Singular perturbations of m-accretive operators

By Noboru Okazawa

(Received March 1, 1978)

Introduction.

Let S be a linear operator with domain $D(S)$ and range $R(S)$ in a Hilbert space H. Assume that
(\#) for all $\alpha>0,(1+\alpha S)^{-1}$ exists, $R(1+\alpha S)=H$ and there is a constant $M>0$ such that $\left\|(1+\alpha S)^{-1}\right\| \leqq M$.

The following three theorems are recently established by Professor T. Kato.
Theorem 0.1. Let A be a linear accretive operator in H. Let S be a linear operator in H, satisfying condition (\#), with $D(S) \subset D(A)$. Assume that there exist nonnegative constants a and b such that for all $u \in D(S)$,

$$
\begin{equation*}
\operatorname{Re}(A u, S u) \geqq-a\|u\|^{2}-b\|S u\|\|u\| . \tag{0.1}
\end{equation*}
$$

Then the closure \tilde{A} of A is m-accretive and $D(S)$ is a core of \tilde{A}.
Theorem 0.2. In Theorem 0.1 assume further that S is m-accretive, i.e., $M=1$ in condition (\#). Then for $n=1,2, \cdots, A_{n}=\frac{1}{n} S+A$ is also m-accretive and

$$
(\tilde{A}+\zeta)^{-1}=\mathrm{s}-\lim _{n \rightarrow \infty}\left(\frac{1}{n} S+A+\zeta\right)^{-1}, \quad \operatorname{Re} \zeta>0 .
$$

Furthermore, A_{n} converges to \tilde{A} strongly in the generalized sense.
For the notion of generalized strong convergence of closed linear operators we refer to Kato [11].

Theorem 0.3. Let A be a linear accretive operator in H. Let S be a nonnegative selfadjoint operator in H, with $D(S) \subset D(A)$. Assume that there is a constant $b \geqq 0$ such that for all $u \in D(S)$,

$$
\operatorname{Re}(A u, S u) \geqq-b(u, S u)
$$

Let $0 \leqq h \leqq 1 / 2$. Then $D\left(S^{h}\right)$ is invariant under $(\tilde{A}+\xi)^{-1}, \xi>2 h b$, and for all $v \in D\left(S^{h}\right)$,

$$
\left\|S^{h}(\tilde{A}+\xi)^{-1} v\right\| \leqq(\xi-2 h b)^{-1}\left\|S^{h} v\right\|
$$

The purpose of this paper is to generalize the theorems stated above. In § 1 we give a sufficient condition for the well-behaved singular perturbation of linear operators in a Banach space. As a simple consequence we obtain a
perturbation theorem of Chernoff [5] and Okazawa [17]. § 2 is concerned with the regular perturbation of linear m-accretive operators in a Banach space. We shall generalize the theorems in Yoshikawa [22] and Okazawa [16], [18]. The result extends that of Gustafson [7]. Using the results in § 1 and §2, we shall prove in $\S 3$ two generalizations of Theorem 0,2 to the case of Banach space. To generalize the inequality (0.1) we need the notion of duality map. Let F be the duality map on a Banach space X to its adjoint X^{*}. Roughly speaking, we assume instead of (0.1),

$$
\begin{equation*}
\operatorname{Re}(A u, F(S u)) \geqq-a\|u\|^{2}-b\|S u\|\|u\|, \tag{0.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\operatorname{Re}(S u, F(A u)) \geqq-a\|u\|^{2}-b\|A u\|\|u\| . \tag{0.3}
\end{equation*}
$$

Since $D(S)$ is included in $D(A)$, (0.3) is weaker than (0.2) if X is a Hilbert space, i.e., F is the identity. But, we can find the example in which (0.3), rather than (0.2), is satisfied. The purpose of $\S 4$ is to give another proof of Theorem 0.1 and to show that A_{n} converges to \tilde{A} strongly in the generalized sense without assuming the m-accretiveness of S. The result is closely related to a nice criterion for selfadjointness obtained by Faris-Lavine [6]. Assuming slightly more, we can generalize a theorem in Okazawa [20]. As an application we consider in $\S 5$ some differential operators in $L^{p}(1<p<\infty)$. In particular, we can treat the Legendre operator A in $L^{2}(-1,1)$:

$$
A u(x)=-\frac{d}{d x}\left[\left(1-x^{2}\right) \frac{d u}{d x}\right]
$$

with $D(A)=\left\{u \in H^{1}(-1,1) ;\left(1-x^{2}\right) u(x) \in H^{2}(-1,1)\right\}$. We shall show that A is the reasonable limit of a sequence of Sturm-Liouville operators

$$
\left(\frac{1}{n} S+A\right) u(x)=-\frac{d}{d x}\left[\left(\frac{1}{n}+1-x^{2}\right) \frac{d u}{d x}\right], \quad n=1,2, \cdots,
$$

where $S u(x)=-u^{\prime \prime}(x)$ with $D(S)=\left\{u \in H^{2}(-1,1) ; u^{\prime}(-1)=u^{\prime}(1)=0\right\}$. Here, it should be noted that the following inclusion holds:

$$
D(S) \subset D(A) \subset D\left(S^{1 / 2}\right)=H^{1}(-1,1) .
$$

$\S 6$ is concerned with the regular perturbation of nonlinear m-accretive operators in a real Banach space with uniformly convex dual. We shall mention some criteria for the m-accretiveness of the sum of two m-accretive operators. Finally, in $\S 7$ we shall try to generalize Theorem 0.3 to the case of nonlinear m-accretive A in a real Hilbert space. A simple example will be given at the end of this section.

The writer would like to thank Professor T. Kato for giving him a chance to learn the suggestive result before publication.

§ 1. Singular perturbation of linear operators.

Let X be a Banach space and X^{*} be the adjoint space of X. Let S be a linear operator with domain $D(S)$ and range $R(S)$ in X. We denote by S^{*} the adjoint operator of S when $D(S)$ is dense in X. Let A be a linear operator in X, with $D(A) \supset D(S)$.

Here we introduce two fundamental assumptions:
(I) There exists a complex number ξ such that

$$
R\left(\frac{1}{n} S+A+\xi\right)=X, \quad n=1,2, \cdots ;
$$

hence for every $v \in X$ there exists a sequence $\left\{u_{n}\right\}$ in $D(S)$ such that

$$
\begin{equation*}
\frac{1}{n} S u_{n}+A u_{n}+\xi u_{n}=v . \tag{1.1}
\end{equation*}
$$

(II) For every $v \in X$ both sequences $\left\{\left\|u_{n}\right\|\right\}$ and $\left\{\left\|A u_{n}\right\|\right\}$ are bounded. (Note that $\frac{1}{n} S+A+\xi$ is not necessarily invertible.)

Then we have
Proposition 1.1. Let A be a linear operator in X. Let S be a densely defined linear operator in X, with $D(S) \subset D(A)$ and $D\left(S^{*}\right)$ dense in X^{*}. Suppose that two assumptions (I) and (II) are satisfied. Then $R(A+\xi)$ is dense in X.

Proof. We shall show that $(A+\xi) D(S)$ is dense in X. To this end, let f be an element in X^{*} such that for all $u \in D(S),((A+\xi) u, f)=0$. Then it follows from (1.1) that

$$
\begin{aligned}
(v, f) & =\left(\frac{1}{n} S u_{n}, f\right)+\left((A+\xi) u_{n}, f\right) \\
& =\frac{1}{n}\left(S u_{n}, f\right) \rightarrow 0 \quad(n \rightarrow \infty) .
\end{aligned}
$$

In fact, $\left\|\frac{1}{n} S u_{n}\right\|$ is also bounded by assumption (II) and for every $f \in D\left(S^{*}\right)$,

$$
\left|\frac{1}{n}\left(S u_{n}, f\right)\right|=\frac{1}{n}\left|\left(u_{n}, S^{*} f\right)\right| \leqq \frac{1}{n}\left\|u_{n}\right\|\left\|S^{*} f\right\| .
$$

Thus, we obtain $(v, f)=0$ for all $v \in X$ and hence $f=0$.
Q.E.D.

Now, a linear operator A in X is said to be accretive if

$$
\|(A+\xi) u\| \geqq \xi\|u\| \quad \text { for all } \quad u \in D(A) \text { and } \quad \xi>0 .
$$

If in particular $R(A+\xi)=X$ for some (and hence for every) $\xi>0$, we say that A is m-accretive. Accordingly, an m-accretive operator is necessarily closed.

In this connection, let A be an arbitrary closed linear operator in X.

Then a linear manifold D contained in $D(A)$ is called a core of A if the closure of the restriction of A to D is again A.

Theorem 1.2. In Proposition 1.1 assume further that A is accretive and $\xi>0$. Then A is closable and its closure \tilde{A} is m-accretive, and $D(S)$ is a core of \tilde{A}.

Proof. Since $D(A)$ is dense in X, A is closable (see Lumer-Phillips [13], Lemma 3.3) and $R(\tilde{A}+\xi)$ is a closed linear subspace in X. So, Proposition 1.1 implies $R(\tilde{A}+\xi)=X$. Namely, \tilde{A} is m-accretive. To see that $D(S)$ is a core of \tilde{A}, it suffices to show that $(A+\xi) D(S)$ is dense in X (see Kato [11], III§5.3). But, this fact is the key point in the proof of Proposition 1.1.
Q. E. D.

Corollary 1.3. In Theorem 1.2 assume further that for $n=1,2, \cdots$, $\frac{1}{n} S+A+\xi$ is invertible. Then $\frac{1}{n} S+A$ converges to \tilde{A} strongly in the generalized sense.

Proof. By the invertibility we obtain from (1.1)

$$
u_{n}=\left(\frac{1}{n} S+A+\xi\right)^{-1} v .
$$

Since $\left\|u_{n}\right\|$ is bounded, $\left\|\left(\frac{1}{n} S+A+\xi\right)^{-1}\right\|$ is also bounded by the principle of uniform boundedness. Therefore, $\frac{1}{n} S+A$ converges strongly to \tilde{A} in the generalized sense (see Kato [11], Theorem VIII-1.5).
Q. E. D.

Let F be the duality map on X to X^{*}, i. e., for each $w \in X, F(w)=\left\{f \in X^{*}\right.$; $\left.(w, f)=\|w\|^{2}=\|f\|^{2}\right\}$. Then a linear operator A in X is accretive if and only if for every $u \in D(A)$ there is $f \in F(u)$ such that $\operatorname{Re}(A u, f) \geqq 0$ (see [9]). In this connection, we note that if A is m-accretive then $\operatorname{Re}(A u, f) \geqq 0$ for all $f \in F(u)$.

Applying Theorem 1.2, we obtain a result in [5] and [17].
Corollary 1.4. Let S be a densely defined linear m-accretive operator in X, with $D\left(S^{*}\right)$ dense in X^{*}. Let B be a linear accretive operator in X, with $D(B) \supset D(S)$. Assume that there exists a constant $a>0$ such that for all $u \in D(S)$,

$$
\|B u\| \leqq a\|u\|+\|S u\| .
$$

Then $(S+B)^{\sim}$ is also m-accretive.
Proof. Since $S+B$ is accretive, it suffices to show that two assumptions (I) and (II) with $A=S+B$ are satisfied. Let $t>0$. Then we have

$$
\|B u\| \leqq a\|u\|+(1+t)^{-1}\|(1+t) S u\| .
$$

Since $(1+t)^{-1}<1$, it follows that $(1+t) S+B=t S+(S+B)$ is also m-accretive (see Gustafson [7]). Consequently, for every $v \in X$ there exists a family $\{u(t)\}$ in
$D(S)$ such that

$$
t S u(t)+(S+B) u(t)+u(t)=v
$$

Now, in addition to $\|u(t)\| \leqq\|v\|$, we have

$$
\begin{aligned}
\|t S u(t)\| & =(1+t)\|S u(t)\|-\|S u(t)\| \\
& \leqq(1+t)\|S u(t)\|-(\|B u(t)\|-a\|u(t)\|) \\
& \leqq\|(1+t) S u(t)+B u(t)\|+a\|u(t)\| \\
& \leqq\|v\|+(1+a)\|u(t)\| .
\end{aligned}
$$

Therefore, $\|(S+B) u(t)\| \leqq(4+a)\|v\|$. Q.E.D.
Remark 1.5. Starting from the m-accretiveness of $S+t B(0<t<1)$, we can again obtain the same conclusion under the assumption that $D\left(B^{*}\right)$, rather than $D\left(S^{*}\right)$, is dense in X^{*}; see the proofs in [5] and [17]. For the case of reflexive Banach space see Lemma 3.2 below.

§ 2. Regular perturbation of linear m-accretive operators.

The result in this section will be used in the next section to show that the assumption (I) in $\S 1$ is satisfied by the operators involved.

Let X be a Banach space and F be the duality map on X to X^{*}.
Lemma 2.1. Let A be a linear accretive operator in X. Let S be a densely defined linear m-accretive operator in X, with $D(S) \subset D(A)$. Assume that for every $u \in D(S)$ there exists $h \in F(S u)$ such that

$$
\begin{equation*}
\operatorname{Re}(A u, h) \geqq-a\|u\|^{2}, \tag{2.1}
\end{equation*}
$$

where $a \geqq 0$ is a constant. Then $S+A$ is also m-accretive.
Proof. Since A is closable and $D(A) \supset D(S)$, there exists a constant $c>0$ such that for all $u \in D(S)$,

$$
\|A u\| \leqq c(\|u\|+\|S u\|)
$$

(see Kato [11], IV-§ 1.1). Let [c] be the integral part of c, and set $\varepsilon=([c]+1)^{-1}$. Then we have

$$
\begin{equation*}
\|\varepsilon A u\| \leqq c \varepsilon\|u\|+c \varepsilon\|S u\|, \quad c \varepsilon<1 \tag{2.2}
\end{equation*}
$$

Therefore, by the theorem of Gustafson quoted in the proof of Corollary 1.4, $S+\varepsilon A$ is m-accretive.

Now we can prove that for all $u \in D(S)$,

$$
\|S u\| \leqq\|(S+k \varepsilon A) u\|+(k \varepsilon a)^{1 / 2}\|u\|, \quad k=1,2, \cdots .
$$

In fact, we have by (2.1)

$$
\begin{aligned}
\|S u\|^{2} & =(S u, h) \leqq(S u, h)+\operatorname{Re}(k \varepsilon A u, h)+k \varepsilon a\|u\|^{2} \\
& =\operatorname{Re}((S+k \varepsilon A) u, h)+k \varepsilon a\|u\|^{2} \\
& \leqq\|(S+k \varepsilon A) u\|\|S u\|+k \varepsilon a\|u\|^{2} .
\end{aligned}
$$

So, we obtain from (2.2)

$$
\begin{align*}
\|\varepsilon A u\| & \leqq c \varepsilon\|u\|+c \varepsilon\left[\|(S+k \varepsilon A) u\|+(k \varepsilon a)^{1 / 2}\|u\|\right] \tag{2.3}\\
& =c \varepsilon\left[1+(k \varepsilon a)^{1 / 2}\right]\|u\|+c \varepsilon\|(S+k \varepsilon A) u\| .
\end{align*}
$$

It follows from (2.3) with $k=1$ that $(S+\varepsilon A)+\varepsilon A=S+2 \varepsilon A$ is m-accretive. Thus, we can prove inductively that $S+k \varepsilon A$ is m-accretive. In particular, $S+A=S+([c]+1) \varepsilon A$ is m-accretive.
Q.E.D.

Now, a perturbation theorem in [18] and [22] is generalized as follows:
THEOREM 2.2. Let A be a linear accretive operator in X. Let S be a densely defined linear m-accretive operator in X, with $D(S) \subset D(A)$. Assume that for every $u \in D(S)$ there exists $h \in F(S u)$ such that

$$
\begin{equation*}
\operatorname{Re}(A u, h) \geqq-a\|u\|^{2}-b\|S u\|^{2}, \tag{2.4}
\end{equation*}
$$

where a and $b<1$ are nonnegative constants. Then $S+A$ is also m-accretive.
Proof. (2.4) can be written as

$$
\begin{equation*}
\operatorname{Re}((b S+A) u, h) \geqq-a\|u\|^{2} \tag{2.5}
\end{equation*}
$$

Multiplying (2.5) by $1-b$, we obtain

$$
\operatorname{Re}\left((b S+A) u, h^{\prime}\right) \geqq-(1-b) a\|u\|^{2},
$$

where $h^{\prime} \in F((1-b) S u)$. Since $(1-b) S$ is m-accretive and $b S+A$ is accretive, with $D((1-b) S)=D(b S+A)$, it follows from Lemma 2. 1 that $(1-b) S+(b S+A)=$ $S+A$ is m-accretive.
Q.E.D.

REMARK 2.3. Let A and S be as in Theorem 2.2. Assume that there exist nonnegative constants a_{1} and $b_{1}<1$ such that for all $u \in D(S)$,

$$
\|A u\| \leqq a_{1}\|u\|+b_{1}\|S u\|
$$

Then (2.4) holds, with $b=b_{1}+\varepsilon<1$. In fact, for every $h \in F(S u)$,

$$
\begin{aligned}
\operatorname{Re}(A u, h) & \geqq-\|A u\|\|S u\| \geqq-a_{1}\|u\|\|S u\|-b_{1}\|S u\|^{2} \\
& \geqq-C_{\varepsilon}\|u\|^{2}-\left(b_{1}+\varepsilon\right)\|S u\|^{2} .
\end{aligned}
$$

Therefore, $S+A$ is m-accretive. This means that Theorem 2.2 extends the result of Gustafson [7].

PROPOSITION 2.4. Let A be a linear accretive operator in X. Let S be a densely defined linear m-accretive operator in X, with $D(S) \subset D(A)$. Assume that $D\left(A^{*}\right)$ is dense in X^{*} and that for every $u \in D(S)$ there exists $g \in F(A u)$ such that

$$
\begin{equation*}
\operatorname{Re}(S u, g) \geqq-a\|u\|^{2}, \tag{2.6}
\end{equation*}
$$

where $a \geqq 0$ is a constant. Then $S+A$ is also m-accretive.
Proof. As in the proof of Lemma 2.1, $S+\varepsilon A$ is m-accretive when $\varepsilon=$ $([c]+1)^{-1}$.

Instead of (2.3) we can prove that for all $u \in D(S)$,

$$
\begin{equation*}
\|\varepsilon A u\| \leqq(a \varepsilon)^{1 / 2}\|u\|+\|(S+k \varepsilon A) u\|, \tag{2.7}
\end{equation*}
$$

where $k=1,2, \cdots$. In fact, by the inequality (2.6) we have

$$
\begin{aligned}
\varepsilon\|A u\|^{2} & \leqq k \varepsilon(A u, g) \leqq(k \varepsilon A u, g)+\operatorname{Re}(S u, g)+a\|u\|^{2} \\
& =\operatorname{Re}((S+k \varepsilon A) u, g)+a\|u\|^{2} \\
& \leqq\|(S+k \varepsilon A) u\|\|A u\|+a\|u\|^{2} .
\end{aligned}
$$

Solving this inequality, we obtain (2.7). Now, it follows from (2.7) with $k=1$ that the closure of $(S+\varepsilon A)+\varepsilon A$ is m-accretive (see Corollary 1.4 and Remark 1.5). But, (2.7) implies further that $S+k \varepsilon A$ is closed for $k=1,2, \cdots$. Thus, we can prove inductively that $S+k \varepsilon A$ is m-accretive particularly when $k=$ $[c]+1$.
Q.E.D.

Remark 2.5. When X is a Hilbert space, then (2.6) is the same as (2.1). In this case we note that $A(1+\alpha S)^{-1}+\alpha a$ is accretive (see Lemma 4.2 below).

§ 3. Singular perturbation of linear m-accretive operators.

In this section we shall prove two theorems on the singular perturbation of linear m-accretive operators in a Banach space.

Let X be a Banach space and F be the duality map on X to X^{*}.
Theorem 3.1. Let A be a linear accretive operator in X. Let S be a linear m-accretive operator in X, with $D(S) \subset D(A)$. Assume that
(i) for every $u \in D(S)$ there is $h \in F(S u)$ such that

$$
\begin{equation*}
\operatorname{Re}(A u, h) \geqq-a_{1}\|u\|^{2}-c\|S u\|\|u\|, \tag{3.1}
\end{equation*}
$$

where a_{1} and c are nonnegative constants;
(ii) $D(S)$ is dense in X and $D\left(S^{*}\right)$ is dense in X^{*}.

Then the closure \tilde{A} of A is m-accretive and $D(S)$ is a core of \tilde{A}. For $n=1,2, \cdots, \frac{1}{n} S+A$ is m-accretive and

$$
\begin{equation*}
(\tilde{A}+\zeta)^{-1}=\underset{n \rightarrow \infty}{ } \lim _{n \rightarrow \infty}\left(\frac{1}{n} S+A+\zeta\right)^{-1}, \quad \operatorname{Re} \zeta>0 \tag{3.2}
\end{equation*}
$$

Furthermore, $\frac{1}{n} S+A$ converges to \tilde{A} strongly in the generalized sense.
If in particular X is reflexive, then condition (ii) is redundant.

Proof. By (3.1) we can find positive constants a_{2} and $b<1$ such that for $n=1,2, \cdots$,

$$
\begin{equation*}
\operatorname{Re}(A u, h) \geqq-a_{1}\|u\|^{2}-\left(a_{2} n\|u\|^{2}+\frac{b}{n}\|S u\|^{2}\right) . \tag{3.3}
\end{equation*}
$$

Multiplying (3.3) by n^{-1}, we obtain

$$
\operatorname{Re}\left(A u, h^{\prime}\right) \geqq-\left(\frac{a_{1}}{n}+a_{2}\right)\|u\|^{2}-b\left\|\frac{1}{n} S u\right\|^{2}
$$

where $h^{\prime} \in F\left(\frac{1}{n} S u\right)$. So, it follows from Theorem 2. 2 that $\frac{1}{n} S+A$ is m accretive:

$$
R\left(\frac{1}{n} S+A+1\right)=X, \quad n=1,2, \cdots
$$

Let u_{n} be a unique solution of the equation

$$
\begin{equation*}
\frac{1}{n} S u_{n}+A u_{n}+u_{n}=v . \tag{3.4}
\end{equation*}
$$

Then, in addition to $\left\|u_{n}\right\| \leqq\|v\|$, we can show that

$$
\begin{equation*}
\left\|\frac{1}{n} S u_{n}\right\|^{2} \leqq(2+c)\left\|\frac{1}{n} S u_{n}\right\|\|v\|+\frac{a_{1}}{n}\|v\|^{2} . \tag{3.5}
\end{equation*}
$$

In fact, by virtue of (3.1) there is $h_{n} \in F\left(S u_{n}\right)$ such that

$$
\begin{aligned}
\left\|\frac{1}{n} S u_{n}\right\|^{2} & =\frac{1}{n}\left(\frac{1}{n} S u_{n}, h_{n}\right) \\
& \leqq \frac{1}{n} \operatorname{Re}\left(\left(\frac{1}{n} S+A\right) u_{n}, h_{n}\right)+\frac{a_{1}}{n}\left\|u_{n}\right\|^{2}+c\left\|\frac{1}{n} S u_{n}\right\|\left\|u_{n}\right\| \\
& \leqq\left\|\left(\frac{1}{n} S+A\right) u_{n}\right\|\left\|\frac{1}{n} S u_{n}\right\|+\frac{a_{1}}{n}\|v\|^{2}+c\left\|\frac{1}{n} S u_{n}\right\|\|v\| .
\end{aligned}
$$

Noting that $\left\|\left(\frac{1}{n} S+A\right) u_{n}\right\| \leqq 2\|v\|$, we obtain (3.5), Solving the inequality (3.5), we have

$$
\left\|\frac{1}{n} S u_{n}\right\| \leqq\left[2+c+\left(\frac{a_{1}}{n}\right)^{1 / 2}\right]\|v\| ;
$$

and hence $\left\|A u_{n}\right\| \leqq\left[4+c+\left(\frac{a_{1}}{n}\right)^{1 / 2}\right]\|v\|$. Thus, the conclusion follows from Theorem 1.2 and Corollary 1.3 (for (3.2) see Kato [11], VIII-§ 1).

The final assertion is a consequence of Lemma 3.2 below. Q.E.D.
The following important lemma is due to Kato [8] (see Yosida [23], VIII-§ 4).

Lemma 3.2. Let S be a linear operator in a reflexive Banach space X, satisfying
(\#) for all $\alpha>0,(1+\alpha S)^{-1}$ exists, $R(1+\alpha S)=X$ and there is a constant $M>0$ such that $\left\|(1+\alpha S)^{-1}\right\| \leqq M$.

Then $D(S)$ is dense in X. Consequently, it follows from the closedness of S that $D\left(S^{*}\right)$ is also dense in X^{*} (see Kato [11], Theorem III-5.29).

Theorem 3.3. Let A be a linear accretive operator in X. Let S be a linear m-accretive operator in X, with $D(S) \subset D(A)$. Assume that
(i) for every $u \in D(S)$ there is $g \in F(A u)$ such that

$$
\begin{equation*}
\operatorname{Re}(S u, g) \geqq-a\|u\|^{2}-b\|A u\|\|u\|, \tag{3.6}
\end{equation*}
$$

where a and b are nonnegative constants;
(ii) $D(S)$ is dense in X, and both $D\left(S^{*}\right)$ and $D\left(A^{*}\right)$ are dense in X^{*}.

Then \tilde{A} is m-accretive and $D(S)$ is a core of \tilde{A}. Furthermore, (3.2) holds and $\frac{1}{n} S+A$ converges to \tilde{A} strongly in the generalized sense.

If in particular X is reflexive, then condition (ii) is redundant.
Proof. We see from (3.6) that for any $\varepsilon>0$ there is a constant $C_{\varepsilon}>0$ such that

$$
\begin{equation*}
\operatorname{Re}(S u, g) \geqq-a\|u\|^{2}-\left(\frac{C_{\varepsilon}}{n}\|u\|^{2}+\varepsilon n\|A u\|^{2}\right) . \tag{3.7}
\end{equation*}
$$

Multiplying (3.7) by $(1-\varepsilon) / n$, we obtain

$$
\operatorname{Re}\left(\left(\frac{1}{n} S+\varepsilon A\right) u, g^{\prime}\right) \geqq-(1-\varepsilon)\left(\frac{a}{n}+\frac{C_{\varepsilon}}{n^{2}}\right)\|u\|^{2}
$$

where $g^{\prime} \in F((1-\varepsilon) A u)$. Since $\frac{1}{n} S+\varepsilon A$ is m-accretive (see Remark 2.3), it follows from Proposition 2.4 that $\left(\frac{1}{n} S+\varepsilon A\right)+(1-\varepsilon) A=\frac{1}{n} S+A$ is m-accretive.

It remains to show that $\left\|A u_{n}\right\|$ is bounded, where u_{n} is a unique solution of (3.4). By virtue of (3.6) there is $g_{n} \in F\left(A u_{n}\right)$ such that

$$
\begin{aligned}
\left\|A u_{n}\right\|^{2} & =\left(A u_{n}, g_{n}\right) \\
& \leqq \operatorname{Re}\left(\left(\frac{1}{n} S+A\right) u_{n}, g_{n}\right)+\frac{a}{n}\left\|u_{n}\right\|^{2}+\frac{b}{n}\left\|A u_{n}\right\|\left\|u_{n}\right\| \\
& \leqq\left\|\left(\frac{1}{n} S+A\right) u_{n}\right\|\left\|A u_{n}\right\|+\frac{a}{n}\|v\|^{2}+\frac{b}{n}\left\|A u_{n}\right\|\|v\| \\
& \leqq\left(2+\frac{b}{n}\right)\left\|A u_{n}\right\|\|v\|+\frac{a}{n}\|v\|^{2} .
\end{aligned}
$$

Solving this inequality, we see that $\left\|A u_{n}\right\| \leqq\left[2+\frac{b}{n}+\left(\frac{a}{n}\right)^{1 / 2}\right]\|v\|$. Applying Theorem 1.2 and Corollary 1.3, we obtain the same conclusion as that of Theorem 3.1.
Q.E.D.

Before concluding this section, we give a remark on the contraction semigroups generated by $-\left(\frac{1}{n} S+A\right)$ and $-\tilde{A}$.

Let A and S be as in Theorem 3.1 (or Theorem 3.3). Let $U\left(t ; \frac{1}{n} S+A\right)$ and $U(t ; \tilde{A})$ be the semigroups generated by $-\left(\frac{1}{n} S+A\right)$ and $-\tilde{A}$, respectively. Then, as is well known, $U\left(t ; \frac{1}{n} S+A\right)$ converges strongly to $U(t ; \tilde{A})$:

$$
U(t ; \tilde{A})=\mathrm{s}-\lim _{n \rightarrow \infty} U\left(t ; \frac{1}{n} S+A\right), \quad t \geqq 0 .
$$

The convergence is uniform with respect to t in each finite subinterval of $[0, \infty)$.

Now $U\left(t ; \frac{1}{n} S+A\right)$ is given by the Trotter product formula :

$$
U\left(t ; \frac{1}{n} S+A\right)=\mathrm{s}-\lim _{p \rightarrow \infty}\left[U\left(\frac{t}{p} ; \frac{1}{n} S\right) U\left(\frac{t}{p} ; \tilde{A}\right)\right]^{p}
$$

(see e. g. Chernoff [4]). But since $U\left(\frac{t}{p} ; \frac{1}{n} S\right)=U\left(\frac{t}{p n} ; S\right)$ tends to the identity strongly as $n \rightarrow \infty$, it follows that

$$
U(t ; \tilde{A})=\left[U\left(\frac{t}{p} ; \tilde{A}\right)\right]^{p}=\underset{n \rightarrow \infty}{ }-\lim _{n \rightarrow \infty}\left[U\left(\frac{t}{p} ; \frac{1}{n} S\right) U\left(\frac{t}{p} ; \tilde{A}\right)\right]^{p}
$$

Thus, we obtain the equality:

$$
\begin{aligned}
\underset{n \rightarrow \infty}{\operatorname{silm}} & \left(\underset{p-\lim _{p \rightarrow \infty}}{ }\left[U\left(\frac{t}{p} ; \frac{1}{n} S\right) U\left(\frac{t}{p} ; \tilde{A}\right)\right]^{p}\right) \\
& =\underset{p \rightarrow \infty}{ }-\lim _{n \rightarrow \infty}\left(\operatorname{sil}_{n \rightarrow \infty}\left[U\left(\frac{t}{p} ; \frac{1}{n} S\right) U\left(\frac{t}{p} ; \tilde{A}\right)\right]^{p}\right) .
\end{aligned}
$$

§4. Singular perturbation in a Hilbert space (linear case).

In this section we first consider a slightly more general class of linear operators including the class of linear m-accretive operators.

Let H be a Hilbert space. Then we have
Theorem 4.1. Let A be a linear accretive operator in H. Let S be a linear operator in H, satisfying condition ($\#$) in Introduction, with $D(S) \subset D(A)$. Assume that there exist nonnegative constants a and b such that for all $u \in D(S)$,

$$
\begin{equation*}
\operatorname{Re}(A u, S u) \geqq-a\|u\|^{2}-b\|S u\|\|u\| . \tag{4.1}
\end{equation*}
$$

Then A is m-accretive and $D(S)$ is a core of \tilde{A}. Furthermore, for sufficiently large $\xi>0$,

$$
(\tilde{A}+\xi)^{-1}=\mathrm{s}_{n \rightarrow \infty} \lim _{n \rightarrow \infty}\left(\frac{1}{n} S+A+\xi\right)^{-1}
$$

and $\frac{1}{n} S+A$ converges to \tilde{A} strongly in the generalized sense.
The proof of this theorem is based on the following
Lemma 4.2. Let $\varepsilon \in(0,1]$. Then under the assumption of Theorem 4.1,

$$
A\left(1+\frac{\varepsilon}{n} S\right)^{-1}+(a+b) M^{2}+b M, \quad n=1,2, \cdots
$$

is m-accretive.
Proof. Since $D(S)$ is dense in H (see Lemma 3.2), it follows that A is closable (see Kato [11], Theorem V-3.4). Consequently, $A\left(1+\frac{\varepsilon}{n} S\right)^{-1}$ is a bounded linear operator on H. So, it suffices to show that for all $v \in H$,

$$
\operatorname{Re}\left(A\left(1+\frac{\varepsilon}{n} S\right)^{-1} v, v\right) \geqq-[(a+b) M+b] M\|v\|^{2} .
$$

Since A is accretive, it follows from (4.1) that

$$
\begin{equation*}
\operatorname{Re}\left(A u,\left(1+\frac{\varepsilon}{n} S\right) u\right) \geqq-\frac{\varepsilon}{n} a\|u\|^{2}-\frac{\varepsilon}{n} b\|S u\|\|u\| \tag{4.2}
\end{equation*}
$$

Let $v \in H$. Then $u_{n}=\left(1+\frac{\varepsilon}{n} S\right)^{-1} v \in D(S)$. Setting $u=u_{n}$ in (4.2), we obtain

$$
\begin{aligned}
& \operatorname{Re}\left(A\left(1+\frac{\varepsilon}{n} S\right)^{-1} v, v\right) \\
& \quad \geqq-\frac{\varepsilon}{n} a\left\|\left(1+\frac{\varepsilon}{n} S\right)^{-1} v\right\|^{2}-\frac{\varepsilon}{n} b\left\|S\left(1+\frac{\varepsilon}{n} S\right)^{-1} v\right\|\left\|\left(1+\frac{\varepsilon}{n} S\right)^{-1} v\right\| \\
& \quad \geqq-M^{2} a\|v\|^{2}-b M(1+M)\|v\|^{2},
\end{aligned}
$$

where we have used condition (\#) and $\varepsilon \leqq n$.
Q.E.D.

Proof of Theorem 4.1. Let $\xi>[(a+b) M+b] M$. Taking $\varepsilon=\xi^{-1}$, we can write

$$
\frac{1}{n} S+A+\xi=\left[\xi+A\left(1+\frac{\varepsilon}{n} S\right)^{-1}\right]\left(1+\frac{\varepsilon}{n} S\right)
$$

Therefore, we see from condition (\#) and Lemma 4.2 that

$$
R\left(\frac{1}{n} S+A+\xi\right)=H, \quad n=1,2, \cdots
$$

Now, let $u_{n}(\xi)$ be a unique solution of the equation $\frac{1}{n} S u_{n}(\xi)+A u_{n}(\xi)+\xi u_{n}(\xi)=v$. Then by the equality

$$
\left(\frac{1}{n} S+A+\xi\right)^{-1}=\left(1+\frac{\varepsilon}{n} S\right)^{-1}\left[\xi+A\left(1+\frac{\varepsilon}{n} S\right)^{-1}\right]^{-1}
$$

we obtain

$$
\left\|u_{n}(\xi)\right\| \leqq M\left[\xi-(a+b) M^{2}-b M\right]^{-1}\|v\|
$$

It remains to show that for every $v \in H,\left\|\frac{1}{n} S u_{n}(\xi)\right\|$ is bounded. By virtue of (4.1) we have

$$
\begin{aligned}
\left\|\frac{1}{n} S u_{n}(\xi)\right\|^{2} & =\left(\frac{1}{u} S u_{n}(\xi), \frac{1}{n} S u_{n}(\xi)\right) \\
& \leqq \operatorname{Re}\left(\left(\frac{1}{n} S+A\right) u_{n}(\xi), \frac{1}{n} S u_{n}(\xi)\right)+\frac{a}{n}\left\|u_{n}(\xi)\right\|^{2}+\frac{b}{n}\left\|S u_{n}(\xi)\right\|\left\|u_{n}(\xi)\right\| \\
& \leqq\left[\|v\|+(\xi+b)\left\|u_{n}(\xi)\right\|\right]\left\|\frac{1}{n} S u_{n}(\xi)\right\|+\frac{a}{n}\left\|u_{n}(\xi)\right\|^{2}
\end{aligned}
$$

This implies that

$$
\left\|\frac{1}{n} S u_{n}(\xi)\right\| \leqq\|v\|+\left[\xi+b+\left(\frac{a}{n}\right)^{1 / 2}\right]\left\|u_{n}(\xi)\right\|
$$

Thus, the conclusion follows from Theorem 1. 2 and Corollary 1.3. Q.E.D.
REMARK 4.3. In order to see that \tilde{A} is m-accretive, it is easier to show that A^{*} is accretive (see [19], § 1). In fact, it follows from (4.1) that for all $u \in D(S)$ and $\alpha>0$,

$$
\operatorname{Re}(A u,(1+\alpha S) u) \geqq-\alpha a\|u\|^{2}-b\|\alpha S u\|\|u\|
$$

Setting $u=(1+\alpha S)^{-1} v, v \in D\left(A^{*}\right)$, we have

$$
\begin{aligned}
\operatorname{Re}\left((1+\alpha S)^{-1} v, A^{*} v\right) \geqq & -\alpha a\left\|(1+\alpha S)^{-1} v\right\|^{2} \\
& -b\left\|v-(1+\alpha S)^{-1} v\right\|\left\|(1+\alpha S)^{-1} v\right\|
\end{aligned}
$$

Going to the limit $\alpha \rightarrow+0$, we obtain $\operatorname{Re}\left(v, A^{*} v\right) \geqq 0$ for all $v \in D\left(A^{*}\right)$.
Now, we give a generalization of an approximation theorem obtained in [20].

THEOREM 4.4. Let A be a linear accretive operator in H. Let S be a nonnegative selfadjoint operator in H, with $D(S) \subset D(A)$. Assume that
(i) there exist nonnegative constants a and b such that for all $u \in D(S)$ the inequality (4.1) holds;
(ii) $D(\tilde{A}) \subset D\left(S^{1 / 2}\right)$, where $S^{1 / 2}$ denotes the square root of S.

Then, in addition to the conclusion of Theorem 3.1 , for every ζ with $\operatorname{Re} \zeta>0$ there is a constant $c(\zeta)>0$ such that

$$
\begin{equation*}
\left\|(\tilde{A}+\zeta)^{-1}-\left(\frac{1}{n} S+A+\zeta\right)^{-1}\right\| \leqq \frac{c(\zeta)}{\sqrt{n}}, \quad n=1,2, \cdots ; \tag{4.3}
\end{equation*}
$$

hence the compactness of $\left(\frac{1}{n} S+A+\zeta\right)^{-1}$ implies that of $(A+\zeta)^{-1}$.
Proof. Since S is m-accretive, the conclusion of Theorem 3 1 follows from condition (i). Let ζ be a complex number with $\operatorname{Re} \zeta>0$. Then for every $v \in H$ there are $u(\zeta) \in D(\tilde{A})$ and $u_{n}(\zeta) \in D(S)$ such that $\tilde{A} u(\zeta)+\zeta u(\zeta)=v$ and

$$
\frac{1}{n} S u_{n}(\zeta)+A u_{n}(\zeta)+\zeta u_{n}(\zeta)=v, \quad n=1,2, \cdots
$$

Hence we can write

$$
\zeta\left[u(\zeta)-u_{n}(\zeta)\right]=-\left[\tilde{A} u(\zeta)-A u_{n}(\zeta)\right]+\frac{1}{n} S u_{n}(\zeta) .
$$

So, we have

$$
\begin{aligned}
\operatorname{Re} \zeta\left\|u(\zeta)-u_{n}(\zeta)\right\|^{2} & \leqq \frac{1}{n} \operatorname{Re}\left(S u_{n}(\zeta), u(\zeta)-u_{n}(\zeta)\right) \\
& \leqq \frac{1}{2 n}\left\|S^{1 / 2} u(\zeta)\right\|^{2}-\frac{1}{2 n}\left\|S^{1 / 2} u_{n}(\zeta)\right\|^{2}
\end{aligned}
$$

Now, by virtue of condition (ii) there is a constant $c>0$ such that for all $u \in D(\tilde{A}),\left\|S^{1 / 2} u\right\| \leqq c(\|u\|+\|\tilde{A} u\|)$. Consequently, $\left\|S^{1 / 2} u(\zeta)\right\|$ is estimated as follows:

$$
\begin{aligned}
\left\|S^{1 / 2} u(\zeta)\right\| & \leqq c\|u(\zeta)\|+c\|(\tilde{A}+i \operatorname{Im} \zeta) u(\zeta)\|+c|\operatorname{Im} \zeta|\|u(\zeta)\| \\
& \leqq c(1+|\operatorname{Im} \zeta|)\|u(\zeta)\|+c\|(\tilde{A}+\zeta) u(\zeta)\| \\
& \leqq c\left(1+\frac{1+|\operatorname{Im} \zeta|}{\operatorname{Re} \zeta}\right)\|v\| .
\end{aligned}
$$

Setting $c(\zeta)=\frac{c}{\sqrt{ } 2 \operatorname{Re} \zeta}\left(1+\frac{1+|\operatorname{Im} \zeta|}{\operatorname{Re} \zeta}\right)$, we obtain (4.3), \quad Q.E.D.
As is well known, a criterion for m-accretiveness includes a criterion for selfadjointness. So, we can deduce from Theorem 44 a generalization of a result obtained by Faris-Lavine (see [6], Theorem 1).

Theorem 4.5. Let A be a (Hermitian) symmetric operator in H. Let S be a nonnegative selfadjoint operator in H, with $D(S) \subset D(A)$. Assume that there exist nonnegative constants a and b such that for all $u \in D(S)$,

$$
\begin{equation*}
\pm i[(A u, S u)-(S u, A u)] \leqq 2 a\|u\|^{2}+2 b\|S u\|\|u\| . \tag{4.4}
\end{equation*}
$$

Then A is essentially selfadjoint on $D(S)$, i.e., \tilde{A} is selfadjoint and $D(S)$ is a core of \tilde{A}.

Proof. It suffices to show that $R(1 \pm i A)$ are dense in H. The left-hand side of (4.4) is equal to

$$
(\pm i A u, S u)+(S u, \pm i A u)=2 \operatorname{Re}(\pm i A u, S u) .
$$

So, we obtain from (4.4)

$$
\begin{equation*}
\operatorname{Re}(\pm i A u, S u) \geqq-a\|u\|^{2}-b\|S u\|\|u\| . \tag{4.5}
\end{equation*}
$$

Since $\pm i A$ are accretive, it follows from Theorem 4.4 that the closures of $\pm i A$ are m-accretive. Namely, the closures of $R(1 \pm i A)$ are equal to H. Q.E.D.

Remark 4.6. Let A and S be as in Theorem 4.5, Then it follows from (4.5) that

$$
\operatorname{Re}\left(\pm i\left(\frac{1}{n} S+A\right) u, S u\right) \geqq-a\|u\|^{2}-b\|S u\|\|u\|
$$

Therefore, $\left(\frac{1}{n} S+A\right)^{\sim}$ is also selfadjoint. Consequently, for every nonreal ζ,

$$
(\tilde{A}-\zeta)^{-1}=\operatorname{sil}_{n \rightarrow \infty}\left[\left(\frac{1}{n} S+A\right)^{\sim}-\zeta\right]^{-1}
$$

and $\left(\frac{1}{n} S+A\right)^{\sim}$ converges to \tilde{A} strongly in the generalized sense (see Kato [11], VIII-§ 1).

§ 5. Applications.

This section is devided into three subsections.
5.1. A degenerate elliptic operator in $L^{p}(\Omega), 1<p<\infty$.

Let Ω be a bounded domain in R^{N} which lies locally on one side of its boundary Γ, which we assume is a compact C^{∞}-manifold. We denote by $W^{k, p}(\Omega)$ and $W_{0}^{k, p}(\Omega)$ the usual Sobolev spaces: $W^{0, p}(\Omega)=L^{p}(\Omega)$. But we restrict ourselves to the case of $p \in(1, \infty)$.

Let $a(x) \geqq 0$ be a function of class $C^{\infty}(\bar{\Omega})$, and set

$$
D(A)=\left\{u \in W_{0}^{1, p}(\Omega) ; a(x) u(x) \in W^{2, p}(\Omega)\right\} .
$$

Then we can define a linear operator A in $X=L^{p}(\Omega)$ by

$$
A u(x)=-a(x) \Delta u(x), \quad u \in D(A),
$$

where Δ is the Laplacian. We want to show that $A+(M / p)$ is accretive when we set $M=\max \{\Delta a(x) ; x \in \bar{\Omega}\}$.

To see this, we first note that the duality map F on $L^{p}(\Omega)$ is given by

$$
F(u)=\|u\|^{2-p} u(x)|u(x)|^{p-2}, \quad u \in L^{p}(\Omega) .
$$

So, we have

$$
(A u, F(u))=-\|u\|^{2-p} \int_{\Omega} a(x) \Delta u(x) \overline{u(x)}|u(x)|^{p-2} d x
$$

By a simple calculation we obtain

$$
\begin{aligned}
& \|u\|^{p-2} \operatorname{Re}(A u, F(u))=\frac{1}{p} \sum_{i=1}^{N} \int_{\Omega} \frac{\partial a}{\partial x_{i}} \frac{\partial}{\partial x_{i}}|u(x)|^{p} d x \\
& \quad+\sum_{i=1}^{N} \int_{\Omega} a(x)\left[\left|\frac{\partial u}{\partial x_{i}}\right|^{2}|u(x)|^{2}+(p-2)\left\{\operatorname{Re} \frac{\partial u}{\partial x_{i}} \overline{u(x)}\right\}^{2}\right]|u(x)|^{p-4} d x .
\end{aligned}
$$

The second term on the right-hand side is obviously nonnegative for $p \geqq 2$. If $p<2$ then it is larger than

$$
(p-1) \sum_{i=1}^{N} \int_{\Omega} a(x)\left|\frac{\partial u}{\partial x_{i}}\right|^{2}|u(x)|^{p-2} d x .
$$

Consequently, we obtain

$$
\begin{aligned}
\operatorname{Re}(A u, F(u)) & \geqq-\frac{\|u\|^{2-p}}{p} \int_{\Omega}|u(x)|^{p} \Delta a(x) d x \\
& \geqq-\frac{M}{p}\|u\|^{2}, \quad u \in D(A) .
\end{aligned}
$$

Now let S be the minus Laplacian with Dirichlet condition: $S u(x)=-\Delta u(x)$ for $u \in D(S)=W^{2, p}(\Omega) \cap W_{0}^{1, p}(\Omega)$. Then, as was shown above, S is accretive and it is well known that S is m-accretive in $L^{p}(\Omega)$. Furthermore, we see that $D(S) \subset D(A)$ and for all $u \in D(S)$,

$$
\operatorname{Re}(A u, F(S u))=\int_{\Omega} a(x)|\Delta u(x)|^{p} d x \geqq 0 .
$$

So, we obtain

$$
\begin{aligned}
\operatorname{Re}\left(A u+\frac{M}{p} u, F(S u)\right) & \geqq \frac{M}{p} \operatorname{Re}(u, F(S u)) \\
& \geqq-\frac{M}{p}\|u\|\|S u\|
\end{aligned}
$$

Since X is reflexive, the assumption of Theorem 3.1 is satisfied.
Remark 5.1. The above fact is related to an observation stated in Shimakura [21].
5.2. An ordinary differential operator in $L^{p}(0,1), 1<p<\infty$.

It is easy to find the examples of ordinary differential operators satisfying the assumption of Theorem 3.3.

To do this, we choose two linear operators A and S in $X=L^{p}(0,1)$ as follows:

$$
\begin{gathered}
A u(x)=u^{\prime}(x) \quad \text { with } u(0)=u(1) ; \\
S u(x)=-u^{\prime \prime}(x) \quad \text { with } \quad u(0)=u(1) \text { and } u^{\prime}(0)=u^{\prime}(1) .
\end{gathered}
$$

Then both A and S are accretive, with $D(S) \subset D(A)$. Furthermore, we have

$$
\left[\operatorname{Re}(S u, F(A u))=-\frac{\|A u\|^{2-p}}{2} \int_{0}^{1}\left|u^{\prime}(x)\right|^{p-2} \frac{d}{d x}\left|u^{\prime}(x)\right|^{2} d x\right.
$$

$$
=-\frac{\|A u\|^{2-p}}{p} \int_{0}^{1} \frac{d}{d x}\left|u^{\prime}(x)\right|^{p} d x=0 .
$$

Since S is m-accretive (see e.g. Martin [14]), the conclusion of Theorem 3. 3 holds good.

Remark 5.2. If in particular $p=2$ in the above example, it can be shown that for every ζ with $\operatorname{Re} \zeta>0$,

$$
\left\|(A+\zeta)^{-1}-\left(\frac{1}{n} S+A+\zeta\right)^{-1}\right\|=O\left(n^{-1 / 2}\right), \quad n \rightarrow \infty
$$

In fact, $S=A^{*} A$ in this case and so we can apply a result in [20]
5.3. A degenerate elliptic operator in $L^{2}(\Omega)$.

Let Ω be a bounded domain in R^{N} with smooth boundary Γ as in $\S .1$. We shall use the abbreviation: $H^{k}(\Omega)=W^{k, 2}(\Omega), H_{0}^{k}(\Omega)=W_{0}^{k, 2}(\Omega)$.

Let $\phi(x) \geqq 0$ be a function of class $C^{\infty}(\bar{\Omega})$ such that $\phi(x)=0$ for $x \in \Gamma$ and therefore

$$
\begin{equation*}
\frac{\partial \phi}{\partial \nu}(x) \leqq 0 \quad \text { for } \quad x \in \Gamma \tag{5.1}
\end{equation*}
$$

where ν denotes the unit outward normal on Γ. Set

$$
D(A)=\left\{u \in H^{1}(\Omega) ; \phi(x) u(x) \in H^{2}(\Omega)\right\} .
$$

Then we can define a linear operator A in $H=L^{2}(\Omega)$ by

$$
A u(x)=-\sum_{j=1}^{N} \frac{\partial}{\partial x_{j}}\left[\phi(x) \frac{\partial u}{\partial x_{j}}\right]
$$

By assumption A is accretive and symmetric.
Now let S be the minus Laplacian with Neumann condition: $S u(x)=-\Delta u(x)$ for $u \in D(S)=\left\{u \in H^{2}(\Omega) ; \partial u / \partial \nu=0\right.$ on $\left.\Gamma\right\}$. Then S is a nonnegative selfadjoint operator in $H=L^{2}(\Omega)$, with $D\left(S^{1 / 2}\right)=H^{1}(\Omega)$. Set

$$
M=\max \left\{\left|\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}\right| ; x \in \bar{\Omega}, 1 \leqq i, j \leqq N\right\} .
$$

Since $D(S) \subset D(A)$, we can show that for all $u \in D(S)$,

$$
\begin{equation*}
\operatorname{Re}(A u, S u) \geqq-\frac{3 N}{2} M(u, S u) \tag{5.2}
\end{equation*}
$$

In fact, let $u(x)$ be a function of class $C^{2}(\bar{\Omega})$ such that $\partial u / \partial \nu=0$ on Γ. Then we have

$$
\begin{aligned}
(A u, S u) & =\int_{\Omega} \phi(x)|\Delta u(x)|^{2} d x+\int_{\Omega} \sum_{j=1}^{N} \frac{\partial \phi}{\partial x_{j}} \frac{\partial u}{\partial x_{j}} \overline{\Delta u(x)} d x \\
& =\int_{\Omega} \phi(x)|\Delta u(x)|^{2} d x-\sum_{i, j=1}^{N} \int_{\Omega} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} \frac{\partial u}{\partial x_{j}} \frac{\partial u}{\partial x_{i}} d x
\end{aligned}
$$

$$
-\sum_{i, j=1}^{N} \int_{\Omega} \frac{\partial \phi}{\partial x_{j}} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \frac{\overline{\partial u}}{\partial x_{i}} d x
$$

So, we obtain

$$
\begin{aligned}
\operatorname{Re}(A u, S u) \geqq & -\sum_{i, j=1}^{N} \int_{\Omega} \frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}} \operatorname{Re} \frac{\partial u}{\partial x_{j}} \frac{\overline{\partial u}}{\partial x_{i}} d x \\
& -\frac{1}{2} \sum_{i=1}^{N} \int_{\Omega} \sum_{j=1}^{N} \frac{\partial \phi}{\partial x_{j}} \frac{\partial}{\partial x_{j}}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x .
\end{aligned}
$$

The second term on the right-hand side is equal to

$$
\frac{1}{2} \sum_{i=1}^{N} \int_{\Omega} \Delta \phi(x)\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x-\frac{1}{2} \sum_{i=1}^{N} \int_{\Gamma} \frac{\partial \phi}{\partial \nu}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d \sigma .
$$

We see from (5.1) that for all $u \in D(S)$,

$$
\begin{aligned}
\operatorname{Re}(A u, S u) \geqq & -\sum_{i, j=1}^{N} \int_{\Omega}\left|\frac{\partial^{2} \phi}{\partial x_{i} \partial x_{j}}\right|\left|\frac{\partial u}{\partial x_{j}}\right|\left|\frac{\partial u}{\partial x_{i}}\right| d x \\
& -\frac{1}{2} \sum_{i=1}^{N} \int_{\Omega}|\Delta \phi(x)|\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x \\
\geqq & -\left(N M+\frac{N}{2} M\right) \sum_{i=1}^{N} \int_{\Omega}\left|\frac{\partial u}{\partial x_{i}}\right|^{2} d x .
\end{aligned}
$$

Namely, (5.2) holds. Therefore, it follows from Theorem 3, 1 that \tilde{A} is m accretive. Furthermore, since A is symmetric, $\frac{1}{n} S+A(n=1,2, \cdots)$ and \tilde{A} are selfadjoint operators in $H=L^{2}(\Omega)$.

In the rest of this subsection assume further that $\phi(x)>0$ for $x \in \Omega$ and $\partial \phi / \partial \nu<0$ on Γ. Then A itself is a nonnegative selfadjoint operator in $H=L^{2}(\Omega)$ (see e.g. Baouendi-Goulaouic [1]). Consequently, we see that

$$
D(A)=D(\tilde{A}) \subset D\left(S^{1 / 2}\right)=H^{1}(\Omega)
$$

Thus, the assumption of Theorem 4.4 is satisfied.
Set $\phi_{n}(x)=\frac{1}{n}+\phi(x)$ for $x \in \bar{\Omega}(n \geqq 1)$. Then we have

$$
\left(\frac{1}{n} S+A\right) u(x)=-\sum_{j=1}^{N} \frac{\partial}{\partial x_{j}}\left[\phi_{n}(x) \frac{\partial u}{\partial x_{j}}\right]
$$

with Neumann condition. The properties of this operator are well known. In particular, for every ζ with $\arg \zeta \neq 0,\left(\frac{1}{n} S+A+\zeta\right)^{-1}$ is compact. Consequently, it follows from Theorem 4.4 that $(A+\zeta)^{-1}$ is also compact. Thus, A has a discrete spectrum consisting entirely of nonnegative eigenvalues with finite multiplicities.

Finally, let $N=1, \Omega=(-1,1)$ and $\phi(x)=1-x^{2}$. Then A becomes the Legendre
operator in $H=L^{2}(-1,1)$. In this case, the above result is supported by the well known fact that the spectrum of A consists of simple eigenvalues alone: $\lambda_{l}=l(l+1), l=0,1,2, \cdots$.

Remark 5.3. Let $c(x) \geqq 0$ be a function of class $C^{2}(\bar{\Omega})$ such that $\partial c / \partial \nu \geqq 0$ on Γ. Then we define a linear operator B in $H=L^{2}(\Omega)$ by

$$
B u(x)=c(x) u(x), \quad u \in L^{2}(\Omega) .
$$

Obviously, B is a bounded accretive operator on $L^{2}(\Omega)$. Furthermore, for all $u \in D(S)$ we have

$$
\begin{aligned}
(B u, S u) & =-\int_{\Omega} c(x) u(x) \overline{\Delta u(x)} d x \\
& =\int_{\Omega} \sum_{i=1}^{N} c(x)\left|\frac{\partial u}{\partial u_{i}}\right|^{2} d x+\int_{\Omega} \sum_{i=1}^{N} \frac{\partial c}{\partial x_{i}} \frac{\partial}{\partial x_{i}}|u(x)|^{2} d x \\
& \geqq \int_{\Gamma} \frac{\partial c}{\partial \nu}|u(x)|^{2} d \sigma-\int_{\Omega}|u(x)|^{2} \Delta c(x) d x
\end{aligned}
$$

Setting $M_{1}=\max \{\Delta c(x) ; x \in \bar{\Omega}\}$, we obtain

$$
\operatorname{Re}(B u, S u) \geqq-M_{1}\|u\|^{2}, \quad u \in D(S)
$$

Therefore, it follows from (5.2) that for all $u \in D(S)$,

$$
\operatorname{Re}((A+B) u, S u) \geqq-\frac{3 N}{2} M(u, S u)-M_{1}\|u\|^{2} .
$$

If in particular $c(x)>0$ on $\bar{\Omega}$ then we have $R(A+B)=H$.

§6. Regular perturbation of nonlinear m-accretive operators.

First we give a definition of nonlinear (multi-valued) m-accretive operators in a real Banach space X.

An operator A in X is said to be accretive if for each $\lambda>0$ and $u, v \in D(A)$,

$$
\|x-y\| \geqq\|u-v\| \quad \text { whenever } \quad x \in(1+\lambda A) u, \quad y \in(1+\lambda A) v .
$$

Let F be the duality map of X into its dual space X^{*}. Then A is accretive if and only if for each $u, v \in D(A)$ there exists $f \in F(u-v)$ such that $(x-y, f) \geqq 0$ for each $x \in A u, y \in A v$. We say that an accretive operator A is m-accretive if $R(1+\lambda A)=X$ for some (and hence for every) $\lambda>0$.

Now let A and B be two m-accretive operators in X. Let B_{ε} be the $Y o s i d a$ approximation of B :

$$
B_{\varepsilon}=\varepsilon^{-1}\left[1-(1+\varepsilon B)^{-1}\right], \quad \varepsilon>0 .
$$

Then it is well known that $A+B_{\mathrm{e}}$ is again m-accretive. Accordingly, for each
$v \in X$ there exists a unique solution u_{ε} of the equation

$$
\begin{equation*}
u_{\varepsilon}+y_{\varepsilon}+B_{\varepsilon} u_{\varepsilon}=v, \quad y_{\varepsilon} \in A u_{\varepsilon} . \tag{6.1}
\end{equation*}
$$

The following lemma is fundamental (see Barbu [2], II-§ 3.2, or Konishi [12]).
Lemma 6.1. If $D(A) \cap D(B)$ is non-empty, then $\left\{\left\|u_{\varepsilon}\right\|\right\}$ is bounded as $\varepsilon \rightarrow+0$. Assume further that X^{*} is uniformly convex and that for each $v \in X,\left\{\left\|B_{\varepsilon} u_{\varepsilon}\right\|\right\}$ is bounded as $\varepsilon \rightarrow+0$. Then $A+B$ is also m-accretive.

Next we give a simple sufficient condition for $\left\|B_{\varepsilon} u_{\varepsilon}\right\|$ to be bounded.
Lemma 6.2. Let X^{*} be uniformly convex. Let A and B be m-accretive operators in X, with $D(A) \cap D(B)$ non-empty. Assume that there exist a nonnegative constant $b<1$ and a nondecreasing function $\psi(r) \geqq 0$ of $r \geqq 0$ such that for each $u \in D(A)$,

$$
\begin{equation*}
\left(y, F\left(B_{\varepsilon} u\right)\right) \geqq-\psi(\|u\|)-b\left\|B_{\varepsilon} u\right\|^{2} \quad \text { whenever } \quad y \in A u . \tag{6.2}
\end{equation*}
$$

Then $A+B$ is also m-accretive.
Proof. It suffices by Lemma 6. 1 to show that $\left\|B_{\varepsilon} u_{\varepsilon}\right\|$ is bounded. It follows from (6.1) and (6.2) that

$$
\begin{aligned}
\left(v-u_{\varepsilon}, F\left(B_{\varepsilon} u_{\varepsilon}\right)\right) & =\left(y_{\varepsilon}, F\left(B_{\varepsilon} u_{\varepsilon}\right)\right)+\left\|B_{\varepsilon} u_{\varepsilon}\right\|^{2} \\
& \geqq(1-b)\left\|B_{\varepsilon} u_{\varepsilon}\right\|^{2}-\psi\left(\left\|u_{\varepsilon}\right\|\right) .
\end{aligned}
$$

Thus, we obtain

$$
(1-b)\left\|B_{\varepsilon} u_{\varepsilon}\right\|^{2} \leqq\left(\|v\|+\left\|u_{\varepsilon}\right\|\right)\left\|B_{\varepsilon} u_{\varepsilon}\right\|+\psi\left(\left\|u_{\varepsilon}\right\|\right)
$$

and hence

$$
(1-b)\left\|B_{\varepsilon} u_{\varepsilon}\right\| \leqq\|v\|+\left\|u_{\varepsilon}\right\|+\left[(1-b) \psi\left(\left\|u_{\varepsilon}\right\|\right)\right]^{1 / 2} .
$$

Since $\left\|u_{\varepsilon}\right\|$ is bounded (see Lemma 6.1), so is $\left\|B_{\varepsilon} u_{s}\right\|$, too.
Q.E. D.

Remark 6.3. Lemma 6.2 is a slight generalization of a result obtained by Barbu (see [2], Theorem II-3.6). If in particular A and B are linear m-accretive operators in a Hilbert space, then we can mention about the case of $b=1$ (see [19], Theorem 2.1).

The following theorem will be used in the next section.
Theorem 6.4. Let X^{*} be uniformly convex. Let A be a nonlinear m-accretive operator in X. Let S be a linear m-accretive operator in X, with $D(S) \subset D(A)$. Assume that there exist a nonnegative constant $b<1$ and a non-decreasing function $\psi(r)$ of $r \geqq 0$ such that for each $u \in D(S)$,

$$
\begin{equation*}
(y, F(S u)) \geqq-\phi(\|u\|)-b\|S u\|^{2} \quad \text { whenever } \quad y \in A u . \tag{6.3}
\end{equation*}
$$

Then $S+A$ is also m-accretive.
Proof. Let S_{ε} be the Yosida approximation of S. Then, since S is linear, we have

$$
S_{\varepsilon}=\varepsilon^{-1}\left[1-(1+\varepsilon S)^{-1}\right]=S(1+\varepsilon S)^{-1} .
$$

Now let $u \in D(A)$. Then for $y \in A u$ and $z \in A(1+\varepsilon S)^{-1} u$ we can write

$$
\begin{aligned}
\varepsilon\left(y, F\left(S_{\varepsilon} u\right)\right) & =\left(y, F\left(\varepsilon S_{\varepsilon} u\right)\right)=\left(y, F\left(u-(1+\varepsilon S)^{-1} u\right)\right) \\
& =\left(y-z, F\left(u-(1+\varepsilon S)^{-1} u\right)\right)+\left(z, F\left(\varepsilon S(1+\varepsilon S)^{-1} u\right)\right) \\
& \geqq \varepsilon\left(z, F\left(S(1+\varepsilon S)^{-1} u\right)\right),
\end{aligned}
$$

where we have used the accretiveness of A. By virtue of (6.3), we obtain

$$
\begin{aligned}
\left(y, F\left(S_{\varepsilon} u\right)\right) & \geqq\left(z, F\left(S(1+\varepsilon S)^{-1} u\right)\right) \\
& \geqq-\psi\left(\left\|(1+\varepsilon S)^{-1} u\right\|\right)-b\left\|S(1+\varepsilon S)^{-1} u\right\|^{2} \\
& \geqq-\phi(\|u\|)-b\left\|S_{\varepsilon} u\right\|^{2} .
\end{aligned}
$$

This is nothing but the inequality (6.2) with $B=S$. Therefore, $S+A$ is m accretive by Lemma 6.2.
Q.E.D.

Remark 6.5. Theorem 6.4 is a "semi-linear" version of Theorem 2.2.

§7. Singular perturbation in a Hilbert space (semi-linear case).

Let H be a real Hilbert space. The following theorem is a semi-linear version of Theorem 0.3,

Theorem 7.1. Let A be a nonlinear m-accretive operator in H. Let S be a nonnegative selfadjoint operator in H, with $D(S) \subset D(A)$. Assume that there exist a nonnegative constant b and a non-decreasing fnnction $\psi(r) \geqq 0$ of $r \geqq 0$ such that for each $u \in D(S)$,

$$
\begin{equation*}
(w, S u) \geqq-\psi(\|u\|)-b(u, S u) \quad \text { whenever } \quad w \in A u . \tag{7.1}
\end{equation*}
$$

Then $\frac{1}{n} S+A(n=1,2, \cdots)$ is m-accretive and for $\lambda<b^{-1},\left[1+\lambda\left(\frac{1}{n} S+A\right)\right]^{-1}$ converges strongly to $(1+\lambda A)^{-1}$ as $n \rightarrow \infty$. Let $S^{1 / 2}$ be the square root of S. Then $D\left(S^{1 / 2}\right)$ is invariant under $(1+\lambda A)^{-1}, b \lambda<1$. Furthermore, if $\psi(r) \equiv 0$, then for each $v \in D\left(S^{1 / 2}\right)$,

$$
\begin{equation*}
\left\|S^{1 / 2}(1+\lambda A)^{-1} v\right\| \leqq(1-b \lambda)^{-1}\left\|S^{1 / 2} v\right\| \tag{7.2}
\end{equation*}
$$

Proof. We see from Theorem 6,4 that $\frac{1}{n} S+A$ is m-accretive. Let u_{n} be a unique solution of the equation

$$
\begin{equation*}
u_{n}+\lambda\left(\frac{1}{n} S u_{n}+w_{n}\right)=v, \quad w_{n} \in A u_{n}, \quad b \lambda<1, \tag{7.3}
\end{equation*}
$$

where $v \in D\left(S^{1 / 2}\right)$. Then by (7.1) we have

$$
\left(S^{1 / 2} v, S^{1 / 2} u_{n}\right)=\left(v, S u_{n}\right)
$$

$$
\begin{aligned}
& =\left(u_{n}, S u_{n}\right)+\lambda\left(\frac{1}{n} S u_{n}, S u_{n}\right)+\lambda\left(w_{n}, S u_{n}\right) \\
& \geqq\left\|S^{1 / 2} u_{n}\right\|^{2}-b \lambda\left(u_{n}, S u_{n}\right)-\lambda \psi\left(\left\|u_{n}\right\|\right) \\
& =(1-b \lambda)\left\|S^{1 / 2} u_{n}\right\|^{2}-\lambda \psi\left(\left\|u_{n}\right\|\right) .
\end{aligned}
$$

So, we obtain

$$
\begin{equation*}
\left\|S^{1 / 2} u_{n}\right\| \leqq(1-b \lambda)^{-1}\left\|S^{1 / 2} v\right\|+\left[\frac{\lambda \psi\left(\left\|u_{n}\right\|\right)}{1-b \lambda}\right]^{1 / 2}, \quad n \geqq 1 . \tag{7.4}
\end{equation*}
$$

Next we show that for each $v \in D\left(S^{1 / 2}\right),\left\{u_{n}\right\}$ forms a Cauchy sequence. To this end, we note that

$$
\begin{aligned}
\left\|u_{n}-u_{m}\right\|^{2} & \leqq\left(u_{n}-u_{m}+\lambda\left(w_{n}-w_{m}\right), u_{n}-u_{m}\right) \\
& =-\lambda\left(\frac{1}{n} S u_{n}-\frac{1}{m} S u_{m}, u_{n}-u_{m}\right) \\
& \leqq \frac{\lambda}{2}\left(\frac{1}{m}-\frac{1}{n}\right)\left\|S^{1 / 2} u_{n}\right\|^{2}+\frac{\lambda}{2}\left(\frac{1}{n}-\frac{1}{m}\right)\left\|S^{1 / 2} u_{m}\right\|^{2} .
\end{aligned}
$$

By virtue of (7.4) we see that for $m \leqq n$,

$$
\begin{equation*}
\left\|u_{n}-u_{m}\right\| \leqq\left(\frac{\lambda}{2}\right)^{1 / 2}\left(\frac{1}{m}-\frac{1}{n}\right)^{1 / 2}\left(\frac{\left\|S^{1 / 2} v\right\|}{1-b \lambda}+\left[\frac{\lambda \psi\left(\left\|u_{n}\right\|\right)}{1-b \lambda}\right]^{1 / 2}\right) \tag{7.5}
\end{equation*}
$$

and hence $u=\lim _{n \rightarrow \infty} u_{n}$ exists; note that $\left\|u_{n}\right\|$ is bounded.
We want to show that $u=(1+\lambda A)^{-1} v$. It follows from (7.3) and (7.1) that

$$
\begin{aligned}
\left(v-u_{n}, \frac{1}{n} S u_{n}\right) & =\lambda\left\|\frac{1}{n} S u_{n}\right\|^{2}+\frac{\lambda}{n}\left(w_{n}, S u_{n}\right) \\
& \geqq \lambda\left\|\frac{1}{n} S u_{n}\right\|^{2}-\frac{\lambda}{n} \psi\left(\left\|u_{n}\right\|\right)-b \lambda\left(u_{n}, \frac{1}{n} S u_{n}\right) .
\end{aligned}
$$

So we obtain

$$
\lambda\left\|\frac{1}{n} S u_{n}\right\|^{2} \leqq \frac{\lambda}{n} \psi\left(\left\|u_{n}\right\|\right)+\left(\|v\|+(1-b \lambda)\left\|u_{n}\right\|\right)\left\|\frac{1}{n} S u_{n}\right\| .
$$

Consequently, $\left\|\frac{1}{n} S u_{n}\right\|$ is bounded :

$$
\left\|\frac{1}{n} S u_{n}\right\| \leqq \lambda^{-1}\left[\|v\|+(1-b \lambda)\left\|u_{n}\right\|\right]+\left[\phi\left(\left\|u_{n}\right\|\right) / n\right]^{1 / 2} .
$$

Now let $f \in D(S)$. Then we have

$$
\left|\frac{1}{n}\left(S u_{n}, f\right)\right|=\frac{1}{n}\left|\left(u_{n}, S f\right)\right| \leqq \frac{1}{n}\left\|u_{n}\right\|\|S f\| \rightarrow 0 \quad(n \rightarrow \infty) .
$$

Since $D(S)$ is dense in $H,\left\{\frac{1}{n} S u_{n}\right\}$ converges to zero weakly. Noting that
$w_{n}=\lambda^{-1}\left(v-u_{n}\right)-\frac{1}{n} S u_{n}$, we see that $\left\{w_{n}\right\}$ also converges to $\lambda^{-1}(v-u)$ weakly. Therefore, it follows from the demi-closedness of A that $u \in D(A)$ and $\lambda^{-1}(v-u)$ $\in A u$ (see Kato [10]). Namely, we have

$$
u=(1+\lambda A)^{-1} v .
$$

Since $D\left(S^{1 / 2}\right)$ is dense in $H,\left[1+\lambda\left(\frac{1}{n} S+A\right)\right]^{-1}$ converges to $(1+\lambda A)^{-1}$ strongly ; note that both $\left[1+\lambda\left(\frac{1}{n} S+A\right)\right]^{-1}$ and $(1+\lambda A)^{-1}$ are nonexpansive.

Finally, since $S^{1 / 2}$ is weakly closed, we see from (7.4) that $u=(1+\lambda A)^{-1} v$ $\in D\left(S^{1 / 2}\right)$ and $S^{1 / 2} u_{n}$ converges to $S^{1 / 2} u$ weakly. Therefore, we have

$$
\left\|S^{1 / 2} u\right\| \leqq \liminf _{n \rightarrow \infty}\left\|S^{1 / 2} u_{n}\right\| .
$$

Now (7.2) follows from (7.4).
Q.E.D.

REMARK 7.2. If $\psi(r)$ is a continuous function, then it follows from (7.5) that

$$
\begin{aligned}
& \left\|\left[1+\lambda\left(\frac{1}{n} S+A\right)\right]^{-1} v-(1+\lambda A)^{-1} v\right\| \\
& \quad \leqq\left(\frac{\lambda}{2 n}\right)^{1 / 2}\left(\frac{\left\|S^{1 / 2} v\right\|}{1-b \lambda}+\left[\frac{\lambda \psi\left(\left\|(1+\lambda A)^{-1} v\right\|\right)}{1-b \lambda}\right]^{1 / 2}\right)
\end{aligned}
$$

Let A and S be as in Theorem 7.1. Then $\frac{1}{n} S+A(n=1,2, \cdots)$ and A are m-accretive. Let $\left\{U_{n}(t)\right\}$ and $\{U(t)\}$ be the contraction semigroups generated by $-\left(\frac{1}{n} S+A\right)$ and $-A$, respectively. Then, since $\left[1+\lambda\left(\frac{1}{n} S+A\right)\right]^{-1}$ converges strongly to $(1+\lambda A)^{-1}$, it follows from the (nonlinear) Trotter-Kato theorem that $U_{n}(t)$ converges strongly to $U(t)$ (see e.g. Benilan [3] or Miyadera [15]). In this connection we have

Theorem 7.3. In Theorem 7.1 assume further that $\psi(r)$ is a continuous function. Let $\left\{U_{n}(t)\right\}$ and $\{U(t)\}$ be the contraction semigroups generated by $-\left(\frac{1}{n} S+A\right)$ and $-A$, respectively. Then for $v \in D\left(S^{1 / 2}\right)$ we have the estimate

$$
\begin{align*}
& \left\|U_{n}(t) v-U(t) v\right\| \tag{7.6}\\
& \quad \leqq\left(\frac{t}{n}\right)^{1 / 2} e^{b t}\left(\left\|S^{1 / 2} v\right\|+\left[2 \int_{0}^{t} \phi(\|U(s) v\|) d s\right]^{1 / 2}\right) .
\end{align*}
$$

Remark 7.4. (7.6) is a semi-linear generalization of a rather restricted result obtained in [20].

To prove Theorem 7.3 we prepare two lemmas.
Let $u_{0} \in D(S)$. Then $u_{n}(t)=U_{n}(t) u_{0}$ is a unique solution of the equation

$$
\begin{equation*}
u_{n}^{\prime}(t) \uparrow \frac{1}{n} S u_{n}(t) \in-A u_{n}(t), \quad \text { a. a. } \quad t \geqq 0, \tag{7.7}
\end{equation*}
$$

with the initial condition $u_{n}(0)=u_{0}$. The following lemma is known in a more general form (see e.g. Barbu [2], IV-§ 2). But we give a direct proof.

Lemma 7.5. Let $u_{0} \in D(S)$ and $T>0$. Set $u_{n}(t)=U_{n}(t) u_{0}$. Then $\left\|S^{1 / 2} u_{n}(t)\right\|^{2}$ is absolutely continuous on $[0, T]$ and

$$
\begin{equation*}
(d / d t)\left\|S^{1 / 2} u_{n}(t)\right\|^{2}=2\left(u_{n}^{\prime}(t), S u_{n}(t)\right) \quad \text { a.e. on } \quad[0, T] . \tag{7.8}
\end{equation*}
$$

Proof. Let S_{ε} be the Yosida approximation of S. Then we have (7.8) with S replaced by S_{s}. Since both $\left\|u_{n}(t)\right\|$ and $\left\|u_{n}^{\prime}(t)\right\|$ are bounded a. e. on $[0, T]$, we see that for $t \leqq T$,

$$
\begin{equation*}
\left\|S_{\varepsilon}^{1 / 2} u_{n}(t)\right\|^{2}-\left\|S_{\varepsilon}^{1 / 2} u_{0}\right\|^{2}=2 \int_{0}^{t}\left(u_{n}^{\prime}(s), S_{\varepsilon} u_{n}(s)\right) d s \tag{7.9}
\end{equation*}
$$

Consequently, by the bounded convergence theorem we obtain (7.9) with S_{ε} replaced by S if $\left\|S u_{n}(s)\right\|$ is also bounded a.e. on $[0, T]$. But it follows from (7.7) and (7.1) that a. e. on [0, T],

$$
\begin{equation*}
\left(-u_{n}^{\prime}(s)-\frac{1}{n} S u_{n}(s), S u_{n}(s)\right) \geqq-\psi\left(\left\|u_{n}(s)\right\|\right)-b\left(u_{n}(s), S u_{n}(s)\right) . \tag{7.10}
\end{equation*}
$$

Namely we have

$$
\frac{1}{n}\left\|S u_{n}(s)\right\|^{2} \leqq\left(b u_{n}(s)-u_{n}^{\prime}(s), S u_{n}(s)\right)+\psi\left(\left\|u_{n}(s)\right\|\right) .
$$

Hence we can conclude that $\left\|S u_{n}(s)\right\|$ is bounded a.e. on [0, T]. Q.E.D.
By virtue of Lemma 7.5 we can prove
Lemma 7.6. $D\left(S^{1 / 2}\right)$ is invariant under $U(t)$, and for each $v \in D\left(S^{1 / 2}\right)$ the following estimate holds:

$$
\begin{equation*}
\left\|S^{1 / 2} U(t) v\right\|^{2} \leqq e^{2 b t}\left[\left\|S^{1 / 2} v\right\|^{2}+2 \int_{0}^{t} \psi(\|U(s) v\|) d s\right] . \tag{7.11}
\end{equation*}
$$

Proof. Let $u_{n}(t)$ be as in Lemma 7.5. Then it follows from (7.10) and (7.8) that for a. a. $s \geqq 0$,

$$
(d / d s)\left\|S^{1 / 2} u_{n}(s)\right\|^{2}-2 b\left\|S^{1 / 2} u_{n}(s)\right\|^{2} \leqq 2 \psi\left(\left\|u_{n}(s)\right\|\right) .
$$

Integrating this inequality, we have

$$
e^{-2 b t}\left\|S^{1 / 2} u_{n}(t)\right\|^{2} \leqq\left\|S^{1 / 2} u_{0}\right\|^{2}+2 \int_{0}^{t} \psi\left(\left\|u_{n}(s)\right\|\right) d s
$$

Since the sequence $\left\{\left\|u_{n}(s)\right\|\right\}$ is bounded, we see that $\left\{S^{1 / 2} u_{n}(t)\right\}$ converges weakly as $n \rightarrow \infty$. But since $S^{1 / 2}$ is weakly closed, it follows that $U(t) u_{0}=$ $\lim _{n \rightarrow \infty} u_{n}(t) \in D\left(S^{1 / 2}\right)$ and $S^{1 / 2} U(t) u_{0}$ is equal to the weak limit of $\left\{S^{1 / 2} u_{n}(t)\right\}$.

Therefore, we obtain

$$
\left\|S^{1 / 2} U(t) u_{0}\right\| \leqq \liminf _{n \rightarrow \infty}\left\|S^{1 / 2} u_{n}(t)\right\|
$$

By the bounded convergence theorem we see that

$$
e^{-2 b t}\left\|S^{1 / 2} U(t) u_{0}\right\|^{2} \leqq\left\|S^{1 / 2} u_{0}\right\|^{2}+2 \int_{0}^{t} \psi\left(\left\|U(s) u_{0}\right\|\right) d s
$$

Noting further that $D(S)$ is a core of $S^{1 / 2}$, we can obtain (7.11). Q.E.D.
Proof of Theorem 7.3. Since $D(S)$ is a core of $S^{1 / 2}$, it suffices to show that (7.6) holds for each v in $D(S)$.

Let $u_{0} \in D(S)$. Then $u(t)=U(t) u_{0}$ is a unique solution of the equation

$$
\begin{equation*}
u^{\prime}(t) \in-A u(t), \quad \text { a. a. } \quad t \geqq 0 \tag{7.12}
\end{equation*}
$$

with the initial condition $u(0)=u_{0}$. So, we see from (7.7) and (7.12) that

$$
\begin{aligned}
(d / d s)\left\|u_{n}(s)-u(s)\right\|^{2} & =-2\left(u_{n}^{\prime}(s)-u^{\prime}(s), u_{n}(s)-u(s)\right) \\
& \leqq-2\left(\frac{1}{n} S u_{n}(s), u_{n}(s)-u(s)\right) \\
& \leqq-\frac{2}{n}\left\|S^{1 / 2} u_{n}(s)\right\|^{2}+\frac{2}{n}\left(S^{1 / 2} u_{n}(s), S^{1 / 2} u(s)\right) \\
& \leqq \frac{1}{n}\left\|S^{1 / 2} u(s)\right\|^{2}-\frac{1}{n}\left\|S^{1 / 2} u_{n}(s)\right\|^{2}, \quad \text { a. a. } s \geqq 0 .
\end{aligned}
$$

Consequently, (7.6) follows from (7.11),
Example 7.7. Let Ω be a bounded domain in R^{3} with smooth boundary. Let

$$
S=-\Delta \quad(\Delta=\text { Laplacian })
$$

with $D(S)=H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$. Then S is a positive definite selfadjoint operator in $L^{2}(\Omega)$, with $D\left(S^{1 / 2}\right)=H_{0}^{1}(\Omega)$. Now set

$$
A u(x)=[u(x)]^{3}, \quad x \in \Omega,
$$

for $u \in D(A)=\left\{u(x),[u(x)]^{3} \in L^{2}(\Omega)\right\}$. Then A is a single-valued m-accretive operator in $L^{2}(\Omega)$. Also, we see from the Sobolev theorem that $D(S)$ is included in $D(A)$. Furthermore, we can prove (7.1) with $b=0$ and $\psi(r) \equiv 0$. In fact, we have

$$
\begin{aligned}
(A u, S u) & =-\int_{\Omega}[u(x)]^{3} \Delta u(x) d x \\
& =3 \int_{\Omega}|u(x)|^{2} \sum_{k=1}^{3}\left|\frac{\partial u}{\partial x_{k}}\right|^{2} d x \geqq 0 .
\end{aligned}
$$

Thus, the conclusions of Theorems 7.1 and 7.3 hold good. Roughly speaking,
for every $u_{0} \in H^{2}(\Omega) \cap H_{0}^{1}(\Omega)$ the solution of the partial differential equation

$$
\begin{aligned}
& \frac{\partial u_{n}}{\partial t}+\left[u_{n}(x, t)\right]^{3}=\frac{1}{n} \Delta u_{n}(x, t), \quad(x, t) \in \Omega \times(0, \infty), \\
& u_{n}(x, 0)=u_{0}(x)
\end{aligned}
$$

converges in $L^{2}(\Omega)$ to the solution of the ordinary differential equation

$$
\begin{aligned}
& \frac{d u}{d t}+[u(x, t)]^{3}=0, \quad(x, t) \in \Omega \times(0, \infty), \\
& u(x, 0)=u_{0}(x)
\end{aligned}
$$

References

[1] M.S. Baouendi and C. Goulaouic, Régularité et théorie spectrale pour une classe d'opérateurs elliptiques dégénérés, Arch. Rational Mech. Anal., 34 (1969), 361-379.
[2] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publ., Leyden, The Netherlands, 1976.
[3] Ph. Benilan, Une remarque sur la convergence des semigroupes nonlinéaires, C.R. Acad. Sci. Paris, 272 (1971), 1182-1184.
[4] P.R. Chernoff, Note on product formulas for operator semigroups, J. Functional Analysis, 2 (1968), 238-242.
[5] P.R. Chernoff, Perturbations of dissipative operators with relative bound one, Proc. Amer. Math. Soc., 33 (1972), 72-74.
[6] W.G. Faris and R.B. Lavine, Commutators and selfadjointness of Hamiltonian operators, Comm. Math. Phys., 35 (1974), 39-48.
[7] K. Gustafson, A perturbation lemma, Bull. Amer. Math. Soc., 72 (1966), 334-338.
[8] T. Kato, Remarks on pseudo-resolvents and infinitesimal generators of semigroups, Proc. Japan Acad., 35 (1959), 467-468.
[9] T. Kato, Nonlinear semigroups and evolution equations, J. Math. Soc. Japan, 19 (1967), 508-520.
[10] T. Kato, Accretive operators and nonlinear evolution equations in Banach spaces, Nonlinear Functional Analysis, Proc. Symp. Pure Math., Amer. Math. Soc., 18, Part I (1970), 138-161.
[11] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Die Grundlehren der math. Wissenschaften, Band 132, Springer-Verlag, Berlin and New York, 1976.
[12] Y. Konishi, A remark on perturbation of m-accretive operators in Banach space, Proc. Japan Acad., 47 (1971), 452-455.
[13] G. Lumer and R.S. Phillips, Dissipative operators in a Banach space, Pacific J. Math., 11 (1961), 679-698.
[14] R.H. Martin, Jr., Nonliner Operators and Differential Equations in Banach Spaces, A Wiley-Interscience Publ., New York, 1976.
[15] I. Miyadera, Nonlinear Semigroups, Kinokuniya, Tokyo, 1977, (Japanese).
[16] N. Okazawa, Two perturbation theorems for contraction semigroups in a Hilbert space, Proc. Japan Acad., 45 (1969) 850-853.
[17] N. Okazawa, A perturbation theorem for linear contraction semigroups on reflexive Banach spaces, Proc. Japan Acad., 47 (1971), 947-949.
[18] N. Okazawa, Perturbations of linear m-accretive operators, Proc. Amer. Math. Soc., 37 (1973), 169-174.
[19] N. Okazawa, Remarks on linear m-accretive operators in a Hilbert space, J. Math. Soc. Japan, 27 (1975), 160-165.
[20] N. Okazawa, Approximation of linear m-accretive operators in a Hilbert space, Osaka J. Math., 14 (1977), 85-94.
[21] N. Shimakura, General boundary value problems for elliptic operators which degenerate at the boundary, Kôkyûroku, Res. Inst. Math. Sci., Kyoto Univ., 88 (1970), 1-20 (Japanese).
[22] A. Yoshikawa, On Perturbation of closed operators in a Banach space, J. Fac. Sci. Hokkaido Univ., 22 (1972), 50-61.
[23] K. Yosida, Functional Analysis, 3rd ed., Die Grundlehren der math. Wissenschaften, Band 123, Springer-Verlag, Berlin and New York, 1971.

Noboru Okazawa
Department of Mathematics
Faculty of Science
Science University of Tokyo
Wakamiya-cho 26, Shinjuku-ku
Tokyo 162
Japan

