d y \\
\leqq & \delta^{i} M^{i}<+\infty
\end{aligned}
$$

which shows that

$$
\int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y, \quad 1 \leqq i \leqq L
$$

is a P-Green potential. Then,

$$
\begin{aligned}
& \int_{R-R_{0}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
= & \sum_{i=1}^{L} \int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y
\end{aligned}
$$

is a P-Green potential. And, since

$$
\begin{aligned}
& \int_{\bar{R}_{0}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
\leqq & \sup _{\bar{R}_{0}} \lambda_{F}^{W}(f) \times \int_{R} G^{P}(z, w) P(z) d x d y \\
\leqq & 2 \pi \times \sup _{\bar{R}_{0}} \lambda_{P}^{W}(f) \\
< & +\infty
\end{aligned}
$$

the integral (3.2) is a P-Green potential.
To show that the P-Green potential (3.2) is finite everywhere on R, let w be any point in R, and let V be a disc with center at w. Then, since the P Green potential

$$
\int_{R-V} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y
$$

is P-harmonic on V : continuous on V, the inequality

$$
\begin{aligned}
& \int_{V} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
\leqq & \sup _{\bar{V}} \lambda_{P}^{W}(f) \times \int_{R} G^{P}(z, w) P(z) d x d y \\
\leqq & 2 \pi \times \sup _{\bar{V}} \lambda_{P}^{W}(f) \\
< & +\infty
\end{aligned}
$$

implies that the P-Green potential (3.2) is finite everywhere on R.
The integral

$$
\int_{\left(R_{n}-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(R_{n+1}, z, w\right) P(z) d x d y, \quad 1 \leqq i \leqq L
$$

is a finite P-Green potential on R_{n+1}, for this integral is smaller than the integral (3.2). So, Lemma 3.4 implies that there exists a P-harmonic function u_{n}^{i} on $W^{i} \cap R_{n+1}$ such that

$$
\begin{align*}
& \int_{\left(R_{n}-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(R_{n+1}, z, w\right) P(z) d x d y \tag{3.4}\\
= & \int_{\left(R_{n}-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(R_{n+1} \cap W^{i}, z, w\right) P(z) d x d y+u_{n}^{i}(w)
\end{align*}
$$

for $w \in W^{i} \cap R_{n+1}$. Since $u_{n}^{i} \mid \partial R_{n+1} \cap W^{i}=0$ and, for any $w_{0} \in \partial W^{i}$,

$$
\begin{aligned}
u_{n}^{i}\left(w_{0}\right) & =\int_{\left(R_{n}-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(R_{n+1}, z, w_{0}\right) P(z) d x d y \\
& \leqq \sup _{w \in \partial W^{i}} \int_{R-R_{0}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
& <+\infty
\end{aligned}
$$

denoting by ε^{i} the above supremum the maximum principle gives

$$
u_{n}^{i} \leqq \varepsilon^{i} \quad \text { on } \quad R_{n+1} \cap W^{i}
$$

Since, by (3.3) and (3.4), the Lebesgue's monotone convergence theorem implies that

$$
\begin{aligned}
& \int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
= & \lim _{n \rightarrow+\infty} \int_{\left(R_{n}-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(R_{n+1}, z, w\right) P(z) d x d y \\
= & \int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y+\lim _{n \rightarrow+\infty} u_{n}^{i}(w) \\
\leqq & M^{i}+\varepsilon^{i}, \quad w \in W^{i}
\end{aligned}
$$

the Frostman's maximum principle shows that the inequality

$$
\begin{aligned}
& \int_{\left(R-R_{0}\right) \cap w^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
& \quad \leqq M^{i}+\varepsilon^{i}
\end{aligned}
$$

holds on R, for the support of the measure of the P-Green potential

$$
\int_{\left(R-R_{0}\right) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y
$$

is contained in W^{i}. Therefore, we have

$$
\begin{aligned}
& \int_{R} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
= & \sum_{i=1}^{L} \int_{\left(R-R_{0}\right) n W^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
& +\int_{\bar{R}_{0}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) d x d y \\
\leqq & \sum_{i=1}^{L}\left(M^{i}+\varepsilon^{i}\right)+2 \pi \times \sup _{\bar{R}_{0}} \lambda_{P}^{W}(f)
\end{aligned}
$$

for every $w \in R$, which completes the proof.
Q.E.D.

ThEOREM 3.6. $\lambda_{P}^{W}\left(P H_{p}^{\prime}(W ; \partial W)\right) \subset P H_{p}^{\prime}(R), 1 \leqq p<+\infty$.
Proof. Let f be in $P H_{p}^{\prime}(W ; \partial W)$. Theorem 2.5 states that the smallest P-harmonic majorant ${ }_{p}\left(f \mid W^{i}\right)$ of $\left.|f| W^{i}\right|^{p}$ on W^{i} satisfies

$$
\begin{equation*}
\sup _{w \in W^{i}} \int_{W^{i}} p\left(f \mid W^{i}\right)(z) G^{P}\left(W^{i}, z, w\right) P(z) d x d y<+\infty \tag{3.5}
\end{equation*}
$$

for $i, 1 \leqq i \leqq L$. By Definition 3.2 and Lemma 3.2, the maximum principle shows that

$$
\lambda_{P}^{W}\left({ }_{p} f\right) \geqq_{p} f \text { on } W \text {. }
$$

Then, since $\left\{\lambda_{P}^{W}\left({ }_{p} f\right)\right\}^{1 / p}$ is a P-superharmonic function on R by Hölder's inequality, we have

$$
\left|P_{f}^{n}\right| \leqq\left\{\lambda_{P}^{W}\left({ }_{p} f\right)\right\}^{1 / p} \quad \text { on } R_{n},
$$

from which it follows that

$$
\begin{aligned}
\left|\lambda_{P}^{W}(f)\right|^{p} & =\left|\lim _{n \rightarrow+\infty} P_{f}^{n}\right|^{p} \\
& \leqq \lambda_{P}^{W}\left({ }_{p} f\right) \quad \text { on } R .
\end{aligned}
$$

That is, $\lambda_{P}^{W}\left({ }_{p} f\right)$ is a P-harmonic majorant of $\left|\lambda_{P}^{W}(f)\right|^{p}$ on R. And, by (3.5), Lemma 3.5 shows that

$$
\sup _{w \in R} \int_{R} \lambda_{P}^{W}\left(_{p} f\right)(z) G^{P}(z, w) P(z) d x d y<+\infty
$$

Therefore, by Theorem 2 $1, \lambda_{P}^{W}(f)$ belongs to the space $P H_{p}^{\prime}(R)$.
Q.E.D.

Let $\left\{R_{n}\right\}$ be an exhaustion such that $R_{0} \supset \partial W$. For a given function g on W, let g_{n} be a function defined on $\partial R_{n} \cup \partial W$ such that

$$
g_{n} \mid \partial W=0 \quad \text { and } \quad g_{n} \mid \partial R_{n}=g .
$$

If g is a non-negative P-harmonic function on R, the sequence $\left\{P_{g_{n}}^{R_{n} \cap W}\right\}$ is a monotone decreasing sequence of P-harmonic functions. Then,

$$
\lim _{n \rightarrow+\infty} P_{g_{n}}^{R_{n} \cap W}
$$

exists and is a P-harmonic function on R. Now, if g is the difference of two non-negative P-harmonic functions, then we can define an operator μ_{P}^{W}, which was referred to as the canonical restriction by Nakai ([3], [4]), as follows:

Definition 3.3. For $g \in P(R)$ which is the difference of two non-negative P-harmonic functions on R,

$$
\mu_{P}^{W}(g)=\lim _{n \rightarrow+\infty} P_{g_{n}^{n}}^{R_{n} \cap W} .
$$

TheOrem 3.7. $\mu_{P}^{W} \triangleright \lambda_{P}^{W}$ is the identity mapping on $\mathrm{PH}_{p}^{\prime}(W ; \partial W)$.
Proof. Let f be in $P H_{p}^{\prime}(W ; \partial W)$, and suppose $f \geqq 0$ on W. Since

$$
\underset{\left(\lambda_{P}^{W}(f)\right)_{n}}{R_{n} \cap W}=f+\underset{\left(\lambda_{P}^{W}(f)-f\right)_{n}}{R_{n} \cap W}
$$

and

$$
\begin{aligned}
& 0 \leqq P_{\left(\lambda_{P}^{W}(f)-f\right)_{n}}^{R_{n} \cap W} \\
& \leqq P_{\lambda_{P}}^{R_{n}}(f)-f \\
& =\lambda_{P}^{W}(f)-P_{f}^{R_{n}} \quad \text { on } R_{n} \cap W,
\end{aligned}
$$

we have, by $\lambda_{P}^{W}(f)=\lim _{n \rightarrow+\infty} P_{f}^{R_{n}}$, that

$$
\begin{align*}
\mu_{P}^{W \circ} \circ \lambda_{P}^{W}(f) & =\mu_{P}^{W}\left(\lambda_{P}^{W}(f)\right) \tag{3.6}\\
& =\lim _{n \rightarrow+\infty} P_{\left(\lambda_{P}^{W}(f)\right)_{n}}^{R_{n} \cap W} \\
& =f
\end{align*}
$$

for every $f \in P H_{p}^{\prime}(W ; \partial W)$ with $f \geqq 0$ on W. From the linearity of λ_{P}^{W} and μ_{P}^{W}, (3.6) follows for any $f \in P H_{p}^{\prime}(W ; \partial W)$.
Q.E.D.

Lemma 3.8.

$$
\mu_{P}^{W}\left(P H_{p}^{\prime}(R)\right) \subset P H_{p}^{\prime}(W ; \partial W) .
$$

Proof. It is sufficient to prove this lemma only for a non-negative g in $P H_{p}^{\prime}(R)$. Then, from
on $R_{n} \cap W$, it follows that

$$
g \geqq P_{\varepsilon_{n}}^{R_{n} \cap W}
$$

$$
{ }_{p} g \geqq|g|^{p}
$$

$$
\begin{aligned}
& \geqq\left|\lim _{n \rightarrow+\infty} P_{g_{n} n}^{R_{n} n}\right|^{p} \\
& =\left|\mu_{P}^{W}(g)\right|^{p}
\end{aligned}
$$

on W, that is, ${ }_{p} g \mid W$ is a P-harmonic majorant of $\left|\mu_{P}^{W}(g)\right|^{p}$ on W. Furthermore, Theorem 2.5 shows that

$$
\sup _{w \in R} \int_{R^{p}} g(z) G^{P}(z, w) P(z) d x d y<+\infty,
$$

which implies, by Theorem 2.1, that $\mu_{P}^{W}(g) \in P H_{p}^{\prime}(W)$ for every g in $P H_{p}^{\prime}(R)$. And, it is shown that $\mu_{P}^{F}(g)$ has a continuous extension to the closure \bar{W} of W whose restriction to ∂W vanishes. That is, $\mu_{P}^{W}(g) \in P H_{p}^{\prime}(W ; \partial W)$.

Q.E.D.

A P-potential on R is a non-negative P-superharmonic function on R whose greatest P-harmonic minorant is non-positive. As in the case of classical Green potentials, we can show that any P-harmonic minorant of a P-Green potential is non-positive. Then, a P-Green potential is a P-potential. It is useful to modify a terminology and a lemma which was stated in Nakai [3]. A function f on R will be referred to as a quasi P-potential if $|f|$ is majoranted by a P-potential.

Lemma 3.9. If f is a continuous quasi P-potential such that $-|f|$ is P superharmonic on R, then $f \equiv 0$ on R.

Proof. Assume that $|f|$ is majorated by a P-potential p. Since

$$
\begin{aligned}
& 0 \leqq|f| \\
& \leqq P_{|f|}^{R_{n}} \leqq P_{p}^{R_{n}},
\end{aligned}
$$

from

$$
\lim _{n \rightarrow+\infty} P_{p}^{R_{n}}=0
$$

it follows that $f \equiv 0$ on R.
THEOREM 3.10. $\lambda_{P}^{W} \circ \mu_{P}^{W}$ is the identity mapping on $P H_{p}^{\prime}(R)$.
Proof. For $f \in P H_{p}^{\prime}(R)$, let f_{n} and f_{n}^{\prime} be functions on $\partial R_{n} \cup \partial W$ such that

$$
f_{n}\left|\partial R_{n}=f, \quad f_{n}\right| \partial W=0
$$

and

$$
f_{n}^{\prime}\left|\partial R_{n}=0, \quad f_{n}^{\prime}\right| \partial W=f .
$$

If $f \geqq 0$ on R, by the equilibrium principle, there exists a P-Green potential $G^{P}(z, \mu)$ such that

$$
\begin{array}{ll}
G^{P}(z, \mu) \leqq \sup _{R-W} f, & z \in R, \\
G^{P}(z, \mu)=\sup _{R-W} f, & z \in R-W,
\end{array}
$$

and the support of μ is contained in $R-W$. Since

$$
0 \leqq f(z)-P_{f_{n}}^{R_{n} \cap W}(z)
$$

$$
=P_{f_{n}}^{R_{n} \cap W}(z) \leqq G^{P}(z, \mu), \quad z \in R_{n} \cap W,
$$

for every $n \in N$, it follows that

$$
\begin{aligned}
& 0 \leqq f(z)-\mu_{P}^{W}(f)(z) \\
&=f(z)-\lim _{n \rightarrow+\infty} P_{f_{n} n}^{R_{n}}(z) \\
& \leqq G^{P}(z, \mu), \quad z \in W,
\end{aligned}
$$

which shows that the function $f-\mu_{P}^{\text {WI }}(f)$ is a quasi P-potential on W.
Next, let $g=\lambda_{P}^{W} \circ \mu_{P}^{W}(f)$, which is contained in $P H_{p}^{\prime}(R)$. By

$$
\mu_{P}^{W}(f)-\lambda_{P}^{W} \circ \mu_{P}^{W}(f)=\mu_{P}^{W}(g)-g,
$$

the above discussion shows that the function

$$
\mu_{P}^{W}(f)-\lambda_{P}^{W} \circ \mu_{P}^{W}(f)
$$

is also a quasi P-potential for a non-negative function f in $P H_{p}^{\prime}(R)$. Therefore, from

$$
\left|f-\lambda_{P}^{W} \circ \mu_{P}^{W}(f)\right| \leqq\left|f-\mu_{P}^{W}(f)\right|+\left|\mu_{P}^{W}(f)-\lambda_{P}^{W} \circ \mu_{P}^{W}(f)\right|,
$$

the P-harmonic function $f-\lambda_{P}^{W} \circ \mu_{P}^{W}(f)$ is a quasi P-potential on W, which shows that $f=\lambda_{P}^{W} \circ \mu_{P}^{W}(f)$ by Lemma 3.9. And, it is evident that this equality holds for any f in $P H_{p}^{\prime}(R)$, since λ_{P}^{W} and μ_{P}^{W} are linear.
Q.E.D.

Corollary 3.11. μ_{P}^{W} is a one-to-one map of $P H_{p}^{\prime}(R)$ onto $P H_{p}^{\prime}(W ; \partial W)$, and

$$
\lambda_{P}^{W}: P H_{p}^{\prime}(W ; \partial W) \rightarrow P H_{p}^{\prime}(R)
$$

is the inverse of μ_{P}^{W}.
Proof. This corollary follows easily from Theorem 3.7 and Theorem 3,10.
Q.E.D.

Theorem 3.12. The mapping

$$
\mu_{P}^{W}: P H_{p}^{\prime}(R) \rightarrow P H_{p}^{\prime}(W ; \partial W)
$$

is an isomorphism, that is, $P H_{p}^{\prime}(R)$ and $P H_{P}^{\prime}(W ; \partial W)$ are isomorphic.
Proof. It is clear that μ_{P}^{w} is linear on $P H_{p}^{\prime}(R)$. Since

$$
\left.\begin{aligned}
\left|P_{\bar{g}_{n}}^{R_{n} \cap W}\right|^{p} & \leqq P_{(|g| p)_{n}}^{R_{n} \cap W} \\
& \leqq P_{(p g)_{n}}^{R_{n} \cap W} \leqq
\end{aligned}{ }_{p} g \right\rvert\, R_{n} \cap W, \quad n \in N,
$$

for $g \in P H_{p}^{\prime}(R)$, as $n \rightarrow+\infty$ it is shown that ${ }_{p} g \mid W$ is a P-harmonic majorant of $\left|\mu_{P}^{W}(g)\right|^{p}$ on W for $g \in P H_{p}^{\prime}(R)$. So,

$$
{ }_{p} g \mid W \geqq{ }_{p}\left(\mu_{P}^{W}(g)\right),
$$

by which Theorem 2.5 and Definition 2.6 imply that

$$
\|g\|_{p}^{P} \geqq\left\|\mu_{P}^{W}(g)\right\|_{p}^{P}
$$

Therefore, μ_{P}^{w} is a continuous mapping of $P H_{p}^{\prime}(R)$.
Since μ_{P}^{W} is a continuous linear one-to-one mapping of the Banach space $P H_{p}^{\prime}(R)$ onto the Banach space $P H_{p}^{\prime}(W ; \partial W)$, the open mapping theorem gives that μ_{P}^{W} is an open mapping, that is,

$$
\mu_{P}^{W}: P H_{p}^{\prime}(R) \rightarrow P H_{p}^{\prime}(W ; \partial W)
$$

is an isomorphism.
Q.E.D.

Corollary 3.13. If P and Q are two densities on R such that $P=Q$ outside a compact subset of R, then $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)$ are isomorphic.

Proof. Assume that $P=Q$ on $W \subset R$. The Banach spaces $P H_{p}^{\prime}(R), Q H_{p}^{\prime}(R)$ are isomorphic with the Banach space $P H_{p}^{\prime}(W ; \partial W)=Q H_{p}^{\prime}(W ; \partial W)$. Q.E.D.

§4. The comparison theorem.

In the first part of this section we assume R to be connected, and let P and Q be two densities on R. We shall prove that the spaces $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)(1 \leqq p<+\infty)$ are isomorphic providing the existence of a constant $c \geqq 1$ such that

$$
c^{-1} Q \leqq P \leqq c Q
$$

on R.
Lemma 4.1. Let P and Q be densities on R which are not identically zero. If there exists a constant $c \geqq 1$ such that

$$
\begin{equation*}
c^{-1} Q \leqq P \leqq c Q \tag{4.1}
\end{equation*}
$$

on R, then we have

$$
\begin{equation*}
G^{Q}(z, w)=G^{P}(z, w)+\frac{1}{2 \pi} \int_{R}(P(\zeta)-Q(\zeta)) G^{Q}(\zeta, w) G^{P}(\zeta, z) d \xi d \eta \tag{4.2}
\end{equation*}
$$

for every $z, w \in R$ with $z \neq w$, where $\zeta=\xi+i \eta$.
Proof. The Green's formula implies that, for $z, w \in R_{n}$ with $z \neq w$,

$$
\begin{align*}
G^{Q}\left(R_{n}, z, w\right) & =G^{P}\left(R_{n}, z, w\right) \tag{4.3}\\
+ & \frac{1}{2 \pi} \int_{R_{n}}(P(\zeta)-Q(\zeta)) G^{Q}\left(R_{n}, \zeta, w\right) G^{P}\left(R_{n}, \zeta, z\right) d \xi d \eta,
\end{align*}
$$

where $\zeta=\xi+i \eta$.
Let

$$
F(z, w, \zeta)=|P(\zeta)-Q(\zeta)| G^{Q}(\zeta, w) G^{P}(\zeta, z) .
$$

To prove (4.2), we show that, if $z \neq w$, the integral

$$
\int_{R} F(z, w, \zeta) d \xi d \eta
$$

is finite. Let U and V be disks with centers z and w, respectively, such that $V \cap U=0$. Then, since (4.1) implies that

$$
|P-Q| \leqq c P,|P-Q| \leqq c Q
$$

on R, and the maximum principle gives that

$$
\sup _{\zeta \in \partial U} G^{P}(\zeta, z) \geqq G^{P}(\zeta, z), \quad \zeta \in \bar{V},
$$

and

$$
\sup _{\zeta \epsilon \partial V} G^{Q}(\zeta, w) \geqq G^{Q}(\zeta, w), \quad \zeta \in R-V,
$$

we have

$$
\begin{aligned}
\int_{\bar{V}} F(z, w, \zeta) d \xi d \eta & \leqq \sup _{\zeta \in \partial U} G^{P}(\zeta, z) \times \int_{R}|P(\zeta)-Q(\zeta)| G^{Q}(\zeta, w) d \xi d \eta \\
& \leqq \sup _{\zeta \in \partial U} G^{P}(\zeta, z) \times c \int_{R} G^{Q}(\zeta, w) Q(\zeta) d \xi d \eta \\
& \leqq 2 \pi c \times \sup _{\zeta \epsilon \partial U} G^{P}(\zeta, z)<+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{R-V} F(z, w, \zeta) d \xi d \eta & \leqq \sup _{\zeta \in \partial V} G^{Q}(\zeta, w) \times c \int_{R} P(\zeta) G^{P}(\zeta, z) d \xi d \eta \\
& \leqq 2 \pi c \times \sup _{\zeta \in \partial V} G^{Q}(\zeta, w)<+\infty
\end{aligned}
$$

Therefore,

$$
\int_{R} F(z, w, \zeta) d \xi d \eta=\int_{\bar{V}} F(z, w, \zeta) d \xi d \eta+\int_{R-V} F(z, w, \zeta) d \xi d \eta<+\infty
$$

for $z \neq w$ in R.
Since the sequences $\left\{G^{Q}\left(R_{n}, z, w\right)\right\}$ and $\left\{G^{P}\left(R_{n}, z, w\right)\right\}$ converge increasingly to $G^{Q}(z, w)$ and $G^{P}(z, w)$, respectively, we have

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}(P(\zeta)-Q(\zeta)) G^{Q}\left(R_{n}, \zeta, w\right) G^{P}\left(R_{n}, \zeta, z\right) \\
& \quad=(P(\zeta)-Q(\zeta)) G^{Q}(\zeta, w) G^{P}(\zeta, z)
\end{aligned}
$$

and

$$
|P(\zeta)-Q(\zeta)| G^{Q}\left(R_{n}, \zeta, w\right) G^{P}\left(R_{n}, \zeta, z\right) \leqq F(z, w, \zeta)
$$

for each $n \in N$. The Lebesgue's theorem of dominated convergence implies that, if $z \neq w$,

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \int_{R_{n}}(P(\zeta)-Q(\zeta)) G^{Q}\left(R_{n}, \zeta, w\right) G^{P}\left(R_{n}, \zeta, z\right) d \xi d \eta \\
& \quad=\int_{R}(P(\zeta)-Q(\zeta)) G^{Q}(\zeta, w) G^{P}(\zeta, z) d \xi d \eta
\end{aligned}
$$

Therefore, (4.2) follows from (4.3),
Q.E.D.

Lemma 4.2. Let P and Q be densities on R which are not identically zero
on R and which satisfies (4.1) on R. Jf a continuous function f on R satisfies the condition

$$
\begin{equation*}
\sup _{w \in R} \int_{R}|f(z)| G^{P}(z, w) Q(z) d x d y<+\infty, \tag{4.4}
\end{equation*}
$$

then f also satisfies

$$
\sup _{w \in R} \int_{R}|P(z)-Q(z)| G^{Q}(z, w)|f(z)| d x d y<+\infty
$$

And, in this case we have

$$
\begin{align*}
& \sup _{w \in R} \int_{R}|P(z)-Q(z)| G^{Q}(z, w)|f(z)| d x d y \tag{4.5}\\
& \quad \leqq c(c+1) \times \sup _{w \in R} \int_{R}|f(z)| G^{P}(z, w) Q(z) d x d y .
\end{align*}
$$

Proof. Since the inequality (4.1) gives

$$
\begin{equation*}
|P-Q| \leqq c P, c Q \text { on } R, \tag{4.6}
\end{equation*}
$$

from Lemma 4, 1 it follows that

$$
\begin{equation*}
G^{Q}(z, w) \leqq G^{P}(z, w)+\frac{c}{2 \pi} \int_{R} Q(\zeta) G^{Q}(\zeta, w) G^{P}(\zeta, z) d \xi d \eta \tag{4.7}
\end{equation*}
$$

Then, by the inequalities (2.1) and (4.6),

$$
\begin{aligned}
& \int_{R}|P(z)-Q(z)| G^{Q}(z, w)|f(z)| d x d y \\
& \quad \leqq c \int_{R} Q(z) G^{Q}(z, w)|f(z)| d x d y \\
& \leqq c \int_{R} Q(z) G^{P}(z, w)|f(z)| d x d y \\
& \quad+\frac{c}{2 \pi} \int_{R} Q(z)|f(z)|\left\{\int_{R} Q(\zeta) G^{Q}(\zeta, w) G^{P}(\zeta, z) d \xi d \eta\right\} d x d y \\
& \leqq c(c+1) \times \sup _{w \in R} \int_{R}|f(z)| G^{P}(z, w) Q(z) d x d y
\end{aligned}
$$

This inequality completes our proof.
Q.E.D.

We define an auxiliary transformation $T_{P Q}^{n}$ of real valued continuous functions f defined on the closure \bar{R}_{n} of R_{n} as follows:

$$
T_{P Q}^{n}(f)(w)=f(w)+\frac{1}{2 \pi} \int_{R_{n}}(P(z)-Q(z)) G^{Q}\left(R_{n}, z, w\right) f(z) d x d y .
$$

Lemma 4.3. If f is continuous on \bar{R}_{n} and P-harmonic on R_{n}, then $T_{P Q}^{n}(f)$ is Q-harmonic on R_{n} and is a continuous function on \bar{R}_{n} such that

$$
T_{P Q}^{n}(f)\left|\partial R_{n}=f\right| \partial R_{n}
$$

Proof. The Green's formula and the properties of Green's function $G^{Q}\left(R_{n}, z, w\right)$ imply that $T_{F Q}^{n}(f)$ is the solution of Dirichlet problem with respect to the equation $\Delta u=Q u$ and the domain R_{n} with the boundary value f on ∂R_{n} (see, for example, Nakai [1]).

Definition 4.1. For a real-valued continuous function f defined on the connected Riemann surface R satisfying the condition (4.4) in Lemma 4.2, we define a transformation $T_{P Q}(f)$ as follows:

$$
T_{P Q}(f)(w)=f(w)+\frac{1}{2 \pi} \int_{R}(P(z)-Q(z)) G^{Q}(z, w) f(z) d x d y
$$

which is well defined by Lemma 4.2.
Lemma 4.4. Let P and Q be densities on R which are not identically zero, and assume that there is a constant c satisfying (4.1). If a continuous function f on R satisfies the condition (4.4) in Lemma 4.2, then

$$
T_{P Q}(f)=\lim _{n \rightarrow+\infty} T_{P Q}^{n}(f) .
$$

Proof. Let α be the function

$$
z \rightarrow c\left\{Q(z) G^{P}(z, w)|f(z)|+\frac{c}{2 \pi} \times Q(z)|f(z)| \times \int_{R} Q(\zeta) G^{Q}(\zeta, w) G^{P}(\zeta, z) d \xi d \eta\right\}
$$

which satisfies that

$$
\begin{equation*}
\int_{R} \alpha(z) d x d y \leqq c(c+1) \times \sup _{w \in R} \int_{R}|f(z)| G^{P}(z, w) Q(z) d x d y<+\infty \tag{4.8}
\end{equation*}
$$

Since

$$
\lim _{n \rightarrow+\infty}(P(z)-Q(z)) G^{Q}\left(R_{n}, z, w\right) f(z)=(P(z)-Q(z)) G^{Q}(z, w) f(z)
$$

and, by Lemma 4.1 and the inequality (4.6),

$$
|P(z)-Q(z)| G^{Q}\left(R_{n}, z, w\right)|f(z)| \leqq c Q(z) G^{Q}(z, w)|f(z)| \leqq \alpha(z),
$$

Lebesgue's theorem on dominated convergence implies, by (4.8), that

$$
\begin{gathered}
\lim _{n \rightarrow+\infty} \int_{R_{n}}(P(z)-Q(z)) G^{Q}\left(R_{n}, z, w\right) f(z) d x d y \\
=\int_{R}(P(z)-Q(z)) G^{Q}(z, w) f(z) d x d y
\end{gathered}
$$

from which it follows that

$$
\lim _{n \rightarrow+\infty} T_{P Q}^{n}(f)(w)=T_{P Q}(f)(w), \quad w \in R .
$$

Q.E.D.

Lemma 4.5. Under the assumption of Lemma 4.4, $T_{P Q}(f)$ is a Q-harmonic function on R.

Proof. Since a sequence $\left\{f_{n}\right\}$ of Q-harmonic functions on a domain U of R such that $\left|f_{n}\right| \leqq M<+\infty$ has a subsequence which converges uniformly on
each compact subset of U to a Q-harmonic function on R (refer to Myrberg [1]), it is sufficient to show that the sequence $\left\{T_{P Q}^{n}(f)\right\}$ of Q-harmonic functions is uniformly bounded on a neighborhood V of any $w \in R$. Lemma 4.2 shows that

$$
\begin{aligned}
\left|T_{P Q}^{n}(f)(w)\right| & \leqq \sup _{w \in \bar{V}}\left\{|f|+\frac{1}{2 \pi} \int_{R_{n}}|P(z)-Q(z)| G^{Q}\left(R_{n}, z, w\right)|f(z)| d x d y\right\} \\
& \leqq \sup _{w \in \bar{V}}|f|+\sup _{w \in R} \frac{1}{2 \pi} \int_{R}|P(z)-Q(z)| G^{Q}(z, w)|f(z)| d x d y \\
& \leqq \sup _{w \in \bar{V}}|f|+c(c+1) / 2 \pi \times \sup _{w \in R} \int_{R}|f(z)| G^{P}(z, w) Q(z) d x d y \\
& <+\infty, \quad w \in V .
\end{aligned}
$$

Q. E. D.

Lemma 4.6. Let P and Q be densities on R which are not identically zero, and assume that there exists a constant $c \geqq 1$ satisfying the inequality (4.1) on R. If f is in $P H_{p}^{\prime}(R)(1 \leqq p<+\infty)$, then $T_{P Q}(f)$ is contained in the space $Q H_{p}^{\prime}(R)$.

Proof. From Theorem 2.3, it follows that a function f in $\mathrm{PH}_{p}^{\prime}(R)$ satisfies the condition in Theorem 4.2, that is, $T_{P Q}(f)$ is defined for f in $P H_{p}^{\prime}(R)$. Also, $T_{P Q}\left({ }_{p} f\right)$ is defined by Theorem 2.5,

Since it is evident that

$$
\left|T_{P Q}^{n}(f)\right|^{p}=|f|^{p} \leqq_{p} f=T_{P Q}^{n}\left(_{p} f\right)
$$

on ∂R_{n} for every $n \in N$, the Q-subharmonic function $\left|T_{P Q}^{n}(f)\right|^{p}$ is dominated ${ }^{\text {hb }}$ the Q-harmonic function $T_{P Q}^{n}\left({ }_{p} f\right)$ on R_{n} for each $n \in N$. Thus, Lemma 4.4 shows that

$$
\left.\left|T_{P Q}(f)\right|^{p} \leqq T_{P Q}{ }_{p} f\right)
$$

on R, that is, $T_{P Q}\left(_{p} f\right)$ is a Q-harmonic majorant of $\left|T_{P Q}(f)\right|^{p}$ on R.
To prove $T_{P Q}(f) \in Q H_{p}^{\prime}(R)$, it is sufficient, by Theorem 2.1, to show that

$$
\sup _{w \in R} \int_{R} T_{P Q}\left(_{p} f\right)(z) G^{Q}(z, w) Q(z) d x d y<+\infty
$$

By Definition 4.1, this integral equals to

$$
\begin{align*}
\int_{R}{ }_{p} f(z) G^{Q}(z, w) Q(z) d x d y+\int_{R}\{ & \frac{1}{2 \pi} \int_{R}(P(\zeta)-Q(\zeta)) G^{Q}(\zeta, z) \tag{4.9}\\
& \left.\times{ }_{p} f(\zeta) d \xi d \eta\right\} G^{Q}(z, w) Q(z) d x d y
\end{align*}
$$

The first term of (4.9) is dominated by

$$
\begin{aligned}
& \int_{R}{ }^{p} f(z) G^{P}(z, w) Q(z) d x d y \\
& \quad+\int_{R}{ }^{p} f(z)\left\{\frac{1}{2 \pi} \int_{R}|P(\zeta)-Q(\zeta)| G^{Q}(\zeta, w)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.\quad \times G^{P}(\zeta, z) d \xi d \eta\right\} Q(z) d x d y \\
& \leqq\left\{1+\frac{1}{2 \pi} \int_{R}|P(\zeta)-Q(\zeta)| G^{Q}(\zeta, w) d \xi d \eta\right\} \\
& \quad \times \sup _{w \in R} \int_{R}{ }_{p} f(z) G^{P}(z, w) Q(z) d x d y \\
& \leqq c(1+c) \times \sup _{w \in R} \int_{R}{ }_{p} f(z) G^{P}(z, w) P(z) d x d y
\end{aligned}
$$

where the inequality $|P-Q| \leqq c Q$ on R and Lemma 4.1 were used. The inequality (4.5) in Lemma 4. 2 shows that the second term of (4.9) is dominated by

$$
\begin{aligned}
& c(c+1) \times \sup _{w \in R} \int_{R}{ }_{p} f(\zeta) G^{P}(\zeta, z) Q(\zeta) d \xi d \eta \frac{1}{2 \pi} \int_{R} G^{Q}(z, w) Q(z) d x d y \\
& \leqq c^{2}(c+1) \times \sup _{w \in R} \int_{R}{ }_{p} f(z) G^{P}(z, w) P(z) d x d y
\end{aligned}
$$

Therefore, we have

$$
\begin{aligned}
& \sup _{w \in R} \int_{R} T_{P Q}\left({ }_{p} f\right)(z) G^{Q}(z, w) Q(z) d x d y \\
& \leqq c(c+1)^{2} \times \sup _{w \in R} \int_{R}{ }_{p} f(z) G^{P}(z, w) P(z) d x d y \\
& <+\infty
\end{aligned}
$$

Lemma 4.7. Let P and Q be densities which are not identically zero on the connected Riemann surface R. If there exists a constant $c \geqq 1$ satisfying the inequality (4.1) on R, then $T_{P Q}$ is a bounded linear transformation from $P H_{p}^{\prime}(R)$ into $Q H_{p}^{\prime}(R)$, and $T_{Q P}$ is a bounded linear transformation from $Q H_{p}^{\prime}(R)$ into $P H_{p}^{\prime}(R)$.

Proof. Since Lemma 4.6 shows that $T_{P Q}(f)$ is well-defined and is contained in the space $Q H_{p}^{\prime}(R)$ for every $f \in P H_{p}^{\prime}(R)$, it is clear that $T_{P Q}$ is a linear mapping of $P H_{p}^{\prime}(R)$ into $Q H_{p}^{\prime}(R)$.

Since $T_{P Q}\left({ }_{p} f\right)$ is a Q-harmonic majorant of $\left|T_{P Q}(f)\right|^{p}$ on R (this was shown in the proof of Lemma 4.6), by (4.10) in the proof of Lemma 4.6 and (4.1), we have that

$$
\begin{aligned}
\left\{\left\|T_{P Q}(f)\right\| \|_{p}\right\}^{p} & =\sup _{w \in R} \frac{1}{2 \pi} \int_{R}\left(T_{P Q}(f)\right)(z) G^{Q}(z, w) Q(z) d x d y \\
& \leqq \sup _{w \in R} \frac{1}{2 \pi} \int_{R} T_{P Q}\left({ }_{p} f\right)(z) G^{Q}(z, w) Q(z) d x d y \\
& \leqq c(c+1)^{2} \sup _{w \in R} \frac{1}{2 \pi} \int_{R}{ }_{p} f(z) G^{P}(z, w) P(z) d x d y
\end{aligned}
$$

$$
=c(c+1)^{2} \times\left\{\| \| f \|_{p}^{P}\right\}^{p}
$$

that is

$$
\begin{equation*}
\left\|T_{P Q}(f)\right\|_{p}^{Q} \leqq\left\{c(c+1)^{2}\right\}^{1 / p} \times\|f\|_{p}^{P} \tag{4.11}
\end{equation*}
$$

for every $f \in P H_{p}^{\prime}(R)$. This shows that the mapping $T_{P Q}$ is a bounded linear transformation from $P H_{p}^{\prime}(R)$ into $Q H_{p}^{\prime}(R)$. By changing the roles of P and Q we can see that $T_{Q P}$ is a bounded linear transformation from $Q H_{p}^{\prime}(R)$ into $P H_{p}^{\prime}(R)$.
Q.E.D.

Lemma 4.8. If P and Q satisfy the same assumption as that in Theorem 4.7, then $T_{Q P^{\circ}} T_{P Q}$ is the identity on $P H_{p}^{\prime}(R)$, and $T_{P Q} \circ T_{Q P}$ is the identity on $Q H_{p}^{\prime}(R)$.

Proof. Since $P H_{p}^{\prime}(R) \subset P H_{1}^{\prime}(R)(1 \leqq p<+\infty)$, any function f in $P H_{p}^{\prime}(R)$ satisfies that

$$
\begin{aligned}
& c^{-1} \int_{R}|f(z)| G^{P}(z, w) Q(z) d x d y \\
& \leqq \int_{R}|f(z)| G^{P}(z, w) P(z) d x d y \\
& \leqq \int_{R}{ }^{1} f(z) G^{P}(z, w) P(z) d x d y \\
& \leqq 2 \pi \times\|f\|_{1}^{P}<+\infty, \quad w \in R
\end{aligned}
$$

which implies, by Lemma 4.2, that

$$
\sup _{w \in R} \int_{R}|P(z)-Q(z)| G^{Q}(z, w)|f(z)| d x d y<+\infty
$$

Therefore, the last function of the inequality

$$
\begin{aligned}
& \left|(Q(z)-P(z)) G^{P}\left(R_{n}, z, w\right) T_{P Q}^{n}(f)(z)\right| \\
& \leqq c\left\{P(z) G^{P}(z, w)|f(z)|+\frac{1}{2 \pi} P(z) G^{P}(z, w)\right. \\
& \left.\quad \times \int_{R_{n}}|P(\zeta)-Q(\zeta)| G^{Q}\left(R_{n}, \zeta, z\right)|f(\zeta)| d \xi d \eta\right\} \\
& \leqq c\left\{P(z) G^{P}(z, w)|f(z)|+\frac{1}{2 \pi} P(z) G^{P}(z, w)\right. \\
& \left.\quad \times \int_{R}|P(\zeta)-Q(\zeta)| G^{Q}(\zeta, z)|f(\zeta)| d \xi d \eta\right\}
\end{aligned}
$$

is integrable for any fixed $w \in R_{n}$, where this inequality is obtained by the definition of $T_{P Q}^{n}(f)$ and $|P-Q| \leqq c P$ on R. Since

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}(Q(z)-P(z)) G^{P}\left(R_{n}, z, w\right) T_{P Q}^{n}(f)(z) \\
& \quad=(Q(z)-P(z)) G^{P}(z, w) T_{P Q}(f)(z),
\end{aligned}
$$

Lebesgue's theorem on bounded convergence gives that

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty} \int_{R_{n}}(Q(z)-P(z)) G^{P}\left(R_{n}, z, w\right) T_{P Q}^{n}(f)(z) d x d y \\
& \quad=\int_{R}(Q(z)-P(z)) G^{P}(z, w) T_{P Q}(f)(z) d x d y
\end{aligned}
$$

from which it follows that

$$
\lim _{n \rightarrow+\infty} T_{Q P^{\circ}}^{n} T_{P Q}^{n}(f)=T_{Q P^{\circ}} T_{P Q}(f)
$$

on R for $f \in P H_{p}^{\prime}(R)$. On the other hand, the maximum principle shows, by Lemma 4.3, that

$$
T_{Q P^{\circ}}^{n} T_{P Q}^{n}(f)=f \text { on } R_{n},
$$

for every $n \in N$, and so,

$$
T_{Q P^{\circ}} T_{P Q}(f)=f \text { on } R,
$$

for any $f \in P H_{p}^{\prime}(R)$.
By changing the roles of P and Q we have also that

$$
T_{P Q^{\circ}} T_{Q P}(g)=g \text { on } R,
$$

for $g \in Q H_{p}^{\prime}(R)$.
Q.E.D.

Theorem 4.9. Under the same assumption as that in Lemma 4.8, $T_{P Q}$ is an isomorphism between $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)$. And, $T_{Q P}$ is the inverse of $T_{P Q}$.

Proof. This follows from Lemma 4.7 and 4.8.
Q.E.D.

Now, let R be a disconnected Riemann surface, and let

$$
R=\bigcup_{k=1}^{K} W^{k}
$$

be the decomposition of R into connected components $W^{k}, k=1,2, \cdots, K$, of R. If the densities satisfy the relation

$$
\begin{equation*}
c^{-1} Q \leqq P \leqq c Q \quad \text { on } R(c \geqq 1), \tag{4.12}
\end{equation*}
$$

then we can assume that $W^{1}, W^{2}, \cdots, W^{L}(1 \leqq L \leqq K)$ are connected components of R on which $P \not \equiv 0$ and $Q \not \equiv 0$, and that $W^{L+1}, W^{L+2}, \cdots, W^{K}$ are connected components of R on which $P \equiv 0$ and $Q \equiv 0$.

Definition 4.2. If the relation (4.12) holds on the disconnected Riemann surface R, we define the function $T_{P Q}(f)$ on R for $f \in P H_{p}^{\prime}(R)$ as follows:

$$
T_{P Q}(f) \mid W^{k}=T_{P Q}\left(f \mid W^{k}\right), \quad 1 \leqq k \leqq L,
$$

and

$$
T_{P Q}(f)\left|W^{k}=f\right| W^{k}, \quad L<k \leqq K .
$$

By changing the roles of P and Q we define also $T_{Q P}(g)$ for $g \in Q H_{p}^{\prime}(R)$.
Theorem 4.10. Let R be a Riemann surface which may be disconnected, and assume (4.12). Then, $T_{P Q}$ is an isomorphism between $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)$. And, $T_{Q P}$ is the inverse of $T_{P Q}$.

Proof. Lemma 4.9 gives this theorem.
Q.E.D.

Let R be a connected hyperbolic Riemann surface and let P and Q be two densities on R. In the following, we prove the order comparison theorem: If there exists a constant $c \geqq 1$ such that

$$
\begin{equation*}
c^{-1} Q \leqq P \leqq c Q \tag{4.13}
\end{equation*}
$$

on R except possibly for a compact subset K of R, then $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)$ are isomorphic.

Let W be an open subset of R such that $R-W \supset K$ and $R-W$ is a regular region. Then, since (4.13) is valid on the whole W, which may be considered a Riemann surface, Lemma 4.10 states that there is the isomorphism between $P H_{p}^{\prime}(W)$ and $Q H_{p}^{\prime}(W)$, which is denoted by $T_{P Q}^{W}$ in the following.

Lemma 4.11. If the inequality (4.13) holds on W, then $T_{P Q}^{W}$ may be considered an isomorphism of $P H_{p}^{\prime}(W ; \partial W)$ onto $Q H_{p}^{\prime}(W ; \partial W)$.

Proof. Since $P H_{p}^{\prime}(W ; \partial W)$ and $Q H_{p}^{\prime}(W ; \partial W)$ are closed subspaces of $P H_{p}^{\prime}$ (W) and $Q H_{p}^{\prime}(W)$, respectively, it is necessary only to prove that $T_{P q}^{W}(f) \in Q H_{p}^{\prime}$ $(W ; \partial W)$ for $f \in P H_{p}^{\prime}(W ; \partial W)$.

Let $\left\{R_{n}\right\}$ be an exhaustion of R such that $R_{n} \supset R-W, n=0,1,2, \cdots$, and let

$$
\alpha=\sup _{w \in \partial R_{0}}\left|T_{P Q}^{w_{2}}(f)(w)\right| .
$$

We denotes by ω the continuous function on $\overline{R_{0} \cap W}$ such that ω is Q-harmonic on $R_{0} \cap W$ and $\omega|\partial W=0, \omega| \partial R_{0}=1$.

Since Lemma 4.4 states that

$$
\lim _{n \rightarrow+\infty} T_{P Q}^{W}(f)=T_{P q}^{W}(f) \text { on } W \text {, }
$$

where $T_{P Q}^{W_{n}}$ is defined for a continuous function on $\overline{R_{n} \cap W}$ which is Q-harmonic on $W \cap R_{n}$, for any $\varepsilon>0$ there exists $n_{0} \in N$ such that

$$
\left|T_{P Q}^{W_{n}}(f)(w)\right| \leqq(\alpha+\varepsilon) \omega(w), \quad w \in W \cap R_{0}
$$

for $n>n_{0}$. So, as $n \rightarrow+\infty$, we have

$$
\left|T_{P Q}^{W}(f)(w)\right| \leqq(\alpha+\varepsilon) \omega(w), \quad w \in W \cap R_{0},
$$

from which

$$
T_{P Q}^{W}(f) \mid \partial W=0,
$$

that is,

$$
T_{F Q}^{W}(f) \in Q H_{p}^{\prime}(W ; \partial W)
$$

follows.
Q.E.D.

Theorem 4.12 (The order comparison theorem). Let P and Q be two densities on a connected Riemann surface. If there exists a constant $c \geqq 1$ such that

$$
c^{-1} Q \leqq P \leqq c Q
$$

on R except possibly for a compact subset K of R, then $P H_{p}^{\prime}(R)$ and $Q H_{p}^{\prime}(R)$ are isomorphic.

Proof. Let W be the same open subset of R as that defined before Lemma 4.11. Then, by Theorem 3.12 and Lemma 4.11, the mapping

$$
\lambda_{Q}^{W} \circ T_{P Q}^{W} \circ \mu_{P}^{W}: P H_{p}^{\prime}(R) \rightarrow Q H_{p}^{\prime}(R)
$$

is an isomorphism. Q.E.D.

References

M. Glasner
[1] Comparison theorems for bounded solutions of $\Delta u=P u$, Trans. Amer. Math. Soc., 202 (1975), 173-179.
L. L. Helms
[1] Introduction to potential theory, Wiley-Interscience, New-York, 1969.
A. Lahtinen
[1] On the solutions of $\Delta u=P u$ for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No. 515 (1972).
[2] On the equation $\Delta u=P u$ and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No. 533 (1973).
L. Myrberg
[1] Über die Integration der Differentialgleichung $\Delta u=c(P) u$ auf offenen Riemannschen Flächen, Math. Scad., 2 (1954), 142-152.
[2] Über die Existenz der Greenschen Funktion der Gleichung $\Delta u=c(P) u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. AI, No. 170 (1954).
[3] Über subelliptische Funktionen, Ann. Acad. Sci. Fenn. Ser. AI, No. 290 (1960). L. Lumer-Naim
[1] \mathscr{H}^{p}-spaces of harmonic functions, Ann. Inst. Fourier (Grenoble), 17 (1967), 425469.
M. Nakai
[1] The space of bounded solutions of the equation $\Delta u=P u$ on a Riemann surface, Proc. Japan Acad., 36 (1960), 267-272.
[2] The space of non-negative solutions of the equation $\Delta u=P u$ on a Riemann surface, Kōdai Math. Sem. Rep., 12 (1960), 151-178.
[3] Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
[4] Banach spaces of bounded solutions of $\Delta u=P u(P \geqq 0)$ on hyperbolic Riemann surfaces, Nagoya Math. J., 53 (1974), 141-155.
M. Parreau
[1] Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble), 3 (1951), 103-197.
B. Rodin and L. Sario
[1] Principal functions, D. Van Nostrand Company, INC., Princeton, 1968.
H. L. Royden
[1] The equation $\Delta u=P u$ and the classifications of open Riemann surfaces, Ann. Acad. Fenn. Ser. AI, No. 271 (1959).
L. Sario and M. Nakai
[1] Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970.
J. L. Schiff
[1] Isomorphisms between harmonic and P-harmonic Hardy spaces on Riemann surfaces, Pacific J. Math., 62 (1976), 551-560.

Takeyoshi SAtō
Mathematics Laboratory
Iwamizawa College
Hokkaido University of Education
Iwamizawa, Hokkaido
Japan

