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\S 1. Introduction.

Let $\mathcal{A}$ be a factor, $\mathcal{G}$ a discrete countable group and $\alpha$ a faithful representa-
tion of $\mathcal{G}$ into Out$(d)$ (the group of all outer automorphisms of $d$ ). Then it
is known that there is a faithful normal expectation of the crossed product
$\mathcal{R}(\mathcal{G}, A, \alpha)$ of $d$ by $\mathcal{G}$ onto $\leftrightarrow q$ and that the relative commutant $\llcorner fl^{\prime}\cap \mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha)$

is the scalar multiples of the identity operator (cf, [3; Lemma 4]). In [1], we
considered the crossed product $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ of a general von Neumann algebra
$\llcorner fl$ by a discrete countable group $\mathcal{G}$ with a factor set $\{v(g, h);g, h\in \mathcal{G}\}$ of
unitaries in $\llcorner fl$ and showed that there is a faithful normal expectation of
$\mathcal{R}(\mathcal{G}, d, \alpha, v)$ onto $\leftrightarrow q$ where $\alpha$ is a semirepresentation of $\mathcal{G}$ into $Aut(\llcorner fl)$ (the

group of all automorphisms of $d$). Using this expectation, we can show that
the relative commutant of $A$ in $\mathcal{R}(\mathcal{G}, \leftrightarrow q\alpha, v)$ is contained in the center of UZ
if $\alpha_{g}(g\neq 1)$ is freely acting on $\mathcal{A}$ (Theorem 2), so that the relative commutant
of a factor UZ in $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ is the scalar multiples of the identity operator
if $\alpha$ is a semirepresentation of $\mathcal{G}$ into Out$(d)$ (Corollary 3). Is the converse of
this result true? The purpose of this paper is to show that the converse of this
result is true. That is, for a von Neumann algebra $\mathcal{M}$ generated by the nor-
malizer of a subfactor $\mathcal{A}$ if there is a faithful normal expectation of $\mathcal{M}$ onto
$\mathcal{A}$ and the relative commutant of UZ in $\mathcal{M}$ is the scalar multiples of the identity
operator, then there exists a discrete countable group $\mathcal{G}$ such that $\mathcal{M}$ is iso-
morphic to $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ for some semirepresentation $\alpha$ of $\mathcal{G}$ into Out $(d)$

(Theorem 4).

\S 2. Crossed products with factor sets.

Let $d$ be a von Neumann algebra and $\mathcal{G}$ a countable discrete group. A
mapping $\alpha$ of $\mathcal{G}$ into $Aut(d)$ is called a semirepresentation if, for each $g$ and
$h$ in $\mathcal{G}$, there exists an inner automorphism $\iota(g, h)$ of $\mathcal{A}$ such that

(1) $\alpha_{g}\alpha_{h}=\alpha_{gh}\iota(g, h)$ $(g, h\in \mathcal{G})$ .
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Let $\alpha$ be a semirepresentation of $\mathcal{G}$ into $Aut(d)$ . A family $\{v(g, h);g, h\in \mathcal{G}\}$

of unitaries in $d$ is called a factor set associated with $(\mathcal{G}, \alpha)$ if it satisfies the
following conditions:

(2) $Adv(g, h)=c(g, h)$ $(g, h\in \mathcal{G})$

and

(3) $v(g, hk)v(h, k)=v(gh, k)\alpha_{k}^{-1}(v(g, h))$ $(g, h, k\in \mathcal{G})$ .

Let $d$ be a von Neumann algebra acting on a separable Hilbert space $\mathfrak{H},$ $\mathcal{G}$

a discrete countable group, $\alpha$ a semirepresentation of $\mathcal{G}$ into $Aut(d)$ , and
$\{v(g, h); g, h\in \mathcal{G}\}$ a factor set of unitaries in $\llcorner fl$ associated with $(\mathcal{G}, \alpha)$ .
Let $l^{2}(\mathfrak{H}, \mathcal{G})$ be the Hilbert space of all $\mathfrak{H}$ -valued functions $\xi$ on $\mathcal{G}$ such that

$\sum_{g\in J}\Vert\xi(g)\Vert^{2}<+\infty$ .

For each $x$ in $\leftrightarrow q$ and $g$ in $\mathcal{G}$ , we shall define operators $\pi_{\alpha}(x)$ and $\rho(g)$ on
$l^{2}(\mathfrak{H}, \mathcal{G})$ by

(4) $(\pi_{\alpha}(x)\xi)(g)=\alpha_{g}^{-1}(x)\xi(g)$ $(g\in \mathcal{G}, \xi\in l^{2}(\mathfrak{H}, \mathcal{G}))$

and

(5) $(\rho(g)\xi)(h)=v(g, g^{-1}h)\xi(g^{-1}h)$ $(h\in \mathcal{G}, \xi\in l^{2}(\mathfrak{H}, \mathcal{G}))$ .

Then we have that $\pi_{a}$ is a faithful normal representation of $\mathcal{A}$ and $\rho$ is a
semirepresentation of $\mathcal{G}$ into the group of unitaries on $l^{2}(\mathfrak{H}, \mathcal{G})$ :

(6) $\rho(g)\rho(h)=\rho(gh)\pi_{a}(v(g, h))$ $(g, h\in \mathcal{G})$ .
Also $\pi_{\alpha}$ and $\rho$ satisfy the following condition:

(7) $\pi_{\alpha}(\alpha_{g}(x))=\rho(g)\pi_{a}(x)\rho(g)^{*}$ $(g\in \mathcal{G}, x\in d)$ .
The von Neumann algebra on $l^{2}(\mathfrak{H}, \mathcal{G})$ generated by $\pi_{\alpha}(\mathcal{A})$ and $\rho(\mathcal{G})$ is

called the crossed Product of $\mathcal{A}$ by $\mathcal{G}$ with the factor set $\{v(g, h);g, h\in \mathcal{G}\}$ as-
sociated with $(\mathcal{G}, \alpha)$ and denoted by $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ . It is known that there
exists a faithful normal expectation $e$ of $\mathcal{R}(\mathcal{G}, \leftrightarrow q\alpha, v)$ onto $\pi_{a}(A)$ such that
$e(\rho(g))=0$ for all $g(\neq 1)$ in $\mathcal{G}$ ( $[1$ ; Theorem 6]). Using this expectation, for each
element $x$ in $\mathcal{R}(\mathcal{G}, \leftrightarrow q\alpha, v)$ , we have so-called Fourier expansion of $x$ .

LEMMA 1. Let $d$ be a von Neumann algebra and $\mathcal{G}$ a discrete group. Then
each $x$ in $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ is expressed by the following form;

$x=\sum_{g\in \mathcal{G}}x(g)\rho(g)$ $(x(g)\in\pi_{a}(d))$ in the $\sigma$ -strong topology.

PROOF. Let $e$ be a faithful normal expectation of $\mathcal{R}(\mathcal{G}, \llcorner fl\alpha, v)$ onto $\pi_{\alpha}(A)$

such that $e(\rho(g))=0(g\neq 1)$ . A faithful normal state $\phi$ on $\pi_{\alpha}(d)$ is extended to
$\mathcal{R}(\mathcal{G}, d, \alpha, v)$ by $\sigma=\phi\cdot e$ . Let $\mathfrak{K}$ be the Gelfand-Segal representation space of



Characterization of crossed prOducts of factors 259

$\pi_{a}(d)$ by $\sigma$ . Then the representation space of $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ by $\sigma$ is $l^{2}(\mathfrak{K}, \mathcal{G})$ .
Since every element of $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ can be considered as an element of
$l^{2}(\mathfrak{K}, \mathcal{G})$, it follows that every $x$ in $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ has the Fourier expansion

$x=\sum_{g\in g}x(g)\rho(g)$
$(x(g)\in \mathfrak{K})$ .

It is sufficient to show that for each $g$ in $\mathcal{G},$ $x(g)$ belongs to $\pi_{\alpha}(\mathcal{A})$ . By the
property of the expectation $e$ of $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ onto $\pi_{a}(d),$ $e$ induces the projec-
tion $e$ of $l^{2}(\mathfrak{K}, \mathcal{G})$ onto $\mathfrak{K}$ such that

$e(x)=e(\sum_{g\in \mathcal{G}}x(g)\rho(g))=x(1)\rho(1)$
$(x(g)\in \mathfrak{K})$ .

Put $g=h=1$ in the equality (3), then we have that

$v(1, k)v(1, k)=v(1, k)\alpha_{k}^{-1}(v(1,1))$ $(k\in \mathcal{G})$ ,
so that

$v(1, k)=\alpha_{k}^{-1}(v(1,1))$ $(k\in \mathcal{G})$ .
By the definition of $\pi_{a}$ and $\rho$ , it follows that

$(\rho(1)\xi)(k)=v(1, k)\xi(k)=\alpha_{k^{-1}}(v(1,1))\xi(k)$

$=(\pi_{a}(v(1,1))\xi)(k)$ $(k\in \mathcal{G}, \xi\in l^{2}(\mathfrak{H}, \mathcal{G}))$ .
Hence we have that $\rho(1)=\pi_{a}(v(1,1))$ .

Therefore we have that for every element $\sum_{g\in \mathcal{G}}x(g)\rho(g)$ in $l^{2}(\mathfrak{K}, \mathcal{G})$ ,

$e(\sum_{g\in \mathcal{G}}x(g)\rho(g))=x(1)\pi_{\alpha}(v(1,1))$ .
Let $x=\sum_{k\in g}x(k)\rho(k)$ be an element in $\mathcal{R}(\mathcal{G}, \leftrightarrow q\alpha, v)$ . By the property (6) and (7),

we have that
$x\rho(g^{-1})=\sum_{k\in \mathcal{G}}x(k)\rho(kg^{-1})\pi_{\alpha}(v(k, g^{-1}))$

$=\sum_{k\in \mathcal{G}}x(k)\pi_{\alpha}(\alpha_{kg}^{-J}(v(k, g^{-1})))\rho(kg^{-1})$ .

Thus we have that for each $g$ in $\mathcal{G}$

$e(x\rho(g^{-1}))=x(g)\pi_{\alpha}(\alpha_{1}(v(g, g^{-1}))\rho(1)=x(g)\pi_{\alpha}(\alpha_{1}(v(g, g^{-1}))v(1,1))$ ,

which implies that

$x(g)=e(x\rho(g^{-1}))\pi_{\alpha}(v(1,1)^{*}\alpha_{1}(v(g, g^{-1})^{*}))$ $(g\in \mathcal{G})$ .
Hence $x(g)$ belongs to $\pi_{a}(A)$ .
THEOREM 2. Let UZ be a von Neumann algebra and $\mathcal{G}$ a discrete group.

For a semirepresentation $\alpha$ of $\mathcal{G}$ into $Aut(\mathcal{A})$, if every $\alpha_{g}(g\neq 1)$ is freely acting
on $d$ , then the relative commutant of $\pi_{\alpha}(\mathcal{A})$ in $\mathcal{R}(\mathcal{G}, A, \alpha, v)$ is contained in
the center of $\pi_{\alpha}(d)$ .
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PROOF. Let $x$ be an element in $\pi_{\alpha}(A)^{\prime}\cap \mathcal{R}(\mathcal{G}, d, \alpha, v)$ . By Lemma 1, $x$

is expanded by the following form; $x=$ $\sum_{\overline{d},g\in}x(g)\rho(g)(x(g)\in\pi_{\alpha}(d))$ . Then we

have that, for any $a$ in $\pi_{\alpha}(\mathcal{A})$ ,

$\sum_{g\in \mathcal{G}}$ a $x(g)\rho(g)=\sum_{g\in \mathcal{G}}x(g)\rho(g)a=\sum_{g\in \mathcal{G}}x(g)\alpha_{g}(a)\rho(g)$ .

Therefore, $ax(g)=x(g)\alpha_{g}(a)$ for every $g$ in $\mathcal{G}$ and $a$ in $\pi_{a}(d)$ . On the other
hand, for $g(g\neq 1),$ $\alpha_{g}$ is freely acting. Hence we have that $x(g)=0$ for all
$g(g\neq 1)$ . Thus $x=x(1)$ is contained in the center of $\pi_{\alpha}(d)$ .

For an automorphism of a factor, to be free is equivalent to be outer. So,
we have the following corollary:

COROLLARY 3. For a factor $d$ and a discrete group $\mathcal{G}$ , if $\alpha$ is a semire-
presentation of $\mathcal{G}$ into Out $(\leftrightarrow q)$, then the relative commutant of $\pi_{\alpha}(d)$ in
$\mathcal{R}(\mathcal{G}, d, \alpha, v)$ is the scalar multiPles of the identity.

In the case where UZ is a $II_{1}$ -factor and $\alpha$ the natural mapping of $Aut(d)$

onto Out $(A)$ , Corollary 3 is showed in [4; Theorem 1].

We shall consider the converse version of Corollary 3.
Let $\mathcal{M}$ be a von Neumann algebra and $d$ a von Neumann subalgebra of

$\mathcal{M}$ . The set {unitary $u\in \mathcal{M};udu^{*}=d$ } is called the normalizer of $d$ in $\mathcal{M}$

and denoted by $N(d)$ .
THEOREM 4. Let $\mathcal{M}$ be a von Neumann algebra acting on a separable

Hilbert space and $d$ a subfactor of $\mathcal{M}$ . If $\mathcal{M}$ and $d$ satisfy the following
conditions;

(8) $\mathcal{M}$ is generated by $N(d)$ ,
(9) the relative commutant of $\mathcal{A}$ in $\mathcal{M}$ is the scalar multiples of the identity

and
(10) there is a faithful normal exPectation of $\mathcal{M}$ onto $\mathcal{A}$ ,

then $\mathcal{M}$ is isomorphic to $\mathcal{R}(\mathcal{G}, \mathcal{A}, \alpha, v)$ for some discrete countable group $\mathcal{G}$ and
some semirepresentation $\alpha$ of $\mathcal{G}$ into Out $(\mathcal{A})$ .

PROOF. The von Neumann algebra $\mathcal{M}$ is acting on a separable Hilbert
space, so the unit ball of $\mathcal{M}$ is a $\sigma$ -strongly complete separable metrizable space.
Hence there is a countable set $S$ dense in $N(d)$ . Let $u(\approx q)$ be the group of
all unitaries in $d$ and $JC$ the group generated by $S$ and $u(d)$ . Let $\mathcal{G}$ be the
countable factor group $JC/u(d)$ of $<X$ by the normal subgroup $u(\leftrightarrow q)$ . For each
$g$ in $\mathcal{G}$, let $\rho(g)$ be a representative element of $g$ . Then for each pair $g,$

$h$

in $\mathcal{G}$, there is a unitary $v(g, h)$ in $d$ such that

$\rho(g)\rho(h)=\rho(gh)v(g, h)$ .
For each $g$ in $\mathcal{G}$, let $\alpha_{g}$ be an automorphism of $A$ such that

$\alpha_{g}(a)=\rho(g)a\rho(g)^{*}$ $(a\in d)$ .



Characterization of crossed products of factors 261

Then, for each $g(\neq 1)$ in $\mathcal{G},$
$\alpha_{g}$ is an outer automorphism of $\mathcal{A}$ . In fact,

if $\alpha_{g}$ is inner, there is a unitary $v$ in $d$ such that $\alpha_{g}(a)=vav^{*}$ for all $a$ in $\llcorner fl$ .
Then $v^{*}\rho(g)$ is contained in the relative commutant of UZ in $\mathcal{M}$ . By the
condition (9), $\rho(g)=\mu v$ for some scalar $\mu$ , so that $\rho(g)$ belongs to $d$ . Hence
$g$ is the unit of $\mathcal{G}$ .

Thus $\alpha$ is a semirepresentation of $\mathcal{G}$ into Out $(\mathcal{A})$ and $v(g, h)$ is a factor
set associated with $(\mathcal{G}, \alpha)$ . Since, for each $g(\neq 1)$ in $\mathcal{G},$

$\alpha_{g}$ is an outer automor-
phism, it follows that $e(\rho(g))=0$ for each $g(\neq 1)$ in $\mathcal{G}$ . Therefore, by [1;

Theorem 7], $\mathcal{M}$ is isomorphic to $\mathcal{R}(\mathcal{G}, d, \alpha, v)$ .
The condition (9) is equivalent to that $ A^{\prime}\cap \mathcal{M}\subset\leftrightarrow\emptyset$ . In the case where $\mathcal{A}$

is a maximal abelian subalgebra of $\mathcal{M}$ , J. Feldman and C. C. Moore obtained a
result similar to Theorem 4 by giving a construction of a von Neumann algebra
from an abelian von Neumann algebra [2; Theorem 1].

The author would like to express her thanks to Professors J. Feldman and
C. C. Moore for making her to turn her attension to their Theorem at the 2-nd
Japan-U. S. Seminar on $C^{*}$-algebras and Applications to Physics in U. C. L. A. in
March of 1977.

References

[1] M. Choda, Some relations of $II_{1}$-factors on free groups, to appear in Math. Japon.
[2] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von

Neumann algebras, II, Preprint.
[3] Y. Haga and Z. Takeda, Correspondence between subgroups and subalgebras in

a cross product von Neumann algebra, T\^ohoku Math. J., 24 (1972), 167-190.
[4] M. Nakamura and Z. Takeda, On the extensions of finite factors, I Proc. Japan

Acad., 35 (1959), 149-154.

Marie CHODA
Department of Mathematics
Osaka Kyoiku University
Tennoji, Osaka
Japan


	\S 1. Introduction.
	\S 2. Crossed products ...
	THEOREM 2. ...
	THEOREM 4. ...

	References

