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\S 1. Introduction.

By an analytic group and by an analytic subgroup of a Lie group, we
mean a connected Lie group and a connected Lie subgroup, respectively. An
analytic subgroup and the corresponding Lie algebra will be denoted by the
same capital script and capital Roman letter, respectively. For example, if
$\mathcal{L}$ is an analytic group and $\mathcal{G}$ an analytic subgroup of $\mathcal{L}$ , then $L$ will denote
the Lie algebra of $\mathcal{L}$ and $G$ the subalgebra of $L$ corresponding to $\mathcal{G}$ .

Let $\mathcal{G}$ be an analytic group, and $H$ a Cartan subalgebra of $G$ . We shall
call $\mathcal{H}$ a Cartan subgroup of $\mathcal{G}$ . Any Cartan subgroup of $\mathcal{G}$ is closed in $\mathcal{G}$ .
For the closure of a subset $\mathcal{M}$ of a topological space, we adopt the notation

$\overline{\mathcal{M}}$ . In this paper, we shall prove the following theorems:
THEOREM 5. Let $\mathcal{L}$ be an analytic group, and $\mathcal{G}$ an analytic subgroup of

$\mathcal{L}$ . Then there exists a Cartan subgroup $\mathcal{H}$ of $\mathcal{G}$ such that $\overline{\mathcal{G}}=\overline{\mathcal{H}}\mathcal{G}$ . This
implies, in particular, if $\mathcal{G}$ is non-closed, then so is $\mathcal{H}$ .

THEOREM 6. Let $\mathcal{G}$ be an analytic subgroup of $GL(n, R)$ . For any Cartan
subgroup $\mathcal{H}$ of $\mathcal{G}$ we have $\overline{\mathcal{G}}=\overline{\mathcal{H}}\mathcal{G}$ .

REMARK. In Theorem 5 and 6, we can replace $\overline{\mathcal{G}}=\overline{\mathcal{H}}\mathcal{G}$ by $\overline{\mathcal{G}}=\overline{Z(\mathcal{H})}\mathcal{G}$ where
$Z(\mathcal{H})$ is the center of $\mathcal{H}$ . Indeed, since $\mathcal{H}$ is nilpotent, we have that $\overline{\mathcal{H}}=\overline{Z(\mathcal{H})}\mathcal{H}$ .

Let $L$ be a Lie algebra. A Cartan subalgebra of $L$ is, by definition, the
eigenspace corresponding to $0$ of any regular inner derivation of $L$ . Also we
know that a subalgebra $H$ of $L$ is Cartan if and only if $H$ is nilpotent and
coincides with its normalizer.

In [2], Gantmacher proved that for complex semisimple Lie algebras we
can define Cartan subalgebras using inner automorphisms rather than deri-
vations. We shall generalize the result of Gantmacher, and get a new
definition of Cartan subalgebras. Let $\mathcal{L}$ be an analytic group. For $a\in \mathcal{L}$,
we denote by Ad $a$ the (inner) automorphism of $L$ induced by the inner
automorphism $x->axa^{-1}$ of the group $\mathcal{L}$ .

THEOREM 1. Let $\mathcal{L}$ be an analytic group, and let $x$ be a regular element
of $X,$ $i$ . $e.$ , the multiplicity of the eigenvalue one of Ad $x$ is the smallest. Let
$H$ be the eigenspace corresponding to the eigenvalue one of Ad $x$ .
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(i) $H$ is a Cartan subalgebra, and any Cartan subalgebra of $L$ can be
obtained in this manner.

(ii) If in particular $X$ is a complex analytic group, then $x\in \mathcal{H}$ .
As a consequence of Theorem 1, we get
THEOREM 2. Let $\mathcal{L}$ be an analytic group, and $\mathcal{G}$ a dense analytic subgroup

of $\mathcal{L}$ .
(i) For any Cartan subalgebra $H$ of $L$ , the intersection $H\cap G$ is a Cartan

subalgebra of $G$ , and $\mathcal{L}=\mathcal{H}\mathcal{G}$ .
(ii) Let $H_{G}$ be a Cartan subalgebra of G. Then there exists a Cartan sub-

algebra $H$ of $L$ such that

$H_{G}=H\cap G$ .

In this paper, we call two subalgebras of a Lie algebra (or two subgroups
of a group) being conjugated if they are conjugated to each other with respect
to inner automorphisms.

Let $\mathcal{L}$ be an analytic group. All maximal toral subgroups of $\mathcal{L}$ are con-
jugated to each other. The following results give relations between Cartan
subgroups and toral subgroups.

THEOREM 3. Let $\mathcal{L}$ be an analytic group.
(i) For any maximal toral subgroup $\mathcal{T}$ of $\mathcal{L}$ , there exists a Cartan subgroup

$\mathcal{H}$ with $\mathcal{H}\supset \mathcal{T}$.
(ii) Any Cartan subgroup of $\mathcal{L}$ contains some maximal toral subgroup $\mathcal{T}_{\mathcal{R}}$

of the radical $\mathcal{R}$ of $X$ .
In order to prove Theorem 6, we use a slight extension of a theorem in

Goto [5]:

THEOREM 4. Let $\mathcal{G}$ be an analytic group, and let $f$ be a continuous one-one
homomorphism from $\mathcal{G}$ into $GL(n, R)$ . Then we can find a closed subgroup
$\mathcal{V}\cong R^{k}$ in the radical of $\mathcal{G}$ , and a closed connected normal subgroup $\mathfrak{N}$ , of $\mathcal{G}$ ,
such that $\mathcal{G}$ is a semi-direct pr0duct

$\mathcal{G}=\mathcal{V}\mathfrak{N}$ , $\mathcal{V}\cap \mathfrak{N}=\{1\}$ ,

$\overline{f(\mathcal{V})}$ is a toral group, $f(\mathfrak{N})$ is closed, and $\overline{f(\mathcal{G}}$) is an almost semi-direct pr0duct

of $\overline{f(\mathcal{V})}$ and $f(\mathfrak{N})$ :

$\overline{f(\mathcal{G})}=\overline{f(\mathcal{V})}f(\mathfrak{N})$ , $\overline{f(\mathcal{V})}\cap f(\mathfrak{N})$ is finite.
In this case, $\overline{f(\mathcal{G})}$ is diffeomorphic with the direct pr0duct space $\overline{f(\mathcal{V})}\times \mathfrak{N}$ .

Theorem 6 cannot be extended to the general case. A counter-example
will be given in the end of the paper.

For the sake of completeness, some of the known results are reproved in
this paper.
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\S 2. Cartan subalgebras.

Let $W$ be a vector space of dimension $n$ over $R$ (or $C$), and let $\sigma$ be a
linear transformation of $W$. For $\alpha\in R$ (or $C$), we adopt the notation

$W(\sigma;\alpha)=\{w\in W;(\sigma-\alpha)^{n}w=0\}$ .

Then $W=W(\sigma;\alpha)+(\sigma-\alpha)^{n}W$ (direct sum of vector spaces.)
We first recall the classical definition of Cartan subalgebras. Let $L$ be a

Lie algebra of dimension $n$ (over $R$ or $C$). For any $X$ in $L$ , the space
$L_{0}=L(adX;0)$ forms a subalgebra of $L$ , and denoting $L_{*}=(adX)^{n}L$ we have

$L=L_{0}+L_{*}$ , $L_{0\cap}L_{*}=\{0\}$ ,

[X, $L_{*}$] $=[L_{0}, L_{*}]=L_{*}$ .

For a subalgebra $S$ of $L$ , let $n(S)$ denote the normalizer of $S:n(S)=\{X\in L$ ;
[X, $S$] $\subset S$ }. Then we have $n(L_{0})=L_{0}$ . Indeed, if $Y\in L_{*}$ normalizes $L_{0},$ $i$ . $e$ .
$[Y, L_{0}]\subset L_{0}$ , then $[Y, L_{0}]\subset L_{*}\cap L_{0}=\{0\}$ and $[Y, X]=0$ , whence $Y\in L_{0}$ and
$Y=0$ .

PROPOSITION 1. Let $X_{0}$ be in $L$ and

$L_{0}=L(adX_{0} ; 0)$ , $L_{*}=(adX_{0})^{n}L$ .
Then the map

$\varphi$ : $ L_{0}\times L_{*}\ni(X, Y)->\exp$ (ad $Y$) $\cdot(X_{0}+X)\in L$

is a diffeomorphism from a suitable neighborhood of $(0,0)$ in $L_{0}\times L_{*}$ onto a
neighborhood of $X_{0}$ in $L$ .

PROOF. For a real parameter $t$

exp (ad $(tY)$) $\cdot(X_{0}+tX)=X_{0}+t(X-(adX_{0})Y)+0(t^{2})$ ,

where $0(t^{2})$ is a power series of $t$ starting with a term of $t^{2}$ . Since
$X+Y\mapsto X-(adX_{0})Y$ is a non-singular linear transformation of $L$ , the map $\varphi$

is a local diffeomorphism at $(0,0)$ . Q. E. D.
For $X$ in $L$ we put

$\lambda(X)=\dim L(adX;0)$ ,

and call the minimum value of $\lambda(X)$ the rank of $L$ : rank $L=l$ . An element
$X$ of $L$ is said to be regular if $\lambda(X)=l$ . For a regular $X$, the subalgebra
$L(adX;0)$ is called Cartan. A Cartan subalgebra is nilpotent. Conversely,
if a subalgebra $H$ of $L$ is nilpotent and $n(H)=H$, then $H$ is known to be a
Cartan subalgebra.

For $X$ in $L$ let $c(t, X)$ denote the characteristic polynomial of ad $X$ :
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$c(t, X)=the$ determinant of $(t-adX)$

$=t^{n}+c_{n-1}(X)t^{n-1}+\cdots+c_{l}(X)t^{l}$

where $c_{i}(X)$ are polynomial functions of $X$ and $c_{l}\neq 0$ . Then $X$ is regular if
and only if $c_{l}(X)\neq 0$ . Let $L_{reg}$ denote the set of all regular elements of $L$ .
Since $c_{l}=0$ defines an algebraic set in $L$ , the set Lreg is open and dense in
$L$ , and if in particular $L$ is a Lie algebra over $C$ then we have that $L_{reg}$ is
connected, because the topological codimension of $L-L_{reg}$ is at least two.

PROPOSITION 2 (C. Chevalley). All Cartan subalgebras of a complex Lie
algebra $L$ are conjugated to each other.

PROOF. Let $X_{0}$ be a regular element in $L$ . By Proposition 1, any element
in a suitable neighborhood of $X_{0}$ can be written in a form

$ X=\exp$ (ad $Y$) $X_{1}$ , $X_{1}\in L(adX_{0} ; 0)$ ,

where we can suppose that $X$ is regular, and so is $X_{1}$ .
Since $L(adX_{0} ; 0)$ is a nilpotent Lie algebra, we have that $L(adX_{1} ; 0)$

$\supset L(adX_{0} ; 0)$ . Because $X_{1}$ is regular, this implies that $L(adX_{1} ; O)=L(adX_{0} ; 0)$ .
Hence

$ L(adX;O)=\exp$ (ad $Y$) $ L(adX_{1} ; O)=\exp$ (ad $Y$) $L(adX_{0} ; 0)$ .
Thus there exists a neighborhood $U$ of $X_{0}$ in $L_{r\epsilon g}$ such that $L(adX;0)$ is
conjugated with $L(adX_{0} ; 0)$ for all $X\in U$. Since $L_{reg}$ is open and connected,

we have the proposition. Q. E. D.

\S 3. A definition of Cartan subalgebras.

In order to establish Theorem 1, we follow a method due to Gantmacher
[2] and Matsushima [8].

Let $X$ be an analytic group of dimension $n$ . In a similar way as in \S 2,

we define
$\mu(x)=\dim L(Adx;1)$ for $x\in \mathcal{L}$ ;

call $x$ (or Ad x) regular if $\mu(x)$ attains the minimum at $x$ ; denote by $\mathcal{L}_{reg}$

the set of all regular elements in $\mathcal{L}t$ then $\mathcal{L}-\mathcal{L}_{reg}$ is an analytic subset,

and $\mathcal{L}_{reg}$ is open and dense in $\mathcal{L}$ ; if in particular $\mathcal{L}$ is a complex analytic
group then $\mathcal{L}_{reg}$ is connected.

PROPOSITION 3. Let $x$ be in $\mathcal{L}$ . We put

$L^{1}=L(Adx;1)$ , $L^{*}=(Adx-1)^{n}L$ ,

and get $L=L^{1}+L^{*},$ $L^{1}\cap L^{*}=\{0\}$ ,
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$[L^{1}, L^{1}]\subset L^{1}$ , $[L^{1}, L^{*}]\subset L^{*},$ (Ad $x-1$) $L^{*}=L^{*}$ .
Furthermore, the map

$\psi:L^{1}\times L^{*}\ni(X, Y)\leftrightarrow\exp Y\cdot\exp X\cdot x\cdot\exp(-Y)$

is a diffeomorphism from a suitable neighborhood of $(0,0)$ in $L^{1}\times L^{*}$ onto a
neighborhood of $x$ in $\mathcal{L}$ .

PROOF. About the Prst part see $e$ . $g$ . Goto-Grosshans [6]. Next we write

exp $tY\cdot\exp tX\cdot x\cdot\exp(-tY)=\exp f(t)\cdot x$ for $t\in R$ ,

and get

$f(t)=(Y+X-Adx\cdot Y)t+O(t^{2})$ .
On the other hand, the map $X+Y-X+(1-Adx)Y$ is a non-singular linear
transformation. Q. E. D.

Next, we choose a neighborhood $U$ of $0$ in $L$ so small that for every
eigenvalue $\gamma$ of ad $X(X\in U)$ , the absolute value of $\gamma$ is less than $ 2\pi$ . Then
we have

$L(adX;O)=L(Ad(\exp X);1)$

and $\lambda(X)=\mu(\exp X)$ . Hence the minimum of $\mu(x),$ $x\in \mathcal{L}$ , coincides with rank $L$ .
PROPOSITION 4. Let $\mathcal{L}$ be an analytic group and let $\mathcal{L}_{reg}$ denote the set of

all regular elements in $\mathcal{L}$ . For $x\in \mathcal{L}_{reg}$ , let $\mathcal{L}(x)$ denote the analytic subgroup

of $\mathcal{L}$ correspOnding to the Lie algebra $L(Adx;1)$ . Then for any $x\in \mathcal{L}_{reg}$,

there is a neighborhood $\mathcal{V}(x)$ of $x$ such that $\mathcal{V}(x)\subset \mathcal{L}_{reg}$ and for any $y\in \mathcal{V}(x)$ ,
$\mathcal{L}(y)$ is conjugated with $\mathcal{L}(x)$ . Furthermore the set $\{x\in \mathcal{L}_{reg} ; \mathcal{L}(x)\ni x\}$ is open
and closed in $X_{reg}$ .

PROOF. Let $x$ be in $\mathcal{L}_{r\epsilon g}$ . We put

$L^{1}=L(Adx;1)$ , $L^{*}=(Adx-1)^{n}L$ .

By Proposition 3, there exists a neighborhood $\mathcal{V}$ of $x,$ $\mathcal{V}\subset \mathcal{L}_{r\epsilon g}$ , such that
any $y$ in $\mathcal{V}$ is of the form

$y=ax^{\prime}a^{-1}$ $(x^{\prime}\in \mathcal{L}(x)x, a\in\exp L^{*})$ ,

where we can suppose that $($Ad x’ $-1)^{n}$ : $L^{*}\vdash\rightarrow Lisone$-one. Since $(Adx^{\prime})L^{1}=L^{1}$ ,
we have that $L(Adx^{\prime} ; 1)=L^{1}$ . Hence

$L(Ady;1)=(Ada)L(Adx^{\prime} ; 1)=(Ada)L^{1}$ ,

and
$\mathcal{L}(y)=a\mathcal{L}(x)a^{-1}$ .
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On the other hand, $\mathcal{L}(x)\ni x$ if and only if $\mathcal{L}(x)\ni x^{\prime}$ . Hence $y=ax^{\prime}a^{-1}$

$\in \mathcal{L}(y)=a\mathcal{L}(x)a^{-1}$ if and only if $x\in \mathcal{L}(x)$ . Q. E. D.
THEOREM 1. Let $\mathcal{L}$ be an analytic group, and let $x$ be a regular element

of $\mathcal{L}$ . Then
(i) $L(Adx;1)$ is a Cartan subalgebra, and conversely any Cartan subalgebra

can be obtained in this way.
(ii) If in particular $\mathcal{L}$ is a complex analytic group, then $x\in\exp L(Adx;1)$ .
PROOF. First suppose that $L$ is complex. For a regular element $X$ in $L$ ,

sufficiently close to $0$ , we have that $L(Ad(\exp X);1)=L(adX;0)$ is a Cartan
subalgebra and $\mathcal{L}(\exp X)\ni\exp X$. Because $\mathcal{L}_{reg}$ is connected, we have
$\mathcal{L}(x)\ni x$ for all $x\in \mathcal{L}_{reg}$ , and all $\mathcal{L}(x)$ are conjugated, by Proposition 4. Since
a Cartan subalgebra is nilpotent, and the exponential map of a nilpotent Lie
group is surjective, we have

$L(x)=\exp L(Adx;1)$ .

Next, we shall consider the general case. Let $L^{c}$ denote the complexi-
fication of $L$ . Then Ad $x$ is regular and $L^{c}(Adx;1)$ is a Cartan subalgebra
of $L^{c}$ . Hence $L(Adx;1)=L^{c}(Adx;1)\cap L$ is a Cartan subalgebra of $L$ . Also
for any Cartan subalgebra $H$ of $L$ , we can find a regular element $X\in H$,
arbitrary close to $0$ . Then $H=L(Ad(\exp X);1)$ . Q. E. D.

COROLLARY. Let $\mathcal{L}$ be a complex analytic group. For any $x$ in $\mathcal{L}$ , there
exist $X$ and $Y$ in $L$ with $x=\exp X$ .exp $Y$.

REMARK. The algebraic group version of the results in this section has
been done in C. Chevalley, Theorie des Groupes de Lie III, Paris, Hermann,
1955.

\S 4. Cartan subgroups of a dense analytic group.

Let $\mathcal{L}$ be an analytic group, and let $\mathcal{G}$ be a dense analytic subgroup of
$\mathcal{L}$ . Then $[G, G]=[L, L]$ , see $e$ . $g$ . Goto [4], and in particular

(ad $X$) $L\subset G$ for $X\in L$ ,

whence we have (Ad $x-1$ ) $L\subset G$ for all $x\in \mathcal{L}$ . We define $\mu(x)=\dim L(Adx;1)$

and $\mu^{\prime}(x)=\dim G(Adx;1)$ for $x\in \mathcal{L}$ , and we get

$\mu^{\prime}(x)=\mu(x)-m$ ($m=\dim L-$ dim $G$).

Let $x$ be a regular element of $\mathcal{L}$ . By Proposition 4, there exists a neigh-
borhood $\mathcal{V}$ of $x$ such that for any $y\in \mathcal{V}$ ,

$L(Ady;1)=(Ada)L(Adx;1)$ for some $a\in \mathcal{L}$ .
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Since $\mathcal{G}$ is dense in $\mathcal{L}$ , we can pick $y\in \mathcal{V}\cap \mathcal{G}$ . Obviously, $y$ is a regular
element of $\mathcal{G}$ . Hence $L(Ady;1)$ is a Cartan subalgebra of $L,$ $G(Ady;1)$ is
a Cartan subalgebra of $G$ , and we have

$L(Ady;1)\cap G=G(Ady;1)$ .
Hence

$G(Adx;1)=(Ada^{-1})L(Ady;1)\cap G$

$=(Ada^{-1})(L(Ady;1)\cap G)$

$=(Ada^{-1})G(Ady;1)$

is a Cartan subalgebra of $G$ .
Conversely suppose that $y$ is a regular element of $\mathcal{G}$ . Since rank $G$

$=rankL-m$ , we have $\mu(y)=rankL$ and $y$ is regular in $\mathcal{L}$ . Hence $L(Ady;1)$

is a Cartan subalgebra of $L$ .
Next, for any Cartan subalgebra $H$ of $L$ we have $L=H+[L, L]=H+[G, G]$

$=H+G$ , whence $\mathcal{L}=\mathcal{H}\mathcal{G}$ .
Thus we have the following theorem.
THEOREM 2. Let $\mathcal{L}$ be an analytic group, and $\mathcal{G}$ a dense analytic subgroup

of $\mathcal{L}$ .
(i) For any Cartan subalgebra $H$ of $L$ , the inte rsection $H\cap G$ is a Cartan

subalgebra of $G$ , and $\mathcal{L}=\mathcal{H}\mathcal{G}$ .
(ii) Let $H_{G}$ be a Cartan subalgebra of G. Then there exists a Cartan

subalgebra $H$ of $L$ such that $H_{G}=H\cap G$ .

\S 5. Maximal toral subgroups.

Let $X$ be an analytic group. All maximal compact subgroups of $\mathcal{L}$ are
connected and conjugated to each other. Let $JC$ be a compact analytic group.
All maximal toral subgroups of $cX$ are conjugated to each other. Hence all
maximal toral subgroups of $\mathcal{L}$ are conjugated to each other.

THEOREM 3 (i). Let $\mathcal{L}$ be an analytic group, and $\mathcal{T}$ a maximal toral sub-
group of X. Then there exists a Cartan subalgebra $H$ of $L$ with $H\supset T$ .

PROOF. We set

$L_{0}=$ { $X\in L;[X,$ $Y]=0$ for all $Y\in T$}.

We pick $Y_{0}\in T$ such that exp $RY_{0}$ is a dense one-parameter subgroup of $q$

Then $L_{0}=L(adY_{0} ; 0)$ . Let $H$ be a Cartan subalgebra of $L_{0}$ . Since $T$ is
central in $L_{0}$ we have that $H\supset T$ . We shall prove that $H$ is a Cartan sub-
algebra of $L$ . Since $H$ is nilpotent, it suffices to show that $H$ coincides with
the normalizer $n(H)$ .
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We put $L_{*}=(adY_{0})^{\dim L}L$ , and

$L=L_{0}+L_{*}$ , $L_{0}\cap L_{*}=\{0\}$ , $[Y_{0}, L_{*}]=[L_{0}, L_{*}]=L_{*}$ .
Let $X=Y+Z(Y\in L_{0}, Z\in L_{*})$ be in $n(H)$ . Then [X, $H$] $\subset[Y, H]+[Z, H]\subset H$

$\subset L_{0}$ , where $[Y, H]\subset L_{0}$ and $[Z, H]\subset L_{*}$ . Hence we have $[Z, H]=0$ and
$[Y, H]\subset H$. Therefore $Y\in H$ and $Z\in L_{0}\cap L_{*}=\{0\}$ . Q. E. D.

\S 6. Cartan subalgebras of an algebraic Lie algebra.

Let $L$ be a subalgebra of the Lie algebra $gl(n, R)$ . If there is an algebraic
group in $GL(n, R)$ , whose Lie algebra is $L$ , we call $L$ algebraic. Let $L$ be
an algebraic Lie algebra, $R$ the radical of $L$ , and let $N$ be the nil-radical of
$L,$ $i$ . $e$ . $N$ is the set of all nilpotent matrices in $R$ . Then we can find a
maximal semisimple subalgebra $S$ and an abelian algebraic subalgebra $A$

composed of semisimple matrices such that

$L=S+A+N$ , (direct sum of vector spaces)

$R=A+N$ , $[S, A]=\{0\}$ .
$S+A$ is called a reductive part of $L$ . Let $C$ be a reductive $(=completely$

reducible) subalgebra of $L$ . Then there exists an inner automorphism $\sigma$ of
$L$ such that $\sigma C\subset S+A$ . If in particular $L$ is a nilpotent Lie algebra, then $A$

is uniquely determined and $L=A+N$ is a direct sum of ideals. On these
results see $e$ . $g$ . Borel [1].

Although the following proposition is known by Iwahori-Satake [7], we
shall give a proof here, for the sake of completeness.

PROPOSITION 5. Let $L$ be an algebraic Lie algebra, and $R$ the radical of
L. Then any Cartan subalgebra of $L$ contains a reductive part of $R$ .

PROOF. Let $X_{0}$ be a regular element of $L$ . We put

$L_{0}=L(adX_{0} ; 0)$ , $L_{*}=(adX_{0})^{\dim L}L$

and
$L=L_{0}+L_{*}$ , $L_{0}\cap L_{*}=\{0\}$ , $[X_{0}, L_{*}]=[L_{0}, L_{*}]=L_{*}$ .

Since $R$ is invariant under ad $X_{0}$ ,

$R=R_{0}+R_{*}$ , $R_{0}\cap R_{*}=\{0\}$ , $[X_{0}, R_{*}]=R_{*}$ ,

where $R_{0}=R\cap L_{0}$ and $R_{*}=R\cap L_{*}$ . Both $L_{0}$ and $R$ are algebraic, and so is
$R_{0}$ .

Let $N$ be the nil-radical of $L$ . We put $P=RX_{0}+R$ . Then $P$ is a solvable
Lie algebra and the commutator subalgebra $[P, P]$ is composed of nilpotent
matrices. Hence $R_{*}\subset[P, P]\subset N$.
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Let $R_{0}=A+N_{0}$ be the decomposition of the nilpotent algebraic Lie algebra
$R_{0}$ into the reductive part $A$ and the nil-radical $N_{0}$ . Then $N_{0}\subset N$ and

$R=A+N_{0}+R_{*}=A+N$ .
Hence $A$ is a reductive part of $R$ , and $A\subset L_{0}$ . Q. E. D.

\S 7. Maximal toral subgroups of the radical.

THEOREM 3 (ii). Let $\mathcal{L}$ be an analytic group, $\mathcal{R}$ the radical, and $\mathcal{H}a$

Cartan subgroup, of $\mathcal{L}$ . Then $\mathcal{H}$ contains some maximal toral subgroup of $\mathcal{R}$ .
PROOF. (a) First suppose that $\mathcal{L}$ is an analytic subgroup of $GL(n, R)$ .
For an analytic subgroup $S$ of $GL(n, R)$ , let $\mathcal{A}(S)$ denote the identity

component of the smallest algebraic group containing $S$ . The Lie algebra
of $\mathcal{A}(S)$ will be denoted by $A(S)\subset gl(n, R)$ .

By Goto [3], $A(H)$ is a Cartan subalgebra of $A(L)$ ,

$A(L)=A(H)+[L, L]$ , $H=L\cap A(H)$ ,

and $A(R)$ is the radical of $A(L)$ . By Proposition 5, $A(H)$ contains a reductive
part $A$ of $A(R)$ . Let $\mathcal{T}$ be a maximal compact subgroup of $\mathcal{R}$ . Then $\mathcal{T}$ is a
toral group, and there exists $a\in_{\cup}t(\mathcal{R})$ such that $aTa^{-1}\subset d$ . Hence
$H=L\cap A(H)\supset(Ada)T,$ $i$ . $e$ . $\mathcal{H}\supset aTa^{-}‘.$ Since $R$ is a normal subgroup of
$d(R)$ , the group $aTa^{-1}$ is maximal toral in $\mathcal{R}$ .

(b) General case.
Let $L$ be a Lie algebra, and $H$ a Cartan subalgebra of $L$ . Let ad $L$

$=\{adX;X\in L\}$ and $H_{1}=\{adY;Y\in H\}$ . It is straightforward to see that $H_{1}$

is a Cartan subalgebra of ad $L$ .
Let $\mathcal{T}$ be a maximal toral subgroup of $\mathcal{R}$ . Let $\varphi$ denote the adjoint

representation of $\mathcal{L}$ :
$\mathcal{L}\ni x->\varphi(x)=Adx\in Ad(L)$ .

Then $\varphi(\mathcal{T})$ being a toral subgroup of the radical of Ad $(L)$ , there exists a
maximal toral subgroup $\mathcal{T}_{1}$ of the radical of Ad $(L)$ such that $\varphi(\mathcal{F})\subset 9_{1}$ .

Let $\mathcal{H}$ be a Cartan subgroup of $\mathcal{L}$ . Then $\varphi(H)$ is a Cartan subgroup of
Ad $(L)$ and by (a) there exists a maximal toral subgroup, say $\varphi(a)\mathcal{T}_{1}\varphi(a^{-1})$

$=\varphi(a\mathcal{T}_{1}a^{-1})$ , of the radical of Ad $(L)$ with $\varphi(a\mathcal{T}_{1}a^{-1})\subset\varphi(\mathcal{H})$ , where $a\in \mathcal{R}$ .
Hence $H$ contains the Lie algebra (Ad $a$ ) $T$ of the group $a\mathcal{T}a^{-1}$ . Q. E. D.

\S 8. A remark on linear Lie groups.

In [5], the author proved the following theorem,
THEOREM $4^{-}$ . Let $\mathcal{G}$ be an analytic group, and let $f$ be a continuous one-one

homomorphism from $\mathcal{G}$ into $GL(n, R)$ . Then we can find a closed subgroup
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$\mathcal{V}\cong R^{k}$ , and a closed connected normal subgroup $\mathfrak{N}$ , of $\mathcal{G}$ , such that $\mathcal{G}$ is a semi-
direct pr0duct

$\mathcal{G}=\mathcal{V}\mathfrak{N}$ , $\mathcal{V}\cap \mathfrak{N}=\{1\}$ ,

$\overline{f(\mathcal{V})}$ is a toral group, $f(\mathfrak{N})$ is closed, and $\overline{f(\mathcal{G})}$ is an almost semi-direct pr0duct

of $\overline{f(\mathcal{V})}$ and $f(\mathfrak{N})$ :
$f(\mathcal{G})=f(\mathcal{V})f(\mathfrak{N})$ , $f(\mathcal{V})\cap f(\mathfrak{N})$ is finite.

In this case, $\overline{f(\mathcal{G})}$ is diffeomorphic with the direct product space $\overline{f(\mathcal{V})}\times \mathfrak{N}$ .
Here we shall add some remark to the theorem.
THEOREM 4. In Theorem $4^{-}$ , we can supp0se that $\mathcal{V}$ is in the radical of $\mathcal{G}$ .
PROOF. Let $\mathcal{G}^{\prime}$ and $\mathcal{R}$ denote the commutator subgroup and the radical

of $\mathcal{G}$, respectively. Then $f(\mathcal{G}^{\prime})$ is closed in $GL(n, R)$ and coincides with the
commutator subgroup of $\overline{f(\mathcal{G})};f(\mathcal{G})$ is closed if and only if $f(\mathcal{R})$ is closed,
see Goto [4]. Let $\mathcal{R}_{1}$ be the radical of $\mathcal{G}^{\prime}$ . Then $R_{1}=G^{\prime}\cap R$ . Since $f(\mathcal{R}_{1})$

is closed, we can pick a maximal analytic subgroup $\mathcal{M}$ of $\mathcal{R}$ , such that
$\mathcal{M}\supset \mathcal{R}_{1}$ and $f(\mathcal{M})$ is closed. By the proof in [5], there is a closed subgroup
$\mathcal{V}\cong R^{k}$ of $\mathcal{R}$ such that $\mathcal{R}=\mathcal{V}\mathcal{M},$ $\mathcal{V}\cap \mathcal{M}=\{1\}$ . Let $S$ be a maximal semi-
simple analytic subgroup of $\mathcal{G}$ . Then $\mathfrak{N}=\mathcal{M}S$ is a maximal analytic subgroup
of $\mathcal{G}$ with respect to the properties $\mathfrak{N}\supset \mathcal{G}^{\prime}$ and $f(\mathfrak{N})$ is closed. Then $\mathcal{G}/\mathfrak{N}\cong R^{k}$

by the proof in [5] again. On the other hand,

$\mathcal{G}/\mathfrak{N}=\mathcal{V}\mathfrak{N}/\mathfrak{N}\cong \mathcal{V}/\mathcal{V}\cap \mathfrak{N}$

and $\mathcal{V}\cap \mathfrak{N}$ is discrete. Hence $\mathcal{V}\cap \mathfrak{N}=\{1\}$ . Q. E. D.

\S 9. Proof of Theorem 5.

THEOREM 5. Let $\mathcal{L}$ be an analytic group, and $\mathcal{G}$ an analytic subgroup of
$\mathcal{L}$ . Then there exists a Cartan subgroup $\mathcal{H}$ of $\mathcal{G}$ such that $\overline{\mathcal{G}}=\overline{\mathcal{H}}\mathcal{G}$ . This
implies, in particular, that if $\mathcal{G}$ is not closed, there is a Cartan subgroup of $\mathcal{G}$

which is not closed in $\mathcal{L}$ .
PROOF. Suppose that $\mathcal{G}$ is not closed in $\mathcal{L}$ . By Malcev, there exists a

one-dimensional analytic subgroup $\mathfrak{X}$ of $\mathcal{G}$ such that $\overline{\mathcal{G}}=\overline{\mathfrak{X}}\mathcal{G}$ , see Goto [4].

Since ee is a toral group, there exists a Cartan subgroup $\mathcal{H}_{1}$ of $\mathcal{L}$ with
$\mathcal{H}_{1}\supset\overline{\mathfrak{X}}$ , by Theorem 3(i). By Theorem 2, $H=H_{1}\cap G$ is a Cartan subalgebra
of $G$ , and $H\supset X$. Hence $\overline{\mathcal{H}}\mathcal{G}\supset\overline{\mathfrak{X}}\mathcal{G}=\overline{\mathcal{G}}$. Q. E. D.

COROLLARY. Let $\mathcal{L}$ be an analytic group, and $\mathcal{G}$ a solvable analytic sub-
group of $\mathcal{L}$ . If $\mathcal{G}$ is non-closed, then all the Cartan subgroups of $\mathcal{G}$ are non-
closed in $\mathcal{L}$ .

PROOF. By Iwahori-Satake [7], all the Cartan subgroups of $\mathcal{G}$ are con-
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jugated to each other. Q. E. D.

\S 10. Proof of Theorem 6.

THEOREM 6. Let $\mathcal{G}$ be a non-closed analytic subgroup of $GL(n, R)$ , and $\mathcal{H}$

a Cartan subgroup of $\mathcal{G}$ . Then $\mathcal{H}$ is not closed in $GL(n, R)$ and $\overline{\mathcal{G}}=\overline{\mathcal{H}}\mathcal{G}$ .
PROOF. By Theorem 4, there exists a vector subgroup $\mathcal{V}$ in the radical

of $\mathcal{G}$ such that $\overline{\mathcal{G}}=\overline{\mathcal{V}}\mathcal{G}$ . The toral group $\overline{\mathcal{V}}$ is in the radical of $\mathcal{L}=\overline{\mathcal{G}}$ . For
the Cartan subalgebra $H$ of $G$ , we can find a Cartan subalgebra $H_{1}$ of $L$

such that $H=H_{1}\cap G$ , by Theorem 2. Then by Theorem 3 (ii), $\mathcal{H}_{1}$ contains a
maximal toral subgroup $\mathcal{T}$ of the radical of $\mathcal{L}$ . Hence we can find $a\in \mathcal{L}$

with $a\overline{\mathcal{V}}a^{-1}\subset \mathcal{T}$ , and $a\mathcal{V}a^{-1}\subset \mathcal{H}$ . Therefore
$\overline{\mathcal{H}}\mathcal{G}\supset a\overline{\mathcal{V}}a^{-1}\mathcal{G}=\overline{\mathcal{V}}\mathcal{G}=\overline{\mathcal{G}}$ . Q. E. D.

\S 11. An example.

Let $\mathcal{G}$ be the universal covering group of $SL(2, R)$ . The center $\mathcal{Z}$ of $\mathcal{G}$

is an infinite cyclic group. Let $z$ be a generator of Z. Let EZ denote the
toral group of dimension two, and $t$ an element of $\mathcal{T}$ generating a dense
subgroup. In the direct product group $\mathcal{G}\times \mathcal{T}$ , let $\mathcal{D}$ denote the discrete central
subgroup generated by $(z, t)$ and we put $\mathcal{L}=(\mathcal{G}\times \mathcal{T})/\mathcal{D}$ . Then we have a
continuous one-one homomorphism $\iota$ : $\mathcal{G}\rightarrow \mathcal{L}$ such that $\overline{\iota(\mathcal{G})}=\mathcal{L}$ .

The Lie algebra of $\mathcal{G}$ is identified with

$sl(2, R)=$ { $X\in gl(2,$ $R)$ ; trace $X=0$},

and $H_{1}=R\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ and $H_{2}=R\left(\begin{array}{ll}1 & 0\\0 & -1\end{array}\right)$ are Cartan subalgebras of $sl(2, R)$ .

The Cartan subgroup $\iota(\mathcal{H}_{1})$ is non-closed and $\iota(\mathcal{H}_{2})$ is closed in $\mathcal{L}$ .

Appendix. Added June 20, 1979.

After this paper was submitted to the Journal, the author found out that
it can be improved by introducing the notion of ”standard Cartan subgroups”,
of which he will explain briefly here.

Since then the author again found another notion “gm-tori of an analytic
group”, which is more convenient than standard Cartan subgroups for our
purposes, and using this as one of the principal tools established the main
results in

Immersions of Lie groups, J. Math. Soc. Japan, forthcoming.
The proofs of the following results can be obtained easily by studying
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the methods in the above paper.
PROPOSITION 1. Let $\mathcal{G}$ be an analytic group.
(i) There exists a Cartan subgroup $\mathcal{H}$ containing a given maximal torus of

$\mathcal{G}$ .
(ii) If, in particular, $\mathcal{G}$ is faithfully representable, then the choice of $\mathcal{H}$

containing some maximal torus is unique up to inner automorphism.
DEFINITION. Let $G$ be a Lie algebra of finite dimension over $R$ . A

Cartan subalgebra $H$ of $G$ is said to be standard if the analytic subgroup of
Ad $(G)$ corresponding to $H^{*}=\{adX;X\in H\}$ contains a maximal torus of
Ad $(G)$ . The Cartan subgroup corresponding to a standard Cartan subalgebra
is called standard.

PROPOSITION 2. (i) The choice of standa $rd$ Cartan subalgebras is unique
up to inner automorphisms.

(ii) Let $\mathcal{G}$ be an analytic group, and $\mathcal{H}$ a standard Cartan subgroup. Then
$\mathcal{H}$ contains the center and a maximal torus of $\mathcal{G}$ .

(iii) If $\mathcal{G}$ is faithfully representable, then a Cartan subgroup containing a
maximal torus is standard.

THEOREM $5A$ . In Theorem 5, if $\mathcal{H}$ is a standard Cartan subgroup, then
$\overline{\mathcal{G}}=\overline{\mathcal{H}}\mathcal{G}$ .

Bibliography

[1] A. Borel, Introduction aux groupes arithm\’etiques, Hermann, 1969.
[2] F. Gantmacher, Canonical representations of automorphisms of a complex semi-

simple Lie group, Rec. Math., 5 (1939), 101-144.
[3] M. Goto, On algebraic Lie algebras, J. Math. Soc. Japan, 1 (1948), 29-45.
[4] M. Goto, Faithful representations of Lie groups I, Math. Japon., 1 (1948), 107-119.
[5] M. Goto, Analytic subgroups of $GL(n,R)$ , T\^ohoku Math. J., 25 (1973), 197-199.
[6] M. Goto and F. Grosshans, Semisimple Lie algebras, Marcel Dekker, 1978.
[7] N. Iwahori and I. Satake, On Cartan subalgebras of a Lie algebra, K\={o}dai Math.

Sem. Rep., (1950), 57-60.
[8] Y. Matsushima, On the Cartan decomposition of a Lie algebra, Proc. Japan

Acad., 23 (1947), 50-52.

Morikuni GOTO
Department of Mathematics
Faculty of Science
Kyushu University
Fukuoka 812
Japan


	\S 1. Introduction.
	THEOREM 5. ...
	THEOREM 6. ...
	THEOREM 1. ...
	THEOREM 2. ...
	THEOREM 3. ...
	THEOREM 4. ...

	\S 2. Cartan subalgebras.
	\S 3. A definition of ...
	THEOREM 1. ...

	\S 4. Cartan subgroups ...
	THEOREM 2. ...

	\S 5. Maximal toral subgroups.
	THEOREM 3 ...

	\S 6. Cartan subalgebras ...
	\S 7. Maximal toral subgroups ...
	THEOREM 3 ...

	\S 8. A remark on linear ...
	THEOREM $4^{-}$ ...
	THEOREM 4. ...

	\S 9. Proof of Theorem ...
	THEOREM 5. ...

	\S 10. Proof of Theorem ...
	THEOREM 6. ...

	\S 11. An example.
	Appendix.
	THEOREM $5A$ ...

	Bibliography

