Metacompactness and subparacompactness of product spaces

By Takemi MIZOKAMI

(Received July 23, 1977) (Revised Dec. 16, 1977)

§ 1. Introduction.

The aim of this paper is to generalize Kramer [3, Theorems 4.3, 4.4, 4.9] which gives some sufficient conditions for the product space to be metacompact or subparacompact.

Alster and Engelking [1] constructed a subparacompact space X such that X^2 is not subparacompact. The product space S^2 of Sorgenfrey lines S is not metacompact, though S is metacompact. Thus subparacompactness and metacompactness do not have productive property. This is the case even if one factor is metrizable and the other factor is paracompact. Przymusiński [4] constructed a separable metric space M and a separable first countable Lindelöf regular (and hence paracompact) space Y such that $M \times Y$ is neither subparacompact nor metacompact.

We consider the subparacompactness and (countable) metacompactness of the product space $X \times Y$, where X is a P-space due to Morita [2, Definition 56.1] and Y is a Σ -space due to Nagami [2, Definition 57.1]. It is seen in [2, Theorem 57.14] that these notions are very effective to our consideration. This is why we restrict Y to the class of Σ -spaces.

In the sequel, all spaces are assumed to be $T_{\mathbf{1}}$ and N to be the positive integers.

§ 2. Theorems.

DEFINITION 1. A space X is said to be a Σ -space if there exists a sequence $\{\mathcal{F}_n: n \in N\}$ of locally finite closed covers of X satisfying the following (Σ) :

 (Σ) : If $p_n \in C(p, \mathcal{F}_n) = \bigcap \{F : p \in F \in \mathcal{F}_n\}$ for every $n \in \mathbb{N}$, then $\{p_n : n \in \mathbb{N}\}$ clusters in X.

Moreover, if for every point $p \in X$,

$$C(p) = \bigcap_{n} C(p, \mathcal{F}_n)$$

is compact, then X is called a strong Σ -space.

LEMMA 1 (Nagami [2, Lemma 57.3]). Let X be a Σ -space. Then X has a Σ -net $\{\mathcal{F}_i: i \in N\}$ which satisfies the following:

- (i) Every \mathcal{F}_i is (finitely) multiplicative.
- (ii) $\mathcal{F}_i = \{ F(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega \}.$
- (iii) $F(\alpha_1, \dots, \alpha_i) = \bigcup \{F(\alpha_1, \dots, \alpha_i, \alpha_{i+1}) : \alpha_{i+1} \in \Omega\}.$
- (iv) For every point $x \in X$, there exists a sequence $\{\alpha_i : i \in N\}$ such that $C(x) \subset F(\alpha_1, \dots, \alpha_i)$ for every i and if $C(x) \subset U$ with U open, then

$$C(x) \subset F(\alpha_1, \dots, \alpha_i) \subset U$$

for some i.

DEFINITION 2. A space X is called *subparacompact* or *metacompact* if every open cover of X has respectively a σ -discrete closed refinement or a point-finite open refinement.

Recall that X is subparacompact if and only if every open cover of X has a σ -locally finite closed refinement, [2, Theorem 43.4].

THEOREM 1. Let X be a regular strong Σ -space. Then X is subparacompact. Proof. To prove this, it suffices to show the following:

LEMMA 2. Let X be a Σ -space such that every open cover of C(x) has a locally finite closed refinement. Then X is subparacompact.

PROOF OF LEMMA. Let \mathcal{U} be an arbitrary open cover of X. Let $\mathcal{F}_i = \{F_{i\alpha} : \alpha \in A_i\}$, $i \in \mathbb{N}$ be a Σ -net of X, where each \mathcal{F}_i is assumed to be multiplicative. Put for each $x \in X$,

$$\mathcal{U}(x) = \{U : U \cap C(x) = \emptyset, U \in \mathcal{U}\}.$$

Then by assumption, U(x) is refined by a locally finite cover $\mathcal{H}(x)$. Put

$$U(x) = \bigcup \{U : U \in \mathcal{U}(x)\}.$$

Then U(x) is an open set containing C(x). Therefore there exists an $F_{i(x)\alpha(x)} \in \mathcal{F}_{i(x)}$ with $C(x) \subset F_{i(x)\alpha(x)} \subset U(x)$. Set

$$\mathcal{H}_i = \{H \cap F_{i(x),\alpha(x)} : H \in \mathcal{H}(x), x \in X, i(x) = i\}.$$

Then $\mathcal{H} = \bigcup \mathcal{H}_i$ is a σ -locally finite closed refinement of \mathcal{U} .

COROLLARY. If for each $i \in \mathbb{N}$, X_i is a regular strong Σ -space, then $\prod_i X_i$ is subparacompact.

PROOF. Use the fact that $\prod X_i$ is also a regular strong Σ -space by [2, Theorem 57.12].

LEMMA 3. If X is a Σ -space, then X is countably metacompact.

PROOF. Recall that a space X is countably metacompact if and only if for every increasing countable open cover $\{U_i \colon i \in N\}$, there exists a cover $\{F_i \colon i \in N\}$ such that each F_i is an F_σ -set and $F_i \subset U_i$ for each $i \in N$.

Suppose we are given such a cover $\{U_i: i \in N\}$. Put

$$F_i = \bigcup \{F : F \in \mathcal{F} = \bigcup \mathcal{F}_i, F \subset U_i\},$$

where $\{\mathcal{F}_i: i \in N\}$ is a Σ -net of X such that each \mathcal{F}_i is multiplicative. Then each F_i is an F_{σ} -set contained in U_i . It is easy to see that $\{F_i\}$ covers X. Thus X is countably metacompact.

COROLLARY. If for each $i \in N$ X_i is a strong Σ -space, then $\prod X_i$ is countably metacompact.

DEFINITION 3. A space X is called almost expandable [5, Definition 1.5] if for every locally finite collection $\{F_{\lambda} \colon \lambda \in \Lambda\}$ of X there exists a point-finite open collection $\{G_{\lambda} \colon \lambda \in \Lambda\}$ such that $F_{\lambda} \subset G_{\lambda}$ for each λ .

It is well known that a space X is metacompact if and only if it is θ -refinable and almost expandable [5, Theorem 4.3 (ii)]. Recall that a θ -refinable countably compact space is compact [6, p. 824].

Theorem 2. If X is an almost expandable strong Σ -space, then X is meta-compact.

To prove this, it suffices to prove the following:

LEMMA 4. Suppose X is an almost expandable Σ -space with the property that for every open cover U of C(x), there exists a point-finite (in X) open cover of C(x) refining U. Then X is metacompact.

PROOF. Let $\mathcal{F}_i = \{F_{i\alpha} : \alpha \in A_i\}$, $i \in \mathbb{N}$ be a mutiplicative Σ -net of X. In the light of Lemma 3, it suffices to see that every open cover of X can be refined by a σ -point-finite open cover. To see this, let \mathcal{U} be an open cover of X. Then by assumption,

$$\mathcal{U}(x) = \{U : U \cap C(x) \neq \emptyset, U \in \mathcal{U}\}\$$

can be refined by a point-finite open (in X) cover $\mathcal{C}\mathcal{V}(x)$. Since X is almost expandable, there exists a point-finite open collection $\mathcal{H}_i = \{H_{i\alpha} : \alpha \in A_i\}$ such that $F_{i\alpha} \subset H_{i\alpha}$ for each $\alpha \in A_i$. Put

$$V(x) = \bigcup \{ V : V \in \mathcal{CV}(x) \},$$

$$\mathcal{CV} = \{ V(x) : x \in X \},$$

$$\mathcal{G}'_i = \{ F_{i\beta} : \beta \in B_i \} = \{ F \in \mathcal{G}_i, F < \mathcal{CV} \}.$$

Observe that $\bigcup \mathcal{G}'_i$ covers X. Take $F_{i\beta} \in \mathcal{G}'_i$ and a point $x_{i\beta}$ with $F_{i\beta} \subset V(x_{i\beta})$. Put

$$W = \{V \cap H_{i\beta} : V \in CV(x_{i\beta}), \beta \in B_i, i \in N\}.$$

Then W is a σ -point-finite open refinement of U. Thus X is metacompact.

Lemma 5. If X is a Σ -space with a σ -point-finite base, then X is a meta-compact strong Σ -space.

PROOF. X is countably metacompact by Lemma 3. Since X has a σ -point-finite base, every open cover of X has a σ -point-finite open refinement. It follows that X is metacompact, and necessarily X is a strong Σ -space.

COROLLARY. If for each $i \in N$ X_i is a Σ -space with a σ -point-finite base, then $\prod X_i$ is metacompact.

PROOF. It suffices to prove that $X=\prod X_i$ has a σ -point-finite base. Let $CV_i = \bigcup_{j=1}^{\infty} CV_{ij}$ be a base of X_i such that each CV_{ij} is a point-finite open cover and $CV_{ij} \subset CV_{ij+1}$ for each $j \in N$. Construct for each $n \in N$

$$\mathcal{W}_n = \{V_1 \times \cdots \times V_n \times \prod_{j>n} X_j : V_1 \in \mathcal{CV}_{1n}, \cdots, V_n \in \mathcal{CV}_{nn}\},$$

$$W = \bigcup_{n=1}^{\infty} W_n$$
.

Then W is a σ -point-finite base of X.

DEFINITION 4. A space X is called a P-space if for each collection $\{G(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega, i \in N\}$ of open sets of X such that

$$G(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$$

for each sequence $\alpha_1, \alpha_2, \dots \in \Omega$, there exists a collection $\{C(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega, i \in N\}$ of F_{σ} -sets of X such that for each sequence $\alpha_1, \alpha_2, \dots \in \Omega$,

(i)
$$C(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$$
,

(ii)
$$X = \bigcup_{i=1}^{\infty} C(\alpha_1, \dots, \alpha_i) \quad \text{if} \quad X = \bigcup_{i=1}^{\infty} G(\alpha_1, \dots, \alpha_i).$$

If moreover the condition (ii) is strengthened to the following (iii), X is called to have the *property* P^* .

(iii)
$$X = \bigcup_{i=1}^{\infty} \operatorname{Int} C(\alpha_1, \dots, \alpha_i) \quad \text{if} \quad X = \bigcup_{i=1}^{\infty} G(\alpha_1, \dots, \alpha_i).$$

Note that a normal P-space has the property P^* as seen in [2, Proposition 56.2]. If X is perfect i.e., every open set of X is an F_{σ} -set, then X has the property P^* .

LEMMA 6. If X is a P-space and Y is a strong Σ -space, then $X \times Y$ is countably metacompact.

PROOF. Let $\{U_j : j \in N\}$ be an arbitrary increasing countable open cover of $X \times Y$. As stated in the proof of Lemma 3, it suffices to prove that there exists a countable refinement by F_{σ} -sets. Let $\{F(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}$, $i \in N$ be a strong Σ -net of Y described in Lemma 1. Put

$$G(\alpha_1, \cdots, \alpha_i) = \bigcup \{P : P \text{ is an open set of } X \text{ such that }$$

$$P \times F(\alpha_1, \dots, \alpha_i) \subset U_i$$
 .

Then

(1)
$$G(\alpha_1, \dots, \alpha_i) \times F(\alpha_1, \dots, \alpha_i) \subset U_i$$

and

$$G(\alpha_1, \dots \alpha_i) \subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$$
.

Since X is a P-space, there exists a collection $\{C(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega, i \in N\}$ of F_{σ} -sets of X such that

(2)
$$C(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$$
,

(3)
$$X = \bigcup_{i=1}^{\infty} C(\alpha_1, \dots, \alpha_i) \quad \text{if} \quad X = \bigcup_{i=1}^{\infty} G(\alpha_1, \dots, \alpha_i) .$$

Put for each $i \in N$

$$V_i = \bigcup \{C(\alpha_1, \dots, \alpha_i) \times F(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}.$$

Then each V_i is an F_σ -set satisfying $V_i \subset U_i$ because of (1) and (2). It remains to prove that $\{V_i\}$ covers $X \times Y$. Let (p,q) be an arbitrary point of $X \times Y$. Let $\{\alpha_i \colon i \in N\}$ be a sequence such that $\{F(\alpha_1, \cdots, \alpha_i) \colon i \in N\}$ satisfies (iv) in Lemma 1. To see $X = \bigcup_{i=1}^{\infty} G(\alpha_1, \cdots, \alpha_i)$, let $x \in X$. Since (x, C(q)) is countably compact, $(x, C(q)) \subset U_j$ for some j. Moreover the compactness of (x, C(q)) implies that there exist open sets U, V of X, Y, respectively, such that

$$(x, C(q)) \subset U \times V \subset U_1$$
.

Then there exists an $i \in N$ with $C(q) \subset F(\alpha_1, \dots, \alpha_i) \subset V$. In either case of $i \ge j$ and i < j, x belongs to some $G(\alpha_1, \dots, \alpha_i)$. This implies that $X = \bigcup_{i=1}^{\infty} C(\alpha_i, \dots, \alpha_i)$ by (3). Thus $x \in C(\alpha_1, \dots, \alpha_i)$ for some i, proving

$$(p, q) \in C(\alpha_1, \dots, \alpha_i) \times F(\alpha_1, \dots, \alpha_i) \subset V_i$$
.

COROLLARY. If X is a first countable P-space and Y is a Σ -space, then $X \times Y$ is countably metacompact.

PROOF. We modify the preceding proof slightly. Suppose $(p, C(q)) \subset U_j$. Let $\{V_n(p): n \in N\}$ be a local base of p in X. Put for each $n \in N$

 $W_n = \bigcup \{P : P \text{ is an open set of } Y \text{ such that } V_n(p) \times P \subset U_j\}.$

Then $\{W_n: n \in N\}$ covers C(q). Since C(q) is countably compact, there exists a finite subcover $\{W_{n_j}: j=1, \dots, k\}$. Take U, V as follows:

$$U = \bigcap_{j=1}^k V_{n_j}(p)$$
, $V = \bigcup_{j=1}^k W_{n_j}$.

Then obviously we have

$$(p, C(q)) \subset U \times V \subset U_i$$
.

268 T. Mizokami

THEOREM 3. If X is a metacompact space with the property P^* and Y is an almost expandable strong Σ -space, then $X \times Y$ is metacompact.

PROOF. Let $\mathcal{F}_i = \{F(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}$, $i \in \mathbb{N}$, be a Σ -net described in Lemma 1. Since Y is almost expandable, for each i there exists a point-finite open collection $\mathcal{H}_i = \{H(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}$ such that

$$F(\alpha_1, \dots, \alpha_i) \subset H(\alpha_1, \dots, \alpha_i)$$

for each sequence $\alpha_1, \alpha_2, \dots \in \Omega$. Taking Lemma 6 into consideration, it suffices to prove that every open cover of $X \times Y$ can be refined by a σ -point-finite open cover. Let $\mathcal Q$ be an arbitrary open cover of $X \times Y$, and $\mathcal Q$ the collection of all finite unions of members of $\mathcal Q$. For each $\alpha_1, \dots, \alpha_i \in \Omega$, let $\mathcal W(\alpha_1, \dots, \alpha_i)$ be the maximal collection of basic open sets $U_{\lambda} \times V_{\lambda}$ such that

$$\mathcal{W}(\alpha_1, \dots, \alpha_i) = \{U_{\lambda} \times V_{\lambda} : \lambda \in \Lambda(\alpha_1, \dots, \alpha_i)\},$$

(1)
$$F(\alpha_1, \dots, \alpha_i) \subset V_{\lambda} \subset H(\alpha_1, \dots, \alpha_i),$$

(2)
$$\mathcal{W}(\alpha_1, \dots, \alpha_i) < \Delta \mathcal{G}$$
.

Set

$$U(\alpha_1, \dots, \alpha_i) = \bigcup \{U_{\lambda} : \lambda \in \Lambda(\alpha_1, \dots, \alpha_i)\}.$$

Then by maximality of $\mathcal{W}(\alpha_1, \dots, \alpha_i)$,

(3)
$$U(\alpha_1, \dots, \alpha_i) \subset U(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$$

for each sequence $\alpha_1, \alpha_2, \dots \in \Omega$. Since X has the property P^* , there exists an F_{σ} -set $C(\alpha_1, \dots, \alpha_i)$ such that

(4)
$$C(\alpha_1, \dots, \alpha_i) \subset U(\alpha_1, \dots, \alpha_i)$$

for each sequence $\alpha_1, \alpha_2, \dots \in \Omega$ and

(5)
$$X = \bigcup_{i=1}^{\infty} \operatorname{Int} C(\alpha_1, \dots, \alpha_i) \quad \text{if} \quad X = \bigcup_{i=1}^{\infty} U(\alpha_1, \dots, \alpha_i).$$

Since $C(\alpha_1, \dots, \alpha_i)$ is an F_{σ} -set of a metacompact space, $\{U_{\lambda} \cap C(\alpha_1, \dots, \alpha_i): \lambda \in \Lambda(\alpha_1, \dots, \alpha_i)\}$ can be refined by a point-finite open (in $C(\alpha_1, \dots, \alpha_i)$) cover $\{E'_{\lambda}: \lambda \in \Lambda(\alpha_1, \dots, \alpha_i)\}$ such that

(6)
$$E_{\lambda} \subset U_{\lambda} \cap C(\alpha_1, \dots, \alpha_i)$$

for each λ . Put

$$E_{\lambda} = \operatorname{Int} C(\alpha_{1}, \dots \alpha_{i}) \cap E_{\lambda}',$$

$$CV(\alpha_{1}, \dots, \alpha_{i}) = \{E_{\lambda} \times V_{\lambda} : \lambda \in \Lambda(\alpha_{1}, \dots, \alpha_{i})\},$$

$$CV_{i} = \bigcup \{CV(\alpha_{1}, \dots, \alpha_{i}) : \alpha_{1}, \dots, \alpha_{i} \in \Omega\},$$

$$CV = \bigcup \{CV_{i} : i \in N\}.$$

We shall show that CV has the following properties:

Claim 1: \heartsuit is an open cover of $X \times Y$.

Let (x, y) be any point in $X \times Y$. Let $\{\alpha_i : i \in N\}$ be a sequence satisfying (iv) in Lemma 1. In this case, we firstly show that $X = \bigcup_{i=1}^{\infty} U(\alpha_1, \dots, \alpha_i)$. Let $p \in X$. Since (p, C(y)) is compact, there exists $G' \in \Delta G$ with $(p, C(y)) \subset G'$. Because of compactness of C(y) there exist open sets U, V of X, Y, respectively, such that

$$(p, C(y)) \subset U \times V \subset G'$$
.

Take an $i \in N$ such that $F(\alpha_1, \dots, \alpha_i) \subset V$. Put $U = U_{\lambda}$ and $V \cap H(\alpha_1, \dots, \alpha_i) = V_{\lambda}$. Then $U_{\lambda} \times V_{\lambda} \in \mathcal{W}(\alpha_1, \dots, \alpha_i)$, proving $X = \bigcup_{i=1}^{\infty} U(\alpha_1, \dots, \alpha_i)$. Therefore by (5) we have $X = \bigcup_{i=1}^{\infty} \operatorname{Int} C(\alpha_1, \dots, \alpha_i)$. Thus $x \in \operatorname{Int} C(\alpha_1, \dots, \alpha_i)$ for some i. From this $x \in E_{\lambda}$ for some $\lambda \in A(\alpha_1, \dots, \alpha_i)$. Since $y \in F(\alpha_1, \dots, \alpha_i) \subset V_{\lambda} \subset H(\alpha_1, \dots, \alpha_i)$,

$$(x, y) \in E_{\lambda} \times V_{\lambda}$$

for $\lambda \in \Lambda(\alpha_1, \dots, \alpha_i)$. Hence CV is a cover of $X \times Y$.

Claim 2: \heartsuit is a refinement of $\Delta \mathcal{G}$.

This follows from (2) and (4).

Claim 3: ∇ is a σ -point-finite collection in $X \times Y$.

To see this, we shall show that each \mathcal{CV}_i is point-finite in $X \times Y$. Let $(x, y) \in X \times Y$. Since \mathcal{H}_i is point-finite in Y, y belongs to at most finitely many members $H(\alpha_1, \cdots, \alpha_i)$. For each sequence $\alpha_1, \cdots, \alpha_i$, there exists a finite subset $\Lambda_0(\alpha_1, \cdots, \alpha_i)$ of $\Lambda(\alpha_1, \cdots, \alpha_i)$ such that $x \in E_\lambda$ implies $\lambda \in \Lambda_0(\alpha_1, \cdots, \alpha_i)$. Then $(x, y) \in E_\lambda \times V_\lambda$ implies $\lambda \in \bigcup \Lambda_0(\alpha_1, \cdots, \alpha_i)$, where the union is a finite union. Hence (x, y) belongs to at most finitely many members of \mathcal{CV}_i .

Thus we have a σ -point-finite open refinement \mathcal{O} of $\Delta \mathcal{G}$. For each $V \in \mathcal{O}$, take $G(V) \in \Delta \mathcal{G}$ with $V \subset G(V)$. Denote G(V) by

$$G(V) = G_1(V) \cup \cdots \cup G_k(V), \quad G_i(V) \in \mathcal{G}.$$

Put

$$\mathcal{W} = \{G_j(V) \cap V : j=1, \dots, k, V \in \mathcal{V}\}.$$

Then W is a σ -point-finite open refinement of the original cover.

COROLLARY 1. If X is a metacompact space with the property P^* and Y is a metacompact Σ -space, then $X \times Y$ is metacompact.

PROOF. Recall that metacompactness is equivalent with θ -refinability plus almost expandability, and every θ -refinable countably compact space is compact.

COROLLARY 2. If X is a metacompact and perfect space and Y is an almost expandable strong Σ -space, then $X \times Y$ is metacompact.

PROOF. Perfectness implies that every closed set is a G_{δ} -set, and therefore

X has the property P^* .

270

COROLLARY 3 (Kramer [3, Theorem 4.4]). If X is a metacompact perfect space and Y is a σ -space with a σ -point-finite base, then $X \times Y$ is metacompact.

PROOF. This follows immediately from Lemma 5 and the above corollary.

THEOREM 4. If X is a subparacompact P-space and Y is a regular strong Σ -space, then $X \times Y$ is subparacompact.

PROOF. Let $\mathcal{F}_i = \{F(\alpha_1, \dots, \alpha_i) : \alpha_1, \dots, \alpha_i \in \Omega\}$, $i \in \mathbb{N}$ be a strong Σ -net of Y described in Lemma 1. Suppose we are given an arbitrary open cover \mathcal{G} of $X \times Y$. Since Y is regular, there exists an open cover $\{U_{\lambda} \times V_{\lambda} : \lambda \in \Lambda\}$ of $X \times Y$ such that each $U_{\lambda} \times \bar{V}_{\lambda} \subset G$ for some $G \in \mathcal{G}$.

Let Δ be the totality of finite subsets of Λ . For each $\delta \in \Delta$ we put

$$P_{\delta} = \bigcap \{U_{\lambda} : \lambda \in \delta\}$$
 $Q_{\delta} = \bigcup \{V_{\lambda} : \lambda \in \delta\}$ $W_{\delta} = P_{\delta} \times Q_{\delta}$.

Put for each sequence $\alpha_1, \cdots, \alpha_i \in \Omega$ and $\delta \in \mathcal{A}$,

(1) $G(\alpha_1, \dots, \alpha_i : \delta) = \bigcup \{P : P \text{ is an open set of } X \text{ such that } \}$

$$P \times F(\alpha_1, \dots, \alpha_i) \subset W_{\delta}$$
.

$$G(\alpha_1, \dots, \alpha_i) = \bigcup \{G(\alpha_1, \dots, \alpha_i : \delta) : \delta \in \Delta\}.$$

Then

$$G(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i, \alpha_{i+1})$$

for each sequence $\alpha_1, \dots, \alpha_i, \alpha_{i+1} \in \Omega$. By assumption, there exists a collection $\{H(\alpha_1, \dots, \alpha_i)\}$ of closed sets satisfying

$$H(\alpha_1, \dots, \alpha_i) \subset G(\alpha_1, \dots, \alpha_i)$$

for each sequence $\alpha_1, \dots, \alpha_i \in \Omega$ and

(2)
$$X = \bigcup_{i=1}^{\infty} G(\alpha_1, \dots, \alpha_i) \quad \text{implies} \quad X = \bigcup_{i=1}^{\infty} H(\alpha_1, \dots, \alpha_i).$$

Since every closed set is also subparacompact,

$$\{G(\alpha_1, \dots, \alpha_i : \delta) \cap H(\alpha_1, \dots, \alpha_i) : \delta \in \Delta\}$$

can be refined by a σ -discrete closed (in X) refinement

$$\mathcal{K}(\alpha_1, \dots, \alpha_i) = \bigcup \{\mathcal{K}_i(\alpha_1, \dots, \alpha_i) : j \in \mathbb{N}\},$$

where

$$\mathcal{K}_{j}(\alpha_{1}, \dots, \alpha_{i}) = \{K_{j}(\alpha_{1}, \dots, \alpha_{i} : \delta) : \delta \in \Delta\}$$

is a discrete closed collection of X such that

(3)
$$K_j(\alpha_1, \dots, \alpha_i : \delta) \subset G(\alpha_1, \dots, \alpha_i : \delta) \cap H(\alpha_1, \dots, \alpha_i)$$

for each sequence $\alpha_1, \dots, \alpha_i \in \Omega$, $j \in \mathbb{N}$ and $\delta \in \mathcal{A}$. Put

$$\mathcal{L}_{j}(\alpha_{1}, \cdots, \alpha_{i}) = \{K_{j}(\alpha_{1}, \cdots, \alpha_{i} : \delta) \times \overline{F(\alpha_{1}, \cdots, \alpha_{i}) \cap V_{\lambda}} : \\ \lambda \in \delta, \ \delta \in \mathcal{A}\},$$

$$\mathcal{L}_{ji} = \bigcup \{\mathcal{L}_{j}(\alpha_{1}, \cdots, \alpha_{i}) : \alpha_{1}, \cdots, \alpha_{i} \in \Omega\}$$

$$\mathcal{L} = \bigcup \{\mathcal{L}_{ii} : \ j, \ i \in \mathbb{N}\}.$$

Claim 1: \mathcal{L} is a cover of $X \times Y$.

Let (x, y) be any point of $X \times Y$. Take a sequence $\{\alpha_i : i \in N\}$ such that (iv) in Lemma 1 is satisfied. We can show that $X = \bigcup_{i=1}^{\infty} G(\alpha_i, \dots, \alpha_i)$. Suppose $p \in X$. Then (p, C(y)) is covered by a finite collection of \mathcal{Q} , and therefore $(p, C(y)) \subset P_{\delta} \times Q_{\delta} = W_{\delta}$ for some $\delta \in \mathcal{A}$. Take an $i \in N$ with

$$C(y) \subset F(\alpha_1, \dots, \alpha_i) \subset Q_{\delta}$$
.

Thus we have

$$(p, C(y)) \subset P_{\delta} \times F(\alpha_1, \dots, \alpha_i) \subset W_{\delta}$$

which implies

$$p \in G(\alpha_1, \dots, \alpha_i : \delta) \subset G(\alpha_1, \dots, \alpha_i)$$
.

By (2),

$$X = \bigcup_{i=1}^{\infty} H(\alpha_1, \dots, \alpha_i)$$
.

Thus there exists a $j \in N$ with $x \in H(\alpha_1, \dots, \alpha_j)$. In this case we have

$$x \in K_m(\alpha_1, \dots, \alpha_j : \delta)$$
.

Observe that for this

$$F(\alpha_1, \dots, \alpha_i) = \bigcup \{\overline{F(\alpha_1, \dots, \alpha_i) \cap V_{\lambda}} : \lambda \in \delta\}.$$

Thus for some $\lambda \in \delta$

$$y \in \overline{F(\alpha_1, \dots, \alpha_j) \cap V_{\lambda}}$$
.

These mean

$$(x, y) \in K_m(\alpha_1, \dots, \alpha_j : \delta) \times \overline{F(\alpha_1, \dots, \alpha_j) \cap V_\lambda}$$

proving that \mathcal{L} is a cover of $X \times Y$.

Claim 2: \mathcal{L} is a refinement of \mathcal{L} .

This follows from the fact that

$$K_{j}(\alpha_{1}, \cdots, \alpha_{i}: \delta) \times \overline{F(\alpha_{1}, \cdots, \alpha_{i}) \cap V_{\lambda}} \subset P_{\delta} \times \overline{V}_{\lambda} \subset U_{\lambda} \times \overline{V}_{\lambda} \subset G$$

for some $G \in \mathcal{G}$.

Claim 3: \mathcal{L} is a σ -locally finite closed collection of $X \times Y$.

This follows from the local finiteness of each \mathcal{F}_i and discreteness of $\mathcal{K}_j(\alpha_i)$

 \cdots , α_i).

Thus we get a σ -locally finite closed refinement of \mathcal{G} .

COROLLARY. If X is a subparacompact and perfect space and Y is a regular strong Σ -space, then $X \times Y$ is subparacompact.

This is a refinement of Kramer [3, Theorem 4.3].

References

- [1] K. Alster and R. Engelking, Subparacompactness and product spaces, Bull. Acad. Polon. Sci., 20 (1972), 763-767.
- [2] Y. Kodama and K. Nagami, Theory of topological spaces, Iwanami, Tokyo, 1974.
- [3] T.R. Kramer, On the product of two topological spaces, General Topology and Appl., 6 (1976), 1-16.
- [4] T.C. Przymusiński, Normality and paracompactness in finite and countable cartesian products, preprint.
- [5] J.C. Smith and L.L. Krajewski, Expandability and collectionwise normality, Trans. Amer. Math. Soc., 160 (1971), 437-451.
- [6] J. M. Worrell, Jr. and H. H. Wicke, Characterizations of developable topological spaces, Canad. J. Math., 17 (1965) 820-830.

Takemi MIZOKAMI
Department of Mathematics,
Sasebo Technical College,
Okishin-cho, Sasebo,
Nagasaki, Japan.