Regular local ring of characteristic p and p-basis

By Tetsuzo Kimura and Hiroshi Nittsuma

(Received July 14, 1978)
(Revised March 2, 1979)

Let p be always a prime number, R a local ring of characteristic p and R^{\prime} an intermediate local ring between R and R^{p}. A p-basis of R over R^{\prime} means a subset Γ of R such that $R^{\prime}[\Gamma]=R$ and such that for every finite subset $\left\{b_{1}, \cdots, b_{s}\right\}$ of $\Gamma,\left\{b_{1}^{n_{1}} \cdots b_{s}^{n_{s}} \mid 0 \leqq n_{i}<p\right\}$ is linearly independent over R^{\prime}. The purpose of this paper is to prove the following two theorems:

Theorem 3.1. Let R be a regular local ring of characteristic p and let k be the residue field of R. If there is a system of representatives A of a p-basis of k over k^{p} such that R is a finite $R^{p}[A]$-module, then R has a p-basis over R^{p}. More precisely, a p-basis of R over R^{p} is obtained as the union of $\left\{z_{1}, \cdots, z_{r}\right\}$ and A where $r=\operatorname{dim} R$ and $\left\{z_{1}, \cdots, z_{r}\right\}$ is a special minimal system of generators for the maximal ideal of R.

Conversely, if R is a reduced local ring of characteristic p and if R has a p-basis Γ over R^{p}, then R is a regular local ring and Γ is of the form $\Gamma=$ $A \cup\left\{z_{1}+v_{1}, \cdots, z_{r}+v_{r}\right\}, v_{i} \in R^{p}[A](i=1, \cdots, r)$, where A is a system of representatives of a p-basis of the residue field k of R over k^{p} and $\left\{z_{1}, \cdots, z_{r}\right\}$ is a minimal system of generators for the maximal ideal of R.

Theorem 3.4. Let R be a locality ${ }^{11}$ over a field of characteristic p. Then R is regular if and only if R has a p-basis over R^{p}.

To prove the first half of Theorem 3.1, we need two results due to M. Nagata. We record the results in § 1 as Proposition 1.1 and Proposition 1.2, And we prove some variations of Proposition 1.1 as several lemmas in $\S 2$ for our proof. A key result is Lemma 2.6 which implies a sufficient condition for the existence of p-basis. The regularity of the second half of Theorem 3.1 follows immediately from Theorem 2.1 of [2]. For a regular locality over a field of characteristic p, we prove the existence of a p-basis by virtue of Lemma 2.6.

On the other hand, there is a regular local ring R which has no p-basis over R^{p}. For example, the formal power series ring $k[[x]]$, over a field k of

[^0]characteristic $p>0$ such that $\left[k: k^{p}\right]=\infty$ has no p-basis over $k^{p}\left[\left[x^{p}\right]\right]$ (see Example 3.8 of $\S 3$).

§ 1. Notations and preliminaries.

In this paper, all rings are commutative with identity. A ring is called a quasi-local ring if it has only one maximal ideal and a noetherian quasilocal ring is called a local ring.

First we record the results due to M. Nagata which will be needed later.
Proposition 1.1 (38.4 of [5]). Let (R, \mathfrak{m}) be a local integral domain and let a be an element of an integral extension of R. Assume that a is not in the field of quotients of R, that the characteristic p of R is different from zero and that $a^{p} \in R$. Then $R[a]$ is a local ring. Let \mathfrak{m}^{\prime} be the maximal ideal of $R[a]$. Then either

$$
\text { length }_{R / \mathfrak{m}} \mathfrak{m t} / \mathfrak{m}^{2}=\text { length }_{R[a] / m}, \mathfrak{m}^{\prime} / \mathfrak{m}^{\prime 2}
$$

or

The first equality holds if and only if either the irreducible polynomial $X^{p}-a^{p}$ over R is irreducible modulo $\mathfrak{n t}$ or there exists an element $b \in R$ such that $(a-b)^{p}$ $\in \mathfrak{m}$, $\in \mathfrak{m}^{2}$.

Proposition 1.2 (31.8 of [5]). A semi-local ring R which may not be Noetherian ${ }^{2)}$ is really Noetherian if and only if: (1) every finitely generated ideal of R is a closed subset of R, and (2) the maximal ideals of R have finite bases.

From now on throughout this paper, R will denote a local ring of characteristic $p>0, \mathfrak{m}$ the maximal ideal of R and k the residue field of R. We denote the Krull dimension of R by $\operatorname{dim} R$ and we put $\operatorname{dim} R=r$. We set $R^{p}=\left\{a^{p} \mid a \in R\right\}$ and $\mathfrak{m}^{(p)}=\left\{m^{p} \mid m \in \mathfrak{n t}\right\}$. Then R^{p} is a local ring of Krull dimension r with maximal ideal $\mathfrak{n}{ }^{(p)}$. Since $\mathfrak{m} \cap R^{p}=\mathfrak{m}^{(p)}$, the natural map $R^{p} / \mathfrak{m}^{(p)}$ $\rightarrow R / \mathfrak{m}=k$ is injective and its image is equal to $(R / \mathfrak{n})^{p}=k^{p}=\left\{\alpha^{p} \mid \alpha \in k\right\}$. In view of the above injection, the residue field $R^{p} / \mathfrak{m}^{(p)}$ of R^{p} can be identified with the subfield k^{p} of k. R^{\prime} denote an intermediate local ring between R and $R^{p}, \mathfrak{m}^{\prime}$ the maximal ideal and k^{\prime} the residue field. It is clear that R dominates R^{\prime}, that is, $\mathfrak{m} \cap R^{\prime}=\mathfrak{m}^{\prime}$. Since we may identify the residue field k^{\prime} of R^{\prime} with the subfield of k, we assume that $k^{p} \subset k^{\prime} \subset k$. For any subset A of R, we denote by $R^{\prime}[A]$ the intersection of all subrings of R which contain R^{\prime} and A, and we denote by \bar{A} the set of residue classes of the elements of
2) A quasi-semi-local ring R with the Jacobson radical \mathfrak{m} is called a semi-local ring which may not be Noetherian if $\bigcap_{n=1}^{\infty} \mathfrak{m}^{n}=0$ (cf. [5]).
A modulo \mathfrak{m}. When we say " \bar{A} is p-independent" we tacitly assume that A maps injectively to \bar{A}.

§ 2. Purely inseparable extension of a local ring.

In this section we assume that R is a local integral domain. Let K and K^{\prime} be the quotient field of R and R^{\prime} respectively.

Lemma 2.1. For any subset A of $R, R^{\prime}[A]$ is a quasi-local ring with maximal ideal $\mathfrak{m} \cap R^{\prime}[A]$.

Proof. Let $x \in R^{\prime}[A]$ and $x \notin \mathfrak{m}$. So $\left(\frac{1}{x}\right)^{p}=\frac{1}{x^{p}} \in R^{p} \subset R^{\prime}$ and $\frac{1}{x}=x^{p-1}\left(\frac{1}{x}\right)^{p}$ $\in R^{\prime}[A]$.

Lemma 2.2. Let A be a subset of R. If \bar{A} is p-independent over k^{\prime}, then we have $\mathfrak{m} \cap R^{\prime}[A]=\mathfrak{m}^{\prime} R^{\prime}[A]$.

Proof. Let ϕ be the canonical map $R^{\prime}[A] \rightarrow R \rightarrow R / \mathfrak{m}=k$. Then clearly ker $\phi=\mathfrak{m} \cap R^{\prime}[A]$. On the other hand, an arbitrary element x of $R^{\prime}[A]$ is written in the form

$$
x=\sum \alpha_{\left(n_{\iota}\right)} \Pi a_{\iota}^{n_{\iota}} \quad\left(\alpha_{\left(n_{\iota}\right)} \in R^{\prime}, a_{\iota} \in A, 0 \leqq n_{\iota} \leqq p-1\right)
$$

 converse inclusion is clear. Therefore $\operatorname{ker} \phi=\mathfrak{m}^{\prime} R^{\prime}[A]$ and it follows that $\mathfrak{m} \cap R^{\prime}[A]=\mathfrak{m}^{\prime} R^{\prime}[A]$.

Lemma 2.3. Let A be a subset of R. If A is p-independent over R^{\prime} and \bar{A} is p-independent over k^{\prime}, then $R^{\prime}[A]$ is noetherian, that is, $R^{\prime}[A]$ is a local ring.

Proof. Put $S=R^{\prime}[A], \mathfrak{n}=\mathfrak{m} \cap S$. We will check the conditions of Proposition 1.2. We have $\mathfrak{n}=\mathfrak{m}^{\prime} S$ by Lemma 2.2, hence \mathfrak{n} is finitely generated. Since $\bigcap_{n=1}^{\infty} \mathfrak{n}^{n} \subset \bigcap_{n=1}^{\infty} \mathfrak{m}^{n}=(0), S$ is separated for the \mathfrak{n}-adic topology. Let $I=\sum_{j=1}^{s} c_{j} S$ be a finitely generated ideal. Write

$$
c_{j}=\sum_{\left(n_{\iota}\right)} \alpha_{j\left(n_{\iota}\right)} \Pi a_{\iota}^{n_{\iota}} \quad\left(\alpha_{j\left(n_{\iota}\right)} \in R^{\prime}, a_{\iota} \in A, 0 \leqq n_{\iota}<p\right),
$$

and let T be the set of the elements a_{\circ} which appear in the right hand side when j moves from 1 to s. Then T is a finite subset of A. Put $S_{0}=R^{\prime}[T]$, $I_{0}=I \cap S_{0}$ and $\mathfrak{n}_{0}=\mathfrak{m} \cap S_{0}$. Then S_{0} is a local ring and its maximal ideal \mathfrak{n}_{0} is equal to $\mathfrak{m}^{\prime} S_{0}$ by Lemma 2.2. Therefore we have $I=I_{0} S, \mathfrak{n}=\mathfrak{n}_{0} S$ and

$$
I_{0}=\bigcap_{n=1}^{\infty}\left(I_{0}+\mathfrak{n}_{0}^{n}\right)
$$

On the other hand we have $S=S_{0}[A-T]$, and $A-T$ is a p-basis of S over S_{0}. Therefore S is a free S_{0}-module, and so

$$
\begin{aligned}
I=I_{0} S & =\left[\bigcap_{n=1}^{\infty}\left(I_{0}+\mathfrak{n}_{0}^{n}\right)\right] S \\
& =\bigcap_{n=1}^{\infty}\left(I_{0}+\mathfrak{n}_{0}^{n}\right) S \\
& =\bigcap_{n=1}^{\infty}\left(I+\mathfrak{n}^{n}\right) .
\end{aligned}
$$

Thus I is closed for the n-adic topology.
Lemma 2.4. Let A be a subset of R. If A is p-independent over R^{\prime} and \bar{A} is p-independent over k^{\prime}, then a minimal system of generators for \mathfrak{m}^{\prime} is also a minimal system of generators for the maximal ideal of $R^{\prime}[A]$. In particular, if R^{\prime} is regular, so is $R^{\prime}[A]$.

Proof. Put $S=R^{\prime}[A], \mathfrak{n}=\mathfrak{n} \cap S$. Suppose that $\left\{x_{1}, \cdots, x_{s}\right\}$ is a minimal system of generators for \mathfrak{m}^{\prime}. Since $\mathfrak{n}=\mathfrak{m}^{\prime} S$ by Lemma 2.2, it is a system of generators for \mathfrak{n}. Suppose that $\left\{x_{1}, \cdots, x_{s}\right\}$ is not minimal. Then $\bar{x}_{1}, \cdots, \bar{x}_{s}$ are linearly dependent in the vector space $\mathfrak{n} / \mathfrak{n}^{2}$ over the field S / \mathfrak{n}, where $\bar{x}_{i}=$ the residue class of x_{i} modulo \mathfrak{n}^{2}. It follows that there exist $y \in \mathfrak{n}^{2}$ and $\left\{w_{1}, \cdots, w_{s}\right\} \subset S$ such that at least one of these elements w_{1}, \cdots, w_{s} is a unit of S and $y=\sum_{i=1}^{s} w_{i} x_{i}$. Since w_{i} is of the form

$$
w_{i}=\sum_{\left(n_{c}\right)} \beta_{i\left(n_{\iota}\right)} \Pi a_{\imath}^{n_{\iota}} \quad\left(\beta_{i\left(n_{\iota}\right)} \in R^{\prime}, a_{\iota} \in A, 0 \leqq n_{\iota} \leqq p-1\right),
$$

we have

$$
y=\sum_{\left(n_{c}\right)}\left\{\sum_{i=1}^{s} \beta_{i\left(n_{\iota}\right)} x_{i}\right\} \Pi a_{\iota}^{n_{c}} .
$$

On the other hand, since $y \in \mathfrak{n}^{2}=\mathfrak{m}^{\prime 2} S, y$ is of the form

$$
y=\sum \alpha_{\left(n_{\iota}\right)} \Pi a_{\iota}^{n_{\iota}} \quad\left(\alpha_{\left(n_{\iota}\right)} \in \mathfrak{m}^{\prime 2}, a_{\iota} \in A, 0 \leqq n_{\iota} \leqq p-1\right) .
$$

By the p-independence of A over R^{\prime}, we get $\sum_{i=1}^{s} \beta_{i\left(n_{i}\right)} x_{i}=\alpha_{\left(n_{i}\right)} \in \mathfrak{m}^{\prime 2}$ for any $\left(n_{\iota}\right)$, whence $\sum \bar{\beta}_{i\left(n_{\imath}\right)} \bar{x}_{i}=0$ in the space $\mathfrak{m}^{\prime} / \mathfrak{m}^{\prime 2}$ over k^{\prime}. Since $\bar{x}_{1}, \cdots, \bar{x}_{s}$ are linearly independent in the space $\mathfrak{n t}^{\prime} / \mathfrak{n}^{\prime 2}$ over k^{\prime}, it follows that $\bar{\beta}_{i\left(n_{c}\right)}=0$ in k^{\prime}, so $\beta_{i\left(n_{i}\right)} \in \mathfrak{m}^{\prime}$ for all i. From this $w_{i} \in \mathfrak{n}$ for all i, which is a contradiction.

Lemma 2.5. Let A be a subset of R. If R^{\prime} is regular and \bar{A} is p-independent over k^{\prime}, then A is p-independent over K^{\prime}.

Proof. We can choose a p-basis B of $K^{\prime}(A)$ over K^{\prime} such that $B \subset A$ (Exercises of §8, [1]). Then clearly $K^{\prime}(A)=K^{\prime}(B)$ and $R^{\prime}[A]$ is contained in the field of quotients of $R^{\prime}[B]$. On the other hand, $R^{\prime}[B]$ is regular by Lemma 2.4 and $R^{\prime}[A]$ is integral over $R^{\prime}[B]$. It follows that $R^{\prime}[A]=R^{\prime}[B]$.

Then we have $k^{\prime}(\bar{A})=k^{\prime}(\bar{B})$, whence $\bar{A}=\bar{B}$, so $A=B$. With this, Lemma 2.5 is proved.

Lemma. 2.6. Let R be a regular local ring with Krull dimension r, K the quotient field of R and let A be a subset of R such that \bar{A} is a p-basis of k over k^{p}. Then we have $\left[K: K^{p}(A)\right] \geqq p^{r}$. More precisely, there exist z_{1}, \cdots, z_{r} $\in R$ which satisfy the following three properties;
(a) $\left\{z_{1}, \cdots, z_{r}\right\}$ is a minimal system of generators for the maximal ideal \mathfrak{m} of R,
(b) $\left\{z_{1}, \cdots, z_{r}\right\}$ is p-independent over $K^{p}(A)$,
(c) $R_{r}=R^{p}\left[A, z_{1}, \cdots, z_{r}\right]$ is a regular local ring with maximal ideal \mathfrak{n}_{r} $=\left(z_{1}, \cdots, z_{r}\right) R_{r}$.
In particular if $\left[K: K^{p}(A)\right]=p^{r}$, we have $R=R^{p}\left[A, z_{1}, \cdots, z_{r}\right]$, that is, $A \cup$ $\left\{z_{1}, \cdots, z_{r}\right\}$ is a p-basis of R over R^{p}.

Proof. We assume that $\left[K: K^{p}(A)\right]=p^{s}(s \leqq r)$. Let $\left\{x_{1}, \cdots, x_{r}\right\}$ be a minimal system of generators for \mathfrak{m} and let \mathfrak{m}_{A} be the maximal ideal $\mathfrak{m}^{(p)} R^{p}[A]$ of $R^{p}[A]$. Suppose that we could choose $z_{1}, \cdots, z_{t}(t<s)$ in such a way that
(a) $z_{i}=x_{i}$ or $z_{i}=u_{i} x_{i}$ for $i=1,2, \cdots, t$, where u_{i} is a unit in R (and therefore $\left\{z_{1}, \cdots, z_{t}\right\}$ is a subset of a minimal system of generators for \mathfrak{m}),
(b) $\left\{z_{1}, \cdots, z_{t}\right\}$ is p-independent over $K^{p}(A)$, and
(c) $R_{t}=R^{p}\left[A, z_{1}, \cdots, z_{t}\right]$ is a regular local ring with maximal ideal \mathfrak{m}_{t} $=\mathfrak{m} \cap R_{t}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{t}\right) R_{t}$.
Then we will prove that there exists an element $z_{t+1} \in R$ which satisfies the following three properties;
(a) $\left\{z_{1}, \cdots, z_{t+1}\right\}$ is a subset of a minimal system of generators for \mathfrak{m},
(b) $\left\{z_{1}, \cdots, z_{t+1}\right\}$ is p-independent over $K^{p}(A)$,
(c) $R_{t+1}=R^{p}\left[A, z_{1}, \cdots, z_{t+1}\right]$ is a regular local ring with maximal ideal $\mathfrak{m}_{t+1}=\mathfrak{n} \cap R_{t+1}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{t+1}\right) R_{t+1}$.

Since \bar{A} is a p-basis of k over k^{p}, we have $R=R^{p}[A]+\mathfrak{n t}, K=K^{p}(A, \mathfrak{m})$ and

$$
\left[K: K^{p}\left(A, z_{1}, \cdots, z_{t}\right)\right]=p^{s-t} \geqq p
$$

If $x_{t+1} \notin K^{p}\left(A, z_{1}, \cdots, z_{t}\right)$, we put $z_{t+1}=x_{t+1}$. Otherwise, we choose an element m of \mathfrak{m} such that $m \notin K^{p}\left(A, z_{1}, \cdots, z_{t}\right)$. Let $u_{t+1}=1+m$. Then u_{t+1} is a unit of R and $u \notin K^{p}\left(A, z_{1}, \cdots, z_{t}\right)$. In this case, we set $z_{t+1}=u_{t+1} x_{t+1}$. In both cases, $z_{t+1} \in \mathfrak{m}$ and $z_{t+1} \notin K^{p}\left(A, z_{1}, \cdots, z_{t}\right)$, that is, z_{t+1} is p-independent over $K^{p}\left(A, z_{1}, \cdots, z_{t}\right)$. We claim that $R_{t+1}=R^{p}\left[A, z_{1}, \cdots, z_{t+1}\right]$ is a regular local ring with maximal ideal

$$
\mathfrak{n}_{t+1}=\mathfrak{n} \cap R_{t+1}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{t+1}\right) R_{t+1} .
$$

It is obvious that $\mathfrak{m}_{t+1}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{t+1}\right) R_{t+1}$. To prove that $R_{t+1}=R_{t}\left[z_{t+1}\right]$ is regular, it is sufficient to show $z_{i+1}^{p} \notin \mathfrak{m}_{t}^{2}$ by Proposition 1.1. Suppose that
$z_{t+1}^{p} \in \mathfrak{m}_{t}^{2} . \quad$ Since $\mathfrak{m}_{t}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{t}\right) R_{t}$,

$$
\mathfrak{m}_{t}^{2}=\left(\mathfrak{m}^{(p)}\right)^{2} R^{p}[A]+\mathfrak{m}^{(p)}\left(z_{1}, \cdots, z_{t}\right) R_{t}+\left(z_{1}, \cdots, z_{t}\right)^{2} R_{t}
$$

Then we have

$$
z_{t+1}^{p}=\Sigma \alpha_{\left(n_{c}\right)}^{p} \Pi a_{c}^{n_{c}}+\Sigma \beta_{\left(n_{c}\right)\left(e_{j}\right)}^{p} \Pi a_{t}^{n_{c}} \Pi z_{j}^{e_{j}}+\sum \gamma_{\left(n_{c}\right)\left(f_{j}\right)}^{p} \Pi a_{\imath}^{n} \Pi z_{j}^{f}
$$

where $a_{\iota} \in A, \alpha_{\left(n_{c}\right)} \in \mathfrak{m}^{2}, \beta_{\left(n_{\ell}\right)\left(e_{j}\right)} \in \mathfrak{m}, \gamma_{\left(n_{\ell}\right)\left(f_{j}\right)} \in R, \Sigma e_{j} \geqq 1$ and $\Sigma f_{j} \geqq 2$. Regarding the p-th power of a_{\imath} and z_{j} as the elements of R^{p}, we have

$$
z_{l+1}^{p}=\sum \eta_{\left(m_{c}\right)}^{p} \Pi a_{c}^{m_{c}}+\sum \xi_{\left(m_{c}\right)\left(g_{j}\right)}^{p} \Pi a_{c}^{m} \Pi \Pi z_{j}^{g_{j}}+\Sigma \zeta_{\left(m_{\ell}\right)\left(n_{j}\right)}^{p} \Pi a_{c}^{m_{c}} \Pi z_{j}^{n_{j}}
$$

where $a_{\iota} \in A, \eta_{\left(m_{\iota}\right)} \in \mathfrak{m}^{2}, \xi_{\left(m_{\iota}\right)\left(g_{j}\right)} \in \mathfrak{m}, \zeta_{\left(m_{\iota}\right)\left(h_{j}\right)} \in R$ and $0 \leqq m_{\iota}, g_{j}, h_{j} \leqq p-1$. Since $\Sigma e_{j} \geqq 1$ and $\Sigma f_{j} \geqq 2$, we have $\xi_{(0)(0)} \in \mathfrak{m}^{2}$ and $\zeta_{(0)(0)} \in \sum_{i=1}^{t} z_{i} R+\mathfrak{m}^{2}$. Because of $p-$ independence of $\left\{A, z_{1}, \cdots, z_{t}\right\}$ over K^{p}, it follows that

$$
z_{t+1}=\eta_{(0)}+\xi_{(0)(0)}+\zeta_{(0)(0)} .
$$

Set $\zeta_{(0)(0)}=\sum_{i=1}^{t} d_{i} z_{i}+m$, where $d_{i} \in R$ and $m \in \mathfrak{m}^{2}$. Then we have $z_{t+1}-\sum_{i=1}^{t} d_{i} z_{i}$ $\in \mathfrak{m}^{2}$. By the choice of $z_{t+1},\left\{z_{1}, \cdots, z_{t+1}\right\}$ is a subset of a minimal system of generators for \mathfrak{m} and hence $\left\{\bar{z}_{1}, \cdots, \bar{z}_{t+1}\right\}$ is linearly independent in the space $\mathfrak{m} / \mathfrak{m}^{2}$ over k. Therefore the relation $\bar{z}_{t+1}-\sum_{i=1}^{t} \bar{d}_{i} \bar{z}_{i}=0$ implies $\overline{\mathrm{I}}=0$ in k, which is a contradiction.

Thus we have proved that there exist $z_{1}, \cdots, z_{s} \in R$ which satisfy the following three properties;
(a) $\left\{z_{1}, \cdots, z_{s}\right\}$ is a part of a minimal system of generators for \mathfrak{m},
(b) $\left\{z_{1}, \cdots, z_{s}\right\}$ is p-independent over $K^{p}(A)$ (that is, the field of quotients of $R_{s}=R^{p}\left[A, z_{1}, \cdots, z_{s}\right]$ is K),
(c) R_{s} is a regular local ring with maximal ideal $\mathfrak{m}_{s}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{s}\right) R_{s}$. Since R_{s} is normal and R is integral over R_{s}, we have $R=R_{s}$. Then we have $\mathfrak{m}=\mathfrak{m}_{s}$, hence $\mathfrak{m}=\mathfrak{m}_{A}+\left(z_{1}, \cdots, z_{s}\right) R$. Since $\mathfrak{m}_{A} \subset \mathfrak{m}^{2}$, we have $\mathfrak{m}=\left(z_{1}, \cdots, z_{s}\right) R$ by Nakayama's lemma. Therefore $s=r$. Consequently we have $\left[K: K^{p}(A)\right] \geqq p^{r}$.

§ 3. Main theorem.

We are now ready to prove the main theorem.
Theorem 3.1. Let R be a regular local ring of characteristic p and let k be the residue field of R. If there is a system of representatives A of a p-basis of k over k^{p} such that R is a finite $R^{p}[A]$-module, then R has a p-basis over R^{p}. More precisely, a p-basis of R over R^{p} is obtained as the union of $\left\{z_{1}, \cdots, z_{r}\right\}$ and A where $r=\operatorname{dim} R$ and $\left\{z_{1}, \cdots, z_{r}\right\}$ is a special minimal system of generators for the maximal ideal of R.

Conversely, if R is a reduced local ring of characteristic p and if R has a p-basis I over R^{p}, then R is a regular local ring and Γ is of the form $\Gamma=$ $A \cup\left\{z_{1}+v_{1}, \cdots, z_{r}+v_{r}\right\}, v_{i} \in R^{p}[A](i=1, \cdots, r)$, where A is a system of representatives of $a p$-basis of the residue field k of R over k^{p} and $\left\{z_{1}, \cdots, z_{r}\right\}$ is a minimal system of generators for the maximal ideal of R.

Proof. Let R be a regular local ring with Krull dimension r, K the quotient field of R and let A be a subset of R such that \bar{A} is a p-basis of k over k^{p} and such that R is a finite $R^{p}[A]$-module. To prove the first half of Theorem 3.1, it is sufficient to prove that $\left[K: K^{p}(A)\right] \leqq p^{r}$ by Lemma 2.6.

Suppose that $\left[K: K^{p}(A)\right]>p^{r}$. Let \hat{R} and \hat{R}_{r} be the \mathfrak{m}-adic and \mathfrak{m}_{r}-adic completion of R and R_{r} respectively. By Cohen's structure theorem for complete local rings, we have $\hat{R}=k\left[\left[X_{1}, \cdots, X_{r}\right]\right]$ where X_{1}, \cdots, X_{r} are indeterminates. Furthermore, we have $\hat{R}_{r}=k\left[\left[X_{1}, \cdots, X_{r}\right]\right]$ where X_{1}, \cdots, X_{r} are indeterminates. In fact, R_{r} is regular, \mathfrak{m} and \mathfrak{m}_{r} have the same minimal system of generators by Lemma 2.6 and $R_{r} / \mathfrak{n}_{r}=k$. Therefore $\hat{R}=\hat{R}_{r}$. On the other hand, since $\left[K: K^{p}\left(A, z_{1}, \cdots, z_{r}\right)\right] \geqq p$, there is an element $y \in R$ such that $y \notin K^{p}\left(A, z_{1}, \cdots, z_{r}\right)$. Since R is a finite $R^{p}[A]$-module, R is a finite R_{r}-module. Hence $\hat{R}_{r} \cong \widehat{R_{r}[y]} \cong \hat{R}$. This is a contradiction.

Conversely, let R be a reduced local ring of characteristic p. We assume that R has a p-basis Γ over R^{p}. Then the regularity of R follows from Theorem 2.1 of [2]. Since $R=R^{p}[\Gamma], R / \mathfrak{m}=k=k^{p}(\Gamma)$ where Γ is the set of the residue classes of the elements of Γ modulo \mathfrak{m}. Therefore we may select a subset A of Γ such that \bar{A} is a p-basis of k over k^{p}. Then $B=\Gamma-A$ is a p-basis of R over $R^{p}[A]$. Furthermore, we may assume that $B \subset \mathfrak{n t}$, because $R=R^{p}[A]+\mathfrak{m}$. Since $R=R^{p}[A][B]$, we have $\mathfrak{m}=\mathfrak{m}_{A}+B R$ where \mathfrak{m}_{A} is the maximal ideal $\mathfrak{n}^{(p)} R^{p}[A]$ of $R^{p}[A]$. Hence $\mathfrak{m}=\mathfrak{m}^{2}+B R$ and $\mathfrak{m}=B R$ by Nakayama's lemma. Then we choose $\left\{z_{1}, \cdots, z_{r}\right\}$ a minimal system of generators for \mathfrak{m} from B. For a moment, suppose that $\left\{z_{1}, \cdots, z_{r}\right\} \subsetneq B$. Then there is an element $b \in B$ such that $b \neq z_{i}(i=1, \cdots, r)$. Since $b \in \mathfrak{m}$ we have

$$
b=\sum_{i=1}^{r} \gamma_{i} z_{i} \quad\left(\gamma_{i} \in R\right) .
$$

On the other hand,

$$
\gamma_{i}=\sum_{\left(e_{\lambda}\right)} \alpha_{i\left(e_{\lambda}\right)} \Pi b_{\lambda}^{e_{\lambda}}
$$

$\left(\alpha_{i\left(e_{e}\right)} \in R^{p}\left[A, z_{1}, \cdots, z_{r}\right], b_{\lambda} \in B-\left\{z_{1}, \cdots, z_{r}\right\}, 0 \leqq e_{\lambda} \leqq p-1\right)$. From these relations and p-independence of $B-\left\{z_{1}, \cdots, z_{r}\right\}$ over $K^{p}\left(A, z_{1}, \cdots, z_{r}\right)$, we have an equality $1=\Sigma \beta_{i} z_{i}\left(\beta_{i} \in R\right)$. This is a contradiction. That is, $\left\{z_{1}, \cdots, z_{r}\right\}=B$. This completes the proof.

Corollary 3.2. If R is a regular local ring of characteristic p and if R is a finite R^{p}-module, then R has a p-basis over R^{p}.

Remark 3.3. Let R be a regular local ring of characteristic p and \mathfrak{p} be a prime ideal of R. If R has a p-basis Γ over R^{p}, then Γ is clearly a p-basis of $R_{\mathfrak{p}}$ over $\left(R_{\natural}\right)^{p}$.

Theorem 3.4. Let R be a locality over a field of characteristic p. Then R is regular if and only if R has a p-basis over R^{p}.

Proof. Let R be a regular locality over a field L of characteristic p. Then, it is sufficient to prove that there is a subset A of R, a system of representatives of a p-basis of the residue field k of R over k^{p} such that $\left[K: K^{p}(A)\right]=p^{r}$ by Lemma 2.6, where K is the quotient field of R and $r=\operatorname{dim} R$.

Let $S=L\left[x_{1}, \cdots, x_{n}\right], \mathfrak{p}$ a prime ideal of $S, R=S_{\mathfrak{p}}$ and let $k=L\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)$ be the residue field of R. We choose a p-basis \bar{A} of k over k^{p} such as stated in the following lemma.

Lemma 3.5 (Lemma 3 of [3]). Let $k=L\left(\bar{x}_{1}, \cdots, \bar{x}_{n}\right)$ be a finitely generated over a field L, tr. deg. ${ }_{L} k=s$ and let $\Pi=\left\{y_{\lambda}\right\}_{\lambda \in \Lambda}$ be a p-basis of L over L^{p}. Then we can choose a p-basis of k over k^{p} as the union of a suitable subset $\left\{w_{1}, \cdots, w_{t+s}\right\}$ of k and $\Pi-\left\{y_{1}, \cdots, y_{t}\right\}$ where $\left\{y_{1}, \cdots, y_{t}\right\}$ is a suitable subset of $\Pi(t \leqq n)$.

Let A be a system of representatives of \bar{A} and let $\Pi^{\prime}=\Pi-\left\{y_{1}, \cdots, y_{t}\right\}$. We assert that $\left[K: K^{p}(A)\right]=p^{r}$. Let L^{\prime} be a field of definition for $S^{3)}$ and let $L^{\prime \prime}=L^{\prime}\left(y_{1}, \cdots, y_{t}\right)$. Then $L^{\prime \prime}$ is also a field of definition for S. Let $\left\{\beta_{1}, \cdots, \beta_{l}\right\}$ be a p-basis of $L^{\prime \prime}$ over L^{p}. Since $L=L^{\prime \prime}\left(\Pi^{\prime}\right)$, we can choose a p-basis A^{\prime} of L over $L^{\prime \prime}$ such that $A^{\prime} \cong \Pi^{\prime}$. Then $A^{\prime} \cup\left\{\beta_{1}, \cdots, \beta_{l}\right\}$ is a p-basis of L over L^{p}. Thus, we have $\left[L: L^{p}\left(A^{\prime}\right)\right]=p^{l}$ and

$$
\left[K: K^{p}\left(A^{\prime}\right)\right]=p^{l+\operatorname{tr} \cdot d \in \mathbb{g} \cdot L^{K} K}
$$

by Lemma 1 of [6]. Since $\left[L: L^{p}\left(A^{\prime}\right)\right]=p^{l}$ and $\left[L: L^{p}\left(\Pi^{\prime}\right)\right]=p^{t}$, we have $\left[L^{p}\left(\Pi^{\prime}\right): L^{p}\left(A^{\prime}\right)\right]=p^{l-t}$. Because A is p-independent over K^{p} by Lemma 2. 5 ,

$$
\begin{aligned}
{\left[K^{p}(A): K^{p}\left(A^{\prime}\right)\right] } & =\left[K^{p}(A): K^{p}\left(\Pi^{\prime}\right)\right]\left[K^{p}\left(\Pi^{\prime}\right): K^{p}\left(A^{\prime}\right)\right] \\
& =p^{t+s} \cdot p^{l-t} \\
& =p^{l+s} .
\end{aligned}
$$

On the other hand, $\operatorname{tr} . \operatorname{deg} .{ }_{L} K=s+r$. So, we have

$$
\left[K: K^{p}\left(A^{\prime}\right)\right]=p^{l+s+\operatorname{dim} R}
$$

and

$$
\left[K: K^{p}(A)\right]=p^{r} .
$$

[^1]Finally we note that our proof is valid for the case where the ground field L is perfect.

Collorary 3.6. Let R be a locality over a field of characteristic $p>0$. Then the following three conditions are equivalent to each other.
(a) R is a regular local ring,
(b) R has a p-basis over R^{p},
(c) the differential module $\Omega_{R^{p}}(R)$ of R over R^{p} is a free R-module.

Proof. (a) and (c) are equivalent by Theorem 1 of [2].
Corollary 3.7. If L is a field of characteristic p such that $\left[L: L^{p}\right]<\infty$, then any regular locality R over L is a finite free R^{p}-module.

Example 3.8. Let k be a field of characteristic p such that $\left[k: k^{p}\right]=\infty$ and put $R=k[[x]]$. Then R has no p-basis over R^{p}.

Proof. Suppose that R has a p-basis over R^{p}. Then, there is a p-basis of the form $A \cup\{f\}$ where A is a p-basis of $R /(x)$ over $(R /(x))^{p}$ and f is a generator for $x R$, by virtue of Theorem 3.1. Since R is a complete local ring, there is a coefficient field k^{\prime} of R which contains A by 31.9 of [5]. Then we have $f R=x R$ and $R=k^{\prime}[[f]]$. Therefore, replacing k by k^{\prime} and x by f, we may assume that $A \subset k$ without loss of generality. Thus we have $R=R^{p}[A, x]$ and $R=k^{p}[[x]][k]$. On the other hand, $k^{p}[[x]][k] \neq R$ (E3.1 of [5]]). This is a contradiction.

Acknowledgements.

The authors would like to acknowledge the many helpful suggestions with Professor H. Matsumura. Especially Example 3.8 owes to him. And the authors owe a great deal to Professor Y. Kawahara, only a small part of which was the suggestion of this problem.

References

[1] N. Bourbaki, Algèbre, Chap. 5, Hermann, Paris, 1959.
[2] E. Kunz, Characterization of regular local ring of characteristic p, Amer. J. Math., 91 (1969), 772-784.
[3] E. Kunz, Differentialformen inseparabler algebraischer funktionenkörper, Math. Zeitschr., 76 (1961), 56-74.
[4] H. Matsumura, Commutative Algebra, Benjamin, New York, 1970.
[5] M. Nagata, Local rings, Interscience Tracts in Pure and Applied Math., no. 13, 1962.
[6] Y. Nakai, Note on differential theoretic characterization of regular local rings, J. Math. Soc. Japan, 20 (1968), 268-274.

Tetsuzo Kimura	Hiroshi NiItSUMA
Nippon Kogyo Daigaku	Nippon Kogyo Daigaku
Miyashiro-machi, Saitama 345	Miyashiro-machi, Saitama 345
Japan	Japan

[^0]: 1) A locality over a field means a quotient ring of an affine domain over a field with respect to a prime ideal (cf. [5]).
[^1]: 3) A field of definition for S means a field L^{\prime} such that \mathbb{B}^{1} is generated by elements in $L^{\prime}\left[X_{1}, \cdots, X_{n}\right], L^{\prime} \supset L^{p}$ and such that $\left[L^{\prime}: L^{p}\right]<\infty$ where \mathfrak{P} is a prime ideal of $L\left[X_{1}, \cdots, X_{n}\right]$ satisfied $S=L\left[X_{1}, \cdots, X_{n}\right] / \mathfrak{B}$ (cf. [3] and [6]).
