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§1. Introduction.

The aim of this paper is to generalize Kramer [3, Theorems 4.3, 4.4, 4.9]
which gives some sufficient conditions for the product space to be metacompact
or subparacompact.

Alster and Engelking constructed a subparacompact space X such that
X?* is not subparacompact. The product space S® of Sorgenfrey lines S is not
metacompact, though S is metacompact. Thus subparacompactness and meta-
compactness do not have productive property. This is the case even if one
factor is metrizable and the other factor is paracompact. Przymusinski [4]
constructed a separable metric space M and a separable first countable Lindelof
regular (and hence paracompact) space Y such that M XY is neither subpara-
compact nor metacompact.

We consider the subparacompactness and (countable) metacompactness of
the product space XXY, where X is a P-space due to Morita [2, Definition
56.1] and Y is a X-space due to Nagami [2, Definition 57.1]. It is seen in [2,
Theorem 57.14] that these notions are very effective to our consideration.
This is why we restrict Y to the class of X-spaces.

In the sequel, all spaces are assumed to be T, and N to be the positive
integers.-

§2. Theorems.

DEFINITION 1. A space X is said to be a X-space if there exists a sequence
{F,: neN} of locally finite closed covers of X satisfying the following (2):

2): If p,eC(p, F)=N{F: peFeg,} for every nEN, then {p,: neN}
clusters in X,

Moreover, if for every point pe X,

C()=NCb, F)
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is compact, then X is called a strong 2-space.

LEMMA 1 (Nagami [2, Lemma 57.3]). Let X be a 2-space. Then X has a
2-net {F;: 1N} which satisfies the following:

(i) Every F; is (finitely) multiplicative.

(i) Fi={Flay, -, a)): ay, =+, a; EQ}.

(iii) Flay, =, ai)=I{Flay, =, @i, ai41) 1 az, €0},

(iv) For every point x= X, there exists a sequence {a;: i€N} such that
C(x)CF(ai, -+, a;) for every i and if C(x)C U with U open, then

C(x)CTF(ay, ~+, a;)CU
for some 1.

DEFINITION 2. A space X is called subparacompact or metacompact if every
open cover of X has respectively a o-discrete closed refinement or a point-finite
open refinement.

Recall that X is subparacompact if and only if every open cover of X has
a o-locally finite closed refinement, [2, Theorem 43.4].

THEOREM 1. Let X be a regular strong X-space. Then X is subparacompact.

Proor. To prove this, it suffices to show the following:

LEMMA 2. Let X be a X-space such that every open cover of C(x) has a
locally finite closed refinement. Then X is subparacompact.

PrROOF OF LEMMA. Let U be an arbitrary open cover of X. Let &,
={Fio: ac=A;}, 1€N be a XY-net of X, where each &, is assumed to be multi-
plicative. Put for each xe X,

Ulx)={U: UnC(x)=0, UsU}.
Then by assumption, U(x) is refined by a locally finite cover #(x). Put
Ux)=\J{U: UsU(x)}.

Then U(x) is an open set containing C(x). Therefore there exists an Fizyacr
Ggi(x) with C(X)CFi(z)a(x)CU(X). Set

Hi={HNFipraw: HEH(x), x€ X, i(x)=1}.

Then #=\J4; is a o-locally finite closed refinement of <.

COROLLARY. If for each i€N, X; is a regular strong X-space, then II X;
is subparacompact. ’

Proor. Use the fact that TIX; is also a regular strong 2-space by [2,
Theorem 57.12].

LEMMA 3. If X is a X-space, then X is countably metacompact.

ProoF. Recall that a space X is countably metacompact if and only if
for every increasing countable open cover {U;: i=N}, there exists a cover
{F; 1€ N} such that each F; is an F,-set and F;C U, for each 1€ N.
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Suppose we are given such a cover {U;: i€N}. Put
F=U{F: Feg=Jg, FC U},

where {F,;: i€N} is a X-net of X such that each &, is multiplicative. Then
each F; is an F,-set contained in U,. It is easy to see that {F;} covers X.
Thus X is countably metacompact.

COROLLARY. If for each ieN X; is a strong X-space, then T1X; is countably
metacompact.

DEFINITION 3. A space X is called almost expandable [5, Definition 1.5] if
for every locally finite collection {F;: A4} of X there exists a point-finite
open collection {G,: A€ 4} such that F,CG; for each 4.

It is well known that a space X is metacompact if and only if it is 6-
refinable and almost expandable [5, Theorem 4.3 (ii)]. Recall that a f-refinable
countably compact space is compact [6, p. 824].

THEOREM 2. If X is an almost expandable strong X-space, then X is meta-
compact.

To prove this, it suffices to prove the following:

LEMMA 4. Suppose X is an almost expandable X-space with the property
that for every open cover U of C(x), there exists a point-finite (in X) open
cover of C(x) refining U. Then X is metacompact.

PrROOF. Let F;={F;,: acA;}, i€N be a mutiplicative 2-net of X. In the
light of Lemma 3, it suffices to see that every open cover of X can be refined
by a o¢-point-finite open cover. To see this, let U be an open cover of X.
Then by assumption,

Ulx)={U: UNC(x)#0, UsU}

can be refined by a point-finite open (in X) cover <V(x). Since X is almost
expandable, there exists a point-finite open collection 4 ;={H;,: a<A;} such
that F;,CH,;, for each ac A;,. Put

V(x)=U{V: Vew(x),
W= {V(x): xeX},
Fi={F;3: fEB;}={FeF, F<}.

Observe that \J g} covers X. Take F;s& | and a point x;5 with FigC V(xp).
Put

W={VNHip: VeVU(xy), B B;, ieN}.

Then 9 is a o-point-finite open refinement of . Thus X is metacompact.

LEMMA 5. If X is a Y-space with a o-point-finite base, then X is a meta-
compact strong 2-space.
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PROOF. X is countably metacompact by Since X has a g-point-
finite base, every open cover of X has a o¢-point-finite open refinement. It
follows that X is metacompact, and necessarily X is a strong 2X-space.

COROLLARY. If for each ieN X; is a 2-space with a o-point-finite base,
then TIX; is metacompact.

Proor. It suffices to prove that X=ITX; has a o-point-finite base. Let

QD= QICV” be a base of X; such that each <V;; is a point-finite open cover
J=
and V;;CV,;,, for each j&N. Construct for each neN

CWn:{le oo XVnX HX]: VIECVM, ety VnECVnn},
>n

W=W,.
n=1

Then 9 is a ¢-point-finite base of X.
DEFINITION 4. A space X is called a P-space if for each collection {G(a;,
L) ag, e, a8, 1N} of open sets of X such that

G(al) E) ai)c G(ab ey (s ai+1)

for each sequence a, a,, --- €82, there exists a collection {C(ay, -+, a;): ay, -,
a;€82, i€ N} of F,sets of X such that for each sequence ay, a,, -+ €£,

(1) C(C(l, ) ai)c G(aly ) ai) s
(i X=UClay, -+, a) it X=\UGla, -, an.

If moreover the condition (ii) is strengthened to the following (iii), X is
called to have the property P*.

(iii) X:iglntC(al, o) if X:i(:Jl Glay, -, ).

Note that a normal P-space has the property P* as seen in [2, Proposition
56.2]. If X is perfect i.e., every open set of X is an F,-set, then X has the
property P*.

LEMMA 6. If X is a P-space and Y 1is a strong X-space, then XXY 1is
countably metacompact.

Proor. Let {U;: j&N} be an arbitrary increasing countable open cover
of XXY. As stated in the proof of it suffices to prove that there
exists a countable refinement by F,-sets. Let {F(ay, -, ay): ay, =, a;= 2},
ieN be a strong X-net of ¥ described in Lemma 1. Put

Glay, -+, a;))="J{P: P is an open set of X such that
PXF(ay, =, a)ZU;}.
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Then
¢)) Glay, -+, a) XF(ay, -+, a)) CU;

and
G(au ai)c G(al: oy G, ai+1) .

Since X is a P-space, there exists a collection {Clay, -, ai): a, =+, a;€82,
1N} of F,-sets of X such that

(2) C(ab ) ai)c G(aly Tt ai) )
@3 X=UClay, =, @) it X=\Glay, -, a).

Put for each ieN
Vi=U{llay, -, a)XFlay, =+, a): ay, =, a; €2},

Then each V; is an F,-set satisfying V,CU; because of (1) and (2). It remains
to prove that {V,} covers XXY. Let (p,q) be an arbitrary point of XXY.
Let {a;: 1=N} be a sequence such that {F(a,, -, a;): 1N} satisfies (iv) in

Lemma 1. To see X:;QIG(al, -+, ay), let xeX. Since (x, C(g)) is countably

compact, (x, C(¢))CU; for some j. Moreover the compactness of (x, C(q)) im-
plies that there exist open sets U, V of X, Y, respectively, such that

(x, C(gHcUXVCU;.
Then there exists an i N with C(¢)CF(ay, -+, a;) C V. In either case of i=j
and i<j, x belongs to some G(ay, -+, a;). This implies that X= 91 Clay, -, ay)
by (3). Thus xeC(ay, -+, a;) for some i, proving
(P, pellay, -, ay) X Flay, -, a;)CV;.

COROLLARY. If X is a first countable P-space and Y is a X-space, then
XXY is countably metacompact.
Proor. We modify the preceding proof slightly. Suppose (p, C(¢))CU,;.
Let {V.(p): n=N} be a local base of p in X. Put for each neN
W,=\U{P: P is an open set of ¥ such that V,(p)x PCU}}.
Then {W,: neN} covers C(q). Since C(q) is countably compact, there exists
a finite subcover {W,,: j=1, -, k}. Take U, V as follows:

U=A\Vap), V=UW,,.
Jj=1 j=1

Then obviously we have

(p, CleHcUxVcU;.
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THEOREM 3. If X is a metacompact space with the property P* and Y 1is
an almost expandable strong 2-space, then XXY is metacompact.

Proor. Let F,={F(ay, -, a;): ay, -, ;€02}, 1€N, be a X-net de-
scribed in Lemma 1. Since Y is almost expandable, for each i there exists a
point-finite open collection 4 ,={H(ay, -+, a;): ay, -, a; £} such that

F(ah Tty ai)CH(aI) B al)

for each sequence a;, s, --- €. Taking [Lemma 6| into consideration, it suffices
to prove that every open cover of XX Y can be refined by a ¢-point-finite open
cover. Let ¢ be an arbitrary open cover of XXY, and 4¢ the collection of all
finite unions of members of ¢. For each ay, -+, a; €2, let W(ay, -+, a;) be
the maximal collection of basic open sets U;X V; such that

CW(aly Tty ai): {U,ZX VZ: ZeA(“l; Sty ai)})

(1) F(al; Tt ai)CVXCH<a1: Tty ai):
2) Way, -, a;)<da.
Set

U(alr ) ai):U{UZ: ZEA(ah Tt ai)}-
Then by maximality of W (ay, -+, a;),
(3) U(alr Tty ai)CU(aly T, O, ai+1)

for each sequence a,, as, --- €£2. Since X has the property P*, there exists an
F,set Cla,, -+, a;) such that

4) Clay, =+, a;))CU(ay, -+, ay)

for each sequence a;, a,, - £ and
(5) X= Q IntClay, -, &) if X= C;J Ulay, -, ).

Since C{ay, -+, a;) is an F,-set of a metacompact space, {U;N\Cla,, -+, a;):
i€ A(ay, -+, a;)} can be refined by a point-finite open (in Clay, -+, a;)) cover
{E}: 2e A(ay, -+, a;)} such that

(6) EicUnClay, -+, a;)

for each 4. Put
E;=IntC(ay, --- a;) N E},
Y(ay, -, a)={E;XV: 1€ Aay, -+, a:)},
@, =I{V(ay, =, a;): ay, -, ; €8},
w=U{w,: ieN}.
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We shall show that < has the following properties :
Claim 1: <V is an open cover of XXY.
Let (x, y) be any point in XXY. Let {a;:i=N} be a sequence satisfying

(iv) in Cemma 1. In this case, we firstly show that X= QU(&;, -+, ay). Let

pe X. Since (p, C(»)) is compact, there exists G’'e4g¢ with (p, C(y))CG'.
Because of compactness of C(y) there exist open sets U, V of X, Y, respectively,
such that

(p, Cly)cUXVCG'.
Take an i N such that F(ay, -, a;)CV. Put U=U,; and VH(a,, -+, a;)
=V;. Then U, X V;eW(a,, -, a;), proving X:gU(al, -+« , a;). Therefore
by (5) we have X:glnt Clay, -, ;). Thus xeIntC(ay, -+, a;) for some 1.

From this x= E; for some A€ Ala,, -+, a;). Since yeF(ay, -, a;)TV;
CH(aI; Tty ai)’
(xx y)EElXVI

for ic A(ay, -+, ;). Hence <V is a cover of XXY.

Claim 2: <V is a refinement of 4g.

This follows from (2) and (4).

Claim 3: <V is a o-point-finite collection in XX Y.

To see this, we shall show that each </, is point-finite in XXY. Let
(x, y)eXXY. Since 4; is point-finite in Y, 3y belongs to at most finitely
many members H(ay, -+, a;). For each sequence a, ---, a;, there exists a
finite subset A a;, -+, a;) of Alay, -+, a;) such that x€E,; implies 1€ A ay,
-, a;). Then (x, y)eE; XV, implies 2 UA(a,, -+, a;), where the union is a
finite union. Hence (x, y) belongs to at most finitely many members of <V,.

Thus we have a ¢-point-finite open refinement <V of 4¢. For each Ve,
take G(V)e4dg with VC G(V). Denote G(V) by

G(V)=G(V)U --- UG (V), G{(V)eg.
Put

W={GV)N\V: j=1, -+, kb, VEV}.

Then 9 is a o-point-finite open refinement of the original cover.

COROLLARY 1. If X is a metacompact space with the property P* and Y
is a metacompact 2-space, then XX Y is metacompact.

PrROOF. Recall that metacompactness is equivalent with @-refinability plus
almost expandability, and every f-refinable countably compact space is compact.

COROLLARY 2. If X is a metacompact and perfect space and Y is an almost
expandable strong X-space, then XXY is metacompact.

PROOF. Perfectness implies that every closed set is a Gs-set, and therefore



270 T. MizokAMI

X has the property P*.

COROLLARY 3 (Kramer [3, Theorem 4.47]). If X is a metacompact perfect
space and Y is a o-space with a o-point-finite base, then XXY is metacompact.y

Proor. This follows immediately from and the above corollary.

THEOREM 4. [If X is a subparacompact P-space and Y is a regular strong
2-space, then XXY is subparacompact.

Proor. Let F,={F(ai, -+, ;) ai, *, a; =82}, i€N be a strong Y-net of
Y described in Lemma 1. Suppose we are given an arbitrary open cover ¢ of
XXY. Since Y is regular, there exists an open cover {U;XV;: A4} of
XXY such that each U;XV;CG for some Gea.

Let 4 be the totality of finite subsets of /4. For each d=4 we put

Ps=n{U,: A0} Qs=U{V,: 1€4}
WJZPJXQJ.

-Put for each sequence ay, -+, a;€2 and 64,
@)) Glay, -+, a;: 6)=\J{P: P is an open set of X such that

PXF<a11 ) ai)CW5}-
Glay, -+, a)=\I{G(ay, -, a;: 0): 64},

Then
G(aly Tty ai)cc(alx t, O, ai+1)

for each sequence ay, -+, a;, a;+; 2. By assumption, there exists a collection
{H(ay, -+, a;)} of closed sets satisfying

H(al, Tty ai)CG(ah Tt ai)

for each sequence ay, -+, a; =82 and
) X=U Glay, ~, a)  implies X=\J H(a,, -, ;).

Since every closed set is also subparacompact,
{G(al) ey, O 5)ﬂH(a1, Tty ai): 664}
can be refined by a o-discrete closed (in X) refinement

'—K(al’ R ai)‘:u{‘xj(ah E) ai): ]EN}J
where
ch(aly Tty az): {Kj(al, e, Uyt 5)' BGA}

is a discrete closed collection of X such that

(3) Kj(al, iy, Ol 5)CG(Q’1, tt, Qg 5)/\H(a1, Tty ai)
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for each sequence a;, -+, a;€£2, jeN and d=4. Put

Liay, =, a)y={Kfay, =, a;: 0)XF(ay, -, a;))N\V:
A€d, o4},

Li="I{Lfay, =, a;): ay, =, ;E02}

L=U{Ly: j,ieN}.

Claim 1. L is a cover of XXY.
Let (x, ¥) be any point of XXY. Take a sequence {wa;: i=N} such that

(iv) in is satisfied. We can show that X= 916(0‘1’ o, a;). Suppose

peX. Then (p, C(y)) is covered by a finite collection of &, and therefore
(p, C(Y)CTPsXQs=W; for some d=4. Take an 1N with

C(y)CF(al? Tty ai)CQ5~
Thus we have

(P; C(y))CP5><F(a1’ ) ai)CWE:
which implies

reClay, -, a;: 0)CGlay, -+, ay).
By (2),

X= Hla, -, a.
Thus there exists a jeN with xeH(a,, -, a;). In this case we have

x€ Knlay, -+, aj: 0).
Observe that for this

F(ah Tty aj>:U {F(ab Tty aj)mvl : )‘EB}

Thus for some A1<d

JYEF(alr ) aj)ﬂ Vl .
These mean

(x; y>EKm(a1) oy, O B)XF(all tty aj)ﬂV,z ’

proving that £ is a cover of XXY,
Claim 2: _r is a refinement of &.
This follows from the fact that

Kfay, -, a;: 0)XF(ay, , a)NViCP;XV,cU,xV,cG

for some Geg.
Claim 3: _£ is a c¢-locally finite closed collection of XXY.
This follows from the local finiteness of each &; and discreteness of K (ay,
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) al)'

Thus we get a o-locally finite closed refinement of &.
COROLLARY. If X is a subparacompact and perfect space and Y is a regular

strong X-space, then XXY is subparacompact.

[1]

[2]
(3]

(4]
(5]
[6]

This is a refinement of Kramer [3, Theorem 4.3].
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