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§0. Introduction.

A matrix E=(e;;)i=f2k is called an incidence matrix if ¢;;=0 or 1. Let
e={(1, 7); e;;=1} and |e|=2)e;;. In this paper we consider both the “algebraic
case” and the “trigonometric case”, simultaneously. Thus, through this paper
we assume that s=max{j; (i, j)=e¢} and that

_ { le|—1 in the algebraic case,
=
Hlel—1)/2] in the trigonometric case,

where [x] is the largest integer such that [x]<x. Let IT, denote the algebraic
or trigonometric polynomials of degree n or less. Let A denote an interval
[0, 1] or unit circle K=[—=, ). Given % distinct points =x,, --, x,€A4 and a
polynomial PelIl,. If PY(x,)=0 for (i, j)€e implies P=0, we said that the
scheme S=(F; {x;}) is poised. If the scheme S is poised for all choices of
nodes {x;}, E is called a poised matrix. In the algebraic case, a wide class of
poised matrices has been found. In order to mention them, we need several
definitions. Given an incidence matrix E, we define

M=

p .
mj: ei.f and Mp:j_zomj’ I p:O, tt, S,

i=1

An incidence matrix E is said to satisfy the Pdlya conditions if
0.1) M,zp+1,  p=0, -, s.

A sequence of 1’s in a row of E;

(0.2) 0 =Cijr1= " =Cij4r-1=1,

is called a block if its length » is maximum. A block is even or odd according
as its length » is even or odd. A block is called a Hermite block if j=0.

THEOREM 0.1. (Ferguson [1], Atkinson and Sharma [2]) In the algebraic
polynomial class II;, an incidence matrix satisfying (0.1) is poised if its interior
rows contain no odd blocks of non Hermite data.
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We have also a wide class of poised matrices for the trigonometric poly-
nomials.

THEOREM 0.2. [In the trigonometric polynomial class Il ;, an incidence matrix
satisfying my#0 1s poised if it contains no odd blocks of non Hermite daia.

We need the following lemma in order to prove the theorem.

LEMMA 0.1. Let E be a Hermite matrix, that is, all of the blocks in E be
Hermite. Then E 1is poised.

ProoOF. We may assume that for each ¢

€=+ =ey;,.1=1, e;5,=0 and Ji>0.

k .
Then we have 2 j;=Xe;;. If T<ll,isa polynomial which satisfies T (x;)=0
i=1

for (i, j)=e, T has a zero of order at least j; at x;. Thus, T must have ¢
zeroes. Thus, T is identically zero. (q.e.d)

PrROOF oF THEOREM 0.2. We use induction in 7, where 7 is the number of
even blocks of non Hermite data in E. If =0, the theorem follows from [Lemmal
0.1. We assume that the theorem is true for »<g¢, and that E has g even blocks
of non Hermite data. Let T ell, satisfy T9(x;)=0 for (i, j)ee. Define

Jo=min{j; e;;= --- =e;; =1 is even block, j=0}.

From Rolle’s theorem we see that 7%~ has M;,-, distinct zeroes. Thus, we
have the set R; which consists of M;,_, Rolle zeroes of T¢¥». Let K;, be the
set which consists of m;, zeroes specified by the scheme S=(E; {x}).

If K;,n\R;;=0, TV interpolates the scheme S, which has nodes {x}\VR;.
Since S, has at most ¢—1 even blocks of non Hermite data, it is poised. Thus,
TY90=(, Since m,+0, we have T=0.

If K;,"\R;,#0, let R;\K;;={x4+1, =+, xn}. We will consider a new scheme
S: that T9? interpolates. Define S,=(F,; {x;%Z.). Here matrix E,=(f;)i=\ ™ .41
as follows: If x,€K;\R;, we define f;;=e;;.;, 7=0, -+, s—Jjo, and fis-j,+1=0.
If x;eR;\K;, we define f,,=1 and fi;= " =f4;-;,::=0. If x;€K; N\R;, we
have the even block; e;;,= - =e;;,=1. Since x; is Rolle zero of T, we have
TY91*P(x;)=0. Then we define fi;= - =f;,-5,::=1 and fi;=eqjis, J=71—Jo 2,
=, $—Jo, fis-jp+1=0. Thus the polynomial 7'“® interpolate the scheme S,.
Since S, has at most ¢—1 even blocks of non Hermite data, it is poised. Thus
TY99=(. Since m,+0, we have T=0. (q.e.d.)

The space X=C°[A] with a norm;

0.3) I/l x=max || f @|lo= max max |f®(x)] for feX,
0sj=<s 0sjss x€EA

is a Banach space. For each Fe X and a scheme S, we consider a closed subset ;

I1,(S; f)={PIl; PP(x)=f"(xy), (i, ))Ee}.
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We can approximate f by P<Il.(S; f), n=é.

In section 1 we consider the best approximant for a function in X. By the
well known methods we can show existence and characterization of a best
approximant for each f=X. However, uniqueness of best approximant is not
realized without conditions. We shall provide a function f€ X with many best
approximants. But, if feC¢*P(A4), for a kind of incidence matrices we can
show uniqueness of best approximant. In section 2 we show that our approxi-
mation problem is appropriate, that is, the degree of approximation of f tends
to zero. In this case we shall obtain a bounded linear polynomial operator L%’
on X. Then the degree of approximation of f=X by the operator LIS’ is ex-
pressed by means of Bernstein or Jackson operator. In section 3 we apply our
results in section 2 to the approximation problem that has been investigated by
Carroll and Mclaughlin [3].

In section 4 we estimate the degree of approximation by the operator LI
to the function f such that f*eLipy(a; A). Let f€X and S=(E; {x}) be a
scheme. Then we define

0.4) Ei(f)=__inf |f—Qlx.

Qe 1 (S;

In section 5 we estimate E$(f), and as an application we extend the result by
Wayne T. Ford and John A. Roulier in [4, Theorem 2]. In section 6 we deal
with the comonotone polynomial approximation ([5]). In section 7 we consider

the derivative of the polynomial of best approximation. But, it does not relate
to our main theme. We will give an application of or (5.13), there.

§1. Ecxistence, characterization and uniqueness of best approximant.

Let S=(F; {x;}) be a scheme, and let S be poised. For each f X we con-
sider a subset I7,(S; f). We shall approximate f by I1,(S; f). We can prove
the following theorem by means of the well known methods ([9], p. 17, Lemma 1).

THEOREM 1.1. For each feX there is a best approximant to f.

For each fe X we must provide some definitions to characterize the best
approximant P<Il,(S; f). Define

(L) Arp=A(x, 1); lfP(0)—PP)|=|f—Plx, 0=x=1, j=0, -, s}.
If we consider a Cartesian product AXJ of A and /=/{0, -, s} with a norm
ICx, DlI=(x>~+55"2,

A;p becomes a compact subset of AXJ. Let

(1.2) L(f)x, N=F9(x),
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then for each f€ X, L(f) is continuous on AXJ. Notice that we may consider
L(f) for j>s if there is f“(x), and that L(f) is linear with respect to f.

Our characterization is stated as follows.

THEOREM 1.2. Let fe X and P<Il,(S; f). P isa polynomial of best approx-
mmant for f if and only if for each polynomial Q& Il (S; 0),

(1.3) max L(f—P)x, 7)- L(Q)x, 1)=0.

(JJ.j)EAfP

PrOOF. We use the methods in the proof of [9, p. 18, Theorem 2].
Necessity : Assume that P is a best approximant to f. Let |[f—Pllx=D.
If is not true, there exists a polynomial Q< /7,(S; 0) such that

max L(f—P)x, /)- L(Q)x, )=—2¢<0

(z,HEAfp

for some ¢>0. By the continuity of L(f), there exists an open subset G of
AXJ such that

GDAsp,  LF—PXx, 1) L@QXx, N<—¢

for (x, ))€G. Let P,.=P—2Q, 2>0, and M=| Q| x, then we obtain P, Il ,(S; f)
and for (x, )G

| L(f—P)(x, DI*
=|L(f=P)x, )+LQ)x, NI*
=|L(f—P)(x, DI*+22L(f—P)(x, j)- L(Q)x, N+2| L(Q)(x, )|*
<D*—22¢+A*M*.
If we take A<M~ %, then A*M?2<le, and we have
(14 | L(f—P)(x, D|*<D*—2e  for (x, )EG.

In order to consider the points (x, /)& G we define H=G® (CAXJ). We can
find some >0 such that

|L(f—P)(x, j)|<D—o for (x, j)EH.
Thus, if we take 2 so small that 0<A<(2M)"§, we have

| L(f=Pi)(x, DI =|L(f—P)(x, NI+ LQ)x, 1)
<D—0+06/2=D—0/2

(1.5)

for (x, j)€H. Thus, and (1.5) contradict for P to be a best approximant.
Sufficiency : Assume that holds for each Q&I7,(S;0). Taking an
arbitrary polynomial P,e11,(S; f), we see Q+P—P, eIl (5;0). Since there is
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a point (x, j)e A;p such that

L(f—P)x, )- L(Q)(x, ))=0,
thus,
| L(f—P)(x, j)|*

=|L(f=P)x, DI*+2L(f=P)(x, /)- L(Q)x, N+|L@Q)(x, NI*
zl/—Pl%.

Consequently, we have
If—Plx=|L(f—P)(x, DI,

thus, we see that P is a best approximant to f. (q.e.d.)
The uniqueness theorem with respect to a best approximant is not true in
general. The following examples prove it.
ExAMPLES. Algebraic case. Let

1 00
E=|1 0 0] and x,=-—1, x,=0, =x,=1.
100
Let f(x)= "], F@(s)dsdt, where
1, x=0, 1,
0, x=1/8, 3/8, 5/8, 7/8,
f®x)={—-1/2, x=1/4, 3/4,

linear, otherwise in [0, 1],
even.

Now, we approximate f by II,(S; f), where S=(E; {x;}). Then we see that
P(x)=ax(x*-1), |a|=1/2, are the best approximants to f.

Trigonometric case. Let E-:(}g) and x,=—m, x,=0, and let f(x)—:S:f“’(t)dt,
where

0, x€[0, /3] or x=m,

1, x=r/2,
FPx)=(—1, x=5x/6,

linear, otherwise in [0, 7],

even.
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We approximate f by I1,(S; f). Each T€ll,(S; f) is of the form T(x)=a-sin x.
Thus, T(x)=a-sin x, 0=a =1, are the best approximants to f.

If feC¢*P[A], we can prove the uniqueness theorem to some class of
incidence matrices. We put the following assumptions.

The incidence matrix E=(e;;)iz5»* satisfies ¢=s and [0.I). Let
(1.6) 0<x,< -+ <x,=1. In this case if 0<x;<1 then i-th row of
the scheme S=(F; {x;}) has only Hermite block or even blocks.

In the trigonometric case, our assumption is

the incidence matrix E=(e,;)i=% "% satisfies that m,#0
and its blocks are Hermite or even.

1.7

When A;p is finite, we need to define some incidence matrix FE,;p decided
by the set A;p. Let

(1.8) Bip={y;(y, )€Asp for some j=0, ---, s} ={y,}~,.

Then we define a scheme S;p=(E;p; {y:}) such that the incidence matrix E,p=
(erjo )ity nmyy, satisfies that

(1.9) etj':l if (yt, ]./)EAJPP,

(1.10) e =1 if (v, )= Asp and, in the algebraic case, 0<y,<1,

and otherwise e,; =0.
For the proof of the uniqueness theorem we need two lemmas. We state

only the algebraic case. Then, as its analogy we can obtain the corresponding
results in the trigonometric case.

LEMMA 13. Let fe€X and a scheme S satisfy the assumption (1.6). When
both P and Py in II,(S; f) are the best approximanis to f, define

R=(P+P)/2, |f—=Plx=If—Plx=D.

Then we obtain the following (i) and (ii).
(i) R is also a best approximant to f, and

(1.11) ArrCArpNAgp, .
(i) For (y, j)€Asr we have
(1.12) L(f—P)y, N=L(f—=P)(y, )==+D,

Sfurthermore if 0<y<1 and there is fY9*V(y), then

(1.13) LP)y, j+D=LP)(y, j+1).
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We omit the proof of [Lemma 1.3as it is easy. If there is f¢+2(y) for each
(v, )€ Aysp, corresponds to the points where |fYP(x)—PP(x)| attains its
maximum ||f—P|x, and in this case (1.10) corresponds to the points (y, j+1).
Thus, an incidence matrix Ep is well defined, that is, 1’s in or (1.10) don’t
overlap and ¢-th row of the scheme S;» has only even blocks if 0<y,<1.

LEMMA 14. Let P be a best approximant to f. If Asp is finite, our inci-
dence matrix E;p=(e,;) satisfies

(1.149) e =zn—s+1.

ProoF. We assume that 2je,; =n—s. We may define a scheme

(1.15) Si=((E, Esp); ({xi, {yd),  E=(E, Esp),

for the incidence matrices (E, E;p) and the nodes ({x.}, {v.}). Here notice that
matrix E, is of (E+m)X(s+2) type. Since
n'= 2 e,;=(s+1)+m—s)=n+1
e j€E]

and E, is poised for the polynomials in I, .,, there is a unique polynomial Q
such that L(Q)(x;, ))=—|lf—P| ¢ if (i, j) is given by [1.9), and L(Q)(x, j) vanishes
on the points (x, j) corresponding to other e¢;;=1. But, because Q<lI,(S; 0)
we have a contradiction with [Theorem 1.2 (q.e.d.)

When A,p is finite, we can define a scheme S; as then from Cemmal
1.4 we see that S, has at least n+2 1’s, thus S; is poised in I7,.;. Of course,
S, is poised in II,.

If feC“*B[0, 1], we can prove the uniqueness of the best approximant to f.

THEOREM 1.5. Let f=C%*[0, 1] and the scheme S=(E; {x;}) satisfy the
assumption (1.6). Then the best approximant to f is unique in I1,(S ; f) for n=k.

PROOF. Let P be a best approximant to f. If A;pis infinite, from
1.3 we see that the best approximant is unique. Thus, we assume that
Ayp is finite.

Now we assume that there is the best approximant P, different from P. In
this case we may assume that

(116) AfP:Afpl .
In fact, define
R=aP+bP;; a, b=0, a+b=1,

then from R is also the best approximant to f, and we have the
distinct best approximants if the points (a, b) are distinct. Thus, from
1.3 we can select two distinct polynomials R, and R, such that Ayp=
Ayg,. Thus we can take P and P, satisfying [1.16).
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From we see that R=(P+P,)/2 is a best approximant to f, and
we have an equality on Asr Let A;p={y}%,, then we have an equality
1.13) if 0<y.<1. From [Lemma 1.3, Lemma 1.4 and its remarks, we see that
the polynomial P—P; vanishes on the scheme S,=((FE, E r); ({xi}, {¥.})), thus
P=P,. This contradicts with P+ P,. (q.e.d.)

By the same method as the proof of we can prove the uni-
queness theorem in the trigonometric case.

THEOREM 1.6. Let feCC*Y[K], and let S=(E; {x;}) and E satisfy the
assumption (1.7). Then the best approximant to f is unique in II.,(S; f), where
nz[(k—1)/2].

§2. Approximability.

In this section we shall see that the degree of approximation to f by I1,(S; f)
tends to zero. For this cause we examine the special case when

(2.1) E=(e;;); eij=1 for all =1, ---, k, j=0, -+, s.

But we must suppose that n is sufficiently large.
At first, we deal with the algebraic case. Let

(2.2) Li0)=020x)/(x—x)2"(x)), 2(x)=(x—x) - (x—x4), i=1, -, k,

k
and f=C[0, 1], then the polynomial Z; flx)L(x) is the Lagrange polynomial
S

of the degree k—1, which interpolates f at the points xi, ---, x,. If we take
k polynomials P;, i1=1, ---, k, satisfying

(2.3) Pi(x;)=1, i=1, -, k,

we also obtain the polynomial

24) 2 )P L)

which interpolates f at x,, -+, x4, but belongs to Il i, if P;€ll,, i=1, -, k.

When E satisfy we have the following theorem.
THEOREM 2.1. Let f€X. Then for each m=0, 1, 2, ---, there is a bounded
linear polynomial operator on X such that

(2.5) LN, I (Sif)
and
(2.6) AM>0; | L)~ x =Ml Bo(f)—fllx,

where B,(f) is Bernstein polynomial of degree m
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Bu(H)= 3 fr/m)( " ) —nm.

Proor. First we assume that f(x;)#0, =1, ---, k. Then we take P,
i=1, -, k, for such that

2.7) Poi(x2)=Q/f(x))(Bu(f)(x)—Bu()x)+/(x)+q:(x)(x—x3)) ,
=1, -, k.

Here ¢i(x), 1=1, -, k, are the polynomials of degree 2s—1, and are defined by
below. For eachi=1, ---, &, t=1, ---, s we define the following polynomials
and constants;

Zz‘t(x)=pli[1(x-—xp)‘“/(x_xi)s—tﬂ ,

CO=LAP (61 =t T (=)

28) 58 =)~ B+ 2, LBk =) ILE (20,
0 (t=1),
B B orlan—onTAR(r)  @StS).
7=1

Let ¢,(x)=0, 1=1, ---, k, if s=0, and if s=1 we define
(2.9) 4()=(2'(x)/ ) 3 CVLM— (), =1, -, k,
then we have

@10 2 frIPad0Lix)= B [Ba(Ax)—BalF)x)+A )1 L)

k
+ 21 ::“_1 CH[ el — 3L 2, (x) .
By the definition, e} and 6%} are linear with respect to f. Thus,
k
(2.11) LEXf)x)= 23 f(x0) Pmix) Li(x)

is a bounded linear polynomial operator. We show that LE(f) satisfies [2.5).
It is trivial that the degree of LIS(f) equals to max [m, ks]+k—1. Let i'=1,
-+, k, =0, -+, s, then

LERID(f ) xe) =Bl ()N xa)— é LBn(f)(x)—f(x)1L7(x40)

k S
+ 2 3 CPLef— I (xe)
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Since A77(x;)=0 if j’<t or 1#1/, the third term in the right side of (2.12)
equals to

LCE”[eFfi — 05 1A (x40)
—ECm[sB‘EL — 0 AT (xa )+ Ll —0l V1=l .

Thus, by the definition of &%, the equality (2.12) means

LEP9 () (xe)=1"(x4) .

Next, we state the degree of approximation. For t=1, ---, s we have
(2.13) AM:>0; | e — 05" | =M; max 1B —fPle,  i'=L, -, k.
<js

In order to show this we use the inductive methods with respect to ¢t. If ¢=1
we have

k
[ &bt —05 | =l | S f P (xe)— BRUN(xe) | + 21 | Bn(F)(x)| | L (xer) |
(14 2 | LP(xe)]) max | BR(H—1 Pl o
= )=
=M max I BP()—f e
sJjs
Now, if we have the inequalities for all j=<t (1=t<s), then
| ettt —otis | = 1 el | 4| 0%,

k
= fC ()= B (x| 25 1 Ba(H(x)— x| L (x)]
+ Zk)1 |CP1 | eh — 0P [ 1 2P (x00) |
=

=1+ 2 | L2 (xa) |+ E |G A" (xe) | M) max | BE(f)—/ "l

=M max | BY()—1le

Thus, we obtain (2.13). Thus, from (2.12) and we have

| L (f)=f oS I BE ()= o+ | Bl —flle SN LE o

k s _ B . .
+ 2 2GR Mmax [ Bi(f)—f Nl L lle



Approximation problem 567

k . k s _ ) .
§(1+i=2‘,1 1LY e+ 2 ZNCEIMA LI Ba(f)—fl

=M, Bn(f)—Jlx.

Consequently, we have the inequality [2.6).

If f(x;)=0 for some i=1, -+, k, we take a constant ¢ such that f(x;)+c>0
for all i=1, ---, k. Let F(x)=f(x)-+c, then F(x;)#0 for all =1, ---, k. Further
we see that

LiAF)—F=L3Af)—f and Bu(F)—F=Bu(f)—/,

since L% and B, are linear with respect to f. Thus, for all f= X the theorem
is true. (q.e.d.)
From ||B.(f)—fllx—0 as m—co, our approximation is appropriate.
We can prove the approximability to the trigonometric case as an analogy
of the algebraic case. We assume that the incidence matrix E satisfies a special
condition ;

E=(e;;)i=%"%, e;;=1 for all (z, j).

It is trivial that the approximability to the general case follows immediately
from our theorem. Let

I H0=|" fat DKt

be Jackson operator of degree n.
LeMmmMma 2.1. For feX and j=0, -+, s, we have

JEA0=]" oG+ DEOd =] O) ).
Thus, for each j=0, ---, s

1JP()—fPllg=const-w(f?, 1/n),

where w(f?, +) 1s the modulus of continuity of f<.
LEMMA 2.2. (i) Let s (x)=sin"(x/2), r=1, 2, ---, then we have

=0 fO?" ]:0, ) 7’"1:
s(0)
+0 for j=r.

(ii) Let S/x)=sin"x, r=1, 2, ---, then we have
. :O for j:O) ."77,—1’
S57(0)
#0 for j=r.

Proor. We prove only (i), and the proof of (ii) is the same as one of (i).
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We use induction in . If =1, the lemma is trivial. We assume that the lemma
is true for r=k. If j<k

s0= % (1 )sese-20)=0.
If j=F
sti0= 3 ()s00)s* 50+ sP0)s,0=0.

If j=Fk+1, we have

k+1

sr0=_5 (FTsest-00+52 0500

=(1/2)s{#(0)
#0. (q.e.d)
LEMMA 2.3, Li(x)=1II s{(x—xp,)/s:{xi—x,), 1=0, -=-, 2k, are the trigono-
pFEL

metric polynomials of degree k, and satisfy

Li(xp)=0:p, 1=0, ---, 2k, p=0, -, 2k,

I, i=p,
aip:
0, 1Fp.

where

Let
Sp'r<x):Sr(xMxp); Spr(x):Sr(x—xp); p=0, -, 2k, r=1, -+, s+1.

From the above lemmas we have the following main lemma.
LEMMA 2.4. Let

Xit(x):sit(x)z;l;[i Sps+1(x) ’

CE=LAR ()] =LSE(x0) IL spoer(x]™,

=l (xRN x)+ j‘é) L/ m( ) x)—f(x)ILF(x2)

0, t=1,
Imit=y
Z Ol —on Ay (e, 1=2, s,

for i=0, .-+, 2k, t=1, -, s, m=0, 1, --.
Then we have

(1) A(x:)=0if 0=j'<t=s or i1#7,
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(ii) A (x)=0, thus [Ci"]| <o,
(iii) both i and 0%;Y are linear with respect to f, and

(iv) for each t=1, --+, s, there is a constant M;>0 such that
| ek —0%: | =M max | JP()—fPlle, =0, -, 2k.
0sjst

The following result is obtained as an analogy of [Theorem 2.. We omit
its proof.

THEOREM 2.2. Let feX. Foreach m=0, 1, .-, there exists a bounded linear
polynomial operator LS on X such that

LY(NHe IT (S; /)
max[m, (k+1)s]+k
and

IM>0; LD —flx =Ml Jn(H)—flx

From [Lemma 2.1 and [Theorem 2.2, we see that our approximation is pos-
sible.

§3. Applications.

The space C,[0, 1], consisting of all continuous real valued functions on
[0, 17, is a normed space if f=C,[0, 1] has this norm

I7h={ 1 f@)ldx .

Let the space II,, be a subspace of C,[0, 1] that consists of all polynomials of
degree n or less. Carroll and Mclaughlin have investigated the polynomials
gel1l,, such that

@D Ilf1—61ll1+Hfz—CJIll:ngI}fn Clfi—pli+1fe— 2]

They have solved the questions of existence and characterization of ¢ satisfying
(3.1} Furthermore they have given the following result.

THEOREM 3.1. (Carroll and Mclaughlin [3]) For f, f,€Ci[0, 17, let q=1I;,
satisfy (3.1). If one of them satisfies that

(3.2) xe[0, 17; [f1(®)—q(Z) L1 (%) —q(%)1>0,
then q is unique.

In this section we give some concrete methods to determine whether ¢

satisfying is unique when f,, /,€C,[0, 1] are given. For f,, f,=C,[0, 1],
define
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Zyi-rp=1x; [1(x)—[(x)=0, x<[0, 11},
Dy ro=A(x, ); f[1(0)<y<[fsx) or fi(x)>y>fx), x€[0, 1]},
Fr-5,={(x, »); y=f(x)=f(x), x€[0, 1]}.

We need the following lemma.

LEMMA 3.1. Let fy, f,=C\[0, 1]. If there are two polynomials satisfying
(3.1), then F; _y, consists of at most n points.

PrOOF. Let ¢ and § be two distinct best approximants satisfying [3.I). Let
Zg-g=1{x1, =+, xn}, then m=n, but let Z,; be empty if m=0. If some g,=
ag+bg; a, b=0, a+b=1, satisfies [3.2), then we obtain a contradiction to Theo-
rem 3.1 because ¢, is also a best approximant to (fi, f,). Thus, on [0, 1]

Lf1—qol[f2—q]=0 for each ¢,.

That is, two graphs of y=f,(x) and y=f.(x) are outside D, and they are
opposite with respect to D, with each other. Thus, F; _,, consists of at most
m points, and from m=<n we complete the proof. (q.e.d.)

The following is a corollary to [Theorem 3.1. Let D be the closure of D.

COROLLARY 3.1. Let fy, f,€Ci[0, 1] be given. The best approximant to
(f1, fo) is unique in Il ., if and only if the following (i) or (ii) is realized.

(i) Fy,-y, consists of at least n+1 points.

(i) Dy, doesn’t contain two distinct polynomials in II .

PrROOF. Necessity: Let (i) be not true. If D, ;, contains two distinct
polynomials in I7,,, each of them gives the degree of best approximation

[in—rlax={1n—glax+{ 1fi—glax.

This contradicts with our assumption.

Sufficiency : Let (i) be realized. Then from the best approxi-
mant to (f, f2) is unique. We assume that F, _,, consists of at most n points,
and (ii) is realized. Then except at most one polynomial, any other polynomial
satisfies [3.2). Thus, from the best approximant to (f;, f») is unique.

(q.e.d.)

In order to classify the points in F, _,, define the following closed sets
Ulxo, vo) and UXx,, vs). Let C.(xo, o) be the closed disc with center at (x,, ¥o)
and radius e. Define two lines

L*(x)=a(x—x0)+ 7y, L (x)=b(x—x0)+,, where a>b.

Then we define
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Ul(xo, y0=1{(x, 3); y=L*(x), y=L ()} NCulxo, 30),
Udxe, y0)=1(x, 3); (3— L)) (y— L (x)=0} NC(x0, 30) -

Now we classify the points of F; ;.. A point (x,, ¥o)EF,-s, is called of the
first class if there are ¢>0 and ¢, b such that

3.3)

Eflfzmés(xﬂy y0>C[7é(x0, J’o),
and is called of the second class if there are ¢>0 and a, b such that

ﬁg(xm J’o)Cﬁflfg .
Then our criteria is simple.

THEOREM 3.2, Let f,, f,=C,[0, 1] be given.

(i) If Fy,_y, consists of at least k+1 points or contains at least one first
class point, the best approximant to (f1, fo) is unique in Il .

(ii) If Fy,-5, is empty or consists at most k points of the second class, the
best approximant to (fi, f») is not uniq‘ue in Iy, for n sufficiently large.

Proor. (i) follows immediately from [Theorem 3.1 and [Corollary 3.1 (i).
We prove (ii). When F; _, is empty, let f=(f,-+f,)/2 then if we approximate
uniformly f by II,, for n sufficiently large, there are two distinct polynomials
p, q 11, such that

fl§p) q§f2-

Here both p and ¢ are the best approximants to (f;, f2)-

Now let Fy_p={(xs, yo); i=1, -+, k}, x:< - <xyp, and let (x;, ¥y), 1=1,
-+ k, be of the second class. By the definitions, for each i=1, .-, & we get
a closed set UXx;, v;)CDy,;, such that it is obtained by two line segments

y=LHx), y=Li(x); x—0=x=x;+0, 0>0.

In this case we can find a curve y=/f,(x) in C*[0, 1] such that its graph is con-
tained in D-f]fz, and equals to the line segment y,= L7 (x)+ L;(x) in each interval
[x;—6, x;+06], 1=1, ---, k. Let the incidence matrix E be E=(e;;)i=t1"* and
e;;=1 for all (7, j), then we consider the scheme S=(E; {x;}). If we approximate
fo by II.,(S; f,), where of course the norm is ||-||x, then for n sufficiently large
we have

(34) [0S L (F)(x)sf(x), 0=x=l.

In fact, if is not true for some x;, i=1, ---, k, there is a sequence {x™%}
such that

(35) M —>xy,  ALP D)=y} (2= x0) —> Yil omz; =S 5(x0)

as n—oo. Since
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LS (fo)—folx —> 0  as n—oo,
we have

LY (fo)—fole —> 0  as n—oo,
Thus,

Ve, >0, IN; n=N= | LISV (f)(x)—fi(x)| <eo/2  for all x€[0, 1],
300; |x—x:] <o = [ fo(x)—fix)| <eo/2.
Thus, if =N and |x—x;| <d,, then
| LY (o)) —fi(x) | S | LEY (fo)(0)—f ()| 4 1 F o) —fo(x0)]
<g.

Since there is an %' such that

{LP &)=y} [(xT—x )= LV (), xMsy™sx, n=l, 2, -,
we have

HLPF () =y} /(xT—x3) = fo(x o) | <eo,

if n=N and |7™—x;| <8, Since ¢, is arbitrary it contradicts with [(3.5).
Thus, we have and for n sufficiently large we conclude the non-unique-
ness of the best approximant to (fi, fo)- (q.e.d.)
We investigate further the points of second class minutely.
THEOREM 3.3. Let f, and f, be two continuous functions. Suppose that there
exist k nonnegative integers p;, 1=1, -+, k, and k distinct points x;, 1=1, -, &,
n A such that

@ fPx)=f(x0) for j=0, -, ps, 1=1, -, k,
(b) f07‘ eaCh 1,:1, TH k, (xi: yi)eFfl(pi)—fépi) means

(x4, yi)CD'h(pi)fchp for some ¢>0 and a, b,

(¢) filxX)#f(x) if x€A and x+#x;, 1=1, -, k.
Then for n sufficiently large there exists a polynomial P, satisfying

(3.6) PP(x)=fP(x)=f"(xs)  for j=0, -, ps, i=1, -, k,
Y FPP(R)ZPEO(R)ZfP0(x)  if x€A and x#xy, i=1, -, k,
(3.3) Fi)ZP(x)=fo(x) if xEA and x#x, =1, -, k.

PrROOF. Let E=(e;;)% %, where s=max{p;; i=1, ---, k}, be the incidence
matrix such that

;=

i:l’ e k.
0’ j:pz+17 t, S
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Define the scheme S=(F'; {x,}), and let g=(f,+/f,)/2. We approximate g by
II,(S; g). By its definition P,eIl,(S; g) satisfies [3.6) From the assumption

(b) and for n sufficiently large we have [3.7). By induction, it is
easy to prove (3.8) using and [3.7). (q.e.d.)

§4. Degree of approximation by the operator L3

Let 0<a=1. In this section we estimate |LS5(f)—f|x for f=Lipy(a, A).
We use and The following lemma is well known.
LEMMA 4.1. Let 0<a=l, X=x(1—x) and let M be a constant.

(i) If feLipy(a, C[0, 1]), we have
| Bo(f, x)—f()| =M(X/m)**  for x<[0, 1].
(i) If f'€Lipy(a, C[0, 11), we have
| Ba(f, x)—f()| =M(X/n)**=  for x€[0, 1].

LEMMA 4.2. Let 0<a=1 and s be a nonnegative integer.
(i) If f®eLipyla, C[0, 17), there is a constant M(f, «, s) depending on f,
a and s such that

”Bn(f)"—f”XgM(f; «, s)n(-a)/z f07’ ngS‘l-l .

(i) If fe*®elipy(a, C[0, 10), there is a constant M(f, «, s) depending on
f, « and s such that

I Ba(N)—=flx=M(f, @, s)n"' "% for nzs+1.
PrOOF. If s=0, follows from Lemma 4. Let s=1.
(i) Let pn, k(x)z(Z)xk(l—x)”'k and
[f(x) = =M|x—yl*  for x, y€[0, 1].
We know ([7))
BY(f, x)=1{1—1/n} --- {1—(s—1)/n} gf‘”(k/n-mw/n)pn-s, #(X),

0< 77k<1 .
Thus, we have

@D B, D~FOWI S| S (R (=)= D@} b ()]

FO—1{1=1/n} - (I=(s=D/} T 1FC /(5D pa-s. 4(2)
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+ 3 17O/ nt s/ m)=f R/ (n=5)| pa-s. 1)
:21*{‘22—1’23 .
From there is a constant A(e, s) depending on « and s such that
2 =EM(n—s)02Z Ala, s)nt-w/* for n=s+1.

It is trivial that there is a constant A’(f, s), which depending on f and s, such
that

2, A(f, s)nt for n=s+1.
We have

S, EME |s/ntus/n— e/ (n—=5)|"pus, 1(2)

éM:g}: [sk/n(n—s)+s/n|pn-s, &(x)

=M2s)*n*=A"(a, sS)n"" for n=s+41.
Thus, [4.I) means

(4.2) | BO(f, )= =M(f, a, )nt=®"*  for n=s+1,

where M'(f, a, s) depends on f, « and s. When 0=;<s we have
lf‘”(x)—f”’(y)lZlSZf”“)(f)dl“éHf”“’llc[x—yl-

Thus, from

4.3) | BI(f, ©)—fP)=M'(f, pn<0*  for n=j+1,

where M’(f, j) depends on f and j. By and there is a constant
M(f, a, s) depending on f, a and s such that

| Bal)—fllx=M(f, a, s)n=®"®  for n=s+1.
(ii) We use

FO@)=fP)=(x =P =F (0} (x— )0 ().

xXZizy.

We have

| BO(S, D=0 =15 AR/ (=) =F2 () Da-a ()]

+01=1{1—1/n} - (1—(s=D/m TZ 7R/ (=) pa-s,1(2)
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(44) +1 S -/ ntn.s/n—k/(n=5)} PR —F (k) (15D} ba-a.4(2)]

+1 E {k/nt 745/ n— B/ (n—= L[ (k) (=) Pa-4(2)],

k/n+nis/n=z2,=k/(n—s)
:21+22+23+24 .

From
2i=Mn—s5)Ctoi2L Ala, s)nt-ime/? for n=s-+1,
where A(a, s) depends on « and s. It is easy to show
2, A(f, s)n™? for n=s+1,

where A’(f, s) is a constant depending on f and s. We have

S SMI L/ n+ 048/ n—k/(n—5)| 7 poos, ()

SMS | sk/n(n—9)+5/n| "o 4(2)

§M<28)1+an—(1+a3

=A"(a, s)n- o for n=s+1,
and '

S=lfe Pl S |sk/n(n—s)+5/1] pa-s. 4(2)

=1 e@s)n™ for nz=s+1.
Thus, (4.4) means

(4.5) | BO(f, )= =M (f, a, s)n™7®"*  for n=s+1,

where M’'(f, «, s) is a constant depending on f, « and s. When 0=;<s, we
have

e @—ro ) =| [ e | 170l x—y).
By
«6) |BY, ))—fPISMI(f, fn-t for nzj+1,

where M”(f, j) depends on f and j. Consequently, by and [4.6) there is a
constant M(f, a, s) depending on f, a and s such that '

| Bo()—flx=M(f, a, s)n¢*"*2  for n=s-+1. (q.e.d.)
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Next, we consider the trigonometric case.
LEMMA 4.3. Let 0<a=l and f® €Lipyla, K). For some constant M(f, «, s)
depending on f, « and s, we have

If =T x=M(f, a, s)n".

.PrOOF. For each j=0, ---, s, we have

TP =P le=MPDw(FP, 1/n),

where M(j) is a constant depending only on j, and w(f*, -) is the modulus of
continuity of /. Since we have

w(fP, 1/n)S | f9 P len? if 0=,<s,
and
w(f®, 1/n)=Mn~*,

there is a constant M’'(f, a, s) depending on f, @ and s such that

| Jo(H)—flx =M, a, s)n~=. (q.e.d.)
From and and and we

have the following theorems:

THEOREM 4.1. Let 0<a=1 and s be a nonnegative integer. Let M(f, a, s, {x:})
be a constant depending on f, a, s, {xi}.

(1) If f®eLipyla, C[O, 1]), there is a constant M(f, «, s, {x;}) such that

L) —flx=M(f, a, s, {x})n"®"%  for n=s+1.
(i) If fe*veLipyla, C[0, 1]), there is a constant M(f, a, s, {x;}) such that

ILX ) —=Flx =M, a, s, {x)n07 for nzs+1.

THEOREM 4.2. Let 0<a=xl. If f®e<Llipyla, K), there is a constant
M(f, a, s, {x;}) depending on f, @, s and {x;} such that

ILZN)—flx=M(f, a, s, {xi})n™®  for nzks+k+s.

§5. Estimation of the degree ES(f).

Wayne T. Ford and John A. Roulier get the following theorem with respect
to “monotone approximation”.

THEOREM 5.1. ([4, Theorem 2]) Let k;<k,< -+ <k, be fixed positive integers
and let ey, €, -+, &, be fixed signs (i. e., e;==*%1). Suppose feC*[a, b] and k,<k.
Assume

eif*2(x)>0  for a=x=b and i=1, -, p.
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Suppose m~+1 points are given so that
A=Sx,<x, < o <xm=Dh.

Then for n sufficiently large there are polynomials P, of degree less than or
equal to n for which

e;PEP(x)>0  on [a, 0], j=1, -, p,
(5-1) Pn(xi):f(xi) » 1':0: e, m,
I f— Pallcra, n=Cn~*w(f®, 1/n),

where C is a constant depending only on x,, -+, Xm, and w is the modulus of
continuity of f® on [a, b].

If we define

E=(e;)izy™, e;;=1 for all (3, j),

then the polynomial P, in belongs to I1,(S; f), where S=(E; {x;}). We
consider this problem to more general incidence matrices. We use the methods
in [4]. Through this section we assume that the incidence matrix E=(e;;)i=% %
is poised. Then we define a scheme S=(E ; {x;}), where x;€ A4, i=1, -+, k.

THEOREM 5.2. Let fC™[a, b], where m=s. For each n=@e, there is an
algebraic polynomial P, in Il (S ; f) such that

(5.2) If=Pull x=M(m, I, Syn*="w(f™, 1/n),  I=[a, b],

where M(m, I, S) is a constant depending on m, I and the scheme S.

We may assume that the interval [a, b] satisfies —1<a<b<1 and b=—a.
We need the following lemma.

LEMMA 5.1. (John A. Roulier [4]) Let feC™La, b], and let w(f™, ) be
the modulus of continuity of f™ on [a, b]. f may be extended to a function
FeCm™[—1, 1] in such a way that the modulus of continuity w(F‘™, -) satisfies

w(F™, WSw(f™, k) for h<b—a.

LEMMA 52. Let FeC™[—1,1]. If for a sequence of polynomials {P,},
where P,&1l,, the condition

(5.3) IF—=Pallor-r, n= Am)n~"w(F™, 1/n),  n=1,2, -,

where A(m) is a constant depending on m, is satisfied, then there is a constant
- A’(m, b) depending on m and b such that

(5.4) |FP — PP gra.nZ A'(m, )nd-mw(F™, 1/n),  n=1,2, .
PROOF. Let 0<b<b,<1, a;=—b,. By Malzemov [7], we have a sequence
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of polynomials {Q,}, where Q,=1l,, such that

IFD QP lots, n= Mm)en(x)"Tw(F™, en(x))  for j=0, -, m,

where M(m) is a constant depending on m, and &,(x)=(1/n){1—x2"*4+1/n}.
Thus,

1F—Qullgr-1, n=2™ M(m)n™"w(F ™, 1/n),
IFD—=QPNgr-1, n=2"Mm)n*~"w(F™, 1/n) .
By the assumption
IF—Prllcc-1, n= Alm)n™"w(F™, 1/n).
Then there is a constant A,(m) depending on m such that
1 Po—Qallor-1, 0= Alm)n™"w(F™, 1/n) .
From Bernstein’s inequality [9, p. 39, Theorem 3] we have
[PP(x)—QP(x)| £ Ai(im)L—x®)ent"mw(F™, 1/n), —1<x<1.
Then there is a constant A,(m, b,) depending on m and b,, such that
PP —QPlcray. 00= As(m, b)n'""w(F™, 1/n),
where 0<b,<1 and a,=—b;. Thus, we have
(6.5) [FP—=PPloray 0= As(m, b)n""w(F™, 1/n),

where A,(m, b,) is a constant depending on m and b,.
Let 0<b<b,<1 and a,=—>b,. Define

G()=FPbix)=F®(y) and Ry(x)=PP(bix)=P(y),

—1=x=1, y=bx.
Then,

IG—Rallot-1, 0= FP =Pl ctay.00= As(m, b)n' "w(F™, 1/n).
By the same way as we got we have
1G® —RPllcray 09= Aslm, by, by, )n* "w(F™, 1/n),

where A,(m, by, b,) is a constant depending on m, b; and b,. From G®(x)—
RP(x)=b,(F®(y)—P(y)), we have

|F®—PPllotsyaq,010= As(m, by, b)n® mw(F™, 1/n),

where A5(ni, bi, bs) is a constant depending on m, b, and b,. If we continue in
this manner, we have
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1P — PP og.

bj"laj’bl"'bj-lbj]
<Ajs(m, by, -, byni mwF™, 1/n)  for j=1, -, m,

where 0<b<b;<1, a;=—0b; and Ajis(m, by, ---, b;) is a constant depending on
m, by, -+, b;. Thus, if we take by, ---, b, such as b=<b, - b, <1 we have [5.4)

(qg.e.d.)
LEMMA 53. Let feC™[a, bl and suppose there is a sequence of algebraic

polynomials {P,}, where P,cIl,, and also a sequence of positive numbers {e,}
satisfying
If—Pullx=en.

Then there is a sequence of polynomials {Q,}5=s for which

Quell(S;f) and |f—Qulx=Bea,

where B 1s a constant.
ProOOF. Let n=¢ and define

biy=fP(x)—PP(xs)  for (i, jce.
Let R;i(x) be the polynomial in I7; such as

Rg',)(xi'):a(i,j). @3y
where
1, G D=0, 5"
0, @G N+, .

Since E is poised, there exists such a polynomial R;;. If we define R(x)=
2 binij(X), then we have

(i, jee

5(i,j).<i'.j'>:{

[RIx= 25 1bilIIR;ll x =C(S)en,
(i, HE<e
where C(S) is a constant depending on the scheme S. Then define

(5.6) Qn:Pn+Rr

and we have
[f=Qal xS f—Pull x HIRIx =A+C(S))en .

When (i, j)=e, we have

QP (x)=PP(x )+ {fP(x)—PP(x} =f P (x3).

Thus, Q.€1I,(S; f). Let B=1+C(S). (q.e.d.)
PROOF oF THEOREM 5.2. Extend f to a function FEC™[—1, 1] as in
5.1. For each n let P, be the polynomial of best approximation to F on [—1, 1].
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By Jackson’s theorem there is a constant A(m) depending on m such that
| F—=Ppllot-1 n= Am)n™"w(F ™, 1/n).

From we see that there is a constant A’(m, b) depending on m and
b such that

(6.7 1/ —=PPllcca, n=A'(m, O)n?""w(f™, 1/n)  for j=0, -, m.

Thus, we have
[f—=Pullx=A'(m, b)n’""w(f™, 1/n).

By we have a sequence of polynomials {Q,}%_; such that
(5.8) Q.€Il(S;f) and |[f—Q.lx=M(m, b, S)n* " "w(f™, 1/n),
where M(m, b, S) is a constant depending on m, b, S. (g.e.d.)

So far, we have defined the norm [f|x of f with

Ifllx=max [fPs, where s=max {j; (i, ))Ee}.
0sJjss

We see that is correct if we substitute the norm |f| ¢ with the
norm | f|l;
[ flle= max {| /|l cta. -
0sjs<e

The following result is obtained by using to the norm ||,. In
its proof we ‘use [(5.6), [5.7), [5.8), but in we must substitute s with 2, and
I-x with |||l

THEOREM 5.3. Let f&C™[a, b], where m=2. Let 0<k,< -+ <k,=m be the
fixed integers and let e,, -+, €p be the fixed signs (i.e., e;==x1). If f satisfies

(5.9 e f*(x)>0  for a=x=b and i=1, -, p,

for n sufficiently large we have a polynomial Q, such that

(5.10) Q.€ll(S; f), Q¥ (x)>0  for asx=b, i=1, -, p,
and
(5'11) ”f_Qn”ééM(m: b’ S)né_mw(f(M)y ]-/n) ’

where M(m, b, S) is a constant depending on m, b and the scheme S.
Proor. If we take Q, in [5.8), from Q.=P,+R,. For j>& we have
QYP=PY. Thus, we have [P —QP=fP—PP. By and we have

QP (x) — fP(x), wuniformly in [a, b], for all j=O0, ---, m.

If we take n sufficiently large, from [5.9) we have (5.10). follows from
(5.8). (g.e.d.)
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Next, we consider the trigonometric case. We obtained the same estimation
as in this case, as well.

THEOREM 54. Let feC™[ K], where m=s. For each n=@¢ there is a tri-
gonometric polynomial T,1l (S ; f) such that

(5.12) If=Tal x=MGm, S)n*-"w(f™, 1/n),

where M(m, S) is a constant depending on m and the scheme S.
ProOOF. We need a generalization of Jackson’s operator ([9, p. 57, (7)]);

I,L(x):S:Km(t)tZ:(~l)’*(m;— 1) flx+kt)dt, where r=[(m+3)/2].

For each j=0, ---, m, we have
| fP(x)—19(x) | EM' (M) wm+,(fP, 1/n)
SM'(m)n?~™w;,(f™, 1/n)
(5.13)
SM' (m)27n? =™ w(f™, 1/n)
=M’ m)yn?""™w(f™, 1/n),

where M’(m) and M”(m) depend on m. Thus, we have

=L x=M"(m)n*""w(f™, 1/n).
Let
biy=fP(x)—1(x:)  for (i, j)Ee,

and let R;; be a polynomial in I/, satisfying
R (x3)=0¢, . i, 3> for (i, j)=e.

Then the polynomial R(x):(_ > bisR;(x) satisfies
i, Hee

IRIx= % 1bil1Rijlx

Fee
MO —Tallx,
where M’(S) is a constant depending on the scheme S. Let T,=I,+R, then
If=Tallx =1/ —Iallx +IRlx
S {1+M STl x
S {1+-M' (S} M (m)n*~™w(f™, 1/n).

When (¢, j)Ee, we have
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TP (xu) =150 )+ 3 bR (x0)
1, j0se

=I{"(x3)+ by jo

=FI (x4).
Thus, T,€11,(S; f). Let M(m, S)={1+M'(S)} M”(m), then we have [5.12).

(q.e.d)
REMARK. In we may replace the norm [f]x by the norm
[ flls; where
I/lle= max [/ ccxi,
0sjse

and s by e.

§6. Comonotone polynomial approximation.

f is said to be piecewise monotone if it has only a finite number of local
maxima and minima in A. The local maxima and minima in (a, b) (or in K)
are called the peaks of f. Let

E¥(f)=inf{|f—Pl¢; P=ll,, P comonotone with f}.

Eli Passow, Louis Raymon and John A. Roulier showed that if f is a piece-
wise monotone function with peaks at x,, -+, x4, and f€CY***D[q b], there
exists d, such that for n>2k-+j)

E:(f)édj(b__a)k+1||f(j+k+1)”0n_,j )

Let 0<j,<j,< --- <j, be fixed integers, and let {x;}%.,CA. Assume that
the function f satisfies the following conditions;
(a) there is a subset {x;,.} M {xi}k,, g=1, -+, p, such that f9¥¢ is a piecewise
monotone function with peaks at {x;,.} ra,
(b) for each peaks x;,,. there exists a positive integer 7;,. such that

f(jq'*'j)(qu' t):o for ]:1’ ey, 27’jq,,:"‘1 )
and
FOamip v (x; ) #0.

Let s=max{j,+2r;,.; t=1, -, hg, ¢=1, ---, p}. Such a function f is said to
be piecewise monotone of (k; ji, -, jp; s)-type. We obtain the following
theorem.

THEOREM 6.1. Let f be of (k; ji, =+, Jp; S)-type. If feC™[A], where m=s,
for n sufficiently large there exists a polynomial P,€II, such that P, is of
(kB; J1, =, Jp; S)-type and comonotone with f, and satisfies
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If—Pulls=M(m, I, S)n*""™w(f™, 1/n),
where ||f|s= grsl;i}% 1/Ne, and M(m, I, S) is a constant depending on m and S

(and I in the algebraic case), here S is a scheme decided by the conditions (a)
and (b), and I=[a, b]. .
PrROOF. We define a matrix E=(e;;)%Z% % as follows: Let

ri:max{jq%—erq,t; Xj,¢=x; for some ¢t and ¢, 1=t=<h,, 1=¢=p}.
Define for each i=1, -+, &
Cip=ep =+ =, =1, Cirgr1=  =€3;=0.

Then E is poised in II; where

{ 2ei—1 in the algebraic case,

[(ei;—1)/2] in the trigonometric case,

since E is a Hermite matrix. From [Theorem 5.2 or [Theorem 5.4, we have

AP, 11,(S; 1) If—Puls=M(m, I, S)n*~"w(f™, 1/n)

where M(m, I, S) is a constant depending on m, I and the scheme S, but in the
trigonometric case we omit /. Then P, satisfies for each t=1, -+, hy, ¢=1, ---, p

PiaP(x;,,)=0 for j=1, -, 2r;,,.—1, P{a**ig9(x;,,.)#0.
Since for each j=0, -+, s we have
|PP—f@le—>0  as n—oo,

there exists >0 such that for n sufficiently large, PY? comonotone with fYa
in each interval (x;,.—9d, Xjq¢t0) for t=1, -, hy g=1, -, p. Thus, if we
take larger n, we see that P{? also comonotone with f“@ outside of interval
(%5400, Xjp,c+0) for t=1, -+, hy, g=1, ---, p. (q.e.d.)

§7. Derivative of best approximant.

Let feC[—1, 1], and let P,=1I, be an algebraic polynomial of best approxi-
mation to f, that is,

Hf—‘Pn”C[—l,l]: inf |f—Qullct-1.13-
Qnely

John A. Roulier showed that if feC™[—1, 1], for each k, where 22=m,
we have

(7.1) lim ||f® —PiPllec-1,0=0..
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Is correct for all k=0, -, m? Let —1<a<b<l. If we replace by

(7.2) lim /% — PPl cta. =0,

we can show that is correct for all £=0, ---, m. On the other hand, if we
consider this problem in the trigonometric case, we need no restriction to the
norm.

THEOREM 7.1. Let feC™[—1, 1], and let P,ell, be a polynomial of best
approximation to f. Then if —1<a<b<l, there exists a constant C(m, a, b)
depending on m, a and b such that

(7.3) /9 =PPlcta,n=Clm, a, b)n’""w(f™, 1/n),  for j=0, -, m,

where w(f™, +) is the modulus of continuity of ™ on [—1, 1].
Proor. By Jackson’s theorem

If—Pullct-1, n=Mm)n="w(f™, 1/n),

where M(n) is a constant depending on m. Thus, from we have

(7.3). (q.e.d.)
THEOREM 7.2. Let feC™ K], and let T,=Il, be a polynomial of best

approximation to f. Then there exists a constant C(m) depending on m such that

If P =T s =M™ w(f™, 1/n),  j=0, -+, m,

where w(f™, +) is the modulus of continuity of f™ on K.
Proor. From (5.13) there exists a constant M(m) depending on m such that

/P =1Ll cci= Mm)n?~"w(f™, 1/n),  j=0, -, m.
From Jackson’s theorem
/=Tl ccr =M (m)n~"w(f™, 1/n),
where M’(m) is a constant depending on m. Thus, we have
1T —Inll s = M (m)+M@m)} n~"w(f™, 1/n).

By Bernstein’s inequality

ITP—I e AM O+ M(m)} =" (™, 1/n),  for j=0, -, m.
Consequently, we have

1FP =T loexrS M (m)+2Mm)} nf="w(£™, 1/n),  for j=0, -, m.
Let Cm)=M'(m)+2M(m). (g.e.d.)
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