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1. In this paper we try to construct fundamental units of real quadratic
number fields of certain type, and apply those results to the theory of diophan-
tine equations.

We take an odd positive integer $b$ and a square free odd positive integer
$D_{1}$ , and decompose the number

$D_{1}b^{2}+2=r^{2}D_{2}$ , (1)

where $D_{2}$ is square free and $r$ is a positive integer. Then $D_{2}$ satisfies the
congruence relation $D_{2}\equiv-D_{1}(mod 4)$, and $r$ is an odd positive integer. Put
$D_{0}=D_{1}D_{2}$ , and $4D_{0}=D$ . Then $D_{0}$ is square free and $D_{0}\equiv 3$ (mod4).

Here we define a number $\eta$ by

$\eta=(2(D_{1}b^{2}+1)+brD^{1/2})/2$ . (2)

Then $\eta$ is a unit of the real quadratic number field $Q(D^{1/2})$ . We put $\eta=[D_{1},$ $b$ ;
$+]$ . If we take the minus sign in (1) $(i. e. D_{1}b^{2}-2=r^{2}D_{2})$ , and proceed in a
similar way, we obtain the unit $(2(D_{1}b^{2}-1)+brD^{1/2})/2$ of $Q(D^{1/2})$ . We denote
this unit by $[D_{1}, b; -]$ .

Now we fix an odd positive integer $s$ and a square free odd positive integer
$D_{1}$ , and let the number $q$ run through all odd prime numbers.

Our main result is as follows.
THEOREM 1. If $q>s$ , then the unit $[D_{1}, sq;+]$ (or $[D_{1},$ $sq$ ; -]) is either

a fundamental unit or a pOwer of a unit $[D_{1}, s^{\prime} ; +]$ ( $[D_{1},$ $s^{\prime}$ ; -] respectively),
where $s^{\prime}$ is a divisor of $s$ .

In the following, we first prove Theorem 1, and study the excluding cases
of Theorem 1 more precisely (Theorem 2). In \S 5 we give two applications of
those results. In brief, they are

(A) The diophantine equation $D_{1}s^{2}X^{2}-D_{2}Y^{2}=2(or-2)$ has, excluding specjal
cases, at most one solution with a Prime number $X$ (Theorem 3).

(B) Let $d$ be the square free factor of $q^{2}\pm 2$ where $q$ is a prjme number.
If $d\neq 3$, then $d>\log q$ (Theorem 4).

We use the following notation:
$Q$, the field of rational numbers;
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$N$, the set of positive rational integers;
$(a, b)$ the greatest common divisor of $a$ and $b$ ;
$a|b$ means that $a$ divides $b$ .
2. For the proof of Theorem 1, we define some notations and prove some

lemmas.
Let $D_{0}$ be a square free positive integer, and $D_{0}\equiv 3(mod 4)$ . Put $4D_{0}=D$ .

Take some unit $\eta(>1)$ of $Q(D^{1/2})$ , and write $\eta=(T+UD^{1/2})/2$ . Then $T\in N$ and
$U\in N$. We call $T$ the $t$-part of the unit $\eta$ and $U$ the $u$-part of $\eta$ . Since the
norm of a unit of $Q(D^{1/2})$ is always 1, we have

$T^{2}-U^{2}D=4$ , or $U^{2}D=(T-2)(T+2)$ .
We assume that $U$ is an odd number, then $T\equiv 0(mod 4)$ , and we have $T-2$

$=2v^{2}D_{1}$ and $T+2=2w^{2}D_{2}$ , where $D_{1},$ $D_{2}$ are square free and $v,$ $w\in N$. In these
situations, we say that the unit $\eta$ is of the type $\{D_{1}, D_{2}\}$ .

LEMMA 1. Take a unit $\eta(>1)$ of $Q(D^{1/2})$ , whose $norm=1$ , and let $T_{n}$ and
$U_{n}$ be the $t$-part and the $u$-part of $\eta^{n}$ resPectively $(n\in N)$ . (We write $T_{1}=T$,
$U_{1}=U.)$

(i) If $n=2m-1$ , then $T_{n}-2=(T-2)((U_{m}+U_{m-1})/U)^{2}$ , and

$T_{n}+2=(T+2)((U_{m}-U_{m- 1})/U)^{2}$ . (3)

Here $(U_{m}+U_{m-1})/U$ and $(U_{m}-U_{m-1})/U$ are Positive integers.

(ii) If $n=2m$ , then $T_{n}-2=(T^{2}-4)(U_{m}/U)^{2}$ and $T_{n}+2=T_{m}^{2}$ . (4)

PROOF. Let $n=2m-1$ . Since Norm $(\eta^{m})=1,$ $T_{n}=\eta^{n}+\eta^{-n}$ and $U_{m}/U=(\eta^{m}$

$-\eta^{-m})/(\eta-\eta^{-1})\in N$. Hence $(T_{n}-2)/(T-2)=(\eta^{m}-\eta^{-m+1})^{2}/(\eta-1)^{2}$ and $(T_{n}$

$+2)/(T-2)=(\eta^{m}+\eta^{-m+1})^{2}/(\eta+1)^{2}$ . Thus we have (3). In case $n=2m,$ $(T_{n}-2)/$

$(T^{2}-4)=(\eta^{m}-\eta^{-m})^{2}/(\eta-\eta^{-1})^{2}=(U_{m}/U)^{2}$ and $T_{n}+2=(\eta^{m}+\eta^{-m})^{2}$ .
LEMMA 2. Let $D=4D_{0}$ , where $D_{0}$ is a square free positive integer and $D_{0}$

$\equiv 3(mod 4)$ . Assume that the $u$-part of a unit $\eta(>1)$ of $Q(D^{1/2})$ is an odd
integer. Then

(i) $\eta$ can not be the square of another unit of $Q(D^{1/2})$ .
(ii) If $\eta=\epsilon^{2m+1}(m\in N)$ , where $\epsilon$ is a unit of $Q(D^{1/2})$ , then the $u$-part of $\epsilon$

is also an odd integer.
(iii) If $\eta$ is a unit of type $\{D_{1}, D_{2}\}$ , then the type of $\epsilon$ is also $\{D_{1}, D_{2}\}$ .
PROOF. Let $\epsilon=(t+uD^{1/2})/2$ be a unit whose norm $=1$ , and write $\epsilon^{n}=(t_{n}$

$+u_{n}D^{1/2})/2$ . Then $u_{n}$ satisfies the following recurrent relations (cf. [1]).

$u_{n}=uP_{n},$ $P_{1}=1,$ $P_{2}=t,$ $P_{n}=tP_{n-1}-P_{n-2}$ $(n\geqq 3)$ . (5)

Since $D\equiv 0(mod 4)$ , we have $t\equiv 0(mod 2)$ . Hence $P_{n}\equiv P_{n-2}(mod 2)$ . This proves
(i) and (ii). The assertion (iii) follows from Lemma 1, (i).
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LEMMA 3. Let the numbers $b,$ $D_{1},$ $D_{2},$ $r,$ $D_{0},$ $D$ be as in \S 1. If the unit
$\eta=[D_{1}, b;+]$ (or $[D_{1},$ $b$ ; -]) is a pOwer of another unit $\epsilon$ of $Q(D^{i/2})$, then
$\eta=\epsilon^{2m+1}$ with $m\in N$, and $\epsilon$ is expressible as $\epsilon=[D_{1}, b^{\prime} ; +]([D_{1}, b^{\prime} ; -]$ respec-
tively), where $b^{\prime}\in N$ and $b^{\prime}|b$ .

PROOF. The t-part of $[D_{1}, b;+]$ is $2(D_{1}b^{2}+1)$ and the u-part is $br$. $\eta$ is
of type $\{D_{1}, D_{2}\}$ . Since $br$ is an odd number, $\eta$ is not the square of another
unit of $Q(D^{1/2})$ (Lemma 2, $(i)$). Let $\eta=\epsilon^{2m+1}$ , then $\epsilon$ is of type $\{D_{1}, D_{2}\}$ . Hence
if we write $\epsilon=(t+uD^{1/2})/2$, then $u$ is odd and $t-2=2v^{2}D_{1},$ $t+2=2w^{2}D_{2}$ with
$v,$ $w\in N$. By Lemma 1, (i), we $obtainv|b$ . $D_{1}v^{2}+2=w^{2}D_{2}$ means $\epsilon=[D_{1}, v;+]$ .
The same reasoning works in case we take the minus sign.

3. Now we prove Theorem 1. Let $D_{1}(sq)^{2}+2=r^{2}D_{2}$ and $\eta=[D_{1}, sq;+]$ .
If $\eta$ is not fundamental, then by Lemma 3, $\eta=\epsilon^{2m+1}$ with $\epsilon=[D_{1}, v;+]$ where
$v|sq$ . We write $\epsilon=(t+uD^{1/2})/2$ , and $\epsilon^{n}=(t_{n}+u_{n}D^{1/2})/2$ , then $t-2=2v^{2}D_{1},$ $t+2$

$=2w^{2}D_{2}$ with $v,$ $w\in N$. Now $sqr=u_{2m+1}\geqq u_{3}=u(t^{2}-1)=u(u^{2}D+3)>vw(v^{2}w^{2}D)$

$>D_{1}^{2}v^{5}$ . On the other hand, since $s<q$, we have $sqr<D_{1}(sq)^{2}<D_{1}q^{4}$ . Hence
$v<q$ . This means $v|s$ . The same reasoning works with respect to $[D_{1}, sq; -]$ .

COROLLARY 1. If $q$ is an odd Prime number, then the unit $[$1, $q$ ; - $]$ is a
fundamental unit, and the unit $[1, q;+]$ is either fundamental or a Power of
$2+(3)^{1/2}$ .

RROOF. $[$ 1, 1; $+]=2+(3)^{1/2}$ , and $[$ 1, 1; $-]=(-1)^{1/2}$ .
COROLLARY 2. Let $D$ be the discriminant of the real quadratic number field

which contains the unit $[D_{1}, sq;+]$ (or $[D_{1},$ $sq$ ; -]). If $D>4(D_{1}s^{2}+2)D_{1}$ and
$q>s$ , then the unit $[D_{1}, sq;+]$ ( $[D_{1},$ $sq$ ; -] respectively) is fundamental.

PROOF. Among the units $[D_{1}, s^{\prime} ; +]$ with $s^{\prime}|s$ , the discriminant $D$ has
the maximum value in case $s=s^{\prime}$ and $D_{1}s^{2}+2$ is square free. In that case $D$

$=4D_{1}D_{2}=4(D_{1}s^{2}+2)D_{1}$ .
Now we give some numerical examples.
(A) $[$ 1, 8807; $+]=77563250+6578829(139)^{1/2},$ $[19,67;+]=85292+5427(247)^{1/2}$

are the fundamental units of $Q((556)^{1/2}),$ $Q((988)^{1/2})$ respectively. (8807 is a prime
number.)

(B) $[$ 1, 71; $+]$ is the 7-th power of $[$ 1, 1; $+],$ $[1,3\cdot 239; -]$ is the 5-th
power of [1, 3; -], $[5, 3\cdot 673553; -]$ is the 7-th power of [5, 3; -]. (239 and
673553 are prime numbers.)

4. We shall study more precisely the case when the unit $[D_{1}, sq;+]$ is
not fundamental. Namely we have

THEOREM 2. Let $s$ and $D_{1}$ be as in Theorem 1. Assume that a real quad-
ratic number field $K$ contains two units $\eta_{1}=[D_{1}, sq_{1} ; +]$ and $\eta_{2}=[D_{1}, sq_{2} ; +]$ ,

where $q_{1}$ and $q_{2}$ are different odd prime numbers. Then $K$ contains also the
unit $\eta_{0}=[D_{1}, s;+]$ , and $\eta_{1}$ and $\eta_{2}$ are powers of $\eta_{0}$ . A similar Proposition
holds if we take the minus sign respectively.
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REMARK. If we take $\eta=[1,39\cdot 293; -]$ and $\epsilon=[1,3; -]$ , then $\eta=\epsilon^{7}$ .
Theorem 2 means that no unit $[1, 39q; -]$ with odd prime number $q\neq 293$ is
a power of $\epsilon$ .

We first prove two lemmas.
LEMMA 4. Let $s,$ $D_{1}$ be as above, and $\eta=[D_{1}, s;+]$ . Then $\eta^{2m-1}=[D_{1}$ ,

$sr_{m}$ ; $+$ ], where $r_{m}$ satisfies the following recurrent relations $(m\in N)$ .

$r_{1}=1$ , $r_{2}=2D_{1}s^{2}+3$ ,
(6)

$r_{m+2}=2(D_{1}s^{2}+1)r_{m+1}-r_{m}$ , $(m\geqq 1)$ .

If we take the minus sign, the relation satisfied is

$r_{1}=1$ , $r_{2}=2D_{1}s^{2}-3$ ,
(7)

$r_{m+2}=2(D_{1}s^{2}-1)r_{m+1}-r_{m}$ , $(m\geqq 1)$ .

PROOF. Let $D_{1}s^{2}+2=D_{2}r^{2}$ where $D_{2}$ is square free, and denote $\eta=(T$

$+UD^{1/2})/2$ and $\eta^{n}=(T_{n}+U_{n}D^{1/2})/2(n\in N)$ . Then $T=2D_{1}s^{2}+2$ and $U=sr$ . By
Lemma 1, if we put $r_{m}=(U_{m}+U_{m-1})/U$, then $D_{1}(sr_{m})^{2}+2=D_{2}(r(U_{m}-U_{m-1})/U)^{2}$

and $\eta^{2m-1}=[D_{1}, sr_{m} ; +]$ . Since the numbers $U_{m}$ satisfy (5), we have (6). A
similar reasoning works for (7).

DEFINITION. We call the sequence defined in Lemma 4 the sequence attached
to $[D_{1}, s;+]$ (or $[D_{1},$ $s$ ; -] respectively).

LEMMA 5. Let $\{r_{n}\}(n\in N)$ be the linear recurrent sequence which satisfies
$r_{1}=1$ , $r_{2}=a+1$ (or $a-1$),

(8)
$r_{m+2}=ar_{m+1}-r_{m}$ , $(m\geqq 1)$ $(a\in N, a\geqq 4)$ .

Then
(i) $r_{m}|r_{(2m-1)k+m}$ for $k\in N$ and $m\in N$.
(ii) If $2n-1$ is a compOsite number, then $r_{n}$ is also a comPosite number.
(iii) For $t\in N$, we define $m={\rm Min}\{n\in N;t|r_{n}\}$ . Then $t|r_{n}$ if and only if

$n=(2m-1)(k-1)+m$ with some $k\in N$.
(iv) If $n=(P+1)/2$ where $p$ is a prime number, then $(r_{n}, r_{m})=1$ for $1\leqq m<n$ .
PROOF. We note the following three facts.
(A) The relation considered is reflective, $i$ . $e,$ $r_{m}=ar_{m+1}-r_{m+2}$ , so we can

extend the sequence $r_{n}$ for a negative integer $n$ . Then $r_{m}=-r_{-m+1}$ (or $r_{-m+1}$

respectively) for $m\in N$.
(B) If we consider (8) modulo $h$ with a fixed integer $h$ , then the reduced

sequence is also reflective.
(C) If a reflective sequence have a term $0(=r_{d})$ , then $-r_{a-f}=r_{d+f}$ for all

$f\in N$.
The assertions (i) and (iii) follow easily from these facts. If we put $n$

$=(2m-1)k+m$ , then $2n-1=(2m-1)(2k+1)$ . Since $r_{m}<r_{n}$ for $m<n$ , we obtain
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(ii). (iv) follows from (iii).

PROOF OF THEOREM 2. Let $\eta_{1}=[D_{1}, sq_{1} ; +]$ and $\eta_{2}=[D_{1}, sq_{2} ; +]$ , where
$q_{1}$ and $q_{2}$ are different two prime numbers. Assume that two units $\eta_{1}$ and $\eta_{2}$

are contained in a real quadratic number field $K$. Then by Lemma 3, the
fundamental unit $\epsilon(>1)$ of $K$ is of the form $[D_{1}, s^{\prime} ; +]$ where $s^{\prime}|s$ , and $\eta_{1}$

$=\epsilon^{2m_{1}-1},$ $\eta_{2}=\epsilon^{2m_{2}-1}$ with $m_{1},$ $m_{2}\in N$. Put $s^{\prime\prime}=(s/s^{\prime})$ . By Lemma 4, $r_{m_{1}}=s^{\prime\prime}q_{1}$ ,
and $r_{m_{2}}=s^{\prime\prime}q_{2}$ where $\{r_{m}\}$ is the linear recurrent sequence attached to [ $D_{1},$ $s^{\prime}$ ;
$+]$ . Let $m_{0}={\rm Min}\{m\in N;s^{\prime\prime}|r_{m}\}$ , then by Lemma 5 (i), (iii), we obtain $s^{\prime\prime}=r_{m_{0}}$ .
That means $\epsilon^{2m_{0}-1}=[D_{1}, s;+]$ , and again by Lemma 5 (iii), $\eta_{1}$ and $\eta_{2}$ are
powers of $[D_{1}, s;+]$ . The same reasoning works in case we take the minus
sign.

Now it is natural to ask how many units of the form $[D_{1}, sq;+]$ with
prime number $q$ appear in the sequence of powers of $[D_{1}, s;+]$ . This problem
is equivalent to count prime numbers which appear in the sequence attached
to $[D_{1}, s;+]$ . It seems plausible that there exist infinitely many primes in
that sequence. But it is difficult to prove the conjecture.

5. We give two applications of the above results.
(A) If we take a diophantine equation with infinitely many integer solutions,

the question arises whether there exist also infinitely many solutions in prime
numbers. It is difficult in general to answer the question. As a minor example
we have

THEOREM 3. Let $D_{1},$ $D_{2}$ be square free odd positive integers, and $s$ be an
odd positive integer. Then the diophantine equation

$D_{1}s^{2}X^{2}-D_{2}Y^{2}=2$ , (or $D_{1}s^{2}X^{2}-D_{2}Y^{2}=-2$), (9)

has at most one solution with prime number $X$, and $Y\in N$, excluding the case
that the number $(D_{1}s^{2}-2)/D_{2}$($(D_{1}s^{2}+2)/D_{2}$ respectively) is the square of an
integer.

PROOF. It is obvious that $X=2$ is not a solution. From a solution $X=q$,
$Y=r$ , we can construct a unit $[D_{1}, sq; -]$ . Hence the assertion is an easy
corollary of Theorem 2.

(B) There is a thema to construct a real quadratic number field which has
a large fundamental unit in comparison with the discriminant of the field (cf.
$e.g$ . $[2]$ ). If we try to apply our result to this problem, it is necessary to
find a prime number $q$ such as the number $q^{2}\pm 2$, or in general $D_{1}(sq)^{2}\pm 2$

has a large square factor. In numerical table we find such numbers, for
example;

$q=8807$ , $(8807)^{2}+2=139(747)^{2}$ ,

$q=1601$ , $(5\cdot 1601)^{2}+2=163(627)^{2}$ .
And the class number of the corresponding real quadratic number field is 1.
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It is doubtful whether we can get in the same way an infinite sequence of real
quadratic number fields with class number 1.

On the other hand we obtain an inequality with respect to the square
factor of that type of number $D_{1}(sq)^{2}\pm 2$ . For simplicity, we treat only the
number $q^{2}\pm 2$ .

THEOREM 4. Let $q$ run through prime numbers, and decompOse $q^{2}\pm 2=r^{2}d$ ,
where $d$ is square free. If $d\neq 3$ , we have the inequality $d>\log q$ .

PROOF. Let $\epsilon_{D}(>1)$ be the fundamental unit of $Q(D^{1/2})$ , where $D$ is the
discriminant of the field. Assume that 4 $|D$ . It is known that (1/2) log $D$

$<\log\epsilon_{D}<(D^{1/2})((1/2)\log D+1)$ (cf. [3], [4]). Put $D=4d$ . Then by Corollary 1
of Theorem 1, $(2(q^{2}\pm 1)+qrD^{1/2})/2$ is the fundamental unit $(>1)$ of $Q(D^{1/2})$ , ex-
cluding the case $d=3$ . Hence $\epsilon_{D}>q^{2}$ . Thus we have the inequality log $q$

$<(d^{1/2})((1/2)\log d+2)$ . If $d\geqq 11$ , we have $(d^{1/2})>$ ($(1/2)$ log $d+2$). If $d=7$, then
$q=3$ . Hence we have log $q<d$ .

REMARK 1. The fundamental unit $(>1)$ of a real quadratic number field is
unique. Hence if we let $q$ run through all prime numbers, the square free factor
$d$ of $q^{2}\pm 2$ appears only once except $d=3$ .

REMARK 2. Theorem 4 seems to suggest the fact that a number near to
the square of a prime number can not have a very large square factor. But in
studying the numbers $q^{2}\pm 3$ or $q^{2}\pm 5$ , we are led to the contrary opinion. These
problems are also equivalent to count prime numbers which appear in some
linear recurrent sequences of second order.
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