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Let $p$ be always a prime number, $R$ a local ring of characteristic $P$ and
$R^{\prime}$ an intermediate local ring between $R$ and $R^{p}$ . A $p$-basis of $R$ over $R^{\prime}$

means a subset $\Gamma$ of $R$ such that $R^{\prime}[\Gamma]=R$ and such that for every finite
subset $\{b_{1}, \cdots , b_{s}\}$ of $\Gamma,$ $\{b_{1}^{n_{1}}\cdots b_{s}^{n_{s}}|0\leqq n_{i}<p\}$ is linearly independent over $R^{\prime}$ .
The purpose of this paper is to prove the following two theorems:

THEOREM 3.1. Let $R$ be a regular local ring of characteristic $P$ and let $k$

be the residue field of R. If there is a system of representatives $A$ of a p-basis

of $k$ over $k^{p}$ such that $R$ is a finite $R^{p}[A]$ -module, then $R$ has a $P$-basis over
$R^{p}$ . More Precisely, a $P$-basis of $R$ over $R^{p}$ is obtained as the union of $\{z_{1}, \cdots, z_{r}\}$

and A where $r=\dim R$ and $\{z_{1}, \cdots , z_{r}\}$ is a sPecial minimal system of generators
for the maximal ideal of $R$.

Conversely, if $R$ is a reduced local ring of characteristic $P$ and if $R$ has a
$p$-basis $\Gamma$ over $R^{p}$ , then $R$ is a regular local ring and $\Gamma$ is of the form $\Gamma=$

$A\cup\{z_{1}+v_{1}, \cdots , z_{r}+v_{r}\},$ $v_{i}\in R^{p}[A]$ $(i=1, \cdots , r)$ , where $A$ is a system of repre-
sentatives of a $P$-basis of the residue field $k$ of $R$ over $k^{p}$ and $\{z_{1}, \cdots , z_{r}\}$ is a
minimal system of generators for the maximal ideal of $R$ .

THEOREM 3.4. Let $R$ be a locality1) over a field of characteristic $p$ . Then
$R$ is regular if and only if $R$ has a $p$-basis over $R^{p}$ .

To prove the first half of Theorem 3.1, we need two results due to M.
Nagata. We record the results in \S 1 as Proposition 1.1 and Proposition 1.2.
And we prove some variations of Proposition 1.1 as several lemmas in \S 2 for
our proof. A key result is Lemma 2.6 which implies a sufficient condition
for the existence of $P$-basis. The regularity of the second half of Theorem
3.1 follows immediately from Theorem 2.1 of [2]. For a regular locality over
a field of characteristic $p$ , we prove the existence of a $p$-basis by virtue of
Lemma 2.6.

On the other hand, there is a regular local ring $R$ which has no $p$-basis
over $R^{p}$ . For example, the formal power series ring $k[[x]]$ , over a field $k$ of

1) A locality over a field means a quotient ring of an affine domain over a field
with respect to a prime ideal (cf. [5]).
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characteristic $p>0$ such that $[k:k^{p}]=\infty$ has no $p$-basis over $k^{p}[[x^{p}]]$ (see
Example 3.8 of \S 3).

\S 1. Notations and preliminaries.

In this paper, all rings are commutative with identity. A ring is called
a quasi-local ring if it has only one maximal ideal and a noetherian quasi-
local ring is called a local ring.

First we record the results due to M. Nagata which will be needed later.
PROPOSITION 1.1 (38.4 of [5]). Let $(R, \mathfrak{m})$ be a local integral domain and

let $a$ be an element of an integral extension of R. Assume that $a$ is not in the
field of quotients of $R$ , that the characteristic $p$ of $R$ is different from zero and
that a $\in R$ . Then $R[a]$ is a local ring. Let $\mathfrak{m}^{\prime}$ be the maximal ideal of $R[a]$ .
Then either

$1ength_{R/\mathfrak{m}}\mathfrak{m}/\mathfrak{m}^{2}=1ength_{R[a]/\mathfrak{m}\prime}\mathfrak{m}^{\prime}/\mathfrak{m}^{\prime 2}$

$or$

$(1ength_{R/\mathfrak{m}}\mathfrak{m}/\mathfrak{m}^{2})+1=1ength_{R[a]/\mathfrak{m}\prime}\mathfrak{m}^{\prime}/\mathfrak{m}^{\prime 2}$ .
The first equality holds if and only if either the irreducible pOlynOmial $X^{p}-a^{p}$

over $R$ is irreducible modulo $\mathfrak{m}$ or there exists an element $b\in R$ such that $(a-b)^{p}$

$\in \mathfrak{m},$
$\not\in \mathfrak{m}^{2}$ .

PROPOSITION 1.2 (31.8 of [5]). A semi-local ring $R$ which may not be Noe-
therian2) is really Noetherian if and only if: (1) every finitely generated ideal
of $R$ is a closed subset of $R$, and (2) the maximal ideals of $R$ have finite bases.

From now on throughout this paper, $R$ will denote a local ring of charac-
teristic $P>0,$ $\mathfrak{m}$ the maximal ideal of $R$ and $k$ the residue field of $R$ . We
denote the Krull dimension of $R$ by dimR and we put dim R $=r$ . We set
$R^{p}=\{a^{p}|a\in R\}$ and $\mathfrak{m}^{(p)}=\{m^{p}|m\in \mathfrak{m}\}$ . Then $R^{p}$ is a local ring of Krull dimen-
sion $r$ with maximal ideal $m^{(p)}$ . Since $\mathfrak{m}\cap R^{p}=\mathfrak{m}^{(p)}$ , the natural map $R^{p}/\mathfrak{m}^{(p)}$

$\rightarrow R/\mathfrak{m}=k$ is injective and its image is equal to $(R/\mathfrak{m})^{p}=k^{p}=\{\alpha^{p}|\alpha\in k\}$ . In
view of the above injection, the residue field $R^{p}/m^{(p)}$ of $R^{p}$ can be identified
with the subfield $k^{p}$ of $k$ . $R^{\prime}$ denote an intermediate local ring between $R$

and $R^{p},$ $\mathfrak{m}^{\prime}$ the maximal ideal and $k^{\prime}$ the residue field. It is clear that $R$

dominates $R^{\prime}$ , that is, $\mathfrak{m}\cap R^{\prime}=\mathfrak{m}^{\prime}$ . Since we may identify the residue field $k^{\prime}$

of $R^{\prime}$ with the subfield of $k$ , we assume that $k^{p}\subset k^{\prime}\subset k$ . For any subset $A$

of $R$ , we denote by $R^{\prime}[A]$ the intersection of all subrings of $R$ which contain
$R^{\prime}$ and $A$ , and we denote by $\overline{A}$ the set of residue classes of the elements of

2) A quasi-semi-local ring $R$ with the Jacobson radical $\mathfrak{m}$ is called a semi-local

ring which may not be Noetherian if $\bigcap_{n=1}\mathfrak{n}\iota^{n}=0$ (cf. [5]).
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$A$ modulo $\mathfrak{m}$ . When we say $\overline{A}$ is $p$-independent” we tacitly assume that $A$

maps injectively to $\overline{A}$ .

\S 2. Purely inseparable extension of a local ring.

In this section we assume that $R$ is a local integral domain. Let $K$ and
$K^{\prime}$ be the quotient field of $R$ and $R^{\prime}$ respectively.

LEMMA 2.1. For any subset $A$ of $R,$ $R^{\prime}[A]$ is a quasi-local ring with maxi-
mal ideal $\mathfrak{m}\cap R^{\prime}[A]$ .

PROOF. Let $x\in R^{\prime}[A]$ and $x\not\in \mathfrak{m}$ . So $(\frac{1}{x})^{p}=\frac{1}{x^{p}}\in R^{p}\subset R^{\prime}$ and $\frac{1}{x}=x^{p-1}(\frac{1}{x})^{p}$

$\in R^{\prime}[A]$ .
LEMMA 2.2. Let $A$ be a subset of R. If $\overline{A}$ is $P$-independent over $k^{\prime}$ , then

we have $\mathfrak{m}\cap R^{\prime}[A]=\mathfrak{m}^{\prime}R^{\prime}[A]$ .
PROOF. Let $\phi$ be the canonical map $R^{\prime}[A]\rightarrow R\rightarrow R/\mathfrak{m}=k$ . Then clearly

ker $\phi=\mathfrak{m}\cap R^{\prime}[A]$ . On the other hand, an arbitrary element $x$ of $R^{\prime}[A]$ is
written in the form

$x=\sum\alpha_{(n_{t})}\Pi a_{t}^{n_{t}}$ $(\alpha_{(n})\in R^{\prime},$ $a_{\iota}\in A,$ $0\leqq n_{c}\leqq p-1$).

So if $\sum\overline{\alpha}_{(n)}\Pi\overline{a}^{n_{t}}=0$ , then $\overline{\alpha}_{(n)}=0$ for each $(n_{\iota})$ . Hence ker $\phi\subset \mathfrak{m}^{\prime}R^{\prime}[A]$ . The
converse inclusion is clear. Therefore ker $\phi=\mathfrak{m}^{\prime}R^{\prime}[A]$ and it follows that
$\mathfrak{m}\cap R^{\prime}[A]=\mathfrak{m}^{\prime}R^{\prime}[A]$ .

LEMMA 2.3. Let $A$ be a subset of R. If $A$ is p-indePendent over $R^{\prime}$ and $\overline{A}$

is $P$-independent over $k^{\prime}$ , then $R^{\prime}[A]$ is noetherian, that is, $R^{\prime}[A]$ is a local ring.

PROOF. Put $S=R^{\prime}[A],$ $\mathfrak{n}=\mathfrak{m}\cap S$ . We will check the conditions of Proposi-
tion 1.2. We have $\mathfrak{n}=\mathfrak{m}^{\prime}S$ by Lemma 2.2, hence $\mathfrak{n}$ is finitely generated. Since
$\bigcap_{n=1}^{\infty}\mathfrak{n}^{n}\subset\bigcap_{n=1}^{\infty}\mathfrak{m}^{n}=(0),$ $S$ is separated for the n-adic topology. Let $I=\sum_{j=1}^{\$}c_{j}S$ be a
finitely generated ideal. Write

$c_{j}=\sum_{(n)}\alpha_{1^{(n)}}\Pi a_{f}^{n_{t}}$
$(\alpha_{j(n)}\in R^{\prime}, a_{\iota}\in A, 0\leqq n<p)$ ,

and let $T$ be the set of the elements $a_{t}$ which appear in the right hand side
when $j$ moves from 1 to $s$ . Then $T$ is a finite subset of $A$ . Put $S_{0}=R^{\prime}[T]$ ,
$I_{0}=I\cap S_{0}$ and $\mathfrak{n}_{0}=\mathfrak{m}\cap S_{0}$ . Then $S_{0}$ is a local ring and its maximal ideal $\mathfrak{n}_{0}$ is
equal to $\mathfrak{m}^{\prime}S_{0}$ by Lemma 2.2. Therefore we have $I=I_{0}S,$ $\mathfrak{n}=\mathfrak{n}_{0}S$ and

$I_{0}=\bigcap_{n=1}^{\infty}(I_{0}+\mathfrak{n}_{0}^{n})$ .

On the other hand we have $S=S_{0}[A-T]$ , and $A-T$ is a $p$-basis of $S$ over $S_{0}$ .
Therefore $S$ is a free $S_{0}$-module, and so
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$I=I_{0}S=[\bigcap_{n=1}^{\infty}(I_{0}+\mathfrak{n}_{0}^{n})]S$

$=\bigcap_{n=1}^{\infty}(I_{0}+\mathfrak{n}_{0}^{\eta})S$

$=\bigcap_{n\Rightarrow 1}^{\infty}(I+\mathfrak{n}^{n})$ .

Thus $I$ is closed for the n-adic topology.
LEMMA 2.4. Let $A$ be a subset of R. If $A$ is $P$-independent over $R^{\prime}$ and $\overline{A}$

is p-indePendent over $k^{\prime}$ , then a minimal system of generators for $\mathfrak{m}^{\prime}$ is also a
minimal system of generators for the maximal ideal of $R^{\prime}[A]$ . In particular,

if $R^{\prime}$ is regular, so is $R^{\prime}[A]$ .
PROOF. Put $S=R^{\prime}[A],$ $\mathfrak{n}=\mathfrak{m}\cap S$ . Suppose that $\{x_{1}, \cdots , x_{s}\}$ is a minimal

system of generators for $\mathfrak{m}^{\prime}$ . Since $\mathfrak{n}=\mathfrak{m}^{\prime}S$ by Lemma 2.2, it is a system of
generators for $\mathfrak{n}$ . Suppose that $\{x_{1}, \cdots , x_{s}\}$ is not minimal. Then $\overline{x}_{1},$ $\cdots$ , $\overline{x}_{s}$

are linearly dependent in the vector space $\mathfrak{n}/\mathfrak{n}^{2}$ over the field $S/\mathfrak{n}$ , where $\overline{x}_{i}=$

the residue class of $x_{i}$ modulo $\mathfrak{n}^{2}$ . It follows that there exist $y\in \mathfrak{n}^{2}$ and
$\{w_{1}, \cdots , w_{s}\}\subset S$ such that at least one of these elements $w_{1},$

$\cdots$ , $w_{s}$ is a unit

of $S$ and $y=\sum_{i=1}^{l}w_{i}x_{i}$ . Since $w_{i}$ is of the form

$w_{i}=\sum_{(n_{\iota})}\beta_{i(n_{p})}\Pi a_{\iota}^{n_{\iota}}$ $(\beta_{i(n_{c})}\in R^{\prime}, a , \in A, 0\leqq n_{\iota}\leqq P-1)$ ,

we have

$y=\sum_{(n_{\iota})}$
$\{\sum_{i\Rightarrow 1}^{s}\beta_{i(n_{f})}x_{i}\}\Pi_{0_{\iota}^{n_{\iota}}}$ .

On the other hand, since $y\in \mathfrak{n}^{2}=\mathfrak{m}^{\prime 2}S,$ $y$ is of the form

$y=\Sigma\alpha_{(n_{f})}\Pi a_{\iota}^{n_{f}}$ $(\alpha_{(n)}\in \mathfrak{m}^{\prime 2}, a_{c}\in A, 0\leqq n_{\iota}\leqq P-1)$ .

By the $P$-independence of $A$ over $R^{\prime}$ , we get $\sum_{i=1}^{\epsilon}\beta_{i(n_{f})}x_{i}=\alpha_{(n)}\in \mathfrak{m}^{\prime 2}$ for any

$(n)$ , whence $\sum\overline{\beta}_{i(n)}\overline{x}_{i}=0$ in the space $\mathfrak{m}^{\prime}/\mathfrak{m}^{\prime 2}$ over $k^{\prime}$ . Since $\overline{x}_{1},$ $\cdots$ , $\overline{x}_{s}$ are
linearly independent in the space $\mathfrak{m}^{\prime}/\mathfrak{m}^{\prime 2}$ over $k^{\prime}$ , it follows that $\overline{\beta}_{i(n_{\iota})}=0$ in
$k^{\prime}$ , so $\beta_{i(n_{t})}\in \mathfrak{m}^{\prime}$ for all $i$ . From this $w_{i}\in \mathfrak{n}$ for all $i$ , which is a contradiction.

LEMMA 2.5. Let $A$ be a subset of R. If $R^{\prime}$ is regular and $\overline{A}$ is p-independ-
ent over $k^{\prime}$ , then $A$ is $P$-indePendent over $K^{\prime}$ .

PROOF. We can choose a $p$-basis $B$ of $K^{\prime}(A)$ over $K^{\prime}$ such that $B\subset A$

(Exercises of \S 8, [1]). Then clearly $K^{\prime}(A)=K^{\prime}(B)$ and $R^{\prime}[A]$ is contained in
the field of quotients of $R^{\prime}[B]$ . On the other hand, $R^{\prime}[B]$ is regular by

Lemma 2.4 and $R^{\prime}[A]$ is integral over $R^{\prime}[B]$ . It follows that $R^{\prime}[A]=R^{\prime}[B]$ .
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Then we have $k^{\prime}(\overline{A})=k^{\prime}(\overline{B})$ , whence $\overline{A}=\overline{B}$ , so $A=B$ . With this, Lemma 2.5
is proved.

LEMMA. 2.6. Let $R$ be a regular local ring with Krull dimension $r,$ $K$ the
quotient field of $R$ and let $A$ be a subset of $R$ such that $\overline{A}$ is a $p$-basis of $k$

over $k^{p}$ . Then we have $[K:K^{p}(A)]\geqq p^{r}$. More precisely, there exist $z_{1},$
$\cdots$ , $z_{r}$

$\in R$ which satisfy the following three properties;
(a) $\{z_{1}, \cdots , z_{r}\}$ is a minimal system of generators for the maximal ideal $\mathfrak{m}$

of $R$ ,
(b) $\{z_{1}, \cdots , z_{r}\}$ is $P$-independent over $K^{p}(A)$ ,
(c) $R_{r}=R^{p}[A, z_{1}, \cdots , z_{r}]$ is a regular local ring with maximal ideal $\mathfrak{m}_{r}$

$=(z_{1}, z_{r})R_{r}$ .
In Particular if $[K:K^{p}(A)]=p^{r}$, we have $R=R^{p}[A, z_{1}, \cdots , z_{r}]$ , that is, $ A\cup$

$\{z_{1}, \cdots , z_{r}\}$ is a $P$-basis of $R$ over $R^{p}$ .
PROOF. We assume that $[K:K^{p}(A)]=p^{s}(s\leqq r)$ . Let $\{x_{1}, \cdots , x_{r}\}$ be a

minimal system of generators for $\mathfrak{m}$ and let $\mathfrak{m}_{A}$ be the maximal ideal $\mathfrak{m}^{(p)}R^{p}[A]$

of $R^{p}[A]$ . Suppose that we could choose $z_{1},$
$\cdots$ , $z_{t}(t<s)$ in such a way that

(a) $z_{i}=x_{i}$ or $z_{i}=u_{i}x_{i}$ for $i=1,2,$ $\cdots$ , $t$ , where $u_{i}$ is a unit in $R$ (and

therefore $\{z_{1}, \cdots , z_{t}\}$ is a subset of a minimal system of generators for m),

(b) $\{z_{1}, \cdots , z_{t}\}$ is $p$-independent over $K^{p}(A)$ , and
(c) $R_{t}=R^{p}[A, z_{1}, \cdots , z_{t}]$ is a regular local ring with maximal ideal $\mathfrak{m}_{t}$

$=\mathfrak{m}\cap R_{t}=\mathfrak{m}_{A}+(z_{1}, z_{t})R_{t}$ .
Then we will prove that there exists an element $z_{t+1}\in R$ which satisfies the
following three properties;

(a) $\{z_{1}, \cdots , z_{t+1}\}$ is a subset of a minimal system of generators for $\mathfrak{m}$,
(b) $\{z_{1}, \cdots , z_{t+1}\}$ is $P$-independent over $K^{p}(A)$ ,
(c) $R_{t+1}=R^{p}[A, z_{1}, \cdots , z_{t+1}]$ is a regular local ring with maximal ideal

$m_{t+1}=\mathfrak{m}\cap R_{t+1}=m_{A}+(z_{1}, \cdots , z_{t+1})R_{t+1}$ .
Since $\overline{A}$ is a $P$-basis of $k$ over $k^{p}$ , we have $R=R^{p}[A]+\mathfrak{m},$ $K=K^{p}(A, \mathfrak{m})$ and

$[K:K^{p}(A, z_{1}, \cdots z_{t})]=p^{s-i}\geqq p$ .

If $x_{t+1}\not\in K^{p}(A, z_{1}, \cdots , z_{t})$ , we put $z_{t+1}=x_{t+1}$ . Otherwise, we choose an element
$m$ of $\mathfrak{m}$ such that $m\not\in K^{p}(A, z_{1}, \cdots , z_{t})$ . Let $u_{t+1}=1+m$ . Then $u_{t+1}$ is a unit
of $R$ and $u\not\in K^{p}(A, z_{1}, \cdots , z_{t})$ . In this case, we set $z_{t+1}=u_{t+1}x_{t+1}$ . In both
cases, $z_{t+1}\in \mathfrak{m}$ and $z_{t+1}\not\in K^{p}(A, z_{1}, \cdots , z_{t})$ , that is, $z_{t+1}$ is $P$-independent over
$K^{p}(A, z_{1}, \cdots , z_{t})$ . We claim that $R_{t+1}=R^{p}[A, z_{1}, \cdots , z_{t+1}]$ is a regular local
ring with maximal ideal

$\mathfrak{m}_{t+1}=\mathfrak{m}\cap R_{t+1}=\mathfrak{m}_{A}+(z_{1}, \cdots z_{t+1})R_{t+1}$ .

It is obvious that $\mathfrak{m}_{t+1}=\mathfrak{m}_{A}+(z_{1}, \cdots , z_{t+1})R_{t+1}$ . To prove that $R_{t+1}=R_{t}[z_{t+1}]$ is
regular, it is sufficient to show $z_{t+1}^{p}\not\in \mathfrak{m}_{t}^{2}$ by Proposition 1.1. Suppose that
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$z_{t+1}^{p}\in l\mathfrak{n}_{t}^{2}$ . Since $\mathfrak{m}_{t}=\mathfrak{m}_{A}+(z_{1}, \cdots , z_{t})R_{t}$ ,

$\mathfrak{m}_{t}^{2}=(\mathfrak{m}^{(p)})^{2}R^{p}[A]+\mathfrak{m}^{(p)}(z_{1}, \cdots z_{t})R_{t}+(z_{1}, \cdots z_{t})^{2}R_{t}$ .
Then we have

$z_{c+1}^{p}=\sum\alpha_{(n)}^{p}\Pi a^{n_{t}},+\sum\beta_{(e_{j}}^{p}n)()\Pi a_{t}^{n_{t}}\Pi_{Z_{j}^{e_{j}}}+\sum\gamma_{(n_{t})(f_{j})}^{p}\Pi a^{n_{t}}\Pi z_{j}^{J_{j}}$

where $a_{t}\in A,$
$\alpha_{(n_{f}}$ )

$\in \mathfrak{m}^{2},$
$\beta_{(n_{\iota})(e_{j})}\in \mathfrak{m},$ $\gamma_{(n_{t})(f_{j})}\in R,$ $\sum e_{j}\geqq 1$ and $\sum f_{j}\geqq 2$ . Regard-

ing the $P$-th power of $a_{t}$ and $z_{j}$ as the elements of $R^{p}$ , we have

$z_{c+1}^{p}=\sum\eta_{(m)^{\Pi}}^{p}a^{m}+\sum\xi_{(m)()}^{p}g_{j}\Pi a_{t}^{m}\Pi_{Z_{j}^{g_{j}}}+\sum\zeta_{(m)(h_{j})}^{p}\Pi a_{\iota}^{m}\Pi z_{J^{j}}^{h}$

where $a_{e}\in A,$ $\eta_{(m)}\in \mathfrak{m}^{2},$ $\xi_{(m)(}g_{j)}\in \mathfrak{m},$ $\zeta_{(m_{t})(h_{j})}\in R$ and $0\leqq m,$ $g_{j},$ $h_{j}\leqq p-1$ . Since

$\sum e_{j}\geqq 1$ and $\sum f_{j}\geqq 2$, we have $\xi_{(0)(0)}\in \mathfrak{m}^{2}$ and $\zeta_{(0)(0)}\in\sum_{i=1}^{t}z_{i}R+\mathfrak{m}^{2}$ . Because of p-

independence of $\{A, z_{1}, \cdots , z_{t}\}$ over $K^{p}$ , it follows that

$z_{t+1}=\eta_{(0)}+\xi_{(0)(0)}+\zeta_{(0)(0)}$ .
Set $\zeta_{(0)(0)}=\sum_{i=1}^{t}d_{i}z_{i}+m$ , where $d_{i}\in R$ and $m\in \mathfrak{m}^{2}$ . Then we have $z_{t+1}-\sum_{i=1}^{t}d_{i}z_{i}$

$\in \mathfrak{m}^{2}$ . By the choice of $z_{t+1},$ $\{z_{1}, \cdots, z_{t+1}\}$ is a subset of a minimal system of
generators for $\mathfrak{m}$ and hence $\{\overline{z}_{1}, \cdots , \overline{z}_{t+1}\}$ is linearly independent in the space
$\mathfrak{m}/\mathfrak{m}^{2}$ over $k$ . Therefore the relation $\overline{z}_{l+1}-\sum_{i=1}^{t}\overline{d}_{i}\overline{z}_{i}=0$ implies $\overline{1}=0$ in $k$, which
is a contradiction.

Thus we have proved that there exist $z_{1},$
$\cdots$ , $z_{s}\in R$ which satisfy the fol-

lowing three properties;
(a) $\{z_{1}, \cdots , z_{s}\}$ is a part of a minimal system of generators for $\mathfrak{m}$,
(b) $\{z_{1}, \cdots , z_{s}\}$ is $P$-independent over $K^{p}(A)$ (that is, the field of quotients

of $R_{s}=R^{p}[A, z_{1}, \cdots , z_{s}]$ is $K$),
(c) $R_{s}$ is a regular local ring with maximal ideal $\mathfrak{m}_{S}=\mathfrak{m}_{A}+(z_{1}, \cdots , z_{s})R_{s}$ .

Since $R_{s}$ is normal and $R$ is integral over $R_{s}$ , we have $R=R_{s}$ . Then we have
$\mathfrak{m}=\mathfrak{m}_{s}$, hence $\mathfrak{m}=\mathfrak{m}_{A}+(z_{1}, \cdots , z_{s})R$ . Since $\mathfrak{m}_{A}\subset \mathfrak{m}^{2}$, we have $\mathfrak{m}=(z_{1}, \cdots , z_{s})R$ by
Nakayama’s lemma. Therefore $s=r$ . Consequently we have $[K:K^{p}(A)]\geqq p^{r}$ .

\S 3. Main theorem.

We are now ready to prove the main theorem.
THEOREM 3.1. Let $R$ be a regular local ring of characteristic $p$ and let $k$

be the residue field of R. If there is a system of representativesA of a p-basis
of $k$ over $k^{p}$ such that $R$ is a finite $R^{p}[A]$ -module, then $R$ has a $P$-basis over $R^{p}$ .
More precisely, a $p$-basis of $R$ over $R^{p}$ is obtained as the union of $\{z_{1}, \cdots , z_{r}\}$

and A where $r=\dim R$ and $\{z_{1}, \cdots , z_{r}\}$ is a special minimal system of generators

for the maximal ideal of $R$ .
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Contersely, $i$] $R\iota s$ a reduced local ring of characteristic $p$ and if $R$ has a
$p$-basis $T$ over $R^{p}$ , then $R$ is a regular local ring and $\Gamma$ is of the form $\Gamma=$

$A\cup\{z_{1}+v_{1}, \cdots , z_{r}+v_{r}\},$ $v_{i}\in R^{p}[A]$ $(i=1, \cdots , r)$ , where $A$ is a system of repre-
sentatives of a $P$-basis of the residue field $k$ of $R$ over $k^{p}$ and $\{z_{1}, \cdots , z_{r}\}$ is a
minimal system of generators for the maximal ideal of $R$ .

PROOF. Let $R$ be a regular local ring with Krull dimension $r,$ $K$ the quo-
tient field of $R$ and let $A$ be a subset of $R$ such that $\overline{A}$ is a $P$-basis of $k$

over $k^{p}$ and such that $R$ is a finite $R^{p}[A]$ -module. To prove the first half
of Theorem 3.1, it is sufficient to prove that $[K:K^{p}(A)]\leqq p^{r}$ by Lemma 2.6.

Suppose that $[K:K^{p}(A)]>p^{r}$ . Let $\hat{R}$ and $\hat{R}_{r}$ be the m-adic and $\mathfrak{m}_{r}$-adic
completion of $R$ and $R_{r}$ respectively. By Cohen’s structure theorem for com-
plete local rings, we have $\hat{R}=k[[X_{1}, \cdots , X_{r}]]$ where $X_{1},$ $\cdots$ , $X_{r}$ are indeter-
minates. Furthermore, we have $\hat{R}_{r}=k[[X_{1}, \cdots , X_{r}]]$ where $X_{1},$ $\cdots$ $X_{r}$ are
indeterminates. In fact, $R_{r}$ is regular, $\mathfrak{m}$ and $\mathfrak{m}_{r}$ have the same minimal sys-
tem of generators by Lemma 2.6 and $R_{r}/\mathfrak{m}_{r}=k$ . Therefore $\hat{R}=\hat{R}_{r}$ . On the
other hand, since $[K:K^{p}(A, z_{1}, \cdots , z_{r})]\geqq p$ , there is an element $y\in R$ such that
$y\not\in K^{p}(A, z_{1}, \cdots , z_{r})$ . Since $R$ is a finite $R^{p}[A]$ -module, $R$ is a Pnite $R_{r}$-module.–
Hence $\hat{R}_{r}\subsetneqq R_{r}[y]\subseteqq\hat{R}$ . This is a contradiction.

Conversely, let $R$ be a reduced local ring of characteristic $p$ . We assume
that $R$ has a $p$-basis $\Gamma$ over $R^{p}$ . Then the regularity of $R$ follows from
Theorem 2.1 of [2]. Since $R=R^{p}[\Gamma],$ $R/\mathfrak{m}=k=k^{p}(F)$ where $F$ is the set of
the residue classes of the elements of $\Gamma$ modulo $\mathfrak{m}$ . Therefore we may select
a subset $A$ of $\Gamma$ such that $\overline{A}$ is a $P$-basis of $k$ over $k^{p}$ . Then $B=\Gamma-A$ is a
$P$-basis of $R$ over $R^{p}[A]$ . Furthermore, we may assume that $B\subset \mathfrak{m}$ , because
$R=R^{p}[A]+\mathfrak{m}$ . Since $R=R^{p}[A][B]$ , we have $\mathfrak{m}=\mathfrak{m}_{A}+BR$ where $\mathfrak{m}_{A}$ is the
maximal ideal $\mathfrak{m}^{(p)}R^{p}[A]$ of $R^{p}[A]$ . Hence $\mathfrak{m}=\mathfrak{m}^{2}+BR$ and $\mathfrak{m}=BR$ by Naka-
yama’s lemma. Then we choose $\{z_{1}, \cdots , z_{r}\}$ a minimal system of generators
for $\mathfrak{m}$ from $B$ . For a moment, suppose that $\{z_{1}, \cdots , z_{r}\}\subsetneqq B$ . Then there is an
element $b\in B$ such tk at $b\neq z_{i}$ $(i=1, \cdots , r)$ . Since $b\in \mathfrak{m}$ we have

$b=\sum_{t=1}^{r}\gamma_{i}z_{i}$ $(\gamma_{i}\in R)$ .

On the other hand,
$\gamma_{i}=\sum_{(e_{\lambda)}}\alpha_{t(e_{\lambda})}\Pi b_{\lambda}^{e_{\lambda}}$

$(\alpha_{t(e_{\lambda})}\in R^{p}[A, z_{1}, \cdots , z_{r}], b_{\lambda}\in B-\{z_{1}, \cdots , z_{r}\}, 0\leqq e_{\lambda}\leqq p-1)$ . From these rela-
tions and $p$-independence of $B-\{z_{1}, \cdots , z_{r}\}$ over $K^{p}(A, z_{1}, \cdots , z_{r})$ , we have an
equality $1=\sum\beta_{i}z_{l}(\beta_{i}\in R)$ . This is a contradiction. That is, $\{z_{1}, \cdots , z_{r}\}=B$ .
This completes the proof.

COROLLARY 3.2. If $R$ is a regular local ring of characteristic $p$ and if $R$

is a finite $R^{p}$-module, then $R$ has a $p$-basis over $R^{p}$ .
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REMARK 3.3. Let $R$ be a regular local ring of characteristic $p$ and $\mathfrak{p}$ be
a prime ideal of $R$ . If $R$ has a $p$-basis $\Gamma$ over $R^{p}$ , then $\Gamma$ is clearly a p-basis
of $R_{\mathfrak{p}}$ over $(R_{\mathfrak{p}})^{p}$ .

THEOREM 3.4. Let $R$ be a locality over a field of characteristic $p$ . Then $R$

is regular if and only if $R$ has a $p$-basis over $R^{p}$ .
PROOF. Let $R$ be a regular locality over a field $L$ of characteristic $p$ .

Then, it is sufficient to prove that there is a subset $A$ of $R$ , a system of
representatives of a $p$-basis of the residue field $k$ of $R$ over $k^{p}$ such that
$[K:K^{p}(A)]=p^{r}$ by Lemma 2.6, where $K$ is the quotient field of $R$ and
$r=\dim R$ .

Let $S=L[x_{1}, \cdots , x_{n}],$ $\mathfrak{p}$ a prime ideal of $S,$ $R=S_{\mathfrak{p}}$ and let $k=L(\overline{x}_{1}, \cdots , \overline{x}_{n})$

be the residue field of $R$ . We choose a $p$-basis $\overline{A}$ of $k$ over $k^{p}$ such as stated
in the following lemma.

LEMMA 3.5 (Lemma 3 of [3]). Let $k=L(\overline{x}_{1}, \cdots , \overline{x}_{n})$ be a finitely generated
over a field $L$ , tr. $\deg_{L}k=s$ and $let\Pi=\{y_{\lambda}\}_{\lambda\in\Lambda}$ be $ap$-basis of $L$ over $L^{p}$ . Then
we can choose a $P$-basis of $k$ over $k^{p}$ as the union of a suitable subset $\{w_{1}, \cdots w_{t+s}\}$

of $k$ and $\Pi-\{y_{1}, \cdots , y_{t}\}$ where $\{y_{1}, \cdots , y_{t}\}$ is a suitable subset of $\Pi(t\leqq n)$ .
Let $A$ be a system of representatives of A and let $\Pi^{\prime}=\Pi-\{y_{1}, \cdots , y_{t}\}$ .

We assert that $[K:K^{p}(A)]=p^{r}$ . Let $L^{\prime}$ be a field of definition for $S^{3)}$ and
let $L^{\prime\prime}=L^{\prime}(y_{1}, \cdots , y_{t})$ . Then $L^{\prime\prime}$ is also a field of definition for $S$ . Let
$\{\beta_{1}, \cdots , \beta_{t}\}$ be a $p$-basis of $L^{\prime}$ over $L^{p}$ . Since $L=L^{\prime}(\Pi^{\prime})$ , we can choose a
$P$-basis $A^{\prime}$ of $L$ over $L^{\prime}$ such that $A^{\prime}\subseteqq\Pi^{\prime}$ . Then $A^{\prime}\cup\{\beta_{1}, \cdots , \beta_{l}\}$ is a p-basis
of $L$ over $L^{p}$ . Thus, we have $[L:L^{p}(A^{\prime})]=p^{l}$ and

$[K:K^{p}(A^{\prime})]=p^{l+tr.\deg_{L^{K}}}$.

by Lemma 1 of [6]. Since $[L:L^{p}(A^{\prime})]=p^{l}$ and $[L:L^{p}(\Pi^{\prime})]=p^{t}$ , we have
$[L^{p}(\Pi^{\prime}):L^{p}(A^{\prime})]=p^{t-t}$ . Because $A$ is $p$-independent over $K^{p}$ by Lemma 2.5,

$[K^{p}(A):K^{p}(A^{\prime})]=[K^{p}(A):K^{p}(\Pi^{\prime})][K^{p}(\Pi^{\prime}):K^{p}(A^{\prime})]$

$=p^{t+s}\cdot p^{l-t}$

$=p^{t+s}$ .
On the other hand, tr. $\deg_{L}K=s+r$ . So, we have

$[K:K^{p}(A^{\prime})]=p^{l+s+\dim R}$

and
$[K:K^{p}(A)]=p^{r}$ .

3) A field of definition for $S$ means a field $L^{\prime}$ such that $\mathfrak{P}$ is generated by elements
in $L^{\prime}\lfloor^{-}X_{1},$ $\cdots$ , $X_{n}$], $L^{\prime}\supset L^{p}$ and such that $[L^{\prime} : L^{p}]<\infty$ where $\mathfrak{P}$ is a prime ideal of
$L[A1_{J}^{\prime}, \cdots , X_{n}]$ satisfied $S=L[X_{1}, \cdots , X_{n}]/\mathfrak{P}$ (cf. [3] and [6]).
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Finally we note that our proof is valid for the case where the ground field $L$

is perfect.
COLLORARY 3.6. Let $R$ be a locality over a field of characteristic $p>0$ .

Then the following three conditions are equivalent to each other.
(a) $R$ is a regular local ring,
(b) $R$ has a $p$-basis over $R^{p}$ ,
(c) the differential module $\Omega_{R^{p}}(R)$ of $R$ over $R^{p}$ is a free R-module.
PROOF. (a) and (c) are equivalent by Theorem 1 of [2].

COROLLARY 3.7. If $L$ is a field of characteristic $P$ such that $[L:L^{p}]<\infty$ ,

then any regular locality $R$ over $L$ is a finite free $R^{p}$-module.
EXAMPLE 3.8. Let $k$ be a field of characteristic $P$ such that $[k:k^{p}]=\infty$ and

put $R=k[[x]]$ . Then $R$ has no $P$-basis over $R^{p}$ .
PROOF. Suppose that $R$ has a $P$-basis over $R^{p}$ . Then, there is a p-basis

of the form $A\cup\{f\}$ where $A$ is a $P$-basis of $R/(x)$ over $(R/(x))^{p}$ and $f$ is a
generator for $xR$ , by virtue of Theorem 3.1. Since $R$ is a complete local ring,
there is a coefficient field $k^{\prime}$ of $R$ which contains $A$ by 31.9 of [5]. Then we
have $fR=xR$ and $R=k^{\prime}[[f]]$ . Therefore, replacing $k$ by $k^{\prime}$ and $x$ by $f$, we
may assume that $A\subset k$ without loss of generality. Thus we have $R=R^{p}[A, x]$

and $R=k^{p}[[x]][k]$ . On the other hand, $k^{p}[[x]][k]\neq R$ (E3.1 of [5]). This
is a contradiction.
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