J. Math. Soc. Japan Vol. 31, No. 2, 1979

Comparison theorems for Banach spaces of solutions of $\Delta u = Pu$ on Riemann surfaces

By Takeyoshi SATŌ

(Received Aug. 26, 1977)

§1. Introduction.

Let R be an open Riemann surface and P a density on R, that is, a nonnegative Hölder continuous function on R which depends on the local parameter z=x+iy in such a way that the partial differential equation

(1.1)
$$\Delta u = P u , \quad \Delta = \partial^2 / \partial x^2 + \partial^2 / \partial y^2 ,$$

is invariantly defined on R. A real valued function f is said to be a *P*-harmonic function in an open set U of R, if f has continuous partial derivatives up to the order 2 and satisfies the equation (1.1) on U. The totality of bounded *P*harmonic functions on R is denoted by PB(R). Then, PB(R) is a Banach space with the uniform norm

(1.2)
$$||f|| = \sup_{z \in R} |f(z)|.$$

H.L. Royden [1] studied the comparison problem of Banach space structures of PB(R) for different choices of densities P on a hyperbolic Riemann surface R and proved the following comparison theorem: If P and Q are non-negative densities on R such that there is a constant $c \ge 1$ with

$$(1.3) c^{-1}Q \leq P \leq cQ$$

outside some compact subset of R, then the Banach spaces PB(R) and QB(R) are isomorphic. On the other hand, concerning this comparison problem M. Nakai [1] gave a different criterion for PB(R) and QB(R) to be isomorphic and proved the following theorem: If two densities P and Q on R satisfy the condition

(1.4)
$$\int_{R} |P(z) - Q(z)| \{ G^{P}(z, w_{1}) + G^{Q}(z, w_{0}) \} dx dy < +\infty$$

for some points w_0 and w_1 in R, where $G^P(z, w)$ and $G^Q(z, w)$ are Green's functions of R associated with (1.1) and the equation $\Delta u = Qu$ respectively, then Banach spaces PB(R) and QB(R) are isomorphic.

T. Satō

A. Lahtinen [1] considered the equation (1.1) for densities P which he called acceptable densities. Acceptable densities can also have negative values, and so, P-harmonic functions do not obey the usual maximum principle. Lahtinen gave generalizations of Nakai's comparison theorem for acceptable densities and also showed, in Lahtinen [2], that for non-negative densities Royden's condition (1.3) is a special case of Nakai's condition (1.4). Recently, M. Nakai [4] and M. Glasner [1] gave, simultaneously, a necessary and sufficient condition for the existence of an isomorphism T between PB(R) and QB(R) such that |f-T(f)|is bounded by a potential on R.

PX(R) is the space consisting of *P*-harmonic functions *f* on *R* with a certain boundedness property *X*. As for *X* we can take *D* to mean the finite-ness of the Dirichlet integral

$$D(f) = \int_{\mathbb{R}} \left\{ \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right\} dx dy < +\infty ,$$

E the finiteness of the energy integral

$$E(f) = D(f) + \int_{\mathbf{R}} f^2(z) P(z) dx dy < +\infty,$$

B the finiteness of the supremum norm (1.2), and their non-trivial combinations *BD* and *BE*. In the connection with Royden's comparison theorem, Nakai [3] discussed whether the condition (1.3) is also sufficient for PX(R) and QX(R) to be isomorphic for X=D, *E*, *BD* and *BE*, and he actually showed that the answer to this question is affirmative.

In this paper we consider the equation (1.1) with $P \not\equiv 0$ on R, and give a new boundedness property H'_p $(1 \leq p < +\infty)$ to P-harmonic functions so that the space $PH'_p(R)$, which consists of P-harmonic functions with this boundedness property, may have the comparison theorem. Hardy spaces on Riemann surfaces have been studied by M. Parreau [1], and in the general context of harmonic spaces by L.L. Naim [1]. The Hardy space for the equation (1.1), which is denoted by $PH_p(R)$ in this paper, falls within the framework of Naim [1]. By Naim, a P-harmonic function f belongs to the Hardy space $PH_p(R)$ for the equation (1.1), if and only if $|f|^p$ has a P-harmonic majorant on R. We denote by $_pf$ the smallest P-harmonic majorant of $|f|^p$ on R, and take H'_p to mean the finiteness of the expression

(1.5)
$$|||f|||_{p}^{P} = \sup_{w \in R} \left\{ \frac{1}{2\pi} \int_{R^{p}} f(z) G^{P}(z, w) P(z) dx dy \right\}^{1/p},$$

where $G^{P}(z, w)$ is the Green function of the equation (1.1) on R. Then, we have that, for $1 \le p < +\infty$,

$$PB(R) \subset PH'_p(R) \subset PH_p(R)$$
.

In §2, we show that, for $1 \le p < +\infty$, $PH'_p(R)$ is a Banach space under the

norm (1.5), and, in §3, that $PH'_p(R)$ is determined by the behavior of the density P near the ideal boundary of R. In §4, it is proved that the condition (1.3) is also sufficient for $PH'_p(R)$ and $QH'_p(R)$ to be isomorphic.

For the properties of *P*-harmonic functions we refer to Myrberg's fundamental works (Myrberg [1], [2]), and for the theory of Green potentials with kernel $G^{P}(z, w)$ to Nakai [2].

§ 2. Definition of the Banach spaces $PH'_p(R)$.

Let R be a connected Riemann surface and let N be the set $\{0, 1, 2, \dots\}$. By $\{R_n\}_{n \in N}$ we denote an exhaustion of R, which has the following properties: (1) R_n is a regular region, that is, an open set whose closure \overline{R}_n is compact and whose relative boundary ∂R_n consists of a finite number of closed analytic curves, (2) $\overline{R}_n \subset R_{n+1}$ for $n \in N$, (3) $R = \bigcup_{n=0}^{\infty} R_n$. By the solvability of Dirichlet problem on the regular region R_n with continuous boundary values, for any continuous function f on ∂R_n there exists a unique continuous function P_f^n on \overline{R}_n such that $P_f^n = f$ on ∂R_n and P_f^n is a P-harmonic function on R_n . Let z_0 be a fixed point on R_n . Since the mapping $f \rightarrow P_f^n(z_0)$ of the space of all finitely continuous functions f on ∂R_n is a non-negative linear functional on this space of functions on ∂R_n , there exists a non-negative Radon measure μ_{n,z_0}^P on ∂R_n such that

$$\int f d\mu_{n,z_0}^P = P_f^n(z_0)$$

for all finitely continuous functions f on ∂R_n . This measure is the *P*-harmonic measure on ∂R_n relative to $z_0 \in R_n$ and R_n .

DEFINITION 2.1. A *P*-harmonic function *f* on *R* belongs to the space $PH_p(R)$, $1 \le p < +\infty$, if and only if there exists a constant $m(z_0)$ independent of $n \in N$ such that

$$\|f\|_{p,n}^P(z_0) \leq m(z_0)$$

for all $n \in N$, where $z_0 \in R$ and

$$\|f\|_{n,z_0}^{p}(z_0) = \left\{ \int |f|^{p} d\mu_{n,z_0}^{p} \right\}^{1/p}.$$

This space $PH_p(R)$ has been studied in the general context of harmonic spaces by Lumer-Naim [1]. Hence the results contained therein may be applicable to our studies of the space $PH_p(R)$. For convenience, some results of Naim [1] are quoted in the following. A *P*-harmonic function *f* belongs to the space $PH_p(R)$, $1 \le p < +\infty$, if and only if $|f|^p$ has a *P*-harmonic majorant on *R*. By this proposition the definition of $PH_p(R)$ is independent of the choice of $z_0 \in R$ and the particular exhaustion $\{R_n\}$ of *R*. Any *P*-harmonic function $f \in PH_p(R)$ is the difference of two positive *P*-harmonic functions in $PH_p(R)$, $1 \le p < +\infty$, and conversely. For $1 \le p < +\infty$, $PH_p(R)$ is a Banach space under the norm

$$||f||_p^P = \sup_{n \in N} ||f||_{p,n}^P(z_0).$$

This norm equals $\{p f(z_0)\}^{1/p}$, where p f denotes the smallest *P*-harmonic majorant of $|f|^p$ in *R*.

In the theory of $PH_p(R)$ we admit the case $P \equiv 0$, but we assume $P \not\equiv 0$ on R in the following. The *P*-Green function for R_n is an extended real valued function $G^P(R_n, z, w)$ on $R_n \times R_n$ such that for each $w \in R_n$, (1) $G^P(R_n, z, w)$ is *P*-harmonic on $R_n - \{w\}$; (2) $G^P(R_n, z, w) + \log |w-z|$ is bounded in a neighborhood of w; (3) $\lim_{z \to b} G^P(R_n, z, w) = 0$ for every $b \in \partial R_n$. The increasing sequence $\{G^P(R_n, z, w)\}$ converges uniformly on every compact subset of R to a function $G^P(z, w)$ which we call the *P*-Green function on R. $G^P(z, w)$ is the smallest function of u(z, w) such that (1) u(z, w) is a non-negative *P*-harmonic function on $R - \{w\}$; (2) $u(z, w) + \log |z-w|$ is bounded in a neighborhood of w. For these and other properties of the *P*-Green function we refer to Myrberg [1] and [2]. An inequality which is a result of Myrberg [2] is quoted here as it is useful in the following:

(2.1)
$$\int_{R} G^{P}(z, w) P(z) dx dy \leq 2\pi$$

for every $w \in R$.

Now, we make some preliminaries on *P*-superharmonic functions. For any disk *V* on *R* we have the *P*-harmonic measure $\mu_z^{P,V}$ on the boundary ∂V of *V* with respect to $z \in V$ satisfying

$$P_f^{V}(z) = \int f d\mu_z^{P,V}$$

for any continuous function f on ∂V , where P_f^v is a continuous function on the closure \overline{V} of V such that $P_f^v = f$ on ∂V and P_f^v is *P*-harmonic on V. A *P*-superharmonic function s on an open set of R is then defined as a function with the following properties:

- a) $s(z) > -\infty$ at each $z \in S$; $s \not\equiv +\infty$ on any component of S;
- b) s is lower semi-continuous on S;
- c) For any disk V such that $\overline{V} \subset S$,

$$s(z) \ge \int s d\mu_z^{P,V}$$

for all $z \in V$.

If s and -s are P-superharmonic on an open set S of R, then s is P-harmonic on S.

If -s is *P*-superharmonic on *S*, then *s* is said to be *P*-subharmonic on *S*. For example, if *f* is *P*-harmonic on an open set *S* of *R*, then $|f|^p$, $1 \le p < +\infty$,

is P-subharmonic on S, and $\max(f, 0)$, $-\min(f, 0)$ are P-subharmonic on S. The following well-known fact is called the maximum principle and used repeatedly in proofs in this paper. Let u be a P-subharmonic function on G, and f a P-harmonic function on G with continuous boundary values. If G is a relative compact set of R and

 $\lim \sup_{z \to b} u(z) \leq \lim_{z \to b} f(z)$

for all $b \in \partial G$, then u < f on G or $u \equiv f$ on G. This principle is a consequence of the general theory on harmonic space. In the case of a continuous P-sub-harmonic function it is given in Myrberg [3].

DEFINITION 2.2. A *P*-harmonic function f on a connected Riemann surface R belongs to the space $PH'_p(R)$, $1 \le p < +\infty$, if and only if there exists a constant M independent of $n \in N$ such that

$$\int_{R_n} \{ \|f\|_{p,n}^P(z) \} \, {}^p G^P(R_n, z, w) P(z) dx dy \leq M, \quad w \in R_n ,$$

for all $n \in N$.

We shall see that this space $PH'_p(R)$ is independent of the exhaustion $\{R_n\}$ of R.

From now on in this section we shall give properties of our space $PH'_p(R)$ of *P*-harmonic functions on a connected Riemann surface *R*.

THEOREM 2.1. A P-harmonic function f on R belongs to the space $PH'_p(R)$, $1 \le p < +\infty$, if and only if $|f|^p$ has a P-harmonic majorant u on R such that

(2.2)
$$\int_{R} u(z) G^{P}(z, w) P(z) dx dy \leq M$$

for every $w \in R$, where M is a positive constant.

PROOF. If such a majorant u does exist on R, then for each $n \in N$

$$\|f\|_{p,n}^{p}(z) = \left\{ \int |f|^{p} d\mu_{n,z}^{p} \right\}^{1/p}$$

$$\leq \{P_{u}^{n}(z)\}^{1/p}$$

$$= \{u(z)\}^{1/p}, \ z \in R_{n}$$

that is, $f \in PH_p(R)$. Furthermore,

$$\begin{split} &\int_{R_n} \{ \|f\|_{p,n}^P(z) \} \, {}^p G^P(R_n, z, w) P(z) dx dy \\ & \leq \int_{R_n} u(z) G^P(R_n, z, w) P(z) dx dy \\ & \leq \int_R u(z) G^P(z, w) P(z) dx dy \\ & \leq M, \qquad w \in R_n \,, \end{split}$$

for all $n \in N$, from which it follows that f is in the space $PH'_p(R)$.

Next, let $f \in PH'_p(R)$. Since the sequence $\{(\|f\|_{p,n}^P)^p\}_{n \in N}$ of *P*-harmonic functions is increasing, Definition 2.2 and Harnack's principle imply that

(2.3)
$$\lim_{n \to +\infty} \{ \|f\|_{p,n}^{P}(z) \}^{p}, \quad z \in \mathbb{R},$$

is P-harmonic by Beppo-Levi's theorem, which is denoted by u. The maximum principle gives that

$$|f(z)|^{p} \leq P_{|f|}^{n}p(z)$$

= $(||f||_{p,n}^{p}(z))^{p}$

from which it follows that u is a *P*-harmonic majorant of $|f|^p$ on *R*. Since there exists a constant *M* independent of $n \in N$ such that

$$\int_{R_n} \{ \|f\|_{p,n}^P(z) \} \, {}^p G^P(R_n, z, w) P(z) dx dy \leq M, \qquad w \in R_n ,$$

for all $n \in N$, it follows from Beppo-Levi's theorem, that

$$\int_{R} u(z)G^{P}(z, w)P(z)dxdy$$

$$=\lim_{n \to +\infty} \int_{R_{n}} \{ \|f\|_{p,n}^{P}(z) \}^{p}G^{P}(R_{n}, z, w)P(z)dxdy$$

$$\leq M, \quad w \in R.$$
Q. E. D.

,

THEOREM 2.2. Every $f \in PH'_1(R)$ is the difference of two positive P-harmonic functions in $PH'_1(R)$, and conversely.

PROOF. Let $f \in PH'_1(R)$. By Theorem 2.1, there is a *P*-harmonic majorant u of |f| on R such that

$$\int_{R} u(z) G^{P}(z, w) P(z) dx dy \leq M$$

$$< +\infty$$

for all $w \in R$. The sequences

$$\left\{\int \max(f,0)d\mu_{n,z}^p\right\}$$

and

$$\left\{\int -\min(f,0)d\mu_{n,z}^{P}\right\}$$

are monotone increasing by the maximum principle and bounded as n increases. Then, we can define

$$f_1(z) = \lim_{n \to +\infty} \int \max(f, 0) d\mu_{n,z}^P$$

and

$$f_2(z) = \lim_{n \to +\infty} \int -\min(f, 0) d\mu_{n,z}^P, \quad z \in \mathbb{R}.$$

Here, we have, for i=1,2,

$$\begin{split} &\int_{\mathbb{R}} f_{i}(z) G^{P}(z, w) P(z) dx dy \\ & \leq \int_{\mathbb{R}} u(z) G^{P}(z, w) P(z) dx dy \\ & \leq M < +\infty, \quad w \in \mathbb{R} , \end{split}$$

and

$$f(z) = \lim_{n \to +\infty} \int f d\mu_{z,n}^P$$
$$= f_1(z) - f_2(z), \qquad z \in \mathbb{R}.$$

Next, we assume that

$$f(z) = f_1(z) - f_2(z)$$
,

where f_1 and f_2 are positive P-harmonic functions in $PH'_1(R)$. Let u_i be the P-harmonic majorant of f_i on R, i=1,2, such that, for $w \in R$,

$$\int_{\mathbb{R}} u_i(z) G^P(z, w) P(z) dx dy \leq M_i$$

<+\infty, i=1, 2.

Then,

$$|f(z)| \leq f_1(z) + f_2(z)$$

 $\leq u_1(z) + u_2(z), \quad z \in R$,

and

$$\int_{R} \{u_1(z) + u_2(z)\} G^P(z, w) P(z) dx dy$$
$$\leq M_1 + M_2,$$

for all $w \in R$, which implies, by Theorem 2.1, that $f \in PH'_1(R)$. Q.E.D.

We denote by PB(R) the space consisting of *P*-harmonic functions on *R* with finite supremum norms:

$$\|f\|_R = \sup_{z \in R} |f(z)|.$$

THEOREM 2.3. For any finite $1 \leq p \leq q$, we have the inclusions

$$PB(R) \subset PH'_q(R) \subset PH'_p(R) \subset PH'_1(R)$$
.

PROOF. Let $f \in PB(R)$. Since

$$\|f\|_{q,n}^{P}(z) = \left\{ \int |f|^{q} d\mu_{n,z}^{P} \right\}^{1/q}$$

T. Satō

$$\leq \|f\|_{R} \left\{ \int d\mu_{n,z}^{P} \right\}^{1/q}$$

$$\leq \|f\|_{R}, \quad z \in R_{n},$$

we have that $f \in PH_q(R)$. Moreover, the inequality (2.1) implies that, for all $n \in N$,

$$\begin{split} &\int_{R_n} \{ \|f\|_{q,n}^P(z) \}^q G^P(R_n, z, w) P(z) dx dy \\ &\leq (\|f\|_R)^q \int_{R_n} G^P(R_n, z, w) P(z) dx dy \\ &\leq 2\pi (\|f\|_R)^q, \quad w \in R_n \,. \end{split}$$

And so, we have $f \in PH'_q(R)$, that is, $PB(R) \subset PH'_q(R)$. Next, we assume that $1 \leq p \leq q$. From the inequality

$$|a|^p \leq 1 + |a|^q$$

for a real number a, it follows that

$$\{\|f\|_{p,n}^{P}(z)\}^{p} = \int |f|^{p} d\mu_{n,z}^{P}$$
$$\leq 1 + \{\|f\|_{q,n}^{P}(z)\}^{q},$$

and that

$$\begin{split} &\int_{R_{n}} \{ \|f\|_{p,n}^{P}(z) \} \, {}^{p}G^{P}(R_{n}, z, w)P(z)dxdy \\ &\leq \int_{R_{n}} G^{P}(R_{n}, z, w)P(z)dxdy \\ &\quad + \int_{R_{n}} \{ \|f\|_{q,n}^{P}(z) \} \, {}^{q}G^{P}(R_{n}, z, w)P(z)dxdy \\ &\leq 2\pi + \int_{R_{n}} \{ \|f\|_{q,n}^{P}(z) \} \, {}^{q}G^{P}(R_{n}, z, w)P(z)dxdy, \qquad w \in R \, . \end{split}$$

Therefore, we have

$$PH'_q(R) \subset PH'_p(R)$$
. Q. E. D.

THEOREM 2.4. Any f in $PH'_p(R)$ is the difference of two positive P-harmonic functions in $PH'_p(R)$, and conversely.

PROOF. We consider the same functions f_1 and f_2 on R as that in the proof of Theorem 2.2, that is,

$$f_1(z) = \lim_{n \to +\infty} \int \max(f, 0) d\mu_{n, z}^p,$$
$$f_2(z) = \lim_{n \to +\infty} \int -\min(f, 0) d\mu_{n, z}^p$$

for $z \in R$. Since $f \in PH'_p(R)$, there exists a *P*-harmonic majorant *u* of $|f|^p$ satisfying (2.2) in Theorem 2.1. Then, Hölder's inequality gives that, for *p* and *q* satisfying $1 , <math>1 < q < +\infty$ and 1/p + 1/q = 1,

$$\begin{split} &\int \max(f,0)d\mu_{n,z}^{P} \\ &\leq \left[\int \{\max(f,0)\}^{p}d\mu_{n,z}^{P}\right]^{1/p} \left(\int d\mu_{n,z}^{P}\right)^{1/q} \\ &\leq \left(\int \max(f,0)^{p}d\mu_{n,z}^{P}\right)^{1/p} \\ &\leq \left(\int ud\mu_{n,z}^{P}\right)^{1/p} \\ &\leq \{u(z)\}^{1/p} , \end{split}$$

that is, $f_1(z)^p \leq u(z)$ on R. And, similarly, we have $f_2(z)^p \leq u(z)$ on R. Then, we complete the proof of the first assertion.

Let $f=f_1-f_2$, where f_1 and f_2 are positive *P*-harmonic functions in $PH'_p(R)$. By Theorem 2.1 there exists *P*-harmonic majorants u_1 and u_2 of f_1^p and f_2^p on *R*, respectively, which satisfy the condition (2.2) in Theorem 2.1. Then, the inequality

$$(a+b)^{p} \leq 2^{p}(a^{p}+b^{p}), 1 \leq p < +\infty$$
,

gives

$$egin{aligned} &|f|^{p} \leq (f_{1}+f_{2})^{p} \ &\leq 2^{p}(f_{1}^{p}+f_{2}^{p}) \ &\leq 2^{p}(u_{1}+u_{2}) \,, \end{aligned}$$

and

$$\int_{R} (u_1(z) + u_2(z)) G^P(z, w) P(z) dx dy \leq M + M$$

for all $w \in R$, where M is a constant independent of $w \in R$. Therefore, Theorem 2.1 implies $f \in PH'_p(R)$. Q.E.D.

THEOREM 2.5. Let R be a connected Riemann surface on which $P \not\equiv 0$. And, let

(2.4)
$$|||f|||_{p}^{P} = \sup_{w \in R} \left\{ \lim_{n \to +\infty} \frac{1}{2\pi} \int_{R_{n}} \{||f||_{p,n}^{P}(z)\}^{p} G^{P}(R_{n}, z, w) P(z) dx dy \right\}^{1/p}$$

for $f \in RH'_p(R)$. Then, for $1 \leq p < +\infty$, $PH'_p(R)$ is a Banach space under the norm $|||f|||_p^p$, $f \in PH'_p(R)$. This norm equals

(2.5)
$$\sup_{w \in \mathbb{R}} \left\{ \frac{1}{2\pi} \int_{\mathbb{R}^p} f(z) G^p(z, w) P(z) dx dy \right\}^{1/p}$$

where $_{p}f$ denotes the smallest P-harmonic majorant of $|f|^{p}$ in R.

PROOF. The function u defined by (2.3) in the proof of Theorem 2.1, that is,

$$u(z) = \lim_{n \to +\infty} \{ \|f\|_{p,n}^{P}(z) \}^{p}, \qquad z \in \mathbb{R},$$

is the smallest P-harmonic majorant of $|f|^p$ in R, since, for any P-harmonic majorant s of $|f|^p$ in R, we have

$$\{\|f\|_{p,n}^{P}(z)\}^{p} = P^{n}|_{f|}^{p}(z)$$

$$\leq P^{n}_{s}(z) = s(z), \qquad z \in R_{n}$$

which gives $u(z) \leq s(z)$ on R. By Definition 2.2 and $_p f = u$, Lebesgue's monotone convergence theorem shows that

$$\frac{1}{2\pi} \int_{\mathbb{R}^{p}} f(z) G^{P}(z, w) P(z) dx dy$$

= $\lim_{n \to +\infty} \frac{1}{2\pi} \int_{\mathbb{R}_{n}} \{ \|f\|_{p,n}^{P}(z) \}^{p} G^{P}(\mathbb{R}_{n}, z, w) P(z) dx dy ,$

from which the expression (2.5) of $||| f |||_p^p$ follows.

Next, we have to show that $PH'_p(R)$, $1 \le p < +\infty$, is a vector space with respect to the usual definitions of addition and scalar multiplication of real numbers, and that the non-negative real valued function (2.4) is a norm on $PH'_p(R)$. Minkowski's inequality gives that, for f and g in $PH'_p(R)$,

$$\begin{split} & \left[\int_{R_n} \{ \|f + g\|_{p,n}^{P}(z) \}^{p} G^{P}(R_n, z, w) P(z) dx dy \right]^{1/p} \\ & \leq \left[\int_{R_n} \{ \|f\|_{p,n}^{P}(z) \}^{p} G^{P}(R_n, z, w) P(z) dx dy \right]^{1/p} \\ & + \left[\int_{R_n} \{ \|g\|_{p,n}^{P}(z) \}^{p} G^{P}(R_n, z, w) P(z) dx dy \right]^{1/p}, \end{split}$$

which implies that $f + g \in PH'_p(R)$ and

$$|||f+g|||_{p}^{P} \leq |||f|||_{p}^{P} + |||g|||_{p}^{P}$$

It is clear that, for $f \in PH'_p(R)$ and a real number α , $\alpha f \in PH'_p(R)$ and

$$\|\|\alpha f\|\|_{p}^{P} = |\alpha| \|\|f\|\|_{p}^{P}$$

If $f \in PH'_p(R)$ satisfies the condition $|||f|||_p^p = 0$, then the smallest *P*-harmonic majorant $_pf$ of *f* satisfies that $_pf=0$ everywhere on *R*, since $P \not\equiv 0$ on *R*. So, f=0 everywhere on *R*.

To prove that $PH'_p(R)$ is complete with respect to the norm (2.4), let $\{f_j\}$ be a Cauchy sequence in $PH'_p(R)$ with respect to the norm (2.4). Then, we can find a subsequence $\{f_{j(i)}\}, j(1) < j(2) < \cdots$, of $\{f_j\}$ such that

$$\|\|f_{j(i+1)} - f_{j(i)}\|\|_{p}^{P} < 1/2^{i}, \quad i=1, 2, \cdots.$$

Hölder's inequality and the inequality (2.1) give that, for p>1,

$$\begin{split} & \frac{1}{2\pi} \int_{R} \{ {}_{p}(f_{j(i+1)} - f_{j(i)})(z) \}^{1/p} G^{P}(z,w) P(z) dx dy \\ & \leq \left\{ \frac{1}{2\pi} \int_{R} {}_{p}(f_{j(i+1)} - f_{j(i)})(z) G^{P}(z,w) P(z) dx dy \right\}^{1/p} \\ & = \| \|f_{j(i+1)} - f_{j(i)} \| \|_{p}^{p}, \end{split}$$

which is evident for p=1. Therefore, since

$$\frac{1}{2\pi} \int_{R} \sum_{i=1}^{k} \{ {}_{p}(f_{j(i+1)} - f_{j(i)})(z) \}^{1/p} G^{P}(z, w) P(z) dx dy$$
$$\leq \sum_{i=1}^{k} 1/2^{i} < 1$$

for every positive integer k, Lebesgue's monotone convergence theorem implies that the series

(2.6)
$$\sum_{i=1}^{\infty} \left\{ {}_{p} (f_{j(i+1)} - f_{j(i)}) \right\}^{1/p}$$

converges almost everywhere on the support of P.

Let z_0 be a point of the support of the density P at which (2.6) converges. Then, from the inequality

$$\|f_{j(l)} - f_{j(k)}\|_{p}^{P} = \|\sum_{i=k}^{l-1} (f_{j(i+1)} - f_{j(i)})\|_{p}^{P}$$

$$\leq \sum_{i=k}^{l-1} \|f_{j(i+1)} - f_{j(i)}\|_{p}^{P}$$

$$= \sum_{i=k}^{l-1} \{p(f_{j(i+1)} - f_{j(i)})(z_{0})\}^{1/p}$$

for k < l, it follows that the sequence $\{f_{j(i)}\}\$ is a Cauchy sequence in $PH_p(R)$, for the series (2.6) converges at z_0 . So, there exists a function f in $PH_p(R)$ such that

$$\lim_{i\to+\infty} \|f_{j(i)}-f\|_p^P=0,$$

which implies that the sequence $\{f_{j(i)}\}\$ converges, uniformly on every compact subset of R, to f (L.L. Naim [1]).

We now have to prove that f is contained in $PH'_p(R)$ and

$$\lim_{j\to+\infty} |||f_j-f|||_p^P = 0.$$

Since

$$f_{j(k)} = \sum_{i=1}^{k-1} (f_{j(i+1)} - f_{j(i)}) + f_{j(1)},$$

Fatou's lemma gives that

T. Satō

$$\begin{split} & \left[\frac{1}{2\pi} \int_{R_n} \{\|f - f_{j(l)}\|_p^p(z)\} \, {}^p G^p(R_n, z, w) P(z) dx dy \right]^{1/p} \\ & \leq \left[\lim \inf_{k \to +\infty} \frac{1}{2\pi} \int_{R_n} \{\|f_{j(k)} - f_{j(l)}\|_p^p(z)\} \, {}^p \\ & \times G^p(R_n, z, w) P(z) dx dy \right]^{1/p} \\ & \leq \lim \inf_{k \to +\infty} \|f_{j(k)} - f_{j(l)}\|_p^p \\ & \leq \sum_{i=l}^{\infty} \|f_{j(i+1)} - f_{j(i)}\|_p^p \\ & \leq \sum_{i=l}^{\infty} 1/2^i = 1/2^{l-1}, \end{split}$$

and so,

(2.7)
$$|||f - f_{j(l)}|||_p^p < 1/2^{l-1}$$

We can conclude from this inequality that $f-f_{j(l)}$ is in $PH'_p(R)$. Hence, f is in $PH'_p(R)$, since

$$f = (f - f_{j(l)}) + f_{j(l)}$$
.

And, furthermore it follows, from (2.7), that

 $\lim_{l \to +\infty} |||f - f_{j(l)}|||_p^p = 0$,

which gives that

$$\lim_{j\to+\infty} |||f-f_j|||_p^P = 0,$$

for $\{f_j\}$ is a Cauchy sequence in $PH'_p(R)$.

Q. E. D.

It will be necessary to consider a disconnected Riemann surface in §3 and §4. Let

$$R = \bigcup_{k=1}^{K} W^{k}$$

be the decomposition of R into connected components W^k of R. We can assume, without loss of generality, that the density P on R satisfies $P \not\equiv 0$ on W^1, W^2, \dots, W^L , $1 \leq L \leq K$, and $P \equiv 0$ on W^{L+1} , W^{L+2}, \dots, W^K . Since $P \equiv 0$ on W^k , $L < k \leq K$, $PH_p(W^k)$, $L < k \leq K$, is the space of harmonic functions on W^k such that $|f|^p$ has a harmonic majorant on W^k , that is, $PH_p(W^k)$, $L < k \leq K$, is the Hardy space of harmonic functions on W^k . This space of harmonic functions on W^k is denoted by $H_p(W^k)$. It is a result of Parreau [1] that the space $H_p(W^k)$ is a Banach space under the norm

$$\|f\|_p = \{_p f(z_0)\}^{1/p}, f \in H_p(W^k),$$

where z_0 is a point in W^k . Now, we define the space $PH'_p(R)$ for the disconnected Riemann surface R as follows.

DEFINITION 2.3. A *P*-harmonic function f on the disconnected Riemann surface R belongs to the space $PH'_p(R)$, $1 \leq p < +\infty$, if and only if each restriction $f|W^k$ to W^k of f belongs to $PH'_p(W^k)$ or $H_p(W^k)$ according as $1 \leq k \leq L$ or $L < k \leq K$.

THEOREM 2.6. Let R be the disconnected Riemann surface on which $p \equiv 0$. And, let

(2.8)
$$|||f|||_{p}^{P} = \sum_{k=1}^{L} |||f| W^{k}|||_{p}^{P} + \sum_{k=L+1}^{K} ||f| W^{k}||_{p}$$

for $f \in PH'_p(R)$. Then, for $1 \leq p < +\infty$, $PH'_p(R)$ is a Banach space under the norm (2.8). This norm equals

$$\sum_{k=1}^{L} \sup_{w \in W^{k}} \left\{ \frac{1}{2\pi} \int_{W^{k}} {}_{p}(f | W^{k})(z) G^{P}(W^{k}, z, w) P(z) dx dy \right\}^{1/p} \\ + \sum_{k=L+1}^{K} \left\{ {}_{p}(f | W^{k})(z^{k}) \right\}^{1/p},$$

where $p(f|W^k)$, $1 \leq k \leq K$, denotes the smallest P-harmonic majorant of $|f|W^k|^p$ on W^k and z^k , $L < k \leq K$, is a point in W^k .

PROOF. This is clear by the preceding lemma. Q.E.D.

In the following of this section we consider the relation between two Banach spaces $PH_p(R)$ and $PH'_p(R)$ under the assumption that the density Pvanishes outside a compact subset of the connected Riemann surface R.

LEMMA 2.7. If the density P vanishes outside a compact subset of R, then $PH'_p(R) = PH_p(R)$ and there exists a positive constant C such that

$|||f|||_p^P \leq C ||f||_p^P$

for every $f \in PH_p(R)$.

PROOF. We assume that P vanishes outside a compact subset K of R. Let z_0 be a point of R with $z_0 \in K$. Then, there exists, by Harnack's theorem (Myrberg [1]), a constant c such that

$$_{p}f(z) \leq c \times_{p}f(z_{0})$$

for every $z \in K$ and every $f \in PH_p(R)$. Therefore, the inequality (2.1) gives that

$$\frac{1}{2\pi} \int_{\mathbb{R}^{p}} f(z) G^{P}(z, w) P(z) dx dy$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}^{p}} f(z) G^{P}(z, w) P(z) dx dy$$

$$\leq \frac{1}{2\pi} c \times_{p} f(z_{0}) \int_{\mathbb{R}} G^{P}(z, w) P(z) dx dy$$

$$\leq c \times_{p} f(z_{0}),$$

and so,

 $|||f|||_{p}^{P} \leq (c)^{1/p} \times ||f||_{p}^{P}$

which completes the proof.

Q. E. D.

THEOREM 2.6. If the density P vanishes outside a compact subset of R, then the Banach space $(PH'_p(R), ||| \cdot |||_p^P)$ is isomorphic to the Banach space $(PH_p(R), ||| \cdot ||_p^P)$.

PROOF. The identity map of $(PH_p(R), \|\cdot\|_p^p)$ onto $(PH'_p(R), \|\cdot\|_p^p)$ is a oneto-one continuous linear transformation and so must be an isomorphism by the open mapping theorem. Q. E. D.

§3. The structure of $PH'_p(R)$.

Let W be a connected or disconnected open subset of R whose complement is a regular region. Hereafter we always use W for such a subset of R. To show that the Banach space structure of $PH'_p(R)$ is determined by the behavior of the density P on a neighborhood of the ideal boundary of R, we define the subset $PH'_p(W; \partial W)$ of $PH'_p(R)$ as follows.

DEFINITION 3.1. $PH'_{p}(W; \partial W)$, $1 \leq p < +\infty$, is the class of all functions f in $PH'_{p}(W)$ such that there exists a continuous extension of f to the closure \overline{W} of W whose restriction to the boundary ∂W of W vanishes.

Then, $PH'_p(W; \partial W)$ is a vector space with respect to the usual definitions of addition and scalar multiplication of real numbers. And, $PH'_p(W; \partial W)$ is a subspace of the Banach space $PH'_p(W)$ with the norm (2.8) in Theorem 2.6:

THEOREM 3.1. $PH'_p(W; \partial W)$ is a closed linear subspace of $PH'_p(W)$.

PROOF. Let $f \in PH'_p(W)$ be the limit of a sequence $\{f_n\}$ in $PH'_p(W; \partial W)$:

$$\lim_{n\to+\infty} |||f-f_n|||_p^P = 0.$$

It is sufficient to show that $f|W^k$ has a continuous extension to \overline{W}^k whose restriction to ∂W^k vanishes for each connected component W^k of W. If $P \not\equiv 0$ on W^k , then there exists a subsequence $\{f_{n(i)}\}$ of $\{f_n\}$ which converges, uniformly on every compact subset of W^k , to f, by the proof of Theorem 2.5. If $P \equiv 0$ on W^k , the existence of such a subsequence $\{f_{n(i)}\}$ follows from the fact

$$\lim_{n \to +\infty} \|f\| W^{k} - f_{n} \|W^{k}\|_{p}^{P} = 0.$$

Let G^k be a regular region which contains the boundary of W^k , and let w be a continuous function on the closure of $G^k \cap W^k$ such that w is *P*-harmonic \neg on $G^k \cap W^k$ and w have $w | \partial G^k = m^k$, $w | \partial W^k = 0$, where

$$m^{k} = \sup_{z \in G^{k} \cap W^{k}} |f| W^{k}(z)| + 1.$$

Then, by the maximum principle we have that

$$|f_{n(i)}(z)| \leq w(z), \quad z \in G^k \cap W^k$$

for sufficiently large $i \in N$, and so,

$$|f(z)| = \lim_{i \to +\infty} |f_{n(i)}(z)|$$
$$\leq w(z), \quad z \in G^k \cap W^k$$

This shows that $\lim_{z\to b} f(z)=0$ for all $b\in\partial W^k$, that is, if we extend f on ∂W^k so that f(b)=0 for $b\in\partial W^k$, then f belongs to $PH'_p(W;\partial W)$, which complets the proof. Q. E. D.

LEMMA 3.2. Let f be in $PH'_p(W; \partial W)$. Then, the smallest P-harmonic majorant ${}_pf$ of $|f|^p$ has a continuous extension to \overline{W} whose restriction to ∂W vanishes.

PROOF. It is sufficient to prove only that ${}_{p}f|W^{k}$ have this property. The sequence $\{(\|f|W^{k}\|_{p,n}^{p}(z))^{p}\}$, which is a monotone increasing sequence of *P*-harmonic functions on $R_{n} \cap W^{k}$, converges to ${}_{p}f|W^{k}$. Harnack's principle implies that the convergence is locally uniform in W^{k} . Let G^{k} be the same subset of R as that in Theorem 3.1, and let w be the *P*-harmonic function on $G^{k} \cap W^{k}$ which have a continuous extension to the closure of $G^{k} \cap W^{k}$ such that $w|\partial W^{k}=0$ and $w|\partial G^{k}=1$. Then, by the same way as that in the proof of Theorem 3.1, we can show that

$$\{\|f\|W^k\|_{p,n}^p(z)\}^p \leq \beta^k w(z), \quad z \in W^k \cap G^k,$$

for sufficiently large $n \in N$, where

$$\beta^{k} = \sup_{z \in \partial G^{k} \cap W^{k}} f(z).$$

Therefore,

$$_{p}f|W^{k}(z) \leq \beta^{k}w(z), \quad z \in W^{k} \cap G^{k},$$

which implies the conclusion.

Q. E. D.

In Rodin and Sario [1] they discussed the problem of finding on a given harmonic space a harmonic function which imitates the behavior of a given harmonic function on a neighborhood of the ideal boundary of the harmonic space. We quote from Chapter VII of Rodin and Sario [1] the method of finding a *P*-harmonic function which imitates the behavior of a given *P*-harmonic function on a neighborhood of the ideal boundary of the connected Riemann surface *R*. This problem of finding such a *P*-harmonic function on *R* can be stated as the following: Given a continuous function *f* on the closure \overline{W} of *W* which is *P*-harmonic on *W*, find a *P*-harmonic function *F* on *R* with

$$\sup_{z\in W}|F(z)-f(z)|<+\infty$$
 ,

where W is a neighborhood of the ideal boundary of R: in particular, an open subset of R whose complement is a regular region of R.

Let $\{R_n\}$ be an exhaustion of R with $\partial R_n \subset (W - \partial W)$. Then, we can find a unique continuous function $B_n(f)$ on the closure of $R_n \cap (W - \partial W)$ which is *P*-harmonic on $R_n \cap (W - \partial W)$ and which takes the boundary values f and 0 on the boundaries ∂W and ∂R_n , respectively. Since $\lim_{n \to +\infty} B_n(f)$ exists, an operator $f \to B(f)$ from the space of all continuous functions on ∂W into the space of continuous functions on \overline{W} which is *P*-harmonic on $W - \partial W$ is defined by

$$B(f) = \lim_{n \to +\infty} B_n(f).$$

The operator B has the following properties:

(B1) B(f+g)=B(f)+B(g), B(cf)=cB(f),

(B2) $B(f)|\partial W=f$,

(B3) $\min(0, \min_{\partial W} f) \leq B(f) \leq \max(0, \max_{\partial W} f),$

where f and g are continuous functions on ∂W and c is a real number.

Since the density P of our equation (1.1) does not vanish constantly, the harmonic space defined by the equation (1.1) is hyperbolic, that is, $B(1) \not\equiv 1$ for some choice of $W \subset R$, or there is an open set in R on which the constant function 1 is not P-harmonic. Therefore, as a special case of principal function problem solved by Nakai, we have the following existence theorem; Let f be a continuous function on \overline{W} which is P-harmonic on W. Then there always exists a unique (f, B)-principal function, that is, a P-harmonic function F on R with

$$B(F|\partial W - f|\partial W) = F|W - f \text{ on } W.$$

By reformulation this theorem we obtain the complete solution of the above problem.

To show that the Banach spaces $PH'_p(R)$ and $PH'_p(W; \partial W)$ are isomorphic we define an operator λ_P^W as follows. Let P(R) be the space of all *P*-harmonic function on *R*. And, consider the linear space $P(W; \partial W)$ of continuous functions on \overline{W} which are *P*-harmonic on *W* and whose restriction to ∂W vanish constantly.

DEFINITION 3.2. We define an operator λ_{F}^{W} by

$$\lambda_P^W(f) = \lim_{n \to +\infty} P_f^n$$

for $f \in P(W; \partial W)$ which is the difference of two non-negative functions in $P(W; \partial W)$, where P_f^n is the solution of Dirichlet problem of the equation (1.1) with the boundary value f on ∂R_n .

To see that the operator λ_P^W is well-defined for such a f in $P(W; \partial W)$, let

$$f=f_1-f_2, f_i \in P(W; \partial W), f_i \ge 0, i=1, 2.$$

We can find, by the existence theorem of the principal function problem, P-harmonic functions F_1 , F_2 defined on R satisfying

$$\sup_{z \in W} |F_i(z) - f_i(z)| < +\infty, i=1, 2.$$

These supremums are denoted by m_1 and m_2 , respectively. Since

$$F_i + m_i \geq P_{f_i}^n$$
 on R_n (i=1,2)

for every $n \in N$ and the sequences $\{P_{f_1}^n\}$ and $\{P_{f_2}^n\}$ are monotone increasing sequences of *P*-harmonic functions, the $\lim_{n \to +\infty} P_{f_i}^n$ (i=1,2) is a *P*-harmonic function by Harnak's theorem. Therefore, we have

$$\lim_{n\to+\infty} P_f^n = \lim_{n\to+\infty} P_{f_1}^n - \lim_{n\to+\infty} P_{f_2}^n$$

that is, $\lambda_P^W(f)$ is well-defined for any difference $f=f_1-f_2$ of two non-negative functions in $P(W; \partial W)$ and is a *P*-harmonic function on *R*.

This operator λ_{W}^{W} is referred to as the canonical extension, and was defined by Nakai [3] on the smaller domain than that of our definition. The domain in his definition was the class $PB(W; \partial W)$ of bounded continuous functions on \overline{W} P-harmonic on W and vanishing on ∂W .

Since the *P*-Green function $G^P(z, W)$ is strictly positive, symmetric and continuous on $R \times R$ and is finite unless z=w, $G^P(z, w)$ is taken as a kernel in the sense of potential theory. If μ is a measure on R and

$$G^{P}(z,\mu) = \int_{R} G^{P}(z,w) d\mu(w)$$

is *P*-superharmonic on *R*, then $G^P(z, \mu)$ is called the *P*-Green potential of μ . The *P*-Green potentials are quite similar to the harmonic Green potentials. Since the potential theoretic method is a powerful tool for the study of the operator λ_F^W and is extensively used in this section, we list some important potential theoretic principles in the following. The theory of *P*-Green potentials is developed in Nakai [2].

FROSTMAN'S MAXIMUM PRINCIPL. If the inequality $G^{P}(z, \mu) \leq 1$ holds on the compact support S_{μ} of μ , then the same inequality holds on the whole space R.

EEQUILIBRIUM PRINCIPLE. For an arbitrary compact subset K of R there always exists a unique measure called equilibrium measure of K satisfying $S_{\mu} \subset K$ and $G^{P}(z, \mu) = 1$ on K except for a subset of ∂K of capacity zero and $G^{P}(z, \mu) \leq 1$ on R.

To show that the range $\lambda_P^w(PH'_p(W; \partial W))$ of λ_P^w is contained in $PH'_p(R)$, we shall prepare three lemmas.

LEMMA 3.3. Let S and T be open subsets of R and H a non-negative function on $S \times T$. If (a) for each $w \in T$, $H(\cdot, w)$ is continuous on S, (b) for each $z \in S$, $H(z, \cdot)$ is P-harmonic on T and (c)

$$h(w) = \int_{S} H(z, w) d\mu(z) < +\infty$$

for each $w \in T$, then h is P-harmonic on T.

PROOF. It can be shown that H(z, w) is a non-negative measurable function on $S \times T$ to which Fubini's theorem can be applied. Then, for any disk

T. Satō

V such that $\overline{V} \subset T$

$$\int h d\mu_w^{P,V} = \int_{\mathcal{S}} \left\{ \int_{\partial V} H(z, \cdot) d\mu_w^{P,V} \right\} d\mu(z) ,$$

where $\mu_w^{P,V}$ is the *P*-harmonic measure with respect to *V* and $w \in V$. This shows that *h* is *P*-harmonic on *T*. Q.E.D.

The following lemma gives a relation between P-Green's potentials for different regions, when one is a subset of the other. For the harmonic case, this fact is stated in Helmes [1]. So we only restate it for our case.

LEMMA 3.4. Let S and T be regular regions such that $S \supset T$, and let μ be a measure on S such that $\mu(S-T)=0$ and $G^P(S, z, \mu)$ is a finite P-Green's potential. Then, there is a non-negative P-harmonic function h on T which satisfies

$$G^{P}(S, z, \mu) = G^{P}(T, z, \mu | T) + h(z)$$

on T, where $\mu | T$ is the restriction of μ on T and $G^{P}(S, z, w)$ is the P-Green's function of S.

PROOF. For $z, w \in T$ with $z \neq w$, let

$$H(z, w) = G^{P}(S, z, w) - G^{P}(T, z, w),$$

which is positive. Then, for each $z \in T$, H(z, w) is a *P*-harmonic function on *T*, since *z* is a removable singular point, and so, $H(z, \cdot)$ is a continuous function for each $z \in T$. Also, $H(\cdot, w)$ is a *P*-harmonic function for each $w \in T$, for H(z, w) is symmetric. Since $G^P(S, z, \mu) \ge G^P(T, z, \mu | T)$ on *T* by $G^P(S, z, w) \ge G^P(T, z, w)$ on $T \times T$,

$$G^{P}(S, z, \mu) - G^{P}(T, z, \mu | T) = \int_{T} H(z, w) d\mu(w) < +\infty$$

where the last integral is a P-harmonic function on T by the preceding lemma. Q. E. D.

Let W be an open subset of R whose complement is a regular region. We assume that $P \not\equiv 0$ on $W^1, W^2, \dots, W^L, (1 \leq L \leq K)$ and $P \equiv 0$ on $W^{L+1}, W^{L+2}, \dots, W^K$, where

$$W = \bigcup_{i=1}^{K} W^{i}$$

is the decomposition of W into connected components W^1, W^2, \dots, W^K .

LEMMA 3.5. If a nonnegative P-harmonic function f in $P(W; \partial W)$ satisfies that, for every i, $1 \leq i \leq L$,

$$\sup_{w \in W^i} \int_{W^i} f|W^i(z) G^P(W^i, z, w) P(z) dx dy < +\infty,$$

then

Banach spaces of solutions of $\Delta u = Pu$

$$\sup_{w\in R}\int_{\mathbf{R}}\lambda_{P}^{w}(f)(z)G^{P}(z,w)P(z)dxdy<+\infty.$$

PROOF. Let $\{R_n\}$ be an exhaustion of R such that $\partial R_0 \subset W$. Then, since the sequence $\{P_f^n\}$ converges increasingly to $\lambda_P^W(f)$ on R, the maximum principle gives that

$$P_{f}^{n} \leq \max_{\partial W} \lambda_{F}^{W}(f) + f$$

on $R_{n} \cap W^{i}$ for each $n \in N$. Therefore, for $1 \leq i \leq L$,
$$\int_{R_{n} \cap W^{i}} P_{f}^{n}(z) G^{P}(R_{n} \cap W^{i}, z, w) P(z) dx dy$$
$$\leq \max_{\partial W} \lambda_{F}^{W}(f) \times \int_{R_{n} \cap W^{i}} G^{P}(R_{n} \cap W^{i}, z, w) P(z) dx dy$$
$$+ \int_{R_{n} \cap W^{i}} f(z) G^{P}(R_{n} \cap W^{i}, z, w) P(z) dx dy$$
$$\leq 2\pi \times \max_{\partial W} \lambda_{F}^{W}(f) + \sup_{w \in W^{i}} \int_{W^{i}} f(z) G^{P}(W^{i}, z, w) P(z) dx dy$$
$$< +\infty.$$

Let

(3.1)
$$M^{i} = \sup_{w \in W^{i}} \lambda_{P}^{W}(f) | W^{i}(z) G^{P}(W^{i}, z, w) P(z) dx dy.$$

Then, Lebesgue's monotone convergence theorem gives that

$$\int_{W^{i}} \lambda_{P}^{W}(f) | W^{i}(z) G^{P}(W^{i}, z, w) P(z) dx dy$$

= $\lim_{n \to +\infty} \int_{R_{n} \cap W^{i}} P_{f}^{n}(z) G^{P}(R_{n} \cap W^{i}, z, w) P(z) dx dy$
 $\leq 2\pi \times \max_{\partial W} \lambda_{P}^{W}(f) + \sup_{w \in W^{i}} \int_{W^{i}} f | W^{i}(z) G^{P}(W^{i}, z, w) P(z) dx dy$

from which it follows that $M^i < +\infty$, $1 \leq i \leq L$.

To show that the integral

(3.2)
$$\int_{R} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) dx dy$$

is a P-Green's potential, that is, $\neq +\infty$, let α be a number such that

$$\sup_{z\in\partial R_0}G^P(z,w_0)\!<\!lpha$$
 ,

and let

$$eta^i {=} ext{inf}_{z \in \partial R_0 \cap W^i} G^P\!(W^i, z, w_{\scriptscriptstyle 0})$$
 ,

where w_0 is a fixed point in $(W^i - \partial W^i) \cap R_0$. Since the sequence $\{G^P(R_n, z, w)\}$ converges increasingly to $G^P(z, w)$ on R, we have

,

T. Satō

 $\sup_{z \in \partial R_0} G^P(R_n, z, w_0) < \alpha$

for every $n \in N$. Then, the maximum principle gives that

 $G^{P}(R_{n}, z, w_{0}) \leq \delta^{i} G^{P}(W^{i}, z, w_{0})$

on $(R_n - \overline{R}_0) \cap W^i$, where $\delta^i = lpha / eta^i$. So, we have

(3.3)
$$G^{P}(z, w_{0}) = \lim_{n \to +\infty} G^{P}(R_{n}, z, w_{0})$$
$$\leq \delta^{i} G^{P}(W^{i}, z, w_{0})$$

on $(R-R_{\scriptscriptstyle 0}) \cap W^i$. Since (3.1) and (3.3) give that

$$\begin{split} &\int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(z, w_0) P(z) dx dy \\ &\leq \delta^i \times \sup_{w \in W^i} \int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(W^i, z, w_0) P(z) dx dy \\ &\leq \delta^i M^i < +\infty , \end{split}$$

which shows that

$$\int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(z,w) P(z) dx dy, \quad 1 \leq i \leq L,$$

is a P-Green potential. Then,

$$\int_{R-R_0} \lambda_P^w(f)(z) G^P(z, w) P(z) dx dy$$
$$= \sum_{i=1}^L \int_{(R-R_0) \cap W^i} \lambda_P^w(f)(z) G^P(z, w) P(z) dx dy$$

is a P-Green potential. And, since

$$\begin{split} &\int_{\overline{R}_{0}} \lambda_{P}^{w}(f)(z) G^{P}(z,w) P(z) dx dy \\ &\leq \sup_{\overline{R}_{0}} \lambda_{F}^{w}(f) \times \int_{R} G^{P}(z,w) P(z) dx dy \\ &\leq 2\pi \times \sup_{\overline{R}_{0}} \lambda_{P}^{w}(f) \\ &\leq +\infty \,, \end{split}$$

the integral (3.2) is a P-Green potential.

To show that the P-Green potential (3.2) is finite everywhere on R, let w be any point in R, and let V be a disc with center at w. Then, since the P-Green potential

$$\int_{R-\nu} \lambda_P^w(f)(z) G^P(z,w) P(z) dx dy$$

is P-harmonic on V: continuous on V, the inequality

Banach spaces of solutions of $\Delta u = Pu$

$$\int_{\mathbf{V}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) dx dy$$

$$\leq \sup_{\mathbf{v}} \lambda_{P}^{W}(f) \times \int_{\mathbf{R}} G^{P}(z, w) P(z) dx dy$$

$$\leq 2\pi \times \sup_{\mathbf{v}} \lambda_{P}^{W}(f)$$

$$< +\infty$$

implies that the P-Green potential (3.2) is finite everywhere on R.

The integral

$$\int_{(R_n-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(R_{n+1}, z, w) P(z) dx dy, \quad 1 \leq i \leq L,$$

is a finite P-Green potential on R_{n+1} , for this integral is smaller than the integral (3.2). So, Lemma 3.4 implies that there exists a P-harmonic function u_n^i on $W^i \cap R_{n+1}$ such that

(3.4)
$$\int_{(R_n - R_0) \cap W^i} \lambda_P^W(f)(z) G^P(R_{n+1}, z, w) P(z) dx dy$$
$$= \int_{(R_n - R_0) \cap W^i} \lambda_P^W(f)(z) G^P(R_{n+1} \cap W^i, z, w) P(z) dx dy + u_n^i(w)$$

for $w \in W^i \cap R_{n+1}$. Since $u_n^i | \partial R_{n+1} \cap W^i = 0$ and, for any $w_0 \in \partial W^i$,

$$u_n^i(w_0) = \int_{(R_n - R_0) \cap W^i} \lambda_P^W(f)(z) G^P(R_{n+1}, z, w_0) P(z) dx dy$$

$$\leq \sup_{w \in \partial W^i} \int_{R - R_0} \lambda_P^W(f)(z) G^P(z, w) P(z) dx dy$$

$$< +\infty,$$

denoting by ε^i the above supremum the maximum principle gives

$$u_n^i \leq \varepsilon^i$$
 on $R_{n+1} \cap W^i$.

Since, by (3.3) and (3.4), the Lebesgue's monotone convergence theorem implies that

$$\int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(z, w) P(z) dx dy$$

= $\lim_{n \to +\infty} \int_{(R_n - R_0)\cap W^i} \lambda_P^W(f)(z) G^P(R_{n+1}, z, w) P(z) dx dy$
= $\int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(W^i, z, w) P(z) dx dy + \lim_{n \to +\infty} u_n^i(w)$
 $\leq M^i + \varepsilon^i, \quad w \in W^i,$

the Frostman's maximum principle shows that the inequality

$$\int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(z, w) P(z) dx dy$$
$$\leq M^i + \varepsilon^i$$

holds on R, for the support of the measure of the P-Green potential

$$\int_{(R-R_0)\cap W^i} \lambda_P^W(f)(z) G^P(z,w) P(z) dx dy$$

is contained in W^i . Therefore, we have

c

$$\int_{R} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) dx dy$$

$$= \sum_{i=1}^{L} \int_{(R-R_{0}) \cap W^{i}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) dx dy$$

$$+ \int_{\overline{R}_{0}} \lambda_{P}^{W}(f)(z) G^{P}(z, w) P(z) dx dy$$

$$\leq \sum_{i=1}^{L} (M^{i} + \varepsilon^{i}) + 2\pi \times \sup_{\overline{R}_{0}} \lambda_{P}^{W}(f)$$

for every $w \in R$, which completes the proof.

Q. E. D.

THEOREM 3.6. $\lambda_{P}^{w}(PH'_{p}(W;\partial W)) \subset PH'_{p}(R)$, $1 \leq p < +\infty$. PROOF. Let f be in $PH'_{p}(W;\partial W)$. Theorem 2.5 states that the smallest

P-harmonic majorant $p(f|W^i)$ of $|f|W^i|^p$ on W^i satisfies

(3.5)
$$\sup_{w \in W^i} \int_{W^i} p(f|W^i)(z) G^P(W^i, z, w) P(z) dx dy < +\infty,$$

for i, $1 \leq i \leq L$. By Definition 3.2 and Lemma 3.2, the maximum principle shows that

$$\lambda_P^W(pf) \ge pf$$
 on W .

Then, since $\{\lambda_P^W(pf)\}^{1/p}$ is a *P*-superharmonic function on *R* by Hölder's inequality, we have

$$|P_f^n| \leq \{\lambda_P^W(pf)\}^{1/p}$$
 on R_n ,

from which it follows that

$$|\lambda_P^w(f)|^p = |\lim_{n \to +\infty} P_f^n|^p$$
$$\leq \lambda_P^w(pf) \quad \text{on } R.$$

That is, $\lambda_P^w(pf)$ is a *P*-harmonic majorant of $|\lambda_P^w(f)|^p$ on *R*. And, by (3.5), Lemma 3.5 shows that

$$\sup_{w\in R}\int_{R}\lambda_{P}^{W}(pf)(z)G^{P}(z,w)P(z)dxdy < +\infty.$$

Therefore, by Theorem 2.1, $\lambda_P^{W}(f)$ belongs to the space $PH'_p(R)$. Q.E.D.

Let $\{R_n\}$ be an exhaustion such that $R_0 \supset \partial W$. For a given function g on W, let g_n be a function defined on $\partial R_n \cup \partial W$ such that

$$g_n|\partial W=0$$
 and $g_n|\partial R_n=g$.

If g is a non-negative P-harmonic function on R, the sequence $\{P_{g_n}^{R_n \cap W}\}$ is a monotone decreasing sequence of P-harmonic functions. Then,

$$\lim_{n \to +\infty} P_{g_n}^{R_n \cap W}$$

exists and is a *P*-harmonic function on *R*. Now, if *g* is the difference of two non-negative *P*-harmonic functions, then we can define an operator μ_P^W , which was referred to as the canonical restriction by Nakai ([3], [4]), as follows:

DEFINITION 3.3. For $g \in P(R)$ which is the difference of two non-negative *P*-harmonic functions on *R*,

$$\mu_P^W(g) = \lim_{n \to +\infty} P_{g_n}^{R_n \cap W}.$$

THEOREM 3.7. $\mu_p^W \circ \lambda_p^W$ is the identity mapping on $PH'_p(W; \partial W)$. PROOF. Let f be in $PH'_p(W; \partial W)$, and suppose $f \ge 0$ on W. Since

$$P^{\mathbf{R_n} \cap \mathbf{W}}_{(\boldsymbol{\lambda_P^W}(f))_n} = f + P^{\mathbf{R_n} \cap \mathbf{W}}_{(\boldsymbol{\lambda_P^W}(f) - f)_n}$$

and

$$0 \leq P_{(\lambda_P^W(f) - f)_n}^{R_n \cap W}$$
$$\leq P_{\lambda_P^W(f) - f}^{R_n}$$
$$= \lambda_P^W(f) - P_f^{R_n} \quad \text{on } R_n \cap W,$$

we have, by $\lambda_P^W(f) = \lim_{n \to +\infty} P_f^{R_n}$, that

(3.6)
$$\mu_P^W \circ \lambda_P^W(f) = \mu_P^W(\lambda_P^W(f))$$
$$= \lim_{n \to +\infty} P_{(\lambda_P^W(f))_n}^{R_n \cap W}$$

$$=f$$

for every $f \in PH'_p(W; \partial W)$ with $f \ge 0$ on W. From the linearity of λ_P^w and μ_P^w , (3.6) follows for any $f \in PH'_p(W; \partial W)$. Q.E.D.

Lemma 3.8.

$$\mu_P^W(PH'_p(R)) \subset PH'_p(W; \partial W).$$

PROOF. It is sufficient to prove this lemma only for a non-negative g in $PH'_p(R)$. Then, from

$$g \geq P_{g_n}^{R_n \cap W}$$

on $R_n \cap W$, it follows that

 $_{p}g \ge |g|^{p}$

T. Satō

$$\geq |\lim_{n \to +\infty} P_{g_n}^{R_n \cap W}|^p$$
$$= |\mu_P^W(g)|^p$$

on W, that is, ${}_{pg}|W$ is a P-harmonic majorant of $|\mu_{P}^{W}(g)|^{p}$ on W. Furthermore, Theorem 2.5 shows that

$$\sup_{w \in \mathbb{R}} \int_{\mathbb{R}} pg(z) G^{P}(z, w) P(z) dx dy < +\infty,$$

which implies, by Theorem 2.1, that $\mu_P^W(g) \in PH'_p(W)$ for every g in $PH'_p(R)$. And, it is shown that $\mu_P^W(g)$ has a continuous extension to the closure \overline{W} of W whose restriction to ∂W vanishes. That is, $\mu_P^W(g) \in PH'_p(W; \partial W)$.

Q. E. D.

A *P*-potential on *R* is a non-negative *P*-superharmonic function on *R* whose greatest *P*-harmonic minorant is non-positive. As in the case of classical Green potentials, we can show that any *P*-harmonic minorant of a *P*-Green potential is non-positive. Then, a *P*-Green potential is a *P*-potential. It is useful to modify a terminology and a lemma which was stated in Nakai [3]. A function *f* on *R* will be referred to as a *quasi P-potential* if |f| is majoranted by a *P*-potential.

LEMMA 3.9. If f is a continuous quasi P-potential such that -|f| is P-superharmonic on R, then $f \equiv 0$ on R.

PROOF. Assume that |f| is majorated by a *P*-potential *p*. Since

$$0 \leq |f|$$

 $\leq P_{|f|}^{R_n} \leq P_p^{R_n}$,

from

$$\lim_{n \to +\infty} P_p^{R_n} = 0$$

Q. E. D.

it follows that $f \equiv 0$ on R.

THEOREM 3.10. $\lambda_p^{W} \circ \mu_p^{W}$ is the identity mapping on $PH'_p(R)$. PROOF. For $f \in PH'_p(R)$, let f_n and f'_n be functions on $\partial R_n \cup \partial W$ such that

and

 $f'_n | \partial R_n = 0, \quad f'_n | \partial W = f.$

 $f_n | \partial R_n = f$, $f_n | \partial W = 0$

If $f \ge 0$ on R, by the equilibrium principle, there exists a P-Green potential $G^P(z,\mu)$ such that

$$G^{P}(z,\mu) \leq \sup_{R-W} f, \quad z \in R,$$

$$G^{P}(z,\mu) = \sup_{R-W} f, \quad z \in R-W$$

and the support of μ is contained in R-W. Since

$$0 \leq f(z) - P_{f_n}^{R_n \cap W}(z)$$

Banach spaces of solutions of $\Delta u = Pu$

$$=P_{f_n}^{R_n\cap W}(z) \leq G^P(z,\mu), \qquad z \in R_n \cap W,$$

for every $n \in N$, it follows that

$$\begin{split} 0 &\leq f(z) - \mu_P^W(f)(z) \\ &= f(z) - \lim_{n \to +\infty} P_{f_n}^{R_n \cap W}(z) \\ &\leq G^P(z, \mu), \quad z \in W, \end{split}$$

which shows that the function $f - \mu_P^W(f)$ is a quasi *P*-potential on *W*.

Next, let $g = \lambda_P^W \circ \mu_P^W(f)$, which is contained in $PH'_p(R)$. By

$$\mu_P^{\scriptscriptstyle W}(f) \! - \! \lambda_P^{\scriptscriptstyle W} \! \circ \! \mu_P^{\scriptscriptstyle W}(f) \! = \! \mu_P^{\scriptscriptstyle W}(g) \! - \! g$$
 ,

the above discussion shows that the function

$$\mu_P^W(f) - \lambda_P^W \circ \mu_P^W(f)$$

is also a quasi P-potential for a non-negative function f in $PH'_p(R)$. Therefore, from

$$|f - \lambda_P^{\mathsf{W}} \circ \mu_P^{\mathsf{W}}(f)| \leq |f - \mu_P^{\mathsf{W}}(f)| + |\mu_P^{\mathsf{W}}(f) - \lambda_P^{\mathsf{W}} \circ \mu_P^{\mathsf{W}}(f)|,$$

the *P*-harmonic function $f - \lambda_P^W \circ \mu_P^W(f)$ is a quasi *P*-potential on *W*, which shows that $f = \lambda_P^W \circ \mu_P^W(f)$ by Lemma 3.9. And, it is evident that this equality holds for any *f* in $PH'_p(R)$, since λ_P^W and μ_P^W are linear. Q. E. D.

COROLLARY 3.11. μ_P^W is a one-to-one map of $PH'_p(R)$ onto $PH'_p(W; \partial W)$, and

$$\lambda_P^W: PH'_p(W; \partial W) \rightarrow PH'_p(R)$$

is the inverse of μ_P^W .

PROOF. This corollary follows easily from Theorem 3.7 and Theorem 3.10. Q. E. D.

THEOREM 3.12. The mapping

$$\mu_P^W: PH'_p(R) \to PH'_p(W; \partial W)$$

is an isomorphism, that is, $PH'_{p}(R)$ and $PH'_{p}(W; \partial W)$ are isomorphic. PROOF. It is clear that μ_{P}^{W} is linear on $PH'_{p}(R)$. Since

$$|P_{g_n}^{R_n \cap W}|^p \leq P_{(|g|^p)_n}^{R_n \cap W}$$
$$\leq P_{(ng)_n}^{R_n \cap W} \leq pg | R_n \cap W, \quad n \in N,$$

for $g \in PH'_p(R)$, as $n \to +\infty$ it is shown that ${}_pg|W$ is a *P*-harmonic majorant of $|\mu_P^W(g)|^p$ on *W* for $g \in PH'_p(R)$. So,

$$_{p}g \mid W \geq _{p}(\mu_{P}^{W}(g))$$
 ,

by which Theorem 2.5 and Definition 2.6 imply that

 $|||g|||_{p}^{P} \geq |||\mu_{P}^{W}(g)|||_{p}^{P}$.

Therefore, μ_P^W is a continuous mapping of $PH'_p(R)$.

Since μ_p^W is a continuous linear one-to-one mapping of the Banach space $PH'_p(R)$ onto the Banach space $PH'_p(W; \partial W)$, the open mapping theorem gives that μ_p^W is an open mapping, that is,

$$\mu_P^W: PH'_p(R) \to PH'_p(W; \partial W)$$

is an isomorphism.

Q. E. D.

COROLLARY 3.13. If P and Q are two densities on R such that P=Q outside a compact subset of R, then $PH'_p(R)$ and $QH'_p(R)$ are isomorphic.

PROOF. Assume that P=Q on $W \subset R$. The Banach spaces $PH'_p(R)$, $QH'_p(R)$ are isomorphic with the Banach space $PH'_p(W; \partial W) = QH'_p(W; \partial W)$. Q. E. D.

§4. The comparison theorem.

In the first part of this section we assume R to be connected, and let P and Q be two densities on R. We shall prove that the spaces $PH'_p(R)$ and $QH'_p(R)$ $(1 \le p < +\infty)$ are isomorphic providing the existence of a constant $c \ge 1$ such that

on R.

$$c^{-1}Q \leq P \leq cQ$$

LEMMA 4.1. Let P and Q be densities on R which are not identically zero. If there exists a constant $c \ge 1$ such that

$$(4.1) c^{-1}Q \leq P \leq cQ$$

on R, then we have

(4.2)
$$G^{Q}(z,w) = G^{P}(z,w) + \frac{1}{2\pi} \int_{\mathcal{R}} (P(\zeta) - Q(\zeta)) G^{Q}(\zeta,w) G^{P}(\zeta,z) d\xi d\eta$$

for every $z, w \in R$ with $z \neq w$, where $\zeta = \xi + i\eta$.

PROOF. The Green's formula implies that, for $z, w \in R_n$ with $z \neq w$,

(4.3)
$$G^{Q}(R_{n}, z, w) = G^{P}(R_{n}, z, w) + \frac{1}{2\pi} \int_{R_{n}} (P(\zeta) - Q(\zeta)) G^{Q}(R_{n}, \zeta, w) G^{P}(R_{n}, \zeta, z) d\xi d\eta,$$

where $\zeta = \xi + i\eta$.

Let

$$F(z, w, \zeta) = |P(\zeta) - Q(\zeta)| G^{Q}(\zeta, w) G^{P}(\zeta, z).$$

To prove (4.2), we show that, if $z \neq w$, the integral

$$\int_{R} F(z, w, \zeta) d\xi d\eta$$

is finite. Let U and V be disks with centers z and w, respectively, such that $V \cap U = \emptyset$. Then, since (4.1) implies that

$$|P-Q| \leq cP, |P-Q| \leq cQ$$

on R, and the maximum principle gives that

$$\sup_{\boldsymbol{\zeta}\in\partial U}G^P(\boldsymbol{\zeta},z) \ge G^P(\boldsymbol{\zeta},z), \qquad \boldsymbol{\zeta}\in ar{V},$$

and

 $\sup_{\zeta\in\partial V}G^{Q}(\zeta,w) \ge G^{Q}(\zeta,w), \qquad \zeta \in R-V,$

we have

$$\begin{split} \int_{\overline{v}} F(z, w, \zeta) d\xi d\eta &\leq \sup_{\zeta \in \partial U} G^{P}(\zeta, z) \times \int_{R} |P(\zeta) - Q(\zeta)| G^{Q}(\zeta, w) d\xi d\eta \\ &\leq \sup_{\zeta \in \partial U} G^{P}(\zeta, z) \times c \int_{R} G^{Q}(\zeta, w) Q(\zeta) d\xi d\eta \\ &\leq 2\pi c \times \sup_{\zeta \in \partial U} G^{P}(\zeta, z) < +\infty \end{split}$$

and

$$\int_{R-V} F(z, w, \zeta) d\xi d\eta \leq \sup_{\zeta \in \partial V} G^{Q}(\zeta, w) \times c \int_{R} P(\zeta) G^{P}(\zeta, z) d\xi d\eta$$
$$\leq 2\pi c \times \sup_{\zeta \in \partial V} G^{Q}(\zeta, w) < +\infty.$$

Therefore,

$$\int_{\mathbf{R}} F(z, w, \zeta) d\xi d\eta = \int_{\overline{\mathbf{v}}} F(z, w, \zeta) d\xi d\eta + \int_{\mathbf{R}-\mathbf{v}} F(z, w, \zeta) d\xi d\eta < +\infty$$

for $z \neq w$ in R.

Since the sequences $\{G^Q(R_n, z, w)\}$ and $\{G^P(R_n, z, w)\}$ converge increasingly to $G^Q(z, w)$ and $G^P(z, w)$, respectively, we have

$$\begin{split} \lim_{n \to +\infty} (P(\zeta) - Q(\zeta)) G^{Q}(R_{n}, \zeta, w) G^{P}(R_{n}, \zeta, z) \\ = (P(\zeta) - Q(\zeta)) G^{Q}(\zeta, w) G^{P}(\zeta, z) \end{split}$$

and

$$|P(\zeta)-Q(\zeta)|G^{Q}(R_{n},\zeta,w)G^{P}(R_{n},\zeta,z) \leq F(z,w,\zeta)$$

for each $n \in N$. The Lebesgue's theorem of dominated convergence implies that, if $z \neq w$,

$$\begin{split} \lim_{n \to +\infty} &\int_{R_n} (P(\zeta) - Q(\zeta)) G^Q(R_n, \zeta, w) G^P(R_n, \zeta, z) d\xi d\eta \\ = &\int_{\mathcal{R}} (P(\zeta) - Q(\zeta)) G^Q(\zeta, w) G^P(\zeta, z) d\xi d\eta \,. \end{split}$$

Therefore, (4.2) follows from (4.3).

Q. E. D.

LEMMA 4.2. Let P and Q be densities on R which are not identically zero

on R and which satisfies (4.1) on R. If a continuous function f on R satisfies the condition

(4.4)
$$\sup_{w \in \mathbb{R}} \int_{\mathbb{R}} |f(z)| G^{P}(z, w) Q(z) dx dy < +\infty,$$

then f also satisfies

$$\sup_{w\in R}\int_{R}|P(z)-Q(z)|G^{Q}(z,w)|f(z)|dxdy<+\infty.$$

And, in this case we have

(4.5)
$$\sup_{w \in \mathbb{R}} \int_{\mathbb{R}} |P(z) - Q(z)| G^{Q}(z, w)|f(z)| dxdy$$

$$\leq c(c+1) \times \sup_{w \in \mathbb{R}} \int_{\mathbb{R}} |f(z)| G^{P}(z,w) Q(z) dx dy.$$

PROOF. Since the inequality (4.1) gives

 $(4.6) |P-Q| \leq cP, \ cQ \ \text{on} \ R,$

from Lemma 4.1 it follows that

(4.7)
$$G^{Q}(z,w) \leq G^{P}(z,w) + \frac{c}{2\pi} \int_{\mathbb{R}} Q(\zeta) G^{Q}(\zeta,w) G^{P}(\zeta,z) d\xi d\eta .$$

Then, by the inequalities (2.1) and (4.6),

$$\begin{split} &\int_{R}^{\cdot} |P(z) - Q(z)| G^{Q}(z, w)| f(z)| dx dy \\ &\leq c \int_{R} Q(z) G^{Q}(z, w)| f(z)| dx dy \\ &\leq c \int_{R} Q(z) G^{P}(z, w)| f(z)| dx dy \\ &\quad + \frac{c}{2\pi} \int_{R} Q(z)| f(z)| \left\{ \int_{R} Q(\zeta) G^{Q}(\zeta, w) G^{P}(\zeta, z) d\xi d\eta \right\} dx dy \\ &\leq c (c+1) \times \sup_{w \in R} \int_{R} |f(z)| G^{P}(z, w) Q(z) dx dy \,. \end{split}$$

This inequality completes our proof.

Q. E. D.

We define an auxiliary transformation T_{PQ}^n of real valued continuous functions f defined on the closure \overline{R}_n of R_n as follows:

$$T_{PQ}^{n}(f)(w) = f(w) + \frac{1}{2\pi} \int_{R_{n}} (P(z) - Q(z)) G^{Q}(R_{n}, z, w) f(z) dx dy.$$

LEMMA 4.3. If f is continuous on \overline{R}_n and P-harmonic on R_n , then $T^n_{PQ}(f)$ is Q-harmonic on R_n and is a continuous function on \overline{R}_n such that

$$T_{PQ}^{n}(f)|\partial R_{n}=f|\partial R_{n}.$$

PROOF. The Green's formula and the properties of Green's function $G^{Q}(R_{n}, z, w)$ imply that $T^{n}_{PQ}(f)$ is the solution of Dirichlet problem with respect to the equation $\Delta u = Qu$ and the domain R_{n} with the boundary value f on ∂R_{n} (see, for example, Nakai [1]).

DEFINITION 4.1. For a real-valued continuous function f defined on the connected Riemann surface R satisfying the condition (4.4) in Lemma 4.2, we define a transformation $T_{PQ}(f)$ as follows:

$$T_{PQ}(f)(w) = f(w) + \frac{1}{2\pi} \int_{R} (P(z) - Q(z)) G^{Q}(z, w) f(z) dx dy$$

which is well defined by Lemma 4.2.

LEMMA 4.4. Let P and Q be densities on R which are not identically zero, and assume that there is a constant c satisfying (4.1). If a continuous function f on R satisfies the condition (4.4) in Lemma 4.2, then

$$T_{PQ}(f) = \lim_{n \to +\infty} T_{PQ}^n(f)$$
.

PROOF. Let α be the function

$$z \to c \Big\{ Q(z)G^P(z,w) | f(z)| + \frac{c}{2\pi} \times Q(z) | f(z)| \times \int_{\mathbb{R}} Q(\zeta)G^Q(\zeta,w)G^P(\zeta,z)d\xi d\eta \Big\},$$

which satisfies that

(4.8)
$$\int_{R} \alpha(z) dx dy \leq c(c+1) \times \sup_{w \in R} \int_{R} |f(z)| G^{P}(z, w) Q(z) dx dy < +\infty.$$

Since

$$\lim_{n \to +\infty} (P(z) - Q(z))G^{Q}(R_{n}, z, w)f(z) = (P(z) - Q(z))G^{Q}(z, w)f(z)$$

and, by Lemma 4.1 and the inequality (4.6),

$$|P(z)-Q(z)|G^{Q}(R_{n}, z, w)|f(z)| \leq cQ(z)G^{Q}(z, w)|f(z)| \leq \alpha(z)$$

Lebesgue's theorem on dominated convergence implies, by (4.8), that

$$\begin{split} \lim_{n \to +\infty} \int_{\mathcal{R}_n} (P(z) - Q(z)) G^Q(\mathcal{R}_n, z, w) f(z) dx dy \\ = \int_{\mathcal{R}} (P(z) - Q(z)) G^Q(z, w) f(z) dx dy , \end{split}$$

from which it follows that

$$\lim_{n \to +\infty} T^n_{PQ}(f)(w) = T_{PQ}(f)(w), \qquad w \in \mathbb{R}.$$
 Q. E. D.

LEMMA 4.5. Under the assumption of Lemma 4.4, $T_{PQ}(f)$ is a Q-harmonic function on R.

PROOF. Since a sequence $\{f_n\}$ of Q-harmonic functions on a domain U of R such that $|f_n| \leq M < +\infty$ has a subsequence which converges uniformly on

T. Satō

each compact subset of U to a Q-harmonic function on R (refer to Myrberg [1]), it is sufficient to show that the sequence $\{T_{PQ}^n(f)\}$ of Q-harmonic functions is uniformly bounded on a neighborhood V of any $w \in R$. Lemma 4.2 shows that

$$\begin{split} |T_{PQ}^{n}(f)(w)| &\leq \sup_{w \in \overline{V}} \left\{ |f| + \frac{1}{2\pi} \int_{R_{n}} |P(z) - Q(z)| G^{Q}(R_{n}, z, w)| f(z)| dx dy \right\} \\ &\leq \sup_{w \in \overline{V}} |f| + \sup_{w \in R} \frac{1}{2\pi} \int_{R} |P(z) - Q(z)| G^{Q}(z, w)| f(z)| dx dy \\ &\leq \sup_{w \in \overline{V}} |f| + c(c+1)/2\pi \times \sup_{w \in R} \int_{R} |f(z)| G^{P}(z, w)Q(z) dx dy \\ &< +\infty, \quad w \in V. \end{split}$$

$$Q. E. D.$$

LEMMA 4.6. Let P and Q be densities on R which are not identically zero, and assume that there exists a constant $c \ge 1$ satisfying the inequality (4.1) on R. If f is in $PH'_p(R)$ $(1 \le p < +\infty)$, then $T_{PQ}(f)$ is contained in the space $QH'_p(R)$.

PROOF. From Theorem 2.3, it follows that a function f in $PH'_p(R)$ satisfies the condition in Theorem 4.2, that is, $T_{PQ}(f)$ is defined for f in $PH'_p(R)$. Also, $T_{PQ}(pf)$ is defined by Theorem 2.5.

Since it is evident that

$$|T_{PQ}^{n}(f)|^{p} = |f|^{p} \leq_{p} f = T_{PQ}^{n}(pf)$$

on ∂R_n for every $n \in N$, the Q-subharmonic function $|T_{PQ}^n(f)|^p$ is dominated by the Q-harmonic function $T_{PQ}^n(pf)$ on R_n for each $n \in N$. Thus, Lemma 4.4 shows that

$$|T_{PQ}(f)|^p \leq T_{PQ}(pf)$$

on R, that is, $T_{PQ}({}_{p}f)$ is a Q-harmonic majorant of $|T_{PQ}(f)|^{p}$ on R. To prove $T_{PQ}(f) \in QH'_{p}(R)$, it is sufficient, by Theorem 2.1, to show that

$$\sup_{w\in R}\int_{R}T_{PQ}({}_{p}f)(z)G^{Q}(z,w)Q(z)dxdy<+\infty.$$

By Definition 4.1, this integral equals to

(4.9)
$$\int_{\mathbb{R}^{p}} f(z) G^{Q}(z, w) Q(z) dx dy + \int_{\mathbb{R}} \left\{ \frac{1}{2\pi} \int_{\mathbb{R}} (P(\zeta) - Q(\zeta)) G^{Q}(\zeta, z) \right. \\ \left. \times_{p} f(\zeta) d\xi d\eta \right\} G^{Q}(z, w) Q(z) dx dy$$

The first term of (4.9) is dominated by

$$\begin{split} &\int_{R} {}_{p} f(z) G^{P}(z, w) Q(z) dx dy \\ &+ \int_{R} {}_{p} f(z) \Big\{ \frac{1}{2\pi} \int_{R} |P(\zeta) - Q(\zeta)| G^{Q}(\zeta, w) \Big\} \end{split}$$

Banach spaces of solutions of $\Delta u = Pu$

$$\times G^{P}(\zeta, z) d\xi d\eta \Big\} Q(z) dx dy$$

$$\leq \Big\{ 1 + \frac{1}{2\pi} \int_{R} |P(\zeta) - Q(\zeta)| G^{Q}(\zeta, w) d\xi d\eta \Big\}$$

$$\times \sup_{w \in R} \int_{R} pf(z) G^{P}(z, w) Q(z) dx dy$$

$$\leq c(1+c) \times \sup_{w \in R} \int_{R} pf(z) G^{P}(z, w) P(z) dx dy$$

where the inequality $|P-Q| \leq cQ$ on R and Lemma 4.1 were used. The inequality (4.5) in Lemma 4.2 shows that the second term of (4.9) is dominated by

$$c(c+1) \times \sup_{w \in \mathbb{R}} \int_{\mathbb{R}^{p}} f(\zeta) G^{P}(\zeta, z) Q(\zeta) d\xi d\eta \frac{1}{2\pi} \int_{\mathbb{R}} G^{Q}(z, w) Q(z) dx dy$$
$$\leq c^{2}(c+1) \times \sup_{w \in \mathbb{R}} \int_{\mathbb{R}^{p}} f(z) G^{P}(z, w) P(z) dx dy.$$

Therefore, we have

$$\begin{split} \sup_{w \in R} & \int_{R} T_{PQ}({}_{p}f)(z) G^{Q}(z, w) Q(z) dx dy \\ & \leq c(c+1)^{2} \times \sup_{w \in R} \int_{R} {}_{p}f(z) G^{P}(z, w) P(z) dx dy \\ & < +\infty \,. \end{split}$$
Q. E. D.

LEMMA 4.7. Let P and Q be densities which are not identically zero on the connected Riemann surface R. If there exists a constant $c \ge 1$ satisfying the inequality (4.1) on R, then T_{PQ} is a bounded linear transformation from $PH'_p(R)$ into $QH'_p(R)$, and T_{QP} is a bounded linear transformation from $QH'_p(R)$ into $PH'_p(R)$.

PROOF. Since Lemma 4.6 shows that $T_{PQ}(f)$ is well-defined and is contained in the space $QH'_p(R)$ for every $f \in PH'_p(R)$, it is clear that T_{PQ} is a linear mapping of $PH'_p(R)$ into $QH'_p(R)$.

Since $T_{PQ}({}_{p}f)$ is a Q-harmonic majorant of $|T_{PQ}(f)|^{p}$ on R (this was shown in the proof of Lemma 4.6), by (4.10) in the proof of Lemma 4.6 and (4.1), we have that

$$\{|||T_{PQ}(f)|||_{p}^{Q}\}^{p} = \sup_{w \in \mathbb{R}} \frac{1}{2\pi} \int_{\mathbb{R}} T_{PQ}(f)(z) G^{Q}(z, w) Q(z) dx dy$$
$$\leq \sup_{w \in \mathbb{R}} \frac{1}{2\pi} \int_{\mathbb{R}} T_{PQ}(pf)(z) G^{Q}(z, w) Q(z) dx dy$$
$$\leq c(c+1)^{2} \sup_{w \in \mathbb{R}} \frac{1}{2\pi} \int_{\mathbb{R}} pf(z) G^{P}(z, w) P(z) dx dy$$

$$=c(c+1)^2 \times \{|||f|||_p^p\}^p$$
,

that is

(4.11)
$$|||T_{PQ}(f)|||_{p}^{2} \leq \{c(c+1)^{2}\}^{1/p} \times |||f|||_{p}^{p}$$

for every $f \in PH'_p(R)$. This shows that the mapping T_{PQ} is a bounded linear transformation from $PH'_p(R)$ into $QH'_p(R)$. By changing the roles of P and Q we can see that T_{QP} is a bounded linear transformation from $QH'_p(R)$ into $PH'_p(R)$. Q. E. D.

LEMMA 4.8. If P and Q satisfy the same assumption as that in Theorem 4.7, then $T_{QP} \circ T_{PQ}$ is the identity on $PH'_{p}(R)$, and $T_{PQ} \circ T_{QP}$ is the identity on $QH'_{p}(R)$.

PROOF. Since $PH'_p(R) \subset PH'_1(R)$ $(1 \leq p < +\infty)$, any function f in $PH'_p(R)$ satisfies that

$$c^{-1} \int_{\mathbb{R}} |f(z)| G^{P}(z, w) Q(z) dx dy$$

$$\leq \int_{\mathbb{R}} |f(z)| G^{P}(z, w) P(z) dx dy$$

$$\leq \int_{\mathbb{R}} f(z) G^{P}(z, w) P(z) dx dy$$

$$\leq 2\pi \times |||f|||_{1}^{P} < +\infty, \quad w \in \mathbb{R},$$

which implies, by Lemma 4.2, that

$$\sup_{w \in \mathbb{R}} \int_{\mathbb{R}} |P(z) - Q(z)| G^{Q}(z, w)| f(z)| dx dy < +\infty.$$

Therefore, the last function of the inequality

$$\begin{split} |(Q(z) - P(z))G^{P}(R_{n}, z, w)T^{n}_{PQ}(f)(z)| \\ &\leq c \Big\{ P(z)G^{P}(z, w)|f(z)| + \frac{1}{2\pi}P(z)G^{P}(z, w) \\ &\times \int_{R_{n}} |P(\zeta) - Q(\zeta)|G^{Q}(R_{n}, \zeta, z)|f(\zeta)|d\xi d\eta \Big\} \\ &\leq c \Big\{ P(z)G^{P}(z, w)|f(z)| + \frac{1}{2\pi}P(z)G^{P}(z, w) \\ &\times \int_{R} |P(\zeta) - Q(\zeta)|G^{Q}(\zeta, z)|f(\zeta)|d\xi d\eta \Big\} \end{split}$$

is integrable for any fixed $w \in R_n$, where this inequality is obtained by the definition of $T_{PQ}^n(f)$ and $|P-Q| \leq cP$ on R. Since

Banach spaces of solutions of $\Delta u = Pu$

$$\lim_{n \to +\infty} (Q(z) - P(z))G^{P}(R_{n}, z, w)T^{n}_{PQ}(f)(z)$$

=(Q(z)-P(z))G^{P}(z, w)T_{PQ}(f)(z),

Lebesgue's theorem on bounded convergence gives that

$$\lim_{n \to +\infty} \int_{R_n} (Q(z) - P(z)) G^P(R_n, z, w) T^n_{PQ}(f)(z) dx dy$$
$$= \int_R (Q(z) - P(z)) G^P(z, w) T_{PQ}(f)(z) dx dy,$$

from which it follows that

$$\lim_{n \to +\infty} T_{QP}^n \circ T_{PQ}^n(f) = T_{QP} \circ T_{PQ}(f)$$

on R for $f \in PH'_p(R)$. On the other hand, the maximum principle shows, by Lemma 4.3, that

$$T^n_{\it QP} \circ T^n_{\it PQ}(f) {=} f \ {
m on} \ R_n$$
 ,

for every $n \in N$, and so,

$$T_{QP} \circ T_{PQ}(f) = f$$
 on R ,

for any $f \in PH'_p(R)$.

By changing the roles of P and Q we have also that

$$T_{PQ} \circ T_{QP}(g) = g \text{ on } R$$
,

for $g \in QH'_p(R)$.

THEOREM 4.9. Under the same assumption as that in Lemma 4.8, T_{PQ} is an isomorphism between $PH'_{p}(R)$ and $QH'_{p}(R)$. And, T_{QP} is the inverse of T_{PQ} .

PROOF. This follows from Lemma 4.7 and 4.8. Q. E. D.

Now, let R be a disconnected Riemann surface, and let

$$R = \bigcup_{k=1}^{K} W^{k}$$

be the decomposition of R into connected components W^k , $k=1, 2, \dots, K$, of R. If the densities satisfy the relation

$$(4.12) c^{-1}Q \leq P \leq cQ \text{on } R \ (c \geq 1),$$

then we can assume that W^1, W^2, \dots, W^L $(1 \le L \le K)$ are connected components of R on which $P \ne 0$ and $Q \ne 0$, and that $W^{L+1}, W^{L+2}, \dots, W^K$ are connected components of R on which $P \equiv 0$ and $Q \equiv 0$.

DEFINITION 4.2. If the relation (4.12) holds on the disconnected Riemann surface R, we define the function $T_{PQ}(f)$ on R for $f \in PH'_p(R)$ as follows:

 $T_{PQ}(f)|W^{k} = T_{PQ}(f|W^{k}), \quad 1 \leq k \leq L,$

and

$$T_{PQ}(f) | W^{k} = f | W^{k}$$
, $L < k \leq K$.

313

Q. E. D.

By changing the roles of P and Q we define also $T_{QP}(g)$ for $g \in QH'_p(R)$.

THEOREM 4.10. Let R be a Riemann surface which may be disconnected, and assume (4.12). Then, T_{PQ} is an isomorphism between $PH'_p(R)$ and $QH'_p(R)$. And, T_{QP} is the inverse of T_{PQ} .

PROOF. Lemma 4.9 gives this theorem. Q. E. D.

Let R be a connected hyperbolic Riemann surface and let P and Q be two densities on R. In the following, we prove the order comparison theorem: If there exists a constant $c \ge 1$ such that

$$(4.13) c^{-1}Q \leq P \leq cQ$$

on R except possibly for a compact subset K of R, then $PH'_p(R)$ and $QH'_p(R)$ are isomorphic.

Let W be an open subset of R such that $R-W \supset K$ and R-W is a regular region. Then, since (4.13) is valid on the whole W, which may be considered a Riemann surface, Lemma 4.10 states that there is the isomorphism between $PH'_{p}(W)$ and $QH'_{p}(W)$, which is denoted by T^{W}_{PQ} in the following.

LEMMA 4.11. If the inequality (4.13) holds on W, then T_{PQ}^{W} may be considered an isomorphism of $PH'_{p}(W; \partial W)$ onto $QH'_{p}(W; \partial W)$.

PROOF. Since $PH'_p(W; \partial W)$ and $QH'_p(W; \partial W)$ are closed subspaces of $PH'_p(W)$ and $QH'_p(W)$, respectively, it is necessary only to prove that $T^W_{PQ}(f) \in QH'_p(W; \partial W)$ for $f \in PH'_p(W; \partial W)$.

Let $\{R_n\}$ be an exhaustion of R such that $R_n \supset R - W$, $n=0, 1, 2, \cdots$, and let

$$\alpha = \sup_{w \in \partial R_0} |T_{PQ}^w(f)(w)|.$$

We denotes by ω the continuous function on $\overline{R_{\circ} \cap W}$ such that ω is *Q*-harmonic on $R_{\circ} \cap W$ and $\omega | \partial W = 0$, $\omega | \partial R_{\circ} = 1$.

Since Lemma 4.4 states that

$$\lim_{n \to +\infty} T^{W_n}_{PQ}(f) = T^W_{PQ}(f)$$
 on W ,

where $T_{PQ}^{W_n}$ is defined for a continuous function on $\overline{R_n \cap W}$ which is Q-harmonic on $W \cap R_n$, for any $\varepsilon > 0$ there exists $n_0 \in N$ such that

$$|T^{W_n}_{PO}(f)(w)| \leq (\alpha + \varepsilon) \omega(w), \quad w \in W \cap R_0$$

for $n > n_0$. So, as $n \rightarrow +\infty$, we have

 $|T_{PQ}^{w}(f)(w)| \leq (\alpha + \varepsilon)\omega(w)$, $w \in W \cap R_{0}$,

from which

 $T_{PQ}^{W}(f)|\partial W=0$,

that is,

$$T_{PO}^{W}(f) \in QH'_{p}(W; \partial W)$$

follows.

Q. E. D.

THEOREM 4.12 (THE ORDER COMPARISON THEOREM). Let P and Q be two densities on a connected Riemann surface. If there exists a constant $c \ge 1$ such that

 $c^{-1}Q \leq P \leq cQ$

on R except possibly for a compact subset K of R, then $PH'_p(R)$ and $QH'_p(R)$ are isomorphic.

PROOF. Let W be the same open subset of R as that defined before Lemma 4.11. Then, by Theorem 3.12 and Lemma 4.11, the mapping

$$\lambda_Q^W \circ T_{PQ}^W \circ \mu_P^W : PH'_p(R) \to QH'_p(R)$$

is an isomorphism.

Q. E. D.

References

M. Glasner

L.L. Helms

- [1] Comparison theorems for bounded solutions of $\Delta u = Pu$, Trans. Amer. Math. Soc., 202 (1975), 173-179.
- [1] Introduction to potential theory, Wiley-Interscience, New-York, 1969.
- A. Lahtinen
- [1] On the solutions of $\Delta u = Pu$ for acceptable densities on open Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No.515 (1972).
- [2] On the equation $\Delta u = Pu$ and the classification of acceptable densities on Riemann surfaces, Ann. Acad. Sci. Fenn. Ser. AI, No. 533 (1973).
- L. Myrberg
- [1] Über die Integration der Differentialgleichung $\Delta u = c(P)u$ auf offenen Riemannschen Flächen, Math. Scad., 2 (1954), 142-152.
- [2] Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn. Ser. AI, No. 170 (1954).
- [3] Über subelliptische Funktionen, Ann. Acad. Sci. Fenn. Ser. AI, No. 290 (1960). L. Lumer-Naim
- *H*^p-spaces of harmonic functions, Ann. Inst. Fourier (Grenoble), 17 (1967), 425-469.

M. Nakai

- [1] The space of bounded solutions of the equation $\Delta u = Pu$ on a Riemann surface, Proc. Japan Acad., 36 (1960), 267-272.
- [2] The space of non-negative solutions of the equation $\Delta u = Pu$ on a Riemann surface, Kōdai Math. Sem. Rep., 12 (1960), 151-178.
- [3] Order comparisons on canonical isomorphisms, Nagoya Math. J., 50 (1973), 67-87.
- [4] Banach spaces of bounded solutions of $\Delta u = Pu(P \ge 0)$ on hyperbolic Riemann surfaces, Nagoya Math. J., 53 (1974), 141-155.
- M. Parreau
- [1] Sur les moyennes des fonctions harmoniques et analytiques et la classification des surfaces de Riemann, Ann. Inst. Fourier (Grenoble), 3 (1951), 103-197.
- B. Rodin and L. Sario
- [1] Principal functions, D. Van Nostrand Company, INC., Princeton, 1968.

H.L. Royden

- [1] The equation $\Delta u = Pu$ and the classifications of open Riemann surfaces, Ann. Acad. Fenn. Ser. AI, No. 271 (1959).
- L. Sario and M. Nakai
- [1] Classification theory of Riemann surfaces, Springer-Verlag, Berlin, 1970.
- J.L. Schiff
- Isomorphisms between harmonic and P-harmonic Hardy spaces on Riemann surfaces, Pacific J. Math., 62 (1976), 551-560.

Takeyoshi SATŌ Mathematics Laboratory Iwamizawa College Hokkaido University of Education Iwamizawa, Hokkaido Japan