A characterization of crossed products of factors by discrete outer automorphism groups

By Marie CHODA

(Received June 30, 1977) (Revised May 4, 1978)

§1. Introduction.

Let \mathcal{A} be a factor, \mathcal{G} a discrete countable group and α a faithful representation of \mathcal{Q} into $Out(\mathcal{A})$ (the group of all outer automorphisms of \mathcal{A}). Then it is known that there is a faithful normal expectation of the crossed product $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha)$ of \mathcal{A} by \mathcal{G} onto \mathcal{A} and that the relative commutant $\mathcal{A}' \cap \mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha)$ is the scalar multiples of the identity operator (cf, [3]; Lemma 4]). In [1], we considered the crossed product $\mathcal{R}(\mathcal{Q}, \mathcal{A}, \alpha, v)$ of a general von Neumann algebra \mathcal{A} by a discrete countable group \mathcal{G} with a factor set $\{v(g, h); g, h \in \mathcal{G}\}$ of unitaries in \mathcal{A} and showed that there is a faithful normal expectation of $\mathfrak{R}(\mathfrak{G}, \mathfrak{A}, \alpha, v)$ onto \mathfrak{A} , where α is a semirepresentation of \mathfrak{G} into $Aut(\mathfrak{A})$ (the group of all automorphisms of \mathcal{A}). Using this expectation, we can show that the relative commutant of \mathcal{A} in $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ is contained in the center of \mathcal{A} if $\alpha_g \ (g \neq 1)$ is freely acting on \mathcal{A} (Theorem 2), so that the relative commutant of a factor \mathcal{A} in $\mathcal{R}(\mathcal{Q}, \mathcal{A}, \alpha, v)$ is the scalar multiples of the identity operator if α is a semirepresentation of \mathcal{Q} into $Out(\mathcal{A})$ (Corollary 3). Is the converse of this result true? The purpose of this paper is to show that the converse of this result is true. That is, for a von Neumann algebra \mathcal{M} generated by the normalizer of a subfactor \mathcal{A} if there is a faithful normal expectation of \mathcal{M} onto $\mathcal A$ and the relative commutant of $\mathcal A$ in $\mathcal M$ is the scalar multiples of the identity operator, then there exists a discrete countable group \mathcal{G} such that \mathcal{M} is isomorphic to $\mathcal{R}(\mathcal{Q}, \mathcal{A}, \alpha, v)$ for some semirepresentation α of \mathcal{Q} into $Out(\mathcal{A})$ (Theorem 4).

§2. Crossed products with factor sets.

Let \mathcal{A} be a von Neumann algebra and \mathcal{Q} a countable discrete group. A mapping α of \mathcal{Q} into $Aut(\mathcal{A})$ is called a *semirepresentation* if, for each g and h in \mathcal{Q} , there exists an inner automorphism $\iota(g, h)$ of \mathcal{A} such that

(1)
$$\alpha_g \alpha_h = \alpha_{gh} \ell(g, h) \quad (g, h \in \mathcal{G}).$$

 $M. \ Choda$

Let α be a semirepresentation of \mathcal{G} into $Aut(\mathcal{A})$. A family $\{v(g, h); g, h \in \mathcal{G}\}$ of unitaries in \mathcal{A} is called a *factor set associated with* (\mathcal{G}, α) if it satisfies the following conditions:

(2)
$$Ad v(g, h) = \iota(g, h) \quad (g, h \in \mathcal{G})$$

and

(3)
$$v(g, hk)v(h, k)=v(gh, k)\alpha_k^{-1}(v(g, h)) \quad (g, h, k\in\mathcal{G}).$$

Let \mathcal{A} be a von Neumann algebra acting on a separable Hilbert space $\mathfrak{H}, \mathcal{G}$ a discrete countable group, α a semirepresentation of \mathcal{G} into $Aut(\mathcal{A})$, and $\{v(g, h); g, h \in \mathcal{G}\}$ a factor set of unitaries in \mathcal{A} associated with (\mathcal{G}, α) . Let $l^2(\mathfrak{H}, \mathcal{G})$ be the Hilbert space of all \mathfrak{H} -valued functions ξ on \mathcal{G} such that

$$\sum_{\mathbf{g}\in \mathcal{I}} \|\xi(g)\|^2 < +\infty.$$

For each x in \mathcal{A} and g in \mathcal{G} , we shall define operators $\pi_a(x)$ and $\rho(g)$ on $l^2(\mathfrak{H}, \mathcal{G})$ by

(4)
$$(\pi_a(x)\xi)(g) = \alpha_g^{-1}(x)\xi(g) \qquad (g \in \mathcal{G}, \xi \in l^2(\mathfrak{H}, \mathcal{G}))$$

and

(5)
$$(\rho(g)\xi)(h) = v(g, g^{-1}h)\xi(g^{-1}h) \qquad (h \in \mathcal{G}, \xi \in l^2(\mathfrak{H}, \mathcal{G})).$$

Then we have that π_{α} is a faithful normal representation of \mathcal{A} and ρ is a semirepresentation of \mathcal{G} into the group of unitaries on $l^{2}(\mathfrak{H}, \mathcal{G})$:

(6)
$$\rho(g)\rho(h) = \rho(gh)\pi_{\alpha}(v(g, h)) \quad (g, h \in \mathcal{G}).$$

Also π_{α} and ρ satisfy the following condition :

(7)
$$\pi_{\alpha}(\alpha_{g}(x)) = \rho(g)\pi_{\alpha}(x)\rho(g)^{*} \quad (g \in \mathcal{G}, x \in \mathcal{A}).$$

The von Neumann algebra on $l^2(\mathfrak{H}, \mathcal{G})$ generated by $\pi_{\alpha}(\mathcal{A})$ and $\rho(\mathcal{G})$ is called the crossed product of \mathcal{A} by \mathcal{G} with the factor set $\{v(g, h); g, h \in \mathcal{G}\}$ associated with (\mathcal{G}, α) and denoted by $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$. It is known that there exists a faithful normal expectation e of $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ onto $\pi_{\alpha}(\mathcal{A})$ such that $e(\rho(g))=0$ for all $g \ (\neq 1)$ in $\mathcal{G}([1; \text{Theorem 6}])$. Using this expectation, for each element x in $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$, we have so-called Fourier expansion of x.

LEMMA 1. Let \mathcal{A} be a von Neumann algebra and \mathcal{G} a discrete group. Then each x in $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ is expressed by the following form;

$$x = \sum_{g \in G} x(g) \rho(g)$$
 $(x(g) \in \pi_{\alpha}(\mathcal{A}))$ in the σ -strong topology.

PROOF. Let *e* be a faithful normal expectation of $\Re(\mathcal{Q}, \mathcal{A}, \alpha, v)$ onto $\pi_{\alpha}(\mathcal{A})$ such that $e(\rho(g))=0$ $(g \neq 1)$. A faithful normal state ϕ on $\pi_{\alpha}(\mathcal{A})$ is extended to $\Re(\mathcal{Q}, \mathcal{A}, \alpha, v)$ by $\sigma = \phi \cdot e$. Let \Re be the Gelfand-Segal representation space of

 $\pi_{\alpha}(\mathcal{A})$ by σ . Then the representation space of $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ by σ is $l^{2}(\mathfrak{R}, \mathcal{G})$. Since every element of $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ can be considered as an element of $l^{2}(\mathfrak{R}, \mathcal{G})$, it follows that every x in $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ has the Fourier expansion

$$x = \sum_{g \in \mathcal{G}} x(g) \rho(g) \qquad (x(g) \in \mathbb{R}).$$

It is sufficient to show that for each g in \mathcal{Q} , x(g) belongs to $\pi_{\alpha}(\mathcal{A})$. By the property of the expectation e of $\mathcal{R}(\mathcal{Q}, \mathcal{A}, \alpha, v)$ onto $\pi_{\alpha}(\mathcal{A})$, e induces the projection e of $l^{2}(\mathfrak{R}, \mathcal{Q})$ onto \mathfrak{R} such that

$$e(x) = e(\sum_{g \in \mathcal{G}} x(g)\rho(g)) = x(1)\rho(1) \qquad (x(g) \in \Re).$$

Put g=h=1 in the equality (3), then we have that

 $v(1, k)v(1, k) = v(1, k)\alpha_k^{-1}(v(1, 1))$ $(k \in \mathcal{G}),$

so that

 $v(1, k) = \alpha_k^{-1}(v(1, 1))$ $(k \in \mathcal{G}).$

By the definition of π_{α} and ρ , it follows that

$$(\rho(1)\xi)(k) = v(1, k)\xi(k) = \alpha_k^{-1}(v(1, 1))\xi(k)$$

= $(\pi_{\alpha}(v(1, 1))\xi)(k) \quad (k \in \mathcal{G}, \xi \in l^2(\mathfrak{H}, \mathcal{G})).$

Hence we have that $\rho(1) = \pi_{\alpha}(v(1, 1))$.

Therefore we have that for every element $\sum_{g \in \mathcal{Q}} x(g)\rho(g)$ in $l^2(\Re, \mathcal{Q})$,

$$e(\sum_{g\in\mathcal{G}}x(g)\rho(g))=x(1)\pi_{\alpha}(v(1, 1)).$$

Let $x = \sum_{k \in \mathcal{G}} x(k)\rho(k)$ be an element in $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$. By the property (6) and (7), we have that

$$x \rho(g^{-1}) = \sum_{k \in \mathcal{G}} x(k) \rho(kg^{-1}) \pi_{\alpha}(v(k, g^{-1}))$$
$$= \sum_{k \in \mathcal{G}} x(k) \pi_{\alpha}(\alpha_{kg}^{-1}(v(k, g^{-1}))) \rho(kg^{-1}) .$$

Thus we have that for each g in \mathcal{G}

$$e(x\rho(g^{-1})) = x(g)\pi_{\alpha}(\alpha_{1}(v(g, g^{-1}))\rho(1) = x(g)\pi_{\alpha}(\alpha_{1}(v(g, g^{-1}))v(1, 1)),$$

which implies that

$$x(g) = e(x \rho(g^{-1})) \pi_{\alpha}(v(1, 1)^* \alpha_1(v(g, g^{-1})^*)) \qquad (g \in \mathcal{G}).$$

Hence x(g) belongs to $\pi_{\alpha}(A)$.

THEOREM 2. Let \mathcal{A} be a von Neumann algebra and \mathcal{G} a discrete group. For a semirepresentation α of \mathcal{G} into $Aut(\mathcal{A})$, if every $\alpha_g(g \neq 1)$ is freely acting on \mathcal{A} , then the relative commutant of $\pi_{\alpha}(\mathcal{A})$ in $\mathfrak{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ is contained in the center of $\pi_{\alpha}(\mathcal{A})$. PROOF. Let x be an element in $\pi_a(\mathcal{A})' \cap \mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$. By Lemma 1, x is expanded by the following form; $x = \sum_{g \in \mathcal{J}} x(g)\rho(g) \ (x(g) \in \pi_a(\mathcal{A}))$. Then we have that, for any a in $\pi_a(\mathcal{A})$,

$$\sum_{g \in \mathcal{G}} a x(g) \rho(g) = \sum_{g \in \mathcal{G}} x(g) \rho(g) a = \sum_{g \in \mathcal{G}} x(g) \alpha_g(a) \rho(g).$$

Therefore, $ax(g)=x(g)\alpha_g(a)$ for every g in \mathcal{G} and a in $\pi_{\alpha}(\mathcal{A})$. On the other hand, for $g \ (g \neq 1)$, α_g is freely acting. Hence we have that x(g)=0 for all $g \ (g \neq 1)$. Thus x=x(1) is contained in the center of $\pi_{\alpha}(\mathcal{A})$.

For an automorphism of a factor, to be free is equivalent to be outer. So, we have the following corollary:

COROLLARY 3. For a factor \mathcal{A} and a discrete group \mathcal{G} , if α is a semirepresentation of \mathcal{G} into $Out(\mathcal{A})$, then the relative commutant of $\pi_{\alpha}(\mathcal{A})$ in $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ is the scalar multiples of the identity.

In the case where \mathcal{A} is a II₁-factor and α the natural mapping of $Aut(\mathcal{A})$ onto $Out(\mathcal{A})$, Corollary 3 is showed in [4; Theorem 1].

We shall consider the converse version of Corollary 3.

Let \mathcal{M} be a von Neumann algebra and \mathcal{A} a von Neumann subalgebra of \mathcal{M} . The set {unitary $u \in \mathcal{M}$; $u \mathcal{A} u^* = \mathcal{A}$ } is called the normalizer of \mathcal{A} in \mathcal{M} and denoted by $N(\mathcal{A})$.

THEOREM 4. Let \mathcal{M} be a von Neumann algebra acting on a separable Hilbert space and \mathcal{A} a subfactor of \mathcal{M} . If \mathcal{M} and \mathcal{A} satisfy the following conditions;

(8) \mathcal{M} is generated by $N(\mathcal{A})$,

(9) the relative commutant of \mathcal{A} in \mathcal{M} is the scalar multiples of the identity and

(10) there is a faithful normal expectation of \mathcal{M} onto \mathcal{A} ,

then \mathcal{M} is isomorphic to $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ for some discrete countable group \mathcal{G} and some semirepresentation α of \mathcal{G} into $Out(\mathcal{A})$.

PROOF. The von Neumann algebra \mathcal{M} is acting on a separable Hilbert space, so the unit ball of \mathcal{M} is a σ -strongly complete separable metrizable space. Hence there is a countable set S dense in $N(\mathcal{A})$. Let $u(\mathcal{A})$ be the group of all unitaries in \mathcal{A} and \mathcal{K} the group generated by S and $u(\mathcal{A})$. Let \mathcal{Q} be the countable factor group $\mathcal{K}/u(\mathcal{A})$ of \mathcal{K} by the normal subgroup $u(\mathcal{A})$. For each g in \mathcal{Q} , let $\rho(g)$ be a representative element of g. Then for each pair g, hin \mathcal{Q} , there is a unitary v(g, h) in \mathcal{A} such that

$$\rho(g)\rho(h) = \rho(gh)v(g, h)$$
.

For each g in \mathcal{G} , let α_g be an automorphism of \mathcal{A} such that

$$\alpha_g(a) = \rho(g) a \rho(g)^* \quad (a \in \mathcal{A}).$$

260

Then, for each $g \ (\neq 1)$ in \mathcal{Q} , α_g is an outer automorphism of \mathcal{A} . In fact, if α_g is inner, there is a unitary v in \mathcal{A} such that $\alpha_g(a) = vav^*$ for all a in \mathcal{A} . Then $v^*\rho(g)$ is contained in the relative commutant of \mathcal{A} in \mathcal{M} . By the condition (9), $\rho(g) = \mu v$ for some scalar μ , so that $\rho(g)$ belongs to \mathcal{A} . Hence g is the unit of \mathcal{Q} .

Thus α is a semirepresentation of \mathcal{G} into $Out(\mathcal{A})$ and v(g, h) is a factor set associated with (\mathcal{G}, α) . Since, for each $g \ (\neq 1)$ in \mathcal{G}, α_g is an outer automorphism, it follows that $e(\rho(g))=0$ for each $g \ (\neq 1)$ in \mathcal{G} . Therefore, by [1; Theorem 7], \mathcal{M} is isomorphic to $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$.

The condition (9) is equivalent to that $\mathcal{A}' \cap \mathcal{M} \subset \mathcal{A}$. In the case where \mathcal{A} is a maximal abelian subalgebra of \mathcal{M} , J. Feldman and C. C. Moore obtained a result similar to Theorem 4 by giving a construction of a von Neumann algebra from an abelian von Neumann algebra [2; Theorem 1].

The author would like to express her thanks to Professors J. Feldman and C. C. Moore for making her to turn her attension to their Theorem at the 2-nd Japan-U. S. Seminar on C^* -algebras and Applications to Physics in U. C. L. A. in March of 1977.

References

- [1] M. Choda, Some relations of II_{I} -factors on free groups, to appear in Math. Japon.
- [2] J. Feldman and C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras, II, Preprint.
- [3] Y. Haga and Z. Takeda, Correspondence between subgroups and subalgebras in a cross product von Neumann algebra, Tôhoku Math. J., 24 (1972), 167-190.
- [4] M. Nakamura and Z. Takeda, On the extensions of finite factors, I Proc. Japan Acad., 35 (1959), 149-154.

Marie CHODA

Department of Mathematics Osaka Kyoiku University Tennoji, Osaka Japan