Finite groups in which two different Sylow p-subgroups have trivial intersection for an odd prime p

By Chat-Yin Ho

(Received Jan. 31, 1978)

1. Introduction

Let p be a prime and let G be a finite group which satisfies the following condition.
($T I p$): two different Sylow p-groups contain only the identity element in common.

Suzuki [10] treated the case $p=2$. When p is an odd prime, it seems quite difficult to describe all possibilities. Here we treat a restricted case that G posess a p-non-stable faithful representation. More precisely, we say that G is a ($Q p$)-group if G satisfies the following condition:
$(Q p)$: There exists a finite vector space M over $G F(p)$, the field with p elements, such that M is a faithful $G F(p)(G)$-module and some nontrivial element of G has minimal polynomial $(X-1)^{2}$ over M.

We remark that the above condition $(Q p)$ is always valid for $p=2$ when G is of even order. This can be seen by taking M to be the group algebra of G over $G F(2)$ and let G act on M naturally. The main result of this paper is the following theorem.

Theorem 1. Let p be an odd prime and let G be a finite group satisfy the conditions (TIp) and (Qp). Then one of the following holds:
(a) A Sylow p-group of G is a normal subgroup.
(b) G contains normal subgroups G_{1} and G_{2} such that

$$
G \geqq G_{1}>G_{2} \geqq 1
$$

where G_{2} is the center of G_{1}, both G / G_{1} and G_{2} are of order prime to p and G_{1} / G_{2} is isomorphic to $L_{2}\left(p^{n}\right)$ or $U_{3}\left(p^{n}\right)$ for some positive integer n.
(c) $p=3$ and G contains normal subgroups G_{1} and G_{2} such that

$$
G \geqq G_{1}>G_{2} \geqq 1
$$

where G_{2} is the maximal normal 2-group of $G_{1}, G / G_{1}$ has order prime to p and G_{1} / G_{2} is isomorphic to the cyclic group of order 3 or A_{5}.

Let K / Ω be an algebraic function field with one variable of genus $g>1$
over the algebraic closed field Ω. If Ω is the complex number or $\operatorname{Char}(\Omega)$ $\chi|\operatorname{Aut}(K / \Omega)|$ then $|\operatorname{Aut}(K / \Omega)| \leqq 84(g-1)$. Theorem 1 seems to have application to find a bound for $|\operatorname{Aut}(K / \Omega)|$ in the case $\operatorname{Char}(\Omega)|\mid$ Aut $(K / \Omega)|$. In fact W. Henn suggested that in this case \mid Aut $(K / \Omega) \mid \leqq g^{2}$ up to some exceptional case.

This work was suggested by Ch. Hering to whom the author would like to express his gratitude.

2. Notation and Definition.

A group is quasi-simple if it is perfect and the quotient over its center is simple. For any group H, let $E(H)$ be the central product of all subnormal quasi-simple subgroups of H. These subgroups are called the components of $E(H)$. The generalized Fitting subgroup of H is denoted by $F^{*}(H)$ and is defined by $F^{*}(H)=E(H) F(H)$, where $F(H)$ is the Fitting subgroup of H.

All groups considered in this paper are of finite order. Most notations are standard and can be found in [2]. We list some of them for the convenience of the reader.
Z_{n} : the cyclic group of order n.
$Z(H)$: the center of the group H.
$O_{p}(H)$: the maximal normal p-subgroup of H for the prime p.
$O_{p^{\prime}}(H)$: the maximal normal subgroup of H of order prime to p.
$C_{H}(T)$: the centralizer of the subset T in H.
$\langle X, Y\rangle$: subgroup generated by X and Y.
$[X, Y]:\left\langle x^{-1} y^{-1} x y \mid x \in X, y \in Y\right\rangle$.
$X^{Y}:\left\langle X^{y} \mid y \in Y\right\rangle$.
$S(H)$: the maximal solvable normal subgroup of H.
$K \unlhd H: \quad K$ is a normal subset of H.
$H^{(\infty)}$: the terminal member of the derived series of H.

3. Preliminary results.

3.1. Lemma. Let H be a group. Then $C_{H}\left(F^{*}(H)\right) \leqq F(H)$.

Proof. [3, (2.2)].
The following theorem may be of independent interest.
3.2. Theorem. Let p be a prime and let G satisfy the condition (TIp).
(1) Every subgroup of G also satisfies (TIp).
(2) If G is p-solvable, then one of the following holds:
(2.a) A Sylow p-group of G is normal.
(2.b) A Sylow p-group of G is cyclic.
(2.c) $p=2$ and a Sylow 2-group of G is a generalized quaternion.
(3) If $G=\left\langle g \mid g^{p}=1\right\rangle$ and $p||S(G)|$, then one of the following holds:
(3.a) G is a p-group.
(3.b) A Sylow p-group P of G has order $p, G=P O_{p^{\prime}}(G)$ and $O_{p^{\prime}}(G)=[P$, $\left.O_{p^{\prime}}(G)\right]$.

Proof. (1) Let H be a subgroup of G. Let Q_{1} and Q_{2} be two Sylow p-groups of H. Let P_{1} and P_{2} be two Sylow p-groups of G such that $Q_{1} \leqq P_{1}$ and $Q_{2} \leqq P_{2}$. If $Q_{1} \cap Q_{2} \neq 1$, then $P_{1} \cap P_{2} \neq 1$ and so $P_{1}=P_{2}$. Therefore $Q_{1}=$ $P_{1} \cap H=P_{2} \cap H=Q_{2}$.
(2) If $O_{p}(G) \neq 1$, then clearly (2.a) holds. Therefore we may assume $O_{p}(G)=1$. Applying induction on $|G|$ we may assume that G is generated by its p-elements. Suppose X is an elementary abelian p-subgroup of order p^{2} of G. Let P be a Sylow p-group of G containing X and let $N=O_{p^{\prime}}(G)$. Let $1 \neq x \in X$ and let $n \in C_{N}(x)$. Since $x \in P \cap P^{n}, P=P^{n}$. Therefore $[n, X] \leqq$ $N \cap P=1$ and so $C_{N}(x) \leqq C_{N}(X)$. By [4, Theorem 3.16 on p. 188] we have $N=\prod_{1 \neq x \in X} C_{N}(x)$ and so $N=C_{N}(X)$. Thus $X \leqq P \cap P^{N}$ and so $P=P^{N}$. Therefore $[N, P] \leqq N \cap P=1$. Since G is generated by its p-elements, $N \leqq Z(G)$. As G is p-solvable, $N \nsupseteq O_{p^{\prime} p}(G)$. This implies $O_{p^{\prime} p}(G)=N \times O_{p}(G)$. Hence $O_{p}(G) \neq 1$, a contradiction. Therefore G does not contain any non cyclic abelian p-group. By [4, Theorem 4.10, p. 199] we see either (2.b) or (2.c) holds.
(3) If $O_{p}(G) \neq 1$, then (3.a) holds. Therefore we may assume $O_{p}(G)=1$. Let $S=S(G)$ and let $N \leqq O_{p^{\prime} p}(S)$ such that $N / O_{p^{\prime}}(S)=\Omega_{1}\left(O_{p^{\prime} p}(S) / O_{p^{\prime}}(S)\right)$. Since $O_{p}(S)=1$, (1) and (2) imply $\left|N / O_{p^{\prime}}(S)\right|=p$. Let x be an element of order p of G. Suppose $x \notin N$. Let X be a Sylow p-group of $N\langle x\rangle$ containing x. Then X is elementary abelian of order p^{2}. As in the proof of (2) we see that $\left[X, O_{p^{\prime}}(G)\right]=1$ and so $\left[x, O_{p^{\prime}}(G)\right]=1$. Since x is arbitrary and G is generated by its elements of order $p, O_{p^{\prime}}(G) \leqq Z(G)$. Since $O_{p^{\prime}}(S) \leqq O_{p^{\prime}}(G), O_{p^{\prime}}(S) \leqq Z(S)$. Therefore $N=O_{p^{\prime}}(S) \times O_{p}(N)$ and $\left|O_{p}(N)\right|=p$. Since $O_{p}(N) \leqq O_{p}(G), O_{p}(G) \neq 1$ which is a contradiction. Therefore $x \in N$. This implies $G \leqq N$ and so $G=N$. Let P be a Sylow p-group of G and let $L=O_{p^{\prime}}(G)$. Then $|P|=p$ and $G=P L$. By [4, Theorem 3.5, p. 180] we have $L=C_{L}(P)[P, L]$. Therefore $P[P, L]$ is a normal subgroup of index prime to p. Since G is generated by its element of order $p, G=P[P, L]$. By comparing orders we see that $L=[P, L]$ as required.

4. Proof of Theorem 1.

In this section let p be an odd prime and let G be a group satisfy ($T I p$) and $(Q p)$ for the vector space M. For any subspace U of M we write $\operatorname{dim} U$ to mean the dimension of U over $G F(p)$.

Let $Q=\left\{g \in G \mid g \neq 1\right.$ and $\left.M(g-1)^{2}=0\right\}$. For any $\sigma \in Q$, we have $\sigma^{p}=1$.

Let $Q_{d}=\left\{\tau \in Q \mid \operatorname{dim}(M(\tau-1))=\min _{\sigma \in Q} \operatorname{dim}(M(\sigma-1))\right\}$. For $\sigma \in Q_{d}$, let $E(\sigma)=\{\tau$ $\in Q \mid C_{M}(\tau)=C_{M}(\sigma)$ and $\left.M(\tau-1)=M(\sigma-1)\right\} \cup\{1\}$. Then $E(\sigma)$ is an elementary abelian p-group [8, Lemma 2.2]. Let $\Sigma=\left\{E \mid E=E(\sigma)\right.$ for some $\left.\sigma \in Q_{d}\right\}$.
4.1. Lemma. Let $E \in \Sigma$ and let $F=E^{g}$ for some g. Suppose $E \neq F$. Set $S=\langle E, F\rangle$.
(a) If $p \geqq 5$ and S is not a p-group, then $S \cong S L(2,|E|)$.
(b) If $p=3,|E|>3$ and S is not a 3-group, then $S \cong S L(2,|E|)$.
(c) If $p=3,|E|=3$, then S is isomorphic to one of the following groups: $Z_{3} \times Z_{3}, 3^{1+2}, S L(2,3), S L(2,3) \times Z_{3}, S L(2,5)$, where 3^{1+2} is the extra special 3-group of order 27, exponent 3.

Proof. (a) [8, Theorem 2.6].
(b) $[6$, Theorem 4.2].
(c) [5, Theorem 4.3].
4.2. Theorem. Let $H=\langle\sigma \mid \sigma \in Q\rangle$. Then one of the following holds:
(a) H is a p-group.
(b) H is a quasi-simple group such that $Z(H)$ has order prime to p and $H / Z(H) \cong L_{2}\left(p^{n}\right)$ or $U_{3}\left(p^{n}\right)$ for some positive integer n.
(c) $p=3,\left[H, O_{2}(H)\right]=O_{2}(H)$ and $H / O_{2}(H) \cong Z_{3}$ or A_{5}.

Proof. Since an element in Q has order p, H is generated by its elements of order p. By Theorem 3.2.(1) we see that H satisfies ($T I p$). If $O_{p}(H) \neq 1$, then (a) holds, by Theorem 3.2.(3). Therefore we may assume $O_{p}(H)=1$. We use induction on $|H|+|M|$ in the rest of the proof. Let $K=\left\langle\sigma \mid \sigma \in Q_{d}\right\rangle$. Then K is a normal subgroup of H. Hence $O_{p}(K)=1$. Suppose $K \leqq H$. Induction implies that conclusion (b) or (c) holds when replace H by K. Since $K \unlhd H, H$ induces only inner automorphisms of $K / Z(K)$ when case (b) holds (or $K / O_{2}(K)$ when (c) holds) as H satisfies ($T I p$). If $K / O_{2}(K) \cong Z_{3}$, then as in the proof of Theorem 3.2.(3) we see that $H=K$ which is impossible. Let $C=C_{H}(K / Z(K))$ when (b) holds and let $C=C_{H}\left(K / O_{2}(K)\right)$ when $K / O_{2}(K) \cong A_{5}$. Then $H=K C$. Since $O_{p}(H)=1, C$ is a p^{\prime}-group. Since H is generated by elements of order $p, H=K$ a contradiction. Therefore $H=\left\langle\sigma \mid \sigma \in Q_{d}\right\rangle$. Similarly we have $H=E^{H}$ for any $E \in \Sigma$.

Case (i) $p \geqq 5$ or $p=3$ and there exists $E \in \Sigma$ such that $|E|>3$.
By 4.1. (a) we see that $O_{p^{\prime}}(H) \leqq Z(H)$. If $E(H)=1$, then $F^{*}(H)=F(H)$. Since $O_{p}(H)=1, F(H) \leqq O_{p^{\prime}}(H) \leqq Z(H)$. Hence $H \leqq C_{H}(F(H))=C_{H}\left(F^{*}(H)\right) \leqq F(H)$ by 3.1. This is impossible as H is generated by its elements of order p. Therefore $E(H) \neq 1$. Theorem 3.2 implies that $E(H)$ is quasi-simple. Let $X \in \Sigma$ and let $Y=X E(H)$. Since $F(H) \leqq Z(H), C_{H}(E(H)) \leqq F(H)$. Since $O_{p}(H)=1$, $X \nsubseteq C_{H}\left(E(H)\right.$). Therefore $X \not \equiv O_{p}(Y)$. Therefore there exists $g \in G$ such that $L=\left\langle X, X^{g}\right\rangle$ is not a p-group by [4, Theorem 8.2, p. 105]. Therefore $L \cong$ $S L(2,|X|)$ by 4.1. Hence $X \leqq L=L^{(\infty)} \leqq Y^{(\infty)} \leqq E(H)$. This shows that $H=E(H)$
is quasi-simple. Since H satisfies (TIp), we see that (b) holds by [7, Theorem 1]. Case (ii) $p=3$ and $|E|=3$ for all $E \in \Sigma$.
Let $E \in \Sigma$ and let $F=E^{h} \neq E$ for some $h \in H$. Let $S=\langle E, F\rangle$. Since H satisfies ($T I p$), $S \cong S L(2,3) \times Z_{3}$. Suppose $\langle E, F\rangle \cong 3^{1+2}$. Let $X=[E, F]$. Then $X \in \Sigma$ by [2, Theorem 1]. Let $Y \in \Sigma$ such that $\langle X, Y\rangle \cong S L(2,3)$ and let $w \in\langle X, Y\rangle$ such that $X^{w}=Y$ and $w^{4}=1$. By [5, Theorem 4.4] and a direct calculation of matrices we see that $\left\langle E, E^{w}\right\rangle \cong Z_{3} \times Z_{3}$ and $\langle X, Y\rangle$ normalizes $\left\langle E, E^{w}\right\rangle$. This contradicts to the fact that H satisfies (TIp). Therefore $S \not \equiv 3^{1+2}$. By $4.1 S \cong Z_{3} \times Z_{3}, S L(2,3)$ or $S L(2,5)$.

Suppose $3\left||S(H)|\right.$. Theorem 3.2.(3) implies that $H=O_{p}(H) P$, where P is a Sylow 3-group of order 3. In particular the possibilities $Z_{3} \times Z_{3}$ and $S L(2,5)$ for S cannot occur in this case. [1, Theorem 3.7] implies that $\left|H / O_{2}(H)\right|=3$ and (c) holds. Therefore we may assume that $3 \nmid S(H) \mid$.

Let $X \in \Sigma$. Let q be a prime such that $q \notin\{2,3\}$. Let R be a q-group normalized by X. Then $[R, X]=1$ by 4.1. This shows that $O_{2^{\prime}}\left(O_{3^{\prime}}(H)\right) \leqq Z(H)$.

Let $X \in \Sigma$ and let U be the subgroup of H which stabilizes the chain of subspaces: $0 \leqq\langle M(x-1) \mid x \in X\rangle \leqq C_{M}(X) \leqq M$. Then U has exponent p and $X \leqq Z(U)$. Suppose $X \neq U$. Then there exists an elementary subgroup B of order p^{2} such that $X \leqq B$. As in the poof of Theorem 3.2. (2) we see that [$O_{p^{\prime}}(H)$, $B]=1$ and so $\left[O_{p^{\prime}}(H), X\right]=1$. Since X is arbitrary, $O_{p^{\prime}}(H) \leqq Z(H)$. As in the proof of (i) we see that $E(H) \neq 1$ and $E(H)$ is quasi-simple. Suppose $X \neq E(H)$. Let $D=\left\{X^{g} \mid g \in E(H)\right\}$ and let $K=\langle Z \mid Z \in D\rangle$. Let $A, B \in D$. If $\langle A, B\rangle \cong S L(2,5)$, then $A \leqq\langle A, B\rangle=\langle A, B\rangle^{(\infty)} \leqq(X E(H))^{(\infty)} \leqq E(H)$. This implies $X \leqq E(G)$, a contradiction. Therefore $\langle A, B\rangle$ is isomorphic to $Z_{3} \times Z_{3}$, or $S L(2,3)$. If K is a perfect group, then $X \leqq K^{(\infty)} \leqq(X E(H))^{(\infty)} \leqq E(H)$ a contradiction. By [1], K must be solvable. Therefore $[K, E(H)]$ is a normal solvable subgroup of $E(K)$ and so $E(H)$ centralizes K. In particular $X \leqq C_{G}(E(H))=C_{G}\left(F^{*}(H)\right) \leqq F(H)$ which is impossible as $F(H)$ is a p^{\prime}-group. Therefore $X \leqq E(H)$. Since X is arbitrary, $H=E(H)$ is quasi-simple. By [7, Theorem 1] and condition (TIp) we see that $H / Z(H)$ is isomorphic to A_{5} or $U_{3}(3)$. Therefore we may assume $U=X$. Suppose there exists $Y \in \Sigma$ such that $\langle X, Y\rangle \cong S L(2,5)$. Then $H^{\prime}=H$. Let $I_{l}(X)=\left\{i \mid i^{2}=1, \operatorname{dim} M(i-1)=2 d\right.$ and there exists $Z \in \Sigma$ such that $\left.i \in\langle X, Z\rangle\right\}$. Let $i, j \in I_{l}(X)$. Then $i j \in U$ by [5, Lemma 5.1 and Corollary 5.2]. Since $U=X, I_{l}(X)=\{i\}$. Let $R(i)=\left\{E \mid E \in \Sigma\right.$ and $\left.i \in I_{l}(E)\right\}$. Let $\Sigma_{1}=\left\{X^{h} \mid h \in H\right\}$. Then H is generated by the elements in Σ_{1}. We claim $R(i) \geqq \Sigma_{1}$. Suppose $[Z, S]=1$ for all $S \in R(i)$ and all $Z \in \Sigma_{1} \cdot R(i)$. Then $R(i)$ is H invariant as $H=\left\langle\Sigma_{1}\right\rangle$. Since H is transitive on $\Sigma_{1}, R(i) \geqq \Sigma_{1}$ in this case. Hence we may assume that there exist $S_{1} \in R(i)$ and $\langle z\rangle=Z \in \Sigma_{1} \backslash R(i)$ such that $\left[S_{1}, Z\right] \neq 1$. Since $\left\langle S_{1}, Z\right\rangle \not \equiv 3^{1+2}$, so there is an involution $j \in\left\langle S_{1}, Z\right\rangle$. If $j \in I_{l}\left(S_{1}\right)$, then $j=i$ and so $i \in I_{l}(Z)$. This implies $Z \in R(i)$, a contradiction. Therefore $j \neq i$. Hence
$\operatorname{dim} M(j-1) \leqq 2 d$. Suppose $[Z, i]=1$. Then $C_{M}(i)$ and $M(i-1)$ are Z-submodules. Let $s \in S_{1}$ such that s is conjugate to z in $\left\langle S_{1}, Z\right\rangle$. Since $S_{1} \in R(i)$, the restriction of S_{1} on $C_{M}(i)$ is the identity transformation. Hence $s^{-1} z$ and z have the same restriction on $C_{M}(i)$. However $\left(s^{-1} z\right)^{2}=j$ is an involution. This shows that the restriction of Z on $C_{M}(i)$ is also the identity transformation. Since $[Z, i]=1, i$ acts on $I_{l}(Z)=\{k\}$ by conjugation. Hence $[i, k]=1$. Therefore $M(i-1)$ and $C_{M}(i)$ are $\langle k\rangle$-submodules. [5, Lemma 2.6] implies that k induces -1 on $M(i-1)$. By comparing dimension, we see that $k=i$. This implies $Z \in R(i)$, a contradiction. Thus we may assume $[Z, i] \neq 1$. Let $T \in R(i)$ such that $i \in\left\langle S_{1}, T\right\rangle$ and $\left\langle S_{1}, T\right\rangle \cong S L(2,3)$. If $[Z, T]=1$, then $i^{z} \in\left\langle\left(S_{1}\right)^{z}, T^{z}\right\rangle$ $=\left\langle\left(S_{1}\right)^{z}, T\right\rangle$. Hence $i^{z} \in I_{l}(T)=\{i\}$. This implies that $i^{z}=i$, which is impossible. Therefore $[Z, T] \neq 1^{\cdot}$ If $\langle Z, T\rangle \cong S L(2,5)$, then [5, Lemma 4.6] implies that $I_{l}(Z)=I_{l}(T)=\{i\}$. Thus $Z \in R(i)$, a contradiction. Therefore $\langle Z, T\rangle \cong S L(2,3)$. Similary we have $\left\langle T_{1}, Z\right\rangle \cong S L(2,3)$ for each $T_{1} \in \Sigma_{1} \cap\langle S, T\rangle$. Thus [9, (1.1.1)] implies that i is conjugate to j, a contradiction. Therefore $\Sigma_{1} \backslash R(i)$ is empty and $R(i) \geqq \Sigma_{1}$ as required. Since H is generated by elements of Σ_{1}, i $\in Z(H)$. Let $\bar{H}=H / O_{2}(H) Z(H)$. Since $3 \nmid|S(H)|$ and $O_{2^{\prime}}\left(O_{3^{\prime}}(H)\right) \leqq Z(H), O_{2}(\bar{H})$ $=Z(\bar{H})=1$. By condition (TIp) and [9, Satz] we see that $\bar{H} \cong A_{5}$. Since $H^{\prime}=H$ and the Schur multiplier of A_{5} has order $2, H / O_{2}(H) \cong A_{5}$ as $Z(H)$ is a 3^{\prime}-subgroup.

Thus we may assume that $\langle X, Y\rangle \not \equiv S L(2,5)$ for all $Y \in \Sigma$. Therefore for $E \neq F \in \Sigma$ we have $\langle E, F\rangle \cong Z_{3} \times Z_{3}$ or $S L(2,3)$. We can now appeal to [1] and applying condition ($T I p$) to conclude the proof.

By using the condition ($T I p$), Theorem 1 is now a consequence of 4.2.

References

[1] M. Aschbacher, Groups generated by a class of elements of order 3, J. Algebra, 24 (1973), 591-612.
[2] G. Glauberman, Quadratic elements in unipotent linear groups, J. Algebra, 20 (1972), 637-654.
[3] D. Goldschmidt, 2-Fusion in finite groups, Ann. of Math. II. Ser., 99 (1974), 70-117.
[4] D. Gorenstein, Finite groups, New York, Harper and Row, 1968.
[5] C. Y. Ho, On the quadratic pair whose root group has order 3, Bull. Inst. Math. Acad. Sinica, Republic of China, 1 (1973), 155-180.
[6] C. Y. Ho, Quadratic pair for 3 whose root group has order greater than 3, I. Comm. in Algebra, 3(11) (1975), 961-1029.
[7] C. Y. Ho, On the quadratic pairs, J. Algebra, 43 (1976) 338-358.
[8] C. Y. Ho, A characterization of $S L\left(2, p^{n}\right), p \geqq 5$, to appear in J. Algebra.
[9] B. Stellmacher, Einfache Gruppen, die von einer Konjugiertenklasse von elementen der ordnung drei erzugt werden, J. Algebra, 30 (1974), 320-354.
[10] M. Suzuki, Finite groups of even order in which Sylow 2-subgroups are independent, Ann. of Math., (2) 80 (1964), 58-77.

Chat-Yin Ho
Departamento de Matemática Universidade de Brasília Brasília, Brasil
and
Department of Mathematics
The University of Tsukuba Ibaraki 300-31
Japan

