Some simple cases of Poincaré conjecture

By Moto-o TaKahashi

(Received July 20, 1978)
(Revised May 7, 1979)

§ 1. Introduction.

In this paper we shall treat special cases of genus 2 Poincaré conjecture.
Let M be a closed orientable 3-manifold of genus $\leqq 2$. Then M is obtained by a Heegaard splitting of genus 2. Let $(M ; V, W)$ be a Heegaard splitting of genus 2, where V and W are solid tori of genus 2 such that $M=V \cup W$ and $V \cap W=\partial V=\partial W^{*}$. We set $T=V \cap W$. (See the Figure】1.)

Figure 1.
We assume that M (and hence V and W) has a fixed orientation.
Let $\{\alpha, \beta\}$ be a system of meridian disks of V and let $\{\gamma, \delta\}$ be a system of meridian disks of W. We set $a=\partial \alpha, b=\partial \beta, c=\partial \gamma$ and $d=\partial \delta$. a, b, c, d are loops on T and $\{a, b\}$ is called a system of meridian loops of V and $\{c, d\}$ is called a system of meridian loops of W. We assume that $\alpha, \beta, \gamma, \delta$ and hence a, b, c, d have fixed orientation. Without loss of generality we can assume that a, b and c, d intersect transversely only in a finite number of points. Moreover we can eliminate the intersections of the type as shown in Figure 2.

Figure 2.
*) ∂V means the boundary of V.

So we assume that there are no such intersections.
We cut V along α and β. Then we obtain a 3 -disk, on the surface of which four circles obtained by cutting α and β (we name these $a^{+}, a^{-}, b^{+}, b^{-}$), and several fragments of the loops c and d are drawn. We call the chart drawn on the 3 -disk a Whitehead graph or simply a graph. If we ignore the loop d then we obtain the graph of c, and if we ignore the loop c then we obtain the graph of d.

If we interchange the role of a, b and c, d then we obtain another graph. This is called the dual graph.

A graph is one of the three types (Type I \sim III) shown in Figure 3-1~3-3 (up to interchanging a, b or a, a^{-1} or b, b^{-1}).

Type I
Figure 3-1.

Type II
Figure 3-2.

Type III
Figure 3-3.

In these figures each of x, y, z, u means the number of parallel paths.
If a graph is of the type III, then we can decrease the number of intersection points by changing meridian loops a, b to a^{\prime}, b as shown in Figure 4. (a^{\prime} is clearly a meridian loop.)

Figure 4.
So we mainly treat Type I and Type II.*)

[^0]Let f be an arc on ∂V connecting two loops a and b. (We assume that one end point P of f is on a and another end point Q is on b and any other point of f is not on the loops a or b.)

Let U be a regular neighborhood (in ∂V) of $a \cup b \cup f$. Then ∂U consists of three loops and one of these is isotopic to a and one is isotopic to b. Let \bar{f} be the third loop of these three loops.

Then \bar{f} is also a meridian loop since there is a meridian disk η in V such that $\bar{f}=\partial \eta$. Moreover $\{a, \bar{f}\}$ (and also $\{b, \bar{f}\}$) is a system of meridian loops of V.

Changing the system from $\{a, b\}$ to $\{a, \bar{f}\}$ (or to $\{b, \bar{f}\}$) is called a band operation by f. Similarly a band operation by an arc on ∂W connecting two loops c and d can be defined.

Since a band operation does not affect a Heegaard splitting, the resulting manifold M does not change. (But the graph is changed.)

The fundamental group $\pi_{1}(M)$ of M can be presented in the following way. We take a and b as generators and two relations $\tilde{c}=1$ and $d=1$ are defined as follows*) : When a point P is moving on the loop c (in the direction of the orientation) from a fixed base point, if it crosses a or b as shown in Figure $5-1,5-2,5-3,5-4$, then we read a, a^{-1}, b, b^{-1}, respectively.

Figure 5-1.

Figure 5-2.

Figure 5-3.

Figure 5-4.

When P moves once around c, we get a word $\tilde{c}(a, b) . \quad d(a, b)$ is defined similarly.

Remark. More generally, if l is a (not necessarily simple) path on T from P to Q, where P and Q are not on the loops a and b, then l defines a word $\tilde{l}(a, b)$ by the same way as above.

If l^{\prime} is another path from P to Q and if l and l^{\prime} is homotopic in T with P, Q fixed, then $\tilde{l}(a, b)$ and $\tilde{l}^{\prime}(a, b)$ are the same word as elements of the free group generated by a and b.

Now we have a presentation of the fundamental group of M :

$$
\pi_{1}(M) \cong\langle a, b: \tilde{c}(a, b)=\tilde{d}(a, b)=1\rangle
$$

If we interchange the role of a, b and c, d we get another presentation of $\pi_{1}(M)$:
*) The proof is by van Kampen theorem.

$$
\pi_{1}(M) \cong\langle c, d: \tilde{a}(c, d)=\tilde{b}(c, d)=1\rangle
$$

This is called the dual presentation.

Figure 6-1.

Figure 6-2.
For example, if a, b, c, d are as shown in Figure 6 and if we start along c from P and along d from Q, then the resulting word $\tilde{c}(a, b)$ is $a^{3} b^{5}$ and the word $\tilde{d}(a, b)$ is $a^{2} b a^{-1} b$. Similarly $\tilde{a}(c, d)=c d c d c d^{-1}$ and $\tilde{b}(c, d)=d^{2} c^{5}$. So

$$
\pi_{1}(M) \cong\left\langle c, d: c d c d c d^{-1}=d^{2} c^{5}=1\right\rangle
$$

is the dual presentation of

$$
\pi_{1}(M) \cong\left\langle a, b: a^{3} b^{5}=a^{2} b a^{-1} b=1\right\rangle .
$$

§ 2. The reverse development and Homma's theorem.

Let M, V, W, a, b, c, d, etc. be as in the introduction. Let Γ be the
closure of a regular neighborhood of γ in W and let $N=V \cup \Gamma$. Then N is the complement of a regular neighborhood of a knot k in M. (See Figure 7.)

Figure 7.
By van Kampen theorem,

$$
\pi_{1}(N) \cong \pi_{1}(M-k) \cong\langle a, b: \tilde{c}(a, b)=1\rangle .
$$

We call this group the knot group of c.
Now the boundary of N is a torus T^{\prime} on which two circles c^{+}and c^{-}and several fragments of the loops a and b are drawn. We call this chart the reverse graph of c.

Theorem 1 (Homma [11]). Suppose that c crosses a or b at least once. Then the reverse graph of c consists of 6 groups $W_{0}, W_{0}^{\prime}, W_{1}, W_{2}, W_{3}, W_{4}$ of parallel paths (some of which may be empty) as shown in Figure 8. Suppose p is an arc on T^{\prime} which crosses W_{0} once to the direction as shown in Figure 8 and does not cross any other paths of the graph and let $w_{0}=\tilde{p}(a, b)$. Let $w_{0}^{\prime}, w_{1}, w_{2}, w_{3}, w_{4}$ be similarly defined. Then $w_{1}, w_{2}, w_{3}, w_{4}$ are symmetric, that is, $w_{1}=w_{1}^{*}, w_{2}=w_{2}^{*}, w_{3}=w_{3}^{*}, w_{4}=w_{4}^{*}$, where w^{*} is the word obtained by reading w from the last to the first. Moreover $w_{0}^{\prime}=w_{0}^{*}$. Hence (if starting from a proper point) we have

$$
\tilde{c}(a, b)=w_{0} w_{1} w_{2} w_{0}^{-1} w_{3} w_{4} .
$$

Moreover $\tilde{c}(a, b)$ is freely symmetric.*
Now we consider the universal covering space U of the torus $T^{\prime} . U$ is a plane. Let p be the covering map $U \rightarrow T^{\prime}$. We introduce an orthogonal coordinate system (x, y) to U in such a way that

$$
p(x, y)=p\left(x^{\prime}, y^{\prime}\right) \Leftrightarrow x-x^{\prime} \in \boldsymbol{Z} \quad \text { and } \quad y-y^{\prime} \in \boldsymbol{Z} .
$$

Now the reverse graph of c drawn on T^{\prime} induces an infinite graph on U. We call this infinite graph the reverse development of c. By Homma's theorem,

[^1]

Figure 8.
the reverse development of c takes the form showm in Figure 9, where $p^{-1}\left(\gamma^{+}\right)=\left\{\gamma_{i, j}^{+}\right\}, p^{-1}\left(\gamma^{-}\right)=\left\{\gamma_{i, j}^{-}\right\}, c_{i, j}^{+}=\left\{\partial \gamma_{i, j}^{+}\right\}$and $c_{i, j}^{-}=\left\{\partial \gamma_{i, j}^{-}\right\}$.

Figure 9.
Moreover we can assume

$$
\left\{p^{-1}\left(\gamma^{+}\right) \cup p^{-1}\left(\gamma^{-}\right)\right\} \cap\{(x, y) \mid x \in Z \text { or } y \in Z\}=\emptyset .
$$

For example, if the Whitehead graph of c is as shown in Figure 10, then the reverse development of c is as shown in Figure 11.

$$
\tilde{c}(a, b)=a b^{3} a b a^{-3} b
$$

Figure 10.

Figure 11.
Let d be another meridian loop on T. Then d is a loop on T^{\prime} not intersecting c. For simplicity's sake we assume that the point $O=p(0,0)$ is on d, and consider it as the base point of d.

Now d induces a curve \bar{d} on U starting from (0,0) and ending at some (m, n), where $m, n \in \boldsymbol{Z}$. Since d is not homologous to 0 in $T^{\prime},(m, n) \neq(0,0)$. Since d is a simple loop, m and n must be relatively prime.

Let $U^{\prime}=U-p^{-1}\left(\gamma^{+}\right)-p^{-1}\left(\gamma^{-}\right)$. By the same way as in the introduction, if l is a (not recessarily simple) path on U^{\prime}, then l reads a word $\tilde{l}(a, b)$.

We easily see that $\tilde{\tilde{d}}(a, b)=\tilde{d}(a, b)$, where $\tilde{\tilde{d}}$ is defined now and \tilde{d} is defined in the introduction. (We assume that d starts from O.)

Lemma. Let l and l^{\prime} be paths on U^{\prime} from $(0,0)$ to (m, n). Then $\hat{l}(a, b)$ $=\tilde{l}^{\prime}(a, b)$ is a consequence of $\tilde{c}(a, b)=1$.

Proof. If l and l^{\prime} are homotopic in U^{\prime} then the result is obvious. If l and l^{\prime} are not homotopic in U^{\prime}, then l^{\prime} is obtained from l by crossing over some $\gamma_{i, j}^{+}$'s and $\gamma_{i, j}^{-}$'s in addition to homotopic deformation in U^{\prime}.

Suppose, for instance, l^{\prime} is obtained from l as shown in Figure 12.

Figure 12.
Then $\tilde{l}(a, b)$ and $\tilde{l}^{\prime}(a, b)$ are of the forms $\xi \eta$ and $\xi \tilde{c}(a, b) \eta$, respectively. Hence $\tilde{l}(a, b)=\tilde{l}^{\prime}(a, b)$ is a consequence of $\tilde{c}(a, b)=1$.
q. e. d.

Now let l be the path composed of the segment joining (0,0) to ($m, 0$) and the segment joining $(m, 0)$ to (m, n). If the reverse development of c is as shown in Figure 9, then

Since

$$
\tilde{l}(a, b)=\left(w_{0} w_{1} w_{0}^{*} w_{4}\right)^{m}\left(w_{3} w_{4}\right)^{n} .
$$

$$
\bar{d}(a, b)=\tilde{l}(a, b)
$$

is a consequence of $\tilde{c}(a, b)=1$ by the lemma,

$$
\tilde{d}(a, b)=\tilde{l}(a, b)
$$

is also a consequence of $\tilde{c}(a, b)=1$.
Hence

$$
\begin{aligned}
\pi_{1}(M) & \cong\langle a, b: \tilde{c}(a, b)=\tilde{d}(a, b)=1\rangle \\
& \cong\langle a, b: \tilde{c}(a, b)=\tilde{l}(a, b)=1\rangle \\
& =\left\langle a, b: w_{0} w_{1} w_{2} w_{0}^{-1} w_{3} w_{4}=\left(w_{0} w_{1} w_{0}^{*} w_{4}\right)^{m}\left(w_{3} w_{4}\right)^{n}=1\right\rangle
\end{aligned}
$$

Thus we have proved the following:
Theorem 2 (Homma). If M is a closed orientable 3-manifold of genus $\leqq 2$, then the fundamental group of M is of the form

$$
\left\langle a, b: w_{0} w_{1} w_{2} w_{0}^{-1} w_{3} w_{4}=\left(w_{0} w_{1} w_{0}^{*} w_{4}\right)^{m}\left(w_{3} w_{4}\right)^{n}=1\right\rangle,
$$

for some relatively prime integers m and n.

§ 3. Main theorems.

In this chapter we shall prove our main theorems (theorem 3, 4 and 5).
Theorem 3. If $\tilde{c}(a, b)$ is of the form $a^{p} b^{q}$, then the manifold M cannot be a counterexample to Poincaré conjecture.*)

Proof. Without loss of generality we can assume that $p \geqq 0, q \geqq 0$. If $\tilde{c}(a, b)$ is of the form $a^{p} b^{q}$, then the graph of c is one of the forms as shown in Figure 13-1 (case 1) or Figure 13-2 (case 2) (or 13-2 with a, b interchanged) and the

Figure 13-1.

Figure 13-2.
reverse development of c is one of the forms

Figure 14-1.

Figure 14-2.

[^2]as shown in Figure 14-1 (case 1) or Figure 14-2 (case 2), for some r and s with $p \geqq r \geqq 0, q \geqq s \geqq 0$.

In the case $1, p$ and r are relatively prime since a is a single loop. Similarly, q and s are relatively prime.

Now by theorem 2, we have a presentation of the fundamental group for M :

$$
\begin{equation*}
\pi_{1}(M)=\left\langle a, b: a^{p} b^{q}=1, a^{p m}\left(a^{r} b^{s}\right)^{n}=1\right\rangle \tag{1}
\end{equation*}
$$

for some m and n with (m, n)=1.
We prove the theorem by the induction on $p+q$.
If M is not a homology sphere, then M is not a counterexample to Poincaré conjecture. So we first examine the homology sphere condition for M. Since $\mathrm{H}_{1}(M)$ is the abelianization of $\pi_{1}(M)$, the homology sphere condition is

$$
\left|\begin{array}{cc}
p & p m+r n \\
q & s n
\end{array}\right|= \pm 1
$$

or,

$$
\begin{equation*}
(p s-q r) n-p q m= \pm 1 . \tag{2}
\end{equation*}
$$

From this it follows that $(p, q)=1$ and $(m, n)=1$.
First assume $p=0$. Then by the homology sphere condition we have $q=1$. Then by repeating the band operation as shown in Figure 15,

Figure 15.
the graph is changed to the one in Figure 16. Hence

$$
\pi_{1}(M) \cong\left\langle a, b: a^{u}=1, b=1\right\rangle,
$$

for some u. But by the homology sphere condition $u= \pm 1$. In this case M is obviously a sphere.

Figure 16.
Next assume $p=1$. Then we consider the graph of the loop c. Since $\tilde{c}=a b^{q}$, the graph is as shown in Figure 17-1 (case 1.1) or Figure 13-2 (case 1.2). Then we change the system $\{a, b\}$ of meridian loops to $\left\{a, b^{\prime}\right\}$ as shown in Figure 17-2. Then $\tilde{c}=a b^{\prime q-1}$. By the induction hypothesis M is not a counterexample to Poincaré conjecture. Similarly for the case 1.2.

Figure 17-1.

Figure 17-2.

Since the cases $q=0$ and $q=1$ can be treated similarly, we next assume $p \geqq 2$ and $q \geqq 2$.

Let

$$
G \cong\left\langle a, b: a^{p}=1, b^{q}=1,\left(a^{r} b^{s}\right)^{n}=1\right\rangle .
$$

Then by comparing it with the presentation (1), there is an epimorphism $\pi_{1}(M) \rightarrow G$. Hence if G is non-trivial so is $\pi_{1}(M)$.

Now G is generated by $A=a^{r}$ and $B=b^{s}$ since $(p, r)=1$ and $(q, s)=1$, and we have

$$
G \cong\left\langle A, B: A^{p}=1, B^{q}=1,(A B)^{n}=1\right\rangle .
$$

But this group is well-known to be non-trivial if $p \geqq 2, q \geqq 2$ and $n \geqq 2$ or $n=0$. (See e.g. [9]).

Now the only remaining case is $n=1$. In this case by the homology sphere condition we have

$$
p s-q r-p q m= \pm 1
$$

or,

$$
m=\frac{s}{q}-\frac{r}{p} \mp \frac{1}{p q} .
$$

From this it follows that $-1<m<1$ and hence that $m=0$.
Then (1) becomes

$$
\pi_{1}(M) \cong\left\langle a, b: a^{p} b^{q}=1, a^{r} b^{s}=1\right\rangle .
$$

Since $p+q>r+s$ and the second relation is obtained from some loop d^{\prime} such that $\left\{c, d^{\prime}\right\}$ constitutes the system of meridian loops, by the induction hypothesis M is not a counterexample to Poincaré conjecture. In the case 2, the proof is the same as in the case 1.2. This completes the proof of the theorem.

Remark. In the theorem 1 , if $p s-q r= \pm 1$, then M is obtained by a surgery along the torus knot of type (p, q).

If $r=s=m=1$, then M is homeomorphic to the Brieskorn manifold of type (p, q, n).

Theorem 4. If $\tilde{c}(a, b)$ is of the form $a^{p} b^{q} a^{l} b^{k}$, then the manifold M cannot be a counterexample to Poincaré conjecture.

Proof. By the free symmetricity of the word $a^{p} b^{q} a^{l} b^{k}$, we must have $p=l$ or $q=k$.

So without loss of generality we can assume $q=k>0$. There are two cases where $p l>0$ and where $p l<0$. Without loss of generality we only treat the case where $p>l>0$ (case 1) and the case where $p>0>l$ (case 2).

It is easily proved that, in the case 1 , if the graph of c is of Type I, then the graph is as in Figure 18-1 (case 1.1) and if the graph is of Type II, then the graph is as in Figure 18-2 (case 1.2).

Similarly in the case 2, the graph of c is one of the forms as shown in Figure 19-1 (case 2.1) and Figure 19-2 (case 2.2).

In the case 1.2, we have $q=k=1$ and we change the system of meridian loops from $\{a, b\}$ to $\left\{a^{\prime}, b\right\}$ where a^{\prime} is the loop shown in Figure 20. Then, the graph becomes the case 1.1 type or the case 1.2 type with $p+l$ decreased, or the case of theorem 3.

Next we treat the case 1.1. In this case the reverse development of c

Figure 18-1.

Figure 19-1.

Figure 18-2.

Figure 19-2.

Figure 20.
must be as shown in Figure 21, for some $t(0<t<q)$.

Figure 21.
Then by Homma's theorem we have

$$
\pi_{1}(M)=\left\langle a, b: a^{p} b^{q} a^{l} b^{q}=1,\left(a^{p-l} b^{t}\right)^{m} b^{n q}=1\right\rangle .
$$

The homology sphere condition is

$$
((p+l) t-2(p-l) q) m+(p q+l q) n= \pm 1 .
$$

From this it follows that $(p, l)=1$ and $(q, t)=1$.
Similarly to the proof of theorem 1 , let

$$
G=\left\langle a, b: a^{p+l}=1, b^{q}=1,\left(a^{p-l} b^{t}\right)^{m}=1\right\rangle .
$$

There is an epimorphism $\pi_{1}(M) \rightarrow G$.
Now $p+l \geqq 2$. So if $q \geqq 2$ and $m \neq \pm 1$, then G is non-trivial and so is $\pi_{1}(M)$. Let $q=1$. Then by some band operation the relation $a^{p} b a^{l} b=1$ reduces to $a^{\prime p-1} b a^{l l-1} b=1$. Repeating this process we have that M is not a counterexample to Poincaré conjecture. Next let $m= \pm 1$. We can assume $m=1$. Then,

$$
\pi_{1}(M)=\left\langle a, b: a^{p} b^{q} a^{l} b^{q}=1, a^{p-l} b^{t+n q}=1\right\rangle .
$$

The second relation is obtained from some loop d^{\prime} such that $\left\{c, d^{\prime}\right\}$ constitutes the system of meridian loops. So by the theorem 3 we have that M is not a counterexample to Poincaré conjecture. This proves the theorem 4 for the case 1.

In the case 2.2, we have $q=1$ or $p=-l=1$. But if $p=-l=1$, then the homology sphere condition is never satisfied. If $q=1$, then, as in 1.2 , by a suitable choice of meridian loop a^{\prime}, the relation $a^{p} b a^{l} b=1$ reduces to
$a^{\prime p-1} b a^{\prime l-1} b=1$. Repeating this process we have finally the relation $b a^{\prime l-p} b=1$ or $\left(a^{\prime-1}\right)^{p-l} b^{2}=1$. So by the previous theorem M is not a counterexample to Poincaré conjecture.

In the case 2.1, we can assume $p+l>0$. (Otherwise, change the orientations of a and b.) Then the reverse development of c is as shown in Figure 22 , for some $t(0 \leqq t \leqq q)$.

Figure 22.
Then by Homma's theorem, we have

$$
\pi_{1}(M) \cong\left\langle a, b: a^{p} b^{q} a^{l} b^{q}=1,\left(a^{p-l} b^{t}\right)^{m} b^{q n}=1\right\rangle .
$$

The homology sphere condition is

$$
\{(p+l) t-2 q(p-l)\} m+(p+l) q n= \pm 1
$$

Now let

$$
G \cong\left\langle a, b: a^{p+l}=1, b^{q}=1,\left(a^{p-l} b^{t}\right)^{m}=1\right\rangle,
$$

and

$$
G^{\prime} \cong\left\langle a, b: a^{p-l}=1, b^{t m+q n}=1,\left(a^{p} b^{q}\right)^{2}=1\right\rangle .
$$

G is non-trivial if $p+l \geqq 2, q \geqq 2$ and $m \geqq 2$. In this case $\pi_{1}(M)$ is nontrivial since there is an epimorphism $\pi_{1}(M) \rightarrow G$. Similarly G^{\prime} is non-trivial if $p-l \geqq 2$ and $|t m+q n| \geqq 2$, and also in this case $\pi_{1}(M)$ is non-trivial. But always we have

$$
p-l=p+|l| \geqq 2 .
$$

So the remaining cases are
(i) $p+l=1$ and $|t m+q n|=1$
(ii) $q=1 \quad$ and $\quad|t m+q n|=1$
(iii) $m=1$ and $|t m+q n|=1$.

In either case $|t m+q n|=1$ and so, by the homology sphere condition,

$$
(p+l)(t m+q n)-2 q(p-l) m= \pm(p+l)-2 q(p-l) m= \pm 1 .
$$

So in the case (i) we have

$$
2 q(p-l) m=0 \quad \text { or } \quad \pm 2
$$

But $2 q(p-l) m= \pm 2$ is impossible since $p-l \geqq 2$. So $2 q(p-l) m=0$ and we have $m=0$ since $q \neq 0$ and $p-l \neq 0$. Then the second relation of (3) becomes $b=1$, and hence by the preceding theorem M is not a counterexample to Poincaré conjecture.

In the case (ii) we must have

$$
\begin{equation*}
m=\frac{ \pm(p+l) \pm 1}{2(p-l)} \tag{4}
\end{equation*}
$$

Since m is an integer and $p>0>l$, (4) is possible only when $m=0$ and $p+l=1$. But this case was already treated.

In the case (iii) we also have $p+l=1$.
This completes the proof of theorem 4.
Theorem 5. If $\tilde{c}(a, b)$ is of the length $\leqq 9$, then M is not a counterexample to Poincaré conjecture.

PROOF. If $\tilde{c}(a, b)$ is of the length $\leqq 5$, then $\tilde{c}(a, b)$ is of the form $a^{p} b^{q}$ or $a^{p} b^{q} a^{l} b^{k}$. So by the theorems 3 and $4, M$ is not a counterexample to Poincaré conjecture.

Next suppose that $\tilde{c}(a, b)$ is of the length 6 or 7 and not of the form $a^{p} b^{q}$ or $a^{p} b^{q} a^{l} b^{k}$. Then the graph of c must be one of the forms as shown in Figure 23. In each case we change the system of meridian loops from $\{a, b\}$ to $\left\{a^{\prime}, b\right\}$. Then the length of $\tilde{c}\left(a^{\prime}, b\right)$ is less than that of $\tilde{c}(a, b)$. So M is not a counterexample to Poincaré conjecture.

Now suppose that (i) $\tilde{c}(a, b)$ is of the length 8 or 9 , (ii) $\tilde{c}(a, b)$ is not of the form $a^{p} b^{q}$ or $a^{p} b^{q} a^{l} b^{k}$, and (iii) the method used in the previous case does not apply. Then the graph of c must be one of the forms as shown in Figure 24. In each case we examine all the possibility of pasting a^{+}to a^{-} and b^{+}to b^{-}to obtain the simple loop c. This is shown in Figure 25. ($\tilde{c}(a, b)$ is written under each graph.)

By considering the abelianization of $\tilde{c}(a, b)$ we see that except for cases $3-3,3-4,3-6,4-1,4-2$, a homology sphere cannot be obtained.

Next we show that by a change of meridian system, 3-4 is reduced to $4-1$, and $4-2$ is reduced to $3-3$. This is shown in Figure 26 and 27.

Moreover by a change of meridian system, 4-1 and 3-6 are reduced to the case of $a^{p} b^{q} a^{l} b^{k}$. This is shown in Figure 28 and 29.

Figure 23.
Hence it remains only the case $3-3$.
In this case we consider the reverse development of c. This is shown in Figure 30. Therefore,

$$
\pi_{1}(M) \cong\left\langle a, b: a^{3} b a^{-1} b^{-2} a^{-1} b=1,\left(b a^{4} b a^{-1}\right)^{m}\left(b^{-1} a^{-1}\right)^{n}=1\right\rangle .
$$

The homology sphere condition is $2 m-n= \pm 1$.
Now, in this group we add the relations $a^{4}=1$ and $b^{3}=1$. Then we have

$$
G=\left\langle a, b: a^{4}=b^{3}=\left(a^{-1} b\right)^{3}=\left(b^{-1} a^{-1}\right)^{m+n}=1\right\rangle .
$$

So there is an epimorphism $\pi_{1}(M) \rightarrow G$.
If we put $a^{-1} b=f^{-1}$, then

$$
G \cong\left\langle b, f: b^{3}=f^{3}=(b f)^{4}=\left(b^{-1} f\right)^{m+n}=1\right\rangle .
$$

(i)

(iii)

(ii)

(iv)

Figure 24.

1-1.
Figure 25.

$a b^{-1} a b a b a b^{-1}$
2-8.

$a^{2} b a b a^{2} b^{-2}$
3-2.

$a b^{-1} a^{-1} b a b a^{-1} b^{-1}$
2-7.

3-1.

Figure 25.

$$
\begin{array}{r}
a b^{-1} a^{-2} b^{-2} a^{-2} b^{-1} \\
3-4
\end{array}
$$

$a b^{-1} a b a^{2} b a b^{-1}$
4-3.
Figure 25.

Figure 26.

Figure 27.
This group is non-trivial if $|m+n| \geqq 3$ by [3], [8]. In this case $\pi_{1}(M)$ is also non-trivial.

The remaining case is $|m+n| \leqq 2$. We can assume $m \geqq 0$. So there are two cases (i) $m=0, n=1$, (ii) $m=1, n=1$, on account of the homology sphere condition $2 m-n= \pm 1$.

If $m=0$ and $n=1$, then M is a sphere, for it can be reduced to the canonical form by some changes of meridian system.

If $m=1$ and $n=1$, then

4-1.
Figure 28.

3-6.
Figure 29.

$$
\pi_{1}(M) \cong\left\langle a, b: a^{3} b a^{-1} b^{-2} a^{-1} b=1, b a^{4} b a^{-1} b^{-1} a^{-1}=1\right\rangle
$$

From $a^{3} b a^{-1} b^{-2} a^{-1} b=1$ it follows that $a^{3} b a^{-1} b^{-1}=b^{-1} a b$ and from $b a^{4} b a^{-1} b^{-1} a^{-1}=1$ it follows that $a^{3} b a^{-1} b^{-1}=a^{-1} b^{-1} a$. So we have $b^{-1} a^{-1} b=a^{-1} b a$. Let $x=a b^{-1} a$ $=b^{-1} a b^{-1}$, and $y=a b^{-1}$. Then $x^{2}=y^{3}$, and $a=y^{-1} x, b=y x^{-1}$.

Hence

$$
\pi_{1}(M)=\left\langle x, y: x^{2}=y^{3}=\left(y^{-1} x\right)^{7}\right\rangle
$$

This is non-trivial and the proof of theorem 5 is complete.

Figure 30.
Remark. The length 10 case remains open. Indeed, if we apply the method used to prove theorem 5 to the length 10 case, we see that the theorem holds except the following fundamental groups. We are unable to prove that they are non-trivial.
(i) $\left\{\begin{array}{l}a^{3} b^{-1} a b^{3} a b^{-1}=1 \\ \left(a b^{-1} a^{2} b^{-1}\right)^{9 t+2}\left(a b^{2}\right)^{13 t+3}=1,\end{array}\right.$
(ii) $\left\{\begin{array}{l}a^{8} b^{2} a b^{-1} a b^{2}=1 \\ \left(a b^{-1} a b^{2} a b^{-1}\right)^{2 t+1}(a b)^{9 t+4}=1,\end{array}\right.$
(iii) $\left\{\begin{array}{l}a^{2} b a^{2} b^{2} a^{-1} b^{2}=1 \\ \left(b^{-2} a b^{-1} a\right)^{t}\left(a b^{2}\right)^{19 t+1}=1, \quad(t \neq 0)\end{array}\right.$
(iv) $\left\{\begin{array}{l}a^{3} b^{2} a^{-1} b a^{-1} b^{2}=1 \\ \left(a^{3} b a\right)^{8 t+3}\left(a^{2} b^{2}\right)^{-19 t-7}=1,\end{array}\right.$
where $t \in \boldsymbol{Z}$.

Note added in proof. Recently we obtain the non-triviality of the above four classes of fundamental groups by using representations to PGL(2, $\boldsymbol{C})$.

References

[1] R.H. Bing, Necessary and sufficient conditions that a 3 -manifold be S^{3}, Ann. of Math., (2) 68(1958), 17-37.
[2] R.H. Bing, Some aspects of the topology of 3-manifolds related to the Poincare conjecture, Lectures on Modern Mathematics, vol. 2, Wiley, New York, 1964, 93128.
[3] R.H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971), 217-231.
[4] J.S. Birman and H. M. Hilden, The homeomorphism problem for S^{3}, Bull. Amer. Math. Soc., 79 (1973), 1006-1010.
[5] J.S. Birman and H. M. Hilden, Heegaard splittings of branched coverings of S^{3}, Trans. Amer. Math. Soc., 213 (1975), 315-352.
[6] E. Brieskorn, Beispiele zur Differentialtopologie von Singularitäten, Invent. Math., 2 (1966), 1-14.
[7] H.S. M. Coxeter, The abstract groups $G^{m, n, p}$, Trans. Amer. Math. Soc., 45 (1939), 73-150.
[8] H.S. M. Coxeter, The abstract group $G^{3,7,16}$, Proc. Edinburgh Math. Soc., (2), 13 (1962), 47-61.
[9] H.S.M. Coxeter and W.O. Moser, Generators and relations for discrete groups, Springer, Berlin, 1957.
[10] J. Hempel, A simply connected 3-manifold is S^{3} if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc., 15 (1964), 154-158.
[11] T. Homma, On presentations of fundamental groups of 3-manifolds of genus 2, preprint.
[12] E. J. Mayland Jr., A class of two-bridge knots with Property-P, preprint.
[13] J. Milnor, On the 3-dimensional Brieskorn manifolds $M(p, q, r)$, Knots, Groups, and 3-Manifolds (ed. by L.P. Neuwirth), 175-225.
[14] M. Ochiai, On geometric reductions of homology 3-spheres of genus two, preprint.
[15] H. Poincaré, Second complément a l'analysis situs, Proc. London Math. Soc., (2), 32 (1900), 277-308.
[16] H. Poincaré, Cinquieme complément a l'analysis situs, Rend. Circ. Mat. Palermo, 18 (1904), 45-110.
[17] R. Riley, Knots with parabolic property P, Quart. J. Math. Oxford (2), 25 (1974), 273-283.
[18] J. Singer, Three-dimensional manifolds and their Heegaard diagrams, Trans. Amer. Math. Soc., 35 (1933), 88-111.
[19] M. Takahashi, An alternative proof of Birman-Hilden-Viro's theorem, Tsukuba J. Math., 2 (1978), 27-34.
[20] R. Osborne, The simplest closed 3-manifolds, Pacific J. Math., 74 (1978), 481-495.
[21] M. Takahashi, Two-bridge knots have Property P, preprint.

Moto-o TAKAHASHI
Institute of Mathematics
The University of Tsukuba
Sakura-mura, Niihari-gun
Ibaraki 305
Japan

[^0]: *) Recently Ochiai [14] proved that a graph of Type II can be reduced to Type I without increasing the number of intersection points provided the manifold M is a homology sphere.

[^1]: *) A word is said to be freely symmmetric if there are words u and v such that $w=u v$ and $w^{*}=v u$. The last part of the Theorem is due to [4].

[^2]: *) Theorem 3 and Theorem 4 below are also obtained in [20] by a different method.

