Finite groups in which two different Sylow p-subgroups have trivial intersection for an odd prime p

By Chat-Yin HO

(Received Jan. 31, 1978)

1. Introduction

Let p be a prime and let G be a finite group which satisfies the following condition.

(TIp): two different Sylow p-groups contain only the identity element in common.

Suzuki [10] treated the case p=2. When p is an odd prime, it seems quite difficult to describe all possibilities. Here we treat a restricted case that G posess a p-non-stable faithful representation. More precisely, we say that G is a (Qp)-group if G satisfies the following condition:

(Qp): There exists a finite vector space M over GF(p), the field with p elements, such that M is a faithful GF(p)(G)-module and some nontrivial element of G has minimal polynomial $(X-1)^2$ over M.

We remark that the above condition (Qp) is always valid for p=2 when G is of even order. This can be seen by taking M to be the group algebra of G over GF(2) and let G act on M naturally. The main result of this paper is the following theorem.

THEOREM 1. Let p be an odd prime and let G be a finite group satisfy the conditions (TIp) and (Qp). Then one of the following holds:

(a) A Sylow p-group of G is a normal subgroup.

(b) G contains normal subgroups G_1 and G_2 such that

$$G \geq G_1 > G_2 \geq 1$$

where G_2 is the center of G_1 , both G/G_1 and G_2 are of order prime to p and G_1/G_2 is isomorphic to $L_2(p^n)$ or $U_3(p^n)$ for some positive integer n.

(c) p=3 and G contains normal subgroups G_1 and G_2 such that

$$G \geq G_1 > G_2 \geq 1$$

where G_2 is the maximal normal 2-group of G_1 , G/G_1 has order prime to p and G_1/G_2 is isomorphic to the cyclic group of order 3 or A_5 .

Let K/Ω be an algebraic function field with one variable of genus g>1

over the algebraic closed field Ω . If Ω is the complex number or $\operatorname{Char}(\Omega)$ $\not| \operatorname{Aut}(K/\Omega)|$ then $|\operatorname{Aut}(K/\Omega)| \leq 84(g-1)$. Theorem 1 seems to have application to find a bound for $|\operatorname{Aut}(K/\Omega)|$ in the case $\operatorname{Char}(\Omega)||\operatorname{Aut}(K/\Omega)|$. In fact W. Henn suggested that in this case $|\operatorname{Aut}(K/\Omega)| \leq g^2$ up to some exceptional case.

This work was suggested by Ch. Hering to whom the author would like to express his gratitude.

2. Notation and Definition.

A group is quasi-simple if it is perfect and the quotient over its center is simple. For any group H, let E(H) be the central product of all subnormal quasi-simple subgroups of H. These subgroups are called the components of E(H). The generalized Fitting subgroup of H is denoted by $F^*(H)$ and is defined by $F^*(H)=E(H)F(H)$, where F(H) is the Fitting subgroup of H.

All groups considered in this paper are of finite order. Most notations are standard and can be found in [2]. We list some of them for the convenience of the reader.

 $Z_n: \text{ the cyclic group of order } n.$ Z(H): the center of the group H. $O_p(H): \text{ the maximal normal } p\text{-subgroup of } H \text{ for the prime } p.$ $O_{p'}(H): \text{ the maximal normal subgroup of } H \text{ of order prime to } p.$ $C_H(T): \text{ the centralizer of the subset } T \text{ in } H.$ $\langle X, Y \rangle: \text{ subgroup generated by } X \text{ and } Y.$ $[X, Y]: \langle x^{-1}y^{-1}xy | x \in X, y \in Y \rangle.$ $X^Y: \langle X^y | y \in Y \rangle.$ S(H): the maximal solvable normal subgroup of H. $K \leq H: K \text{ is a normal subset of } H.$ $H^{(\infty)}: \text{ the terminal member of the derived series of } H.$

3. Preliminary results.

3.1. LEMMA. Let H be a group. Then $C_H(F^*(H)) \leq F(H)$. PROOF. [3, (2.2)]. The following theorem may be of independent interest. 3.2. THEOREM. Let p be a prime and let G satisfy the condition (TIp). (1) Every subgroup of G also satisfies (TIp). (2) If G is p-solvable, then one of the following holds: (2.a) A Sylow p-group of G is normal. (2.b) A Sylow p-group of G is cyclic.

(2.c) p=2 and a Sylow 2-group of G is a generalized quaternion.

670

(3) If $G = \langle g | g^p = 1 \rangle$ and p | |S(G)|, then one of the following holds:

(3.a) G is a p-group.

(3.b) A Sylow p-group P of G has order p, $G = PO_{p'}(G)$ and $O_{p'}(G) = [P, O_{p'}(G)]$.

PROOF. (1) Let H be a subgroup of G. Let Q_1 and Q_2 be two Sylow p-groups of H. Let P_1 and P_2 be two Sylow p-groups of G such that $Q_1 \leq P_1$ and $Q_2 \leq P_2$. If $Q_1 \cap Q_2 \neq 1$, then $P_1 \cap P_2 \neq 1$ and so $P_1 = P_2$. Therefore $Q_1 = P_1 \cap H = P_2 \cap H = Q_2$.

(2) If $O_p(G) \neq 1$, then clearly (2.a) holds. Therefore we may assume $O_p(G)=1$. Applying induction on |G| we may assume that G is generated by its *p*-elements. Suppose X is an elementary abelian *p*-subgroup of order p^2 of G. Let P be a Sylow *p*-group of G containing X and let $N=O_{p'}(G)$. Let $1\neq x\in X$ and let $n\in C_N(x)$. Since $x\in P\cap P^n$, $P=P^n$. Therefore $[n, X] \leq N\cap P=1$ and so $C_N(x) \leq C_N(X)$. By [4, Theorem 3.16 on p. 188] we have $N=\prod_{1\neq x\in X} C_N(x)$ and so $N=C_N(X)$. Thus $X\leq P\cap P^N$ and so $P=P^N$. Therefore $[N, P] \leq N\cap P=1$. Since G is generated by its *p*-elements, $N\leq Z(G)$. As G is *p*-solvable, $N \leq O_{p'p}(G)$. This implies $O_{p'p}(G)=N\times O_p(G)$. Hence $O_p(G)\neq 1$, a contradiction. Therefore G does not contain any non cyclic abelian *p*-group. By [4, Theorem 4.10, p. 199] we see either (2.b) or (2.c) holds.

(3) If $O_p(G) \neq 1$, then (3.a) holds. Therefore we may assume $O_p(G)=1$. Let S=S(G) and let $N \leq O_{p'p}(S)$ such that $N/O_{p'}(S) = \mathcal{Q}_1(O_{p'p}(S)/O_{p'}(S))$. Since $O_p(S)=1$, (1) and (2) imply $|N/O_{p'}(S)| = p$. Let x be an element of order p of G. Suppose $x \in N$. Let X be a Sylow p-group of $N\langle x \rangle$ containing x. Then X is elementary abelian of order p^2 . As in the proof of (2) we see that $[X, O_{p'}(G)]=1$ and so $[x, O_{p'}(G)]=1$. Since x is arbitrary and G is generated by its elements of order $p, O_{p'}(G) \leq Z(G)$. Since $O_{p'}(S) \leq O_{p'}(G), O_{p'}(S) \leq Z(S)$. Therefore $N=O_{p'}(S) \times O_p(N)$ and $|O_p(N)|=p$. Since $O_p(N) \leq O_p(G), O_p(G)\neq 1$ which is a contradiction. Therefore $x \in N$. This implies $G \leq N$ and so G=N. Let P be a Sylow p-group of G and let $L=O_{p'}(G)$. Then |P|=p and G=PL. By [4, Theorem 3.5, p. 180] we have $L=C_L(P)[P, L]$. Therefore P[P, L] is a normal subgroup of index prime to p. Since G is generated by its element of order p. C_p(P, L]. By comparing orders we see that L=[P, L] as required.

4. Proof of Theorem 1.

In this section let p be an odd prime and let G be a group satisfy (TIp)and (Qp) for the vector space M. For any subspace U of M we write dim Uto mean the dimension of U over GF(p).

Let $Q = \{g \in G \mid g \neq 1 \text{ and } M(g-1)^2 = 0\}$. For any $\sigma \in Q$, we have $\sigma^p = 1$.

Let $Q_d = \{\tau \in Q \mid \dim(M(\tau-1)) = \min_{\sigma \in Q} \dim(M(\sigma-1))\}$. For $\sigma \in Q_d$, let $E(\sigma) = \{\tau \in Q \mid C_M(\tau) = C_M(\sigma) \text{ and } M(\tau-1) = M(\sigma-1)\} \cup \{1\}$. Then $E(\sigma)$ is an elementary abelian *p*-group [8, Lemma 2.2]. Let $\Sigma = \{E \mid E = E(\sigma) \text{ for some } \sigma \in Q_d\}$.

4.1. LEMMA. Let $E \in \Sigma$ and let $F = E^g$ for some g. Suppose $E \neq F$. Set $S = \langle E, F \rangle$.

(a) If $p \ge 5$ and S is not a p-group, then $S \cong SL(2, |E|)$.

(b) If p=3, |E|>3 and S is not a 3-group, then $S \cong SL(2, |E|)$.

(c) If p=3, |E|=3, then S is isomorphic to one of the following groups: $Z_3 \times Z_3$, 3^{1+2} , SL(2, 3), $SL(2, 3) \times Z_3$, SL(2, 5), where 3^{1+2} is the extra special 3-group of order 27, exponent 3.

PROOF. (a) [8, Theorem 2.6].

(b) **[6,** Theorem 4.2].

(c) [5, Theorem 4.3].

4.2. THEOREM. Let $H = \langle \sigma | \sigma \in Q \rangle$. Then one of the following holds:

(a) H is a p-group.

(b) H is a quasi-simple group such that Z(H) has order prime to p and $H/Z(H) \cong L_2(p^n)$ or $U_s(p^n)$ for some positive integer n.

(c) p=3, $[H, O_2(H)]=O_2(H)$ and $H/O_2(H)\cong Z_3$ or A_5 .

PROOF. Since an element in Q has order p, H is generated by its elements of order p. By Theorem 3.2.(1) we see that H satisfies (TIp). If $O_n(H) \neq 1$, then (a) holds, by Theorem 3.2.(3). Therefore we may assume $O_n(H)=1$. We use induction on |H| + |M| in the rest of the proof. Let $K = \langle \sigma | \sigma \in Q_d \rangle$. Then K is a normal subgroup of H. Hence $O_p(K)=1$. Suppose $K \leq H$. Induction implies that conclusion (b) or (c) holds when replace H by K. Since $K \leq H$, H induces only inner automorphisms of K/Z(K) when case (b) holds (or $K/O_2(K)$ when (c) holds) as H satisfies (TIp). If $K/O_2(K) \cong Z_3$, then as in the proof of Theorem 3.2.(3) we see that H=K which is impossible. Let $C = C_H(K/Z(K))$ when (b) holds and let $C = C_H(K/O_2(K))$ when $K/O_2(K) \cong A_5$. Then H = KC. Since $O_p(H) = 1$, C is a p'-group. Since H is generated by elements of order p, H = K a contradiction. Therefore $H = \langle \sigma | \sigma \in Q_d \rangle$. Similarly we have $H = E^H$ for any $E \in \Sigma$.

Case (i) $p \ge 5$ or p=3 and there exists $E \in \Sigma$ such that |E| > 3.

By 4.1. (a) we see that $O_{p'}(H) \leq Z(H)$. If E(H)=1, then $F^*(H)=F(H)$. Since $O_p(H)=1$, $F(H) \leq O_{p'}(H) \leq Z(H)$. Hence $H \leq C_H(F(H)) = C_H(F^*(H)) \leq F(H)$ by 3.1. This is impossible as H is generated by its elements of order p. Therefore $E(H) \neq 1$. Theorem 3.2 implies that E(H) is quasi-simple. Let $X \in \Sigma$ and let Y = XE(H). Since $F(H) \leq Z(H)$, $C_H(E(H)) \leq F(H)$. Since $O_p(H)=1$, $X \leq C_H(E(H))$. Therefore $X \leq O_p(Y)$. Therefore there exists $g \in G$ such that $L = \langle X, X^s \rangle$ is not a p-group by [4, Theorem 8.2, p. 105]. Therefore $L \cong$ SL(2, |X|) by 4.1. Hence $X \leq L = L^{(\infty)} \leq Y^{(\infty)} \leq E(H)$. This shows that H = E(H) is quasi-simple. Since H satisfies (TIp), we see that (b) holds by [7, Theorem 1]. Case (ii) p=3 and |E|=3 for all $E \in \Sigma$.

Let $E \in \Sigma$ and let $F = E^h \neq E$ for some $h \in H$. Let $S = \langle E, F \rangle$. Since H satisfies (TIp), $S \cong SL(2, 3) \times Z_3$. Suppose $\langle E, F \rangle \cong 3^{1+2}$. Let X = [E, F]. Then $X \in \Sigma$ by [2, Theorem 1]. Let $Y \in \Sigma$ [such that $\langle X, Y \rangle \cong SL(2, 3)$ and let $w \in \langle X, Y \rangle$ such that $X^w = Y$ and $w^4 = 1$. By [5, Theorem 4.4] and a direct calculation of matrices we see that $\langle E, E^w \rangle \cong Z_3 \times Z_3$ and $\langle X, Y \rangle$ normalizes $\langle E, E^w \rangle$. This contradicts to the fact that H satisfies (TIp). Therefore $S \not\equiv 3^{1+2}$. By 4.1 $S \cong Z_3 \times Z_3$, SL(2, 3) or SL(2, 5).

Suppose 3||S(H)|. Theorem 3.2.(3) implies that $H=O_{p'}(H)P$, where P is a Sylow 3-group of order 3. In particular the possibilities $Z_3 \times Z_3$ and SL(2, 5) for S cannot occur in this case. [1, Theorem 3.7] implies that $|H/O_2(H)|=3$ and (c) holds. Therefore we may assume that $3 \nmid |S(H)|$.

Let $X \in \Sigma$. Let q be a prime such that $q \in \{2, 3\}$. Let R be a q-group normalized by X. Then [R, X]=1 by 4.1. This shows that $O_{2'}(O_{3'}(H)) \leq Z(H)$.

Let $X \in \Sigma$ and let U be the subgroup of H which stabilizes the chain of subspaces: $0 \leq \langle M(x-1) | x \in X \rangle \leq C_M(X) \leq M$. Then U has exponent p and $X \leq Z(U)$. Suppose $X \neq U$. Then there exists an elementary subgroup B of order p^2 such that $X \leq B$. As in the poof of Theorem 3.2. (2) we see that $[O_{p'}(H),$ B]=1 and so $[O_{p'}(H), X]=1$. Since X is arbitrary, $O_{p'}(H) \leq Z(H)$. As in the proof of (i) we see that $E(H) \neq 1$ and E(H) is quasi-simple. Suppose $X \leq E(H)$. Let $D = \{X^g | g \in E(H)\}$ and let $K = \langle Z | Z \in D \rangle$. Let A, $B \in D$. If $\langle A, B \rangle \cong SL(2, 5)$, then $A \leq \langle A, B \rangle = \langle A, B \rangle^{(\infty)} \leq (XE(H))^{(\infty)} \leq E(H)$. This implies $X \leq E(G)$, a contradiction. Therefore $\langle A, B \rangle$ is isomorphic to $Z_3 \times Z_3$, or SL(2, 3). If K is a perfect group, then $X \leq K^{(\infty)} \leq (XE(H))^{(\infty)} \leq E(H)$ a contradiction. By [1], K must be solvable. Therefore [K, E(H)] is a normal solvable subgroup of E(K) and so E(H) centralizes K. In particular $X \leq C_G(E(H)) = C_G(F^*(H)) \leq F(H)$ which is impossible as F(H) is a p'-group. Therefore $X \leq E(H)$. Since X is arbitrary, H=E(H) is quasi-simple. By [7, Theorem 1] and condition (TIp) we see that H/Z(H) is isomorphic to A_5 or $U_3(3)$. Therefore we may assume U=X. Suppose there exists $Y \in \Sigma$ such that $\langle X, Y \rangle \cong SL(2, 5)$. Then H' = H. Let $I_{l}(X) = \{i | i^{2} = 1, \dim M(i-1) = 2d \text{ and there exists } Z \in \Sigma \text{ such that } i \in \langle X, Z \rangle \}.$ Let i, $j \in I_l(X)$. Then $ij \in U$ by [5, Lemma 5.1 and Corollary 5.2]. Since U = X, $I_l(X) = \{i\}$. Let $R(i) = \{E \mid E \in \Sigma \text{ and } i \in I_l(E)\}$. Let $\Sigma_1 = \{X^h \mid h \in H\}$. Then H is generated by the elements in Σ_1 . We claim $R(i) \ge \Sigma_1$. Suppose [Z, S]=1 for all $S \in R(i)$ and all $Z \in \Sigma_1 \cdot R(i)$. Then R(i) is H invariant as $H = \langle \Sigma_1 \rangle$. Since H is transitive on Σ_1 , $R(i) \ge \Sigma_1$ in this case. Hence we may assume that there exist $S_1 \in R(i)$ and $\langle z \rangle = Z \in \Sigma_1 \setminus R(i)$ such that $[S_1, Z] \neq 1$. Since $\langle S_1, Z \rangle \not\equiv 3^{1+2}$, so there is an involution $j \in \langle S_1, Z \rangle$. If $j \in I_l(S_1)$, then j=iand so $i \in I_i(Z)$. This implies $Z \in R(i)$, a contradiction. Therefore $j \neq i$. Hence

dim $M(j-1) \leq 2d$. Suppose [Z, i] = 1. Then $C_M(i)$ and M(i-1) are Z-submodules. Let $s \in S_1$ such that s is conjugate to z in $\langle S_1, Z \rangle$. Since $S_1 \in R(i)$, the restriction of S_1 on $C_M(i)$ is the identity transformation. Hence $s^{-1}z$ and z have the same restriction on $C_M(i)$. However $(s^{-1}z)^2 = j$ is an involution. This shows that the restriction of Z on $C_{\mathcal{M}}(i)$ is also the identity transformation. Since [Z, i]=1, *i* acts on $I_i(Z)=\{k\}$ by conjugation. Hence [i, k]=1. Therefore M(i-1) and $C_M(i)$ are $\langle k \rangle$ -submodules. [5, Lemma 2.6] implies that k induces -1 on M(i-1). By comparing dimension, we see that k=i. This implies $Z \in R(i)$, a contradiction. Thus we may assume $[Z, i] \neq 1$. Let $T \in R(i)$ such that $i \in \langle S_1, T \rangle$ and $\langle S_1, T \rangle \cong SL(2, 3)$. If [Z, T]=1, then $i^z \in \langle (S_1)^z, T^z \rangle$ $=\langle (S_1)^{i}, T \rangle$. Hence $i^{i} \in I_i(T) = \{i\}$. This implies that $i^{i} = i$, which is impossible. Therefore $[Z, T] \neq 1$ If $\langle Z, T \rangle \cong SL(2, 5)$, then [5, Lemma 4.6] implies that $I_l(Z) = I_l(T) = \{i\}$. Thus $Z \in R(i)$, a contradiction. Therefore $\langle Z, T \rangle \cong SL(2, 3)$. Similary we have $\langle T_1, Z \rangle \cong SL(2, 3)$ for each $T_1 \in \Sigma_1 \cap \langle S, T \rangle$. Thus [9, (1.1.1)] implies that i is conjugate to j, a contradiction. Therefore $\Sigma_1 \setminus R(i)$ is empty and $R(i) \ge \Sigma_1$ as required. Since H is generated by elements of Σ_1 , i $\in Z(H)$. Let $\overline{H} = H/O_2(H)Z(H)$. Since $3 \nmid |S(H)|$ and $O_{2'}(O_{3'}(H)) \leq Z(H)$, $O_2(\overline{H})$ $=Z(\overline{H})=1$. By condition (TIp) and [9, Satz] we see that $\overline{H}\cong A_5$. Since H'=Hand the Schur multiplier of A_5 has order 2, $H/O_2(H) \cong A_5$ as Z(H) is a 3'-subgroup.

Thus we may assume that $\langle X, Y \rangle \not\equiv SL(2, 5)$ for all $Y \in \Sigma$. Therefore for $E \neq F \in \Sigma$ we have $\langle E, F \rangle \cong Z_3 \times Z_3$ or SL(2, 3). We can now appeal to [1] and applying condition (TIp) to conclude the proof.

By using the condition (TIp), Theorem 1 is now a consequence of 4.2.

References

- M. Aschbacher, Groups generated by a class of elements of order 3, J. Algebra, 24 (1973), 591-612.
- [2] G. Glauberman, Quadratic elements in unipotent linear groups, J. Algebra, 20 (1972), 637-654.
- [3] D. Goldschmidt, 2-Fusion in finite groups, Ann. of Math. II. Ser., 99 (1974), 70-117.
- [4] D. Gorenstein, Finite groups, New York, Harper and Row, 1968.
- [5] C.Y. Ho, On the quadratic pair whose root group has order 3, Bull. Inst. Math. Acad. Sinica, Republic of China, 1 (1973), 155-180.
- [6] C.Y. Ho, Quadratic pair for 3 whose root group has order greater than 3, I. Comm. in Algebra, 3(11) (1975), 961-1029.
- [7] C.Y. Ho, On the quadratic pairs, J. Algebra, 43 (1976) 338-358.
- [8] C.Y. Ho, A characterization of $SL(2, p^n)$, $p \ge 5$, to appear in J. Algebra.
- [9] B. Stellmacher, Einfache Gruppen, die von einer Konjugiertenklasse von elementen der ordnung drei erzugt werden, J. Algebra, 30 (1974), 320-354.

[10] M. Suzuki, Finite groups of even order in which Sylow 2-subgroups are independent, Ann. of Math., (2) 80 (1964), 58-77.

Chat-Yin Ho

Departamento de Matemática Universidade de Brasília Brasília, Brasil and Department of Mathematics The University of Tsukuba Ibaraki 300-31 Japan