
J. Math. Soc. Japan
Vol. 32, No. 4, 1980

On the structure of polarized manifolds
with total deficiency one, I

By Takao FUJITA

(Received Jan. 23, 1979)

Introduction.

A polarized variety is a pair (V, $L$ ) of a variety $V$ and an ample line
bundle $L$ on it. In this paper, for the sake of simplicity, we consider only the
complex analytic cases. But many of our results hold to be true also in posi-
tive characteristic cases after slight modifications (see [8]).

In [5] we defined the following three invariants of (V, $L$ ) $:d(V, L)=L^{n}$ for
$n=\dim V,$ $\Delta(V, L)=n+L^{n}-h^{0}(V, L)$ which might be called the total deficiency
or the $\Delta$-genus, and $g(V, L)$ which might be called the sectional genus because
of the following properties: a) $g(V, L)=h^{1}(V, O_{V})$ if dim $V=1,$ $b$) $g(D, L_{D})=$

$g(V, L)$ for any irreducible reduced member $D$ of $|L|$ , c) 2$g(V, L)-2=$

\langle $K^{V}+(n-1)L)L^{n-1}$ for any smooth $V$. In [5] we showed $\Delta(V, L)\geqq 0$ for any
polarized variety (V, $L$ ) and we gave a complete enumeration of polarized
varieties with $\Delta=0$ . Here we study polarized manifold $(M, L)$ with $\Delta=1$ .

$\Delta(M, L)$ , together with $g(M, L)$ , might be regarded as a higher dimensional
version of the genus of curves (see [6]). In particular, when $\Delta(M, L)=1$ , we
have: $L$ is very $ample\Leftarrow d(M, L)\geqq 3\subset>g(M, L)=1$ . Moreover $ K^{M}+(n-1)L=0\Leftrightarrow$

$\Delta(M, L)=g(M, L)=1$ . So, to consider polarized surfaces with $\Delta=g=1$ is equiv-
alent to consider surfaces with negative canonical bundles, which are known
classically as Del Pezzo surfaces. Generalizing this fact to higher dimensional
cases, we will give a complete enumeration of all the Del Pezzo manifolds,
that are, polarized manifolds with $\Delta=g=1$ . However, in this part I, we treat
only the cases in which $d(M, L)=2,3,4$ and $\geqq 6$ . For the study of the cases
$d=1,5$ we need more complicated techniques. The result in case $d=1$ was
announced in $[4_{II}]$ . The cases $d=5$ will be treated in the second part.

Finally we give the classification table of Del Pezzo manifolds with dim $M$

$\geqq 3,$ $d(M, L)=2,3,4$ or $\geqq 6$ .
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$|d(M, L)$ $\overline{g(}M,$
$L$ ) dim $M$ $b_{2}(M)$ structure of $M$

$\underline{|}-$ $-----$

The author would like to express his hearty thanks to Professor Iwahori,
who told him the results in the Appendix, and to Professor Iitaka, whose
encouragements during the preparation of this paper is of great value for him.

Notation, convention and terminology.

Basically we employ the notation as in [5], [6] and [7] which is analogous
to that of EGA[9].

Variety is an irreducible reduced compact complex analytic space. Manifold
is a smooth variety. Vector bundles and locally free sheaves are confused
occasionally. Tensor products of line bundles are denoted by additive notation.

Here we show examples of symbols used in this paper.
$\{Z\}$ : The homology class defined by an analytic cycle $Z$.
$|L|$ : Th $e$ complete linear system associated with a line bundle $L$ .

$[\Lambda]$ : The line bundle defined by a linear system $\Lambda$ .
$ Bs\Lambda$ : The intersection of all the members of $\Lambda$ .
$\rho_{\Lambda}$ : The rational mapping defined by $\Lambda$ .
$L_{T}$ : The pull back of $L$ to a space $T$ by a given morphism $T\rightarrow S$ . However,

when there is no danger of confusion, we OFTEN write $L$ instead of $L_{\Gamma}$

by abuse of notation.
$Q_{c}(1]I)$ : The blowing up of $M$ with center $C$ .
$E_{C}$ : The exceptional divisor on $Q_{c}(M)$ over $C$ .
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$K^{M}$ : The canonical line bundle of a manifold $M$.
$H^{E}$ : The tautological line bundle $O(1)$ on $P(E)=E^{\vee}-\{0- section\}/C^{\times}$ where $E$

is a vector bundle and $E^{\vee}$ is the dual of it.
H., $ H\underline{\sim}\lrcorner$ : The line bundles defined by hyperplane sections on projective

spaces $P_{a},$ $P_{\beta},$ $\cdots$ indicated by the same suffixes.

\S 1. Generalities.

(1.0) Before applying the results in [6], we recall several definitions.
A rung of a polarized variety (V, $L$ ) is an irreducible reduced member of

$|L|$ . A rung $D$ is said to be regular if the restriction homomorphism $\Gamma(V, L)$

$\rightarrow\Gamma(D, L_{D})$ is surjective. This condition is equivalent to $\Delta(D, L_{D})=\Delta(V, L)$ . A
ladder of (V, $L$ ) is a sequence of subvarieties $V=V_{n}\supset V_{n-1}\supset\ldots\supset V_{1}$ of $V$ with
dim $V_{j}=j$ such that each $V_{j}$ is a rung of $(V_{j+1}, L)$ . It is said to be regular if
each rung of it is so, or equivalently, $\Delta(V, L)=\Delta(V_{1}, L)$ .

Let $(_{\angle}\lambda f, L)$ be a polarized manifold with $\Delta(M, L)=1$ . Then we have the
following results.

(1.1) $Bs|L|$ is at most a finite set ([5, Theorem 1.9]).

(1.2) $(M, L)$ has a ladder ([6, Corollary 3.6]).

(1.3) $g(M, L)\geqq 1$ ( $[6$ , Lemma 5.1]).

(1.4) $(M, L)$ has a regular smooth ladder ([6, Corollary 4.2]).

(1.5) $ Bs|L|=\emptyset$ if $d(M, L)\geqq 2$ ( $[6$ , Theorem 4.1, $b]$ ).

(1.6) $g(M, L)=1$ if $d(M, L)\geqq 3$ ( $[6$ , Theorem 4.1, $c]$ ).

(1.7) $L$ is very ample and $\rho_{|L|}(M)$ is projectively normal if $d(M, L)\geqq 3([6$ ,

Theorem 4.1, $c$]).

(1.8) $\rho_{1LI}(M)$ is defined by quadratic equations if $d(M, L)\geqq 4([6$ , Theorem
4.1, $d$]).

The above results are used frequently, sometimes without referring explicitly.
(1.9) Now we will prove the following
THEOREM. Let $(M, L)$ be a Polarized manifold of dimension $n$ . Then

$K^{M}+(n-1)L=0$ if and only if $\Delta(M, L)=g(M, L)=1$ .
(1.10) LEMMA. Let $(M, L)$ be a polarized manifold with dim $M=n$ ,

$d(M, L)=d$ and $K^{M}=-(n-1)L$ . Then $\chi(M, tL)=(dt^{2}+d(n-1)t+n(n-1))$

. $(\prod_{\lambda=1}^{n- 2}(t\perp\lambda))/n$ !.

PROOF. Using the vanishing theorem of Kodaira we infer that $h^{p}(M, tL)$

$=0$ for $0<p<n$ , $t\in Z$. Moreover $h^{n}(M, -tL)=h^{0}(M, K^{M}+tL)=$

$h^{0}(M, (t-n+1)L)=0$ if $t<n-1$ . Therefore $\chi(t):=\chi(M, tL)=0$ for $-(n-2)$

$\leqq t\leqq-1$ . So we put $\chi(t)=(at^{2}+bt+c)(\prod_{\lambda=1}^{n- 2}(t+\lambda))/n!$ where $a,$
$b$ and $c$ are con-

stants. Using the Riemann-Roch-Hirzebruch Theorem we infer that $\chi(t)=$
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$(di^{n}/n!)-2^{-1}K^{M}L^{n-1}t^{n- 1}/(n-1)!+O(t^{n-2})$ . Hence $a=d$ and $b=d(n-1)$ . Now
$\chi(0)=1$ implies $c=n(n-1)$ .

(1.11) PROPOSITION. Let $M$ be a smooth surface which contains an elliptic
curve $C$ as an ample divisor. Then $(M, [C])\cong(P(E), H^{E})$ for some ample vector
bundle $E$ on $C$ unless $H^{1}(M)=0$ .

PROOF. Suppose $H^{1}(M)\neq 0$ and let $\iota$ : $C\rightarrow M$ be the inclusion. $ Alb(\zeta):C\rightarrow$

$Alb(M)$ is surjective and any general Pber of it is connected ([7], \S 1, Theorem
$VII^{*})$ . Hence $Alb(\iota)$ is an isomorphism. So we have the Albanese mapping
$a:M\rightarrow C$ . $\iota$ defines a section of $a$ . So $CY=1$ for any fiber $Y$ of $a$ . Hence $Y$

is irreducible and reduced because $C$ is ample. Note that deg $N_{M/C}=C^{2}>0$ for
the normal bundle $N_{M/C}$ of $C$ in $M$. Hence $H^{1}(C, N_{M/C})=0$ and $H^{0}(C, N_{M/C})\neq 0$ .
In view of [14] we infer that $C$ is contained in a non-trivial deformation
family of submanifolds in $M$. Let $C^{\prime}$ be a member of this family which is
different from C. $C^{\prime}$ is homologically equivalent to $C$ and we find
$F\in Pic_{0}(Alb(M))\cong Pic_{0}(M)$ such that $a^{*}F=[C^{\prime}-C]$ . Therefore $[C^{\prime}-C]_{X}=0$ for
a general fiber $X$ of $a$ . This implies $X\cong P^{1}$ since $C_{X}^{\prime}$ and $C_{X}$ are different
points on $X$. Now, [5, Corollary 5.4] proves our assertion.

(1.12) PROOF OF THEOREM (1.9). First we consider the ‘ only if ‘ part. By
(1.10) we have $\chi(M, L)=d+n-1$ . Using the vanishing theorem of Kodaira we
infer that $h^{0}(M, L)=\chi(M, L)$ . Combining them we obtain $\Delta(M, L)=1$ . $g(M, L)$

$=1$ follows from the property c) of the sectional genus stated in the intro-
duction.

In order to prove the ‘ if ’ part, we use the induction on $n$ . The assertion
for $n=1$ follows from the property a) of $g$ . Second we consider the case in
which $n=2$ . Let $C$ be a smooth member of $|L|$ . Then $g(C)=g(C, L)=g(M, L)$

$=1$ and $C$ is an elliptic curve. Suppose that $H^{1}(M)\neq 0$ . Then, by (1.11), we
have an ample vector bundle $E$ on $C$ such that $(M, [C])\cong(P(E), H^{E})$ . The
result of Atiyah [1], Lemma 15 implies that $h^{0}(M, L)=h^{0}(C, E)=\deg(\det E)=$

$(H^{E})^{2}=d(M, L)$ . So $\Delta(M, L)=2$ , which contradicts our assumption. Therefore
$H^{1}(M)=0$ . Now we have the following exact sequence: $ 0=H^{1}(M, O_{M})\rightarrow$

$H^{1}(C, O_{C})\rightarrow H^{2}(M, -L)$ . Hence $1=h^{1}(C)\leqq h^{2}(M, -L)=h^{0}(M, K^{M}+L)$ . So we
have a member $D$ of $|K^{M}+L|$ . Then $LD=L(K^{M}+L)=2g(M, L)-2=0$ and
$D=0$ since $L$ is ample. Thus we prove $K^{M}+L=0$ . Finally we consider the
case in which $n\geqq 3$ . By (1.4) we take a smooth regular rung $A$ of $(M, L)$ .
Then we have $\Delta(A, L)=\Delta(M, L)=1$ and $g(A, L)=g(M, L)=1$ . So
$[K^{M}+(n-1)L]_{A}=K^{A}+(n-2)L_{A}=0$ by the induction hypothesis. On the other
hand $Pic(M)\rightarrow Pic(A)$ is injective ([7, (2.5)]). Combining them we prove the
assertion.

(1.13) DEFINITION. A polarized manifold of the type(1.9) shall be called a
Del Pezzo manifold.
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\S 2. The cases in which $d=2,3,4$ .
(2.0) Throughout this section let $(M, L)$ be a polarized manifold with

$\Delta(M, L)=1,$ $d(M, L)=d$ and dim $M=n$ .
(2.1) THEOREM. If $d=3$ , then $M$ is isomorphic to a hypercubic in $P^{n+1}$ .
PROOF. Obvious by (1.7).

(2.2) THEOREM. If $d=4$ , then $M$ is isomo $7^{\cdot}phic$ to a $comPlete$ $i?ztersection$

of type $(2, 2)$ in $P^{n+2}$ .
PROOF. $L$ is very ample and $\rho_{|L|}$ : $M\rightarrow P^{n+2}$ is an embedding. Using (1.10)

we infer that $h^{0}(M, 2L)=\chi(M, 2L)=(n^{2}+7n+8)/2=h^{0}(P^{n+2},2H)-2$ . Hence
there are two distinct hyperquadrics $Q_{1},$ $Q_{2}$ in $P^{n+2}$ which contain $\rho_{|L|}(M)$ .
Now (1.8) proves the assertion.

(2.3) Let $F$ be a line bundle on a variety $V$ and let $B$ be a member of
$]$ $kF|$ for a positive integer $k$ . Take a sufficiently Pne covering $\{U_{\alpha}\}$ of $V$ such
that the restriction $F_{\alpha}$ of $F$ to $U_{\alpha}$ is trivial. Let $\zeta_{\alpha}$ be the coordinate of $F_{\alpha}$

along the fiber and $\{f_{\alpha\beta}\}$ be the cocycle defined by $F$. Namely $ f_{\alpha\beta}\in$

$\Gamma(U_{\alpha}\cap U_{\beta}, O_{V}^{\times})$ and $\zeta_{\alpha}=f_{\alpha\beta}\zeta_{\beta}$ on $F_{\alpha}\cap F_{\beta}$ . Let $b_{a}\in\Gamma(U_{\alpha}, O_{V})$ be the equation
defining $B$ . Note that $b_{\alpha}=f_{a\beta}^{k}b_{\beta}$ on $U_{\alpha}\cap U_{\beta}$ . Let $D_{\alpha}\subset F_{a}$ be the divisor defined
by $\zeta_{\alpha}^{k}=b_{\alpha}$ . Then $D_{\alpha}=D_{\beta}$ on $F_{\alpha}\cap F_{\beta}$ . Thus we obtain a divisor $D=\bigcup_{\alpha}D_{\alpha}$ on

F. $D$ is determined uniquely by the triple (V, $F,$ $B$ ). So we denote $D$ by
$kR_{B,F}(V)$ . When $k=2$ and there is no danger of confusion, we write $R_{B,F}(V)$

or even $R_{B}(V)$ instead of $2R_{B,F}(V)$ . Note that the projection $F\rightarrow V$ makes $D$

a k-sheeted cyclic branched covering of $V$ with branch locus B. $D$ is smooth
if both $V$ and $B$ are smooth.

(2.4) THEOREM. Let $f:N^{\prime}\rightarrow N$ be a finite morphism of degree $tuo$ from a
manifold $N^{\prime}$ onto another manifold N. Then there is a line bundle $F$ on $N$ and
a smooth member $B$ of $|2F|$ such that $N^{\prime}\cong R_{B,F}(N)$ .

For a proof, see Wavrik [19].

(2.5) THEOREM. If $d=2$ and $g(M, L)=g$ , then $(M, L)\cong(R_{B}(P^{n}), H_{M})$ where
$H=O_{P^{n}}(1)$ and $B$ is a smooth member of $|(2g+2)H|$ .

PROOF. By (1.5) we obtain a finite morphism $\rho=\rho_{\rceil L1}$ : $M\rightarrow P^{n}$ such that
$L=H_{M}$ . Moreover deg $\rho=d=2$ . Hence (2.4) implies that $M\cong R_{B}kH(P^{n})$ for
some $B\in|2kH|$ and a positive integer $k$ . Then $K^{M}=K^{pn}+kH=(k-7\iota-1)H_{M}$

and $2g-2=(K^{M}+(n-1)H)H^{n- 1}\{M\}=(k-2)H^{n}\{M\}=2(k-2)$ . So $k=g^{\perp}1$ .

\S 3. The cases in which $n=2$ .

In this section we recall the classical theory on Del Pezzo surfaces.
(3.1) Any surface $S$ with $-K^{S}$ being ample is rational ([16], Chapter III).

(3.2) A rational surface $S$ contains an exceptional curve of the first kind
unless $S\cong P^{2}$ or $S$ is a $P^{1}$-bundle over $P^{1}$ ([16], Chapter V).
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(3.3) If $S$ is a $P^{1}$-bundle over $P^{1}$ and if $-K^{s}$ is ample, then $S\cong P^{1}\times P^{1}$ or
$\cong Q_{p}(P^{2})$ .

(3.4) THEOREM. A Del Pezzo surface is a blowing-up of $P^{2}$ with center
being $f\overline{l}7lite$ Points unless $S\cong P^{1}\times P^{1}$ .

PROOF. $S$ is rational by (3.1). If $S$ is relatively minimal, then $S\cong P^{2}$ or
$\cong P^{1}\times P^{1}$ by (3.2) and (3.3). If $S$ contains an exceptional curve $E$ of the first
kind, then $S\cong Q_{p}(N)$ and $E=E_{p}$ for some surface $A^{v}/$. Using [7, (5.7)] we infer
that $-K^{N}$ is ample. Thus, repeating this process if necessary, we have
$S\cong Q_{p_{r}}(Q_{p_{\tau-1}}(\cdots(Q_{p_{1}}(P^{z}))\cdots))$ unless $S\cong P^{1}\times P^{1}$ , since $Q_{p}(P^{1}\chi P^{1})\cong Q_{q_{1}\cup q_{2}}(P^{2})$ for
two points $q_{1}$ and $q_{2}$ on $P^{2}$ . Suppose that $p_{i}$ lies on the proper transform of
$E_{p_{j}}$ for some $i>j$ . Then we have $E_{j}^{\prime}K^{S}\geqq 0$ for the proper transform $E_{j}^{\prime}$ of
$E_{p_{j}}$ on $S$ . This contradicts the ampleness of $-K^{s}$ . Consequently the centers
$p_{1},$ $\cdots$ , $p_{r}$ must map to different points on $P^{2}$ .

$RE_{\perp}\backslash $IARK. No three points of $p_{1},$ $\cdots$ , $p_{r}$ are colinear. Indeed, if otherwise,
$C^{\prime}K^{s}\geqq 0$ for the proper transform $C^{\prime}$ on $S$ of the line which contains three of
$p_{1},$ $\cdots$ , $p_{r}$ . This contradicts the ampleness of $-K^{s}$ . Similarly no six points
lie on a common quadric curve.

(3.5) COROLLARY. There is no polarized manifold $(M, L)$ with $\Delta(M, L)=1$ ,
$d(M, L)\geqq 10$ and dim $M\geqq 2$ .

PROOF. Suppose that such a polarized manifold exists. Applying (1.4), we
let $S$ be the two dimensional rung of a regular smooth ladder of $(M, L)$ . Then
$d(S, L)=d(M, L)\geqq 10$ and $\Delta(S, L)=\Delta(M, L)=1$ . Moreover (1.6) says $g(S, L)=1$

and $S$ is a Del Pezzo surface. This contradicts (3.4) since $d(S, L)=(c_{1}(S))^{z}$

$=12-c_{2}(S)\leqq 9$ .

\S 4. From surfaces to threefolds.

(4.1) We will study the structure of a given polarized manifold $(M, L)$ by
induction on $n=\dim M$. Suppose $A$ to be a smooth rung of it. In order to
relate the structure of $M$ to that of $A$ , it is very important to study the
restriction mapping $r:Pic(M)\rightarrow Pic(A)$ , because, roughly speaking, the structure
of manifolds are described by certain morphisms defined on them, and the
morphisms are given by linear systems, and the linear systems are associated
to line bundles. If $n\geqq 4$ , then $r$ is bijective by the Lefschetz Theorem. How-
ever, for $’\iota=3$ , we have only the following results.

(4.2) $r$ is injective and Coker$(r)$ is torsion free.
A proof can be found in [7, \S 1]. More precisely one has Coker$(r)\subset$

$Coker(H^{2}(\lrcorner tI;Z)\rightarrow H^{2}(A;Z))$ and the latter is torsion free. Consequently we have
(4.3) $F\in Pic(A)$ comes from $Pic(M)$ if and only if $c_{1}(F)\in H^{2}(A;Z)$ comes

from $H^{2}(M;Z)$ . $\alpha\in H^{2}(A;Z)$ comes from $H^{2}(M;Z)$ if and only if $\alpha_{Q}\in$

$H^{2}(A;Q)$ comes from $H^{2}(M;Q)$ .
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(4.4) We will study $Im(r)$ more precisely in case $n=3$ . From now on $L$

is assumed to be very ample. So we regard $M$ to be a submanifold in $P\cong P^{N}$

$(N=\dim|L|)$ by $\rho_{|L|}$ .
(4.5) Let $P^{*}$ be $the_{\rightarrow}dua1$ of $P$ , namely, the Grassmann variety of hyper-

planes on $P$ . Let $F=\{(x, h)|x\in h\in P^{*}\}\subset P\times P^{*}$ and let $M^{*}=M\times PF$. Let
$\pi$ : $M^{*}\rightarrow JI$ and $\psi:M^{*}\rightarrow F\rightarrow P^{*}$ be the natural morphisms. Then we have a
bijection $f:P^{*}\rightarrow|L|$ such that for any $h\in P^{*}$ the restriction of $\pi$ to $\psi^{-1}(h)$ is
an isomorphism onto $f(h)$ . Note that $\pi$ makes $M^{*}$ a $P^{N-1}$-bundle over $M$ and
that $H$ $(M^{*} ; Z)$ is generated by $c_{1}(H^{*})$ as an $H(M;Z)$-algebra, where
$H^{*}=O_{F*}(1)$ .

(4.6) We have an open dense subset $U$ of $P^{*}$ such that $\psi^{-1}(h)$ is smooth
for any $h\in U$ . $R^{2}\psi_{*}(Z_{M*})$ defines a local system on $U$, where $Z_{M*}$ is the con-
stant sheaf on $M^{*}$ with Pber $Z$. Now we fix a point $0\in U$ and let $S=\psi^{-1}(0)$

$\cong f(0)\in|L|$ . The above local system is defined by the action $\lambda$ of $\pi_{1}(U, 0)$ on
$H^{2}(S;Z)$ . $\lambda$ is called the monodromy action induced by $|L|$ . This action is
compatible with the intersection pairing dePned by cup product on $H^{2}(S;Z)$ .

(4.7) LEMMA. $\alpha\in H^{2}(S;Z)$ comes from $H^{2}(M;Z)$ if and only if $\alpha$ is
stabilized by the above monodromy action $\lambda$ .

PROOF. The ’ only if ’ part is obvious. Suppose that $\alpha$ is stabilized by $\lambda$ .
This implies that $\alpha$ comes from $\beta\in\Gamma(U, R^{2}\psi_{*}Z_{M*})$ . In view of Deligne [3,

Theorem 4-1-1], we infer that $\beta_{Q}$ comes from $H^{2}(M^{*} ; Q)$ . By (4.5), $H^{2}(M^{*} ; Q)$

is generated by $H^{2}(M;Q)$ and $c_{1}(H^{*})$ . Putting things together, we infer that
$\alpha_{Q}$ comes from $H^{2}(M;Q)$ , since $c_{1}(H^{*})_{S}=0$ . So (4.3) applies.

(4.8) The above lemma tells us that we should study the monodromy action
$\lambda$ induced by $|L|$ in order to study $r:Pic(M)\rightarrow Pic(S)$ . $\lambda$ is an action on
$H^{2}(S;Z)$ which is compatible with the cup product pairing and which stabilizes
$c_{1}(S)$ . So we make the following

(4.9) DEFINITION. A triple $\mathfrak{L}=(\Lambda, q, c)$ of a Z-module $\Lambda$ , Z-valued sym-
metric bilinear form $q$ on $\Lambda$ and an element $c$ of $\Lambda$ is called a marked Lorentz
lattice. An automorphism of $\mathfrak{L}$ is a linear bijection $\sigma$ : $\Lambda\rightarrow\Lambda$ such that $\sigma(c)=c$

and $q(\sigma(x), \sigma(y))=q(x, y)$ for any $x,$ $ y\in\Lambda$ . $Aut(\mathfrak{L})$ denotes the group of all the
automorphisms of $\mathfrak{L}$ .

(4.10) For any surface $S$ the triple ($H^{2}(S;Z)$ , cup product paing, $c_{1}(S)$ ) is
a marked Lorentz lattice. We denote it by $\mathfrak{L}(S)$ .

(4.11) If $(M, L)$ is a Del Pezzo threefold, then a general member $S$ of $|L|$

is a Del Pezzo surface. In view of (3.4), we let $S_{r}$ be the blowing up of $P^{2}$

with center being $r$ points $p_{1},$ $p_{2},$ $\cdots$ , $p_{r}$ and we will study the structure of
$\mathfrak{L}_{r}=\mathfrak{L}(S_{r})$ and $Aut(\sim r)$ .

(4.12) A free base $\{h, e_{1}, \cdots , e_{r}\}$ of $\Lambda_{\tau}=H^{2}(S_{r} ; Z)$ is called a normal base
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of $\mathfrak{L}_{r}$ if $(h, h)=1,$ $(h, e_{j})=0,$ $(e_{i}, e_{j})=-\delta_{ij}$ and $c=c_{1}(S_{\gamma})=3h-\sum_{j\rightarrow 1}^{r}e_{j}$ . A normal

base can be constructed by putting $h=c_{1}(O_{P^{2}}(1))$ and $e_{j}=c_{1}(E_{p_{j}})$ .
(4.13) $\alpha\in\Lambda_{r}$ is called a root of $\mathfrak{L}_{\tau}$ if $(\alpha, \alpha)=-2$ and $(\alpha, c)=0$ . The set of

all the roots of $\mathfrak{L}_{r}$ is denoted by $\Re_{r}$ or $\Re(\mathfrak{L}_{r})$ .
(4.14) LEMMA. Let $\{h, e_{1}, \cdots , e_{r}\}$ be a normal base of $\mathfrak{L}_{r}$ . Then $\Re_{\gamma}=\emptyset$ if

$r\leqq 1,$ $=\{\pm(e_{1}-e_{2})\}$ if $r=2,$ $=\{\pm(h-e_{i}-e_{j}-e_{k})\}_{t<J<k^{\cup}}\{\pm(e_{l}-e_{j})_{i<j}\}$ if $3\leqq r\leqq 5$ .
PROOF. Consider the case in which $r=4$ . Suppose $\alpha=xh-y_{1}e_{1}-y_{2}e_{2}-$

$y_{3}e_{3}-y_{4}e_{4}$ to be a root. Then $0=(c, \alpha)=3x-\sum y_{j}$ and $-2=(\alpha, \alpha)=x^{2}-\sum y_{j}^{2}$ .
Schwarz’s inequality gives $4(x^{2}+2)=4\sum y_{j}^{2}\geqq(\sum y_{f})^{2}=9x^{2}$ . Hence $x^{2}\leqq 8/5$ . So
$x=0$ or $\pm 1$ . If $x=0$ , then $\sum y_{j}=0$ and $\sum y_{j}^{2}=2$ . Therefore $\alpha=e_{i}-e_{j}$ for some
$i,$ $j$ . If $x=1$ , then $\sum y_{j}=3$ and $\sum y_{j}^{2}=3$ . This implies $a=h-e_{i}-e_{j}-e_{k}$ for
some $i<j<k$ . Putting things together, we prove the assertion for $r=4$ .
Similar argument works in other cases too.

REMARK. We can determine $\Re_{\gamma}$ in case $r\geqq 6$ too. In fact, $\Re_{r}$ is a finite
set if and only if $r\leqq 8$ . But we don’t need the result for $r\geqq 5$ in this study of
Del Pezzo manifolds.

(4.15) We see easily that $\Re_{r}$ is isomorphic to the root system corresponding
to the Dynkin diagram of type $A_{1}$ if $r=2,$ $A_{1}\cup A_{2}$ if $r=3,$ $A_{4}$ if $r=4,$ $D_{5}$ if
$r=5,$ $E_{r}$ if $r=6,7,8$ . In any case $\{h-e_{1}-e_{2}-e_{3}, e_{1}-e_{2}, e_{2}-e_{3}, \cdots , e_{\tau- 1}-e_{r}\}$

gives rise to a simple root system if $r\geqq 3$ .
(4.16) For any root $\alpha$ we define a homomorphism $S_{\alpha}$ : $\Lambda_{r}\rightarrow\Lambda_{\tau}$ by $S_{\alpha}(x)=$

$ x+(x, \alpha)\alpha$ . It is easy to see that $S_{\alpha}\circ S_{\alpha}$ is the identity and that $S_{\alpha}\in Aut(\mathfrak{L}_{r})$ .
By $W_{r}$ we denote the subgroup of $Aut(\mathfrak{L}_{r})$ generated by all the $S_{\alpha}$ with $\alpha\in\Re_{r}$ .
Of course $W_{r}$ is the Weyl group corresponding to the Dynkin diagram as in
(4.15).

(4.17) DEFINITION. $e\in\Lambda_{r}$ is called an exceptional cycle of $\mathfrak{L}_{r}$ if $(e, c)$

$=-(e, e)=1$ . $\mathfrak{E}_{r}=\mathfrak{E}(\mathfrak{L}_{r})$ denotes the set of all the exceptional cycles of $\mathfrak{L}_{r}$ .
(4.18) LEMMA. Let $\{h, e_{1}, \cdots , e_{\tau}\}$ be a normal base of $\mathfrak{L}_{\tau}$ . Then $\mathfrak{E}_{\tau}=\emptyset$ if

$r=0,$ $=\{e_{1}\}$ if $r=1,$ $=\{e_{t}\}_{1\leqq i\leqq r}\cup\{h-e_{t}-e_{j}\}_{1\leqq i<j\leqq r}$ if $r=2,3,4$ .
PROOF. The case $r=4$ . Suppose $e=xh-\sum y_{j}e_{j}$ be an exceptional cycle.

Then $1=(e, c)=3x-\sum y_{j}$ and $-1=(e, e)=x^{2}-\sum y_{j}^{2}$ . Schwarz’s inequality gives
$4(x^{2}+1)=4(\sum y_{j}^{2})\geqq(\sum y_{j})^{2}=(3x-1)^{2}$ . This implies $x=0$ or 1. If $x=0$ , then
$\sum y_{j}=-1$ and $\sum y_{j}^{2}=1$ . This implies $e=e_{j}$ for some $j$ . If $x=1$ , then $\sum y_{j}=2$

and $\sum y_{j}^{2}=2$ . This implies $e=h-e_{i}-e_{j}$ for some $i<j$ . Similar arguments
prove the lemma.

(4.19) LEMMA. $W_{r}$ acts on $\mathfrak{E}_{r}$ transitively if $r=3,4$ .
PROOF. $\{S_{e_{i}-e_{j}}\}_{i<j}$ generate all the permutations among $\{e_{j}\}$ . Hence it

suMces to show that $e_{1}$ and $h-e_{2}-e_{3}$ are contained in the same orbit. So the
conclusion follows from $S_{h-e_{1}- e_{2}-e_{3}}(e_{1})=h-e_{2}-e_{3}$ .

(4.20) LEMMA. $W_{\tau}=Aut(\mathfrak{L}_{\tau})$ for $r\leqq 4$ .
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PROOF. Our claim follows from (4.18) if $r\leqq 2$ . So we use the induction on
$r$ . Let $\sigma\in Aut(\mathfrak{L}_{r})$ . (4.19) implies that $\tau\sigma(e_{r})=e_{r}$ for some $\tau\in W_{r}$ . $\tau\sigma$ induces
an automorphism of the orthogonal sublattice to $e_{\tau}$ in $\Lambda_{\gamma}$ . This lattice is gen-
erated by $h,$ $e_{1},$

$\cdots$ , $e_{\tau- 1}$ and is naturally isomorphic to A. $- 1$ . This inclusion
induces inclusions $\Re_{\tau-1}\subset\Re_{r},$ $W_{r- 1}\subset W_{r}$ and $Aut(\mathfrak{L}_{r- 1})\subset Aut(\mathfrak{L}_{\tau})$ . Using the induc-
tion hypothesis we infer that $\tau\sigma\in Aut(\mathfrak{L}_{\tau- 1})=W_{r- 1}\subset W_{r}$ . Hence $\sigma=\tau^{-1}(\tau\sigma)\in W_{r}$ .
Thus we prove the lemma.

REMARK. By the above method we can prove $W_{r}=Aut(\mathfrak{L}_{\tau})$ for greater $r$

too.
(4.21) DEFINITION. $\alpha\in\Re_{r}$ is said to be a component of $\sigma\in W_{r}=Aut(\mathfrak{L}_{r})$ if

there is a reduced expression $(\alpha_{1}, \cdots , \alpha_{l})$ of $\sigma$ such that $\alpha=\alpha_{j}$ for some $j$ (see

Def. (A1) in Appendix). $\alpha$ is said to be a component of a subgroup $G$ of $W_{r}$

if $\alpha$ is a component of some $\sigma\in G$ . The sublattice generated by all the com-
ponents of $G$ is called the envelope of $G$ .

(4.22) LEMMA. For $x\in\Lambda_{r}$ , the following conditions are equivalent to each
other.
a) $x$ is stabilized by $G\subset W_{\tau}$ .
b) $x\alpha=0$ for any compOnent $\alpha$ of $G$ .
c) $x\gamma=0$ for any $\gamma$ in the envelope of $G$ .

PROOF. The equivalence of b) and c) is obvious. $b$) $\subset\succ a$ ) follows from Theo-
rem A3 in Appendix. $a$) $ob$) follows from Proposition A2.

(4.23) Now, putting things together, we obtain the following conclusion:
Let $(M, L)$ be a Del Pezzo threefold with $d=d(M, L)\geqq 5$ . Let $S$ be a general

member of $|L|$ . By (3.4), $S$ is the blowing up of $P^{2}$ with center being $r=9-d$

points unless $S\cong P^{1}\times P^{1}$ . Let $\lambda$ be the monodromy action on $\mathfrak{L}(S)$ induced by $|L|$

(see (4.6)). Let $\Gamma$ be the envelope of ${\rm Im}(\lambda)\subset Aut(\mathfrak{L}(S))\cong W_{r}$ . Then $F\in Pic(S)$

comes from $Pic(M)$ if and only if $x\cdot c_{1}(F)=0$ for any $ x\in\Gamma$

Hence, in order to know $Pic(M)$ , it suffices to study $\Gamma$

\S 5. The cases in which $d(M,L)\geqq 6$ .

(5.1) THEOREM. There is no polarized manifold $(M, L)$ with $\Delta(M, L)=1$ ,

$d(M, L)=9$ and $n=\dim M\geqq 3$ .
PROOF. Suppose that such a polarized manifold exists. Let $S$ be the two-

dimensional rung of a regular smooth ladder of $(M, L)$ . $S$ is a Del Pezzo
surface with $d(S, L_{S})=9$ . Hence $(S, L_{S})\cong(P^{2},3H)$ . This contradicts [7, (3.10)].

(5.2) In order to study the cases in which $d\leqq 8$ , we establish several
lemmata.

LEMMA. Let $(S, L)$ be a Del Pezzo surface and let $e$ be an exceptjonal cycle

in $H^{2}(S;Z)$ . Then there is an excepti0nal curve $E$ such that $c_{1}(E)=e$ .
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PROOF. Let $F\in Pic(S)$ such that $c_{1}(F)=e$ . The Riemann-Roch theorem
implies $\chi(S, F)=1$ . $h^{2}(S, F)=h^{0}(S, K^{s}-F)=0$ since $(K^{s}-F)L=-L^{2}-1<0$ .
Hence $h^{0}(S, F)>0$ . Let $E\in|F|$ . $EL=FL=eL=1$ implies that $E$ is irreducible
and reduced since $L$ is ample. So $(K^{s}+E)E=(K^{s}+e)e=-2$ implies that $E\cong P^{1}$ .
Clearly $E^{2}=-1$ and $E$ is an exceptional curve.

(5.3) LEMMA. Let $(S, L)$ be a Del Pezzo $surI^{-}ace$ with $d\geqq 3$ . Then a curve
$C$ on $S$ is an exceptiOnal curve of the first kind if and only if $\rho_{|L|}$ : $S\rightarrow P^{N}$

maps $C$ onto a line in $P^{N}$ .
PROOF. If $C$ is exceptional, then $K^{s}C=-1$ and $LC=1$ . So $\rho_{|L|}(C)$ is a line.

If conversely $\rho_{|L|}(C)$ is a line, then $LC=1$ and $(K^{s}+C)C=-2$ since $L$ is very
ample. So $C^{2}=-1$ .

(5.4) LEMMA. Let $(S, L)$ be a Del Pezzo surface with $d\geqq 3$ and let $E$ be
an exceptiOnal curve on $S$ of the first kind. Then $H^{1}(S, E-tL)=0$ for any $t\geqq 1$ .

PROOF. (5.3) implies that $ Bs|L-E|=\emptyset$ . Moreover $(L-E)^{2}>0$ implies that
dim $\rho_{|L-E|}(S)=2$ . So our assertion follows from the vanishing theorem due to
Ramanujam [15].

(5.5) LEMMA. Let $(M, L)$ be a Del Pezzo threefold with $d\geqq 3$ and let $S$ be
a smooth rung of it. SuppOse that $c_{1}(E_{S})$ is an exceptiOnal cycle for $E\in Pic(M)$ .
Then there is a Del Pezzo threefold $(N, L^{b})$ and a point $p$ on $N$ such that
$M=Q_{p}(N),$ $[E_{p}]=E,$ $L+E=L^{b}$ and $d(N, L^{b})=d(M, L)+1$ .

PROOF. By (5.2) $|E_{S}|$ contains an exceptional curve. (5.4) enables us to
apply [7, (2.4)] and we obtain a member $D$ of $|E|$ . In view of [7, (5.4) a) and
\langle 5.3)] we infer that $D\cong P^{2}$ and $D$ can be blown down to a smooth point $p$ .
Let $N$ be the manifold obtained by this contraction. $L^{b}=L+E$ comes from
$Pic(N)$ since $L_{D}^{b}=0$ . $L^{b}$ is ample on $N$ by [7, (5.7)]. Moreover one sees easily
$K^{N}=-2L^{b}$ and $L^{3}=(L^{b})^{3}-1$ . Putting things together we prove the lemma.

(5.6) THEOREM. Let $(M, L)$ be a polarized manifold with $\Delta(M, L)=1$ ,

$d(M, L)=8$ and dim $M=3$ . Then $(M, L)\cong(P^{3},2H)$ .
PROOF. Let $S$ be a smooth member of $|L|$ . Since $d(S, L)=8,$ $S\cong P^{1}\times P^{1}$

or $Q_{p}(P^{2})$ with $p\in P^{2}$ by (3.4). Assume that $S\cong Q_{p}(P^{2})$ . Then, using (4.14),
\langle 4.20) and (4.6), we infer that the monodromy action $\lambda$ on $H^{2}(S;Z)$ induced by
$|L|$ is trivial. So (4.7) implies that $Pic(M)\cong Pic(S)$ . Let $F$ be the line bundle
on $M$ such that $F_{S}=[E_{p}]$ . Applying (5.5), we obtain a Del Pezzo threefold
with $d=9$ . This contradicts (5.1).

Now we conclude that $S\cong P^{1}\times P^{1}$ . By (4.2) we infer that there is a line
bundle $H$ on $M$ such that $L=2H$ since $L_{S}$ is divisible by two. We have
$-K^{M}=2L=4H$. Hence [5, Theorem 2.1, $c)$] proves $(M, H)\cong(P^{3}, \mathcal{O}(1))$ .

Q. E. D.
(5.7) THEOREM. There is no polarized manifold $(M, L)$ such that $\Delta(M, L)$

$=1,$ $d(M, L)=8$ and dim $M\geqq 4$ .
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For a proof, use (5.6) and [7, (3.10)].
(5.8) THEOREM. Let $(M, L)$ be a polarized manifold with $\Delta(\underline{\prime}\backslash I, L)=1$ ,

$d(M, L)=7$ and dim $M=3$ . Then $(M, L)\cong(Q_{p}(P^{3}), 2H-E_{p})$ for $p\in P^{3}$ .
PROOF. Let $S$ be a smooth member of $|L|$ . (3.4) implies that $S\cong Q_{p_{1}\cup p_{2}}(P^{2})$ .

Put $E=H-E_{p_{1}}-E_{p_{2}}\in Pic(S)$ . In view of (4.20), (4.14), (4.22) and (4.23) we infer
that $E$ comes from $Pic(M)$ . So, applying (5.5), we have $(M, L)\cong(Q_{p}(M^{b}), L‘‘-E_{p})$

for a Del Pezzo threefold $(M^{b}, L^{b})$ with $d(M^{b}, L^{b})=d(M, L)+1=8$ and a point
$p$ on $M^{b}$ . Now (5.6) proves the assertion.

(5.9) COROLLARY. There is no polarized manifold $(M, L)$ such that $\Delta(M, L)$

$=1,$ $d(M, L)=7$ and dim $M\geqq 4$ .
For a proof, use [7, (5.8)].
(5.10) Finally we consider the case in which $d=6$ .
Let $(M, L)$ be a Del Pezzo threefold with $d(M, L)=6$ and let $S$ be a smooth

rung of it. (3.4) implies that $S\cong Q_{p_{1}\cup p_{2}\cup p_{3}}(P^{2})$ and that $p_{1},$ $p_{2}$ and $p_{3}$ are not
colinear. Let $\{h, e_{1}, e_{2}, e_{8}\}$ be the normal base of $\mathfrak{L}(S)$ as in (4.12). We consider
how is the envelope $\Gamma$ of the monodromy action on $H^{2}(S;Z)$ induced by $|L|$

(cf. (4.23)).

(5.11) LEMMA. Let $C$ be an exceptiOnal curve on S. Then there are in-
finitely many lines lying on $M$ which meet $C$ .

PROOF. Let $\Lambda$ be the linear subsystem of $|L|$ on $M$ consisting of members
that contain $C$ . Let $F=$ {$(D,$ $l)|D\in\Lambda,$ $1$ is a line lying on $D,$ $l\cap C\neq 0$}. A
general member $D$ of $A$ is smooth since $S\in\Lambda$ . (4.18), (5.2) and (5.3) implies
that there are exactly two lines $l_{1},$ $l_{2}$ with $(D, l_{j})\in F$ for each $ D\in\Lambda$ . This
implies dim $F=\dim\Lambda=5$ . On the other hand, for any line $l\neq C$ , $F_{l}=$

$\{D\in\Lambda|(D, l)\in F\}$ is at most of dimension 4. Our assertion follows from these
facts.

(5.12) LEMMA. There is a non-trivial effective divisor on $M$ which is not
ample.

PROOF. Let $C$ be the exceptional curve on $S$ such that $c_{1}(C)=h-e_{2}-e_{3}$ .
Let $T$ be the union of all the lines lying on $M$ which meet C. (5.11) implies
dim $T=2$ . So it suffices to show that $T$ is not ample. Consider the excep-
tional curve $E_{p_{1}}$ on $S$ . Assume that $ T\cap E_{p_{1}}\neq\emptyset$ . Then there is a line $l$

lying on $M$ that meets both $C$ and $E_{p_{1}}$ . Let $H$ be the hyperplane such that
$H\cap M=S$ . Clearly $C$ and $E_{p_{1}}$ are in $H$. Hence $l\subset H$. So $l\subset H\cap M=S$ . There-
fore, by (5.3), 1 is an exceptional curve on $S$ . However, (4.18) implies that
there is no exceptional cycle $e$ on $S$ such that $eC>0$ and $eE_{p_{1}}>0$ . This con-
tradiction proves $ T\cap E_{p_{1}}=\emptyset$ . So $T$ is not ample.

(5.13) LEMMA. One of $h,$ $h-e_{1},$ $h-e_{2},$ $h-e_{3}$ comes from $Pic(M)$ .
PROOF. Suppose that $h$ does not come from $Pic(M)$ . Then, in view of

(4.23) and (4.14), we infer that $ h-e_{1}-e_{2}-e_{3}\in\Gamma$ Assume that two of $e_{1}-e_{2}$ ,
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$e_{2}-e\}$ and $e_{1}-e_{3}$ are contained in $\Gamma$ Then $\Gamma$ contains all the roots. By (4.23),

this implies that only the integral multiples of $L$ come from $Pic(M)$ . Hence
$Pic(\Lambda I)$ is generated by $L$ and any effective divisor on $M$ is a positive multiple
of $L$ , and is consequently ample. This contradicts (5.12). Therefore at most
only one of $e_{1}-e_{2},$ $e_{2}-e_{3}$ and $e_{1}-e_{3}$ can be contained in $\Gamma$ If neither $e_{2}-e_{a}$

nor $e_{1}-e_{3}$ is in $\Gamma$, then $h-e_{3}$ comes from $Pic(M)$ by (4.23) and (4.14). Similar
arguments prove the assertion in other cases too.

(5.14) The case in which $h$ comes from $Pic(M)$ .
Let $H$ be the line bundle on $M$ such that $c_{1}(H)_{S}=h$ . Put $H^{\prime}=L-H$. Note

that $ Bs|H_{\acute{s}}|=\emptyset$ and $\rho_{1H_{S^{1}}^{\iota}}$ makes $S$ a blowing up of $P^{\prime}\cong P^{2}$ with center being
three points. By [15] we get $H^{1}(S, H-tL)=0$ for $t>0$ . So [7, (2.3)] applies
and we have $|H|_{S}=|H_{s}|=\emptyset$ . Hence $Bs|H|$ is finite since $S$ is ample.
Similarly $Bs|H^{\prime}|$ is finite. We have $H^{3}+H^{\prime 3}=H^{3}+(L-H)^{3}=L^{3}-3L^{2}H+3LH^{z}$

$=(L^{2}-3LH+3H^{2})\{S\}=0$ . Hence $H^{3}=H^{\prime 3}=0$ . So $ Bs|H|=\emptyset$ . $(H-L)L^{2}=$

$-H^{\prime}L^{2}<0$ proves $H^{0}(M, H-L)=0$ and $\dim|H|=\dim|H_{s}|=2$ . Similarly $Bs|H^{\prime}|$

$=\emptyset$ and $\dim|H^{\prime}|=2$ . Now, combining $\rho_{|H|}$ and $\rho_{|H^{\prime}|}$ , we obtain a morphism
$\rho$ : $M\rightarrow P_{\alpha}^{2}\times P_{\beta}^{2}$ such that $H=\rho^{*}H_{a}$ and $H^{\prime}=\rho^{*}H_{\beta}$ . $\rho$ is finite since $L=$

$\rho^{*}(H_{\alpha}+H_{\beta})$ is ample. $W=\rho(M)$ is a divisor on $P_{\alpha}^{2}\times P_{\beta}^{2}$ , so we put $[W]=$

$aH_{\alpha}+bH_{\beta}$ . Then $1=H^{\prime 2}L\{M\}=deg\rho\cdot H_{\beta}^{2}(H_{a}+H_{\beta})\{W\}=a$ . deg $\rho$ This implies
$a=\deg\rho=1$ . Similarly $b=1$ . Therefore $W$ is isomorphic to either $D_{0}=$

$\{((\alpha_{0} : \alpha_{1} ; \alpha_{2}), (\beta_{0} : \beta_{1} : \beta_{2}))\in P_{\alpha}^{2}\times P_{\beta}^{2}|\alpha_{0}\beta_{0}=0\}$ , $D_{1}=\{\alpha_{0}\beta_{0}+\alpha_{1}\beta_{1}=0\}$ or $D_{2}=$

$\{\alpha_{0}\beta_{0}+\alpha_{1}\beta_{1}+\alpha_{2}\beta_{2}=0\}$ . $W\cong D_{1}$ or $D_{2}$ , since $W$ is irreducible. In any case $W$ is
normal. Hence $\rho$ : $M\rightarrow W$ is an isomorphism because $\rho$ is birational and finite.
So $W\cong D_{2}$ since it is smooth. Easily one sees $(M, L)\cong(D_{2}, H_{\alpha}+H_{\beta})\cong(P(T),$ $ H^{T}\rangle$

where $T$ is the tangent bundle of $P^{2}$ .
(5.15) The case in which $h-e_{j}$ comes from $Pic(M)$ .
There is a line bundle $H_{\zeta}$ on $M$ such that $c_{1}(H_{\zeta})_{S}=h-e_{j}$ . Note that

$ Bs|[H_{\zeta}]_{S}|=\emptyset$ and $\dim|[H_{\zeta}]_{S}|=1$ . Put $H.=L-H_{\zeta}$ . Note that $ Bs|[H_{\tau}]_{S}|=\emptyset$

and that $S\cong Q_{q_{1}\cup q_{2}}(P_{\xi}^{1}\times P_{\eta}^{1})$ with $H_{\tau}=[H_{\xi}+H_{\eta}]_{S}$ . It is easy to see $h^{1}(S, H_{\zeta}-tL)$

$=h^{1}(S, H.-tL)=0$ for $t>0$ . Moreover, $(H_{\zeta}-L)L^{2}=-H_{\tau}L\{S\}<0$ implies
$H^{0}(M, H_{\zeta}-L)=0$ and similarly we get $H^{0}(M, H.-L)=0$ . Applying [7, (2.8)

and (2.3)], we obtain $\dim|H_{\zeta}|=1,$ $\dim|$ H. $|=3,$ $ Bs|H_{\zeta}|=\emptyset$ and $Bs|H_{\tau}|$ is finite.
Moreover $H_{r}^{3}=(L-H_{(})^{3}=L^{3}-3L^{2}H_{\zeta}=0$ proves $ Bs|H_{\tau}|=\emptyset$ and dim $\rho_{1H_{\tau}\rceil}(M)\leqq 2$ .
Therefore $\rho_{|H_{\tau}|}(M)=\rho_{|H_{\tau}|}(S)\cong P_{\xi}^{1}\times P_{\eta}^{1}$ . Combining $\rho_{1H_{\zeta^{1}}}$ and $\rho_{|H_{\tau}|}$ we obtain a
morphism $\rho$ : $M\rightarrow P_{\zeta}^{1}\times P_{\xi}^{1}\times P_{\eta}^{1}$ such that $L=\rho^{*}[H_{\zeta}+H_{\xi}+H_{\eta}]$ . Hence $\rho$ is
finite. $\rho$ is birational because $(H_{\zeta}+H_{\xi}+H_{\eta})^{3}\{P_{\zeta}^{1}\times P_{\xi}^{1}\times P_{\eta}^{1}\}=6$ . Consequently $\rho$

is an isomorphism.
(5.16) Now, combining $(5.10)\sim(5.15)$ , we prove the following
THEOREM. Let $(M, L)$ be a p0larized manifold with $\Delta(M, L)=1,$ $d(M, L)=6$

and dim $M=3$ . Then $(M, L)\cong(P_{\zeta}^{1}\times P_{\xi}^{1}\times P_{\eta}^{1}, H_{\zeta}+H_{\xi}+H_{\eta})$ or $(P(T), H^{T})$ where
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$T$ is the tangent bundle of $P^{2}$ .
(5.17) THEOREM. Let $(M, L)$ be a polarized manifold with $\Delta(M, L)=1$ ,

$d(M, L)=6$ and dim $M=4$ . Then $(M, L)\cong(P_{\alpha}^{2}\times P_{\beta}^{2}, H_{\alpha}+H_{\beta})$ .
PROOF. Let $D$ be a smooth member of L. $Pic(M)\cong Pic(D)$ by Lefschetz’s

theorem. Using (5.16) and [17, Proposition IV], we infer that $(D, L)\cong$

$(D_{2}, H_{\alpha}+H_{\beta})$ where $D_{2}$ is the same as in (5.14). It is easy to see $h^{1}(D, H_{\alpha}-tL)$

$=h^{1}(D, H_{\beta}-tL)=0$ for $t>0$ . Applying [7, (2.8)], we obtain a morphism $\rho$ :
$M\rightarrow P_{\alpha}^{2}\times P_{\theta}^{2}$ such that $L=\rho^{*}[H_{\alpha}+H_{\beta}]$ . $\rho$ is birational since $(H_{a}+H_{\beta})^{4}\{P_{\alpha}^{2}\times P_{\beta}^{2}\}$

$=6$ . Hence $\rho$ is an isomorphism.
(5.18) COROLLARY. There is no polarized manifold with $\Delta(M, L)=1$ ,

$d(M, L)=6$ and dim $M\geqq 5$ .
For a proof, use [17, Proposition IV].

\S 6. Applications.

(6.1) EXAMPLE. Let $G$ be the grassmann variety of lines on $P=P^{4}$ . Let
$S$ be a smooth hyperquadric in P. Let $M$ be the subset of $G$ consisting of lines
contained in S. Then $M$ is isomorphic to $P^{3}$ . (Compare Tango [18]).

PROOF. Let $A=\{(x, l)\in S\times M|x\in l\}$ . This is a subset of $ F=\{(y, l)\in$

$P\times G|y\in l\}=P(Tg)$ , where $T_{P}^{\vee}$ is the cotangent bundle of $P$ . Let $H^{*}$ denote
the tautological line bundle $O(1)$ on $P(T_{\check{P}})$ . Let $\pi$ : $F\rightarrow P$ be the projection and
let $\pi_{A}$ : $A\rightarrow S$ be the restriction of it. It is easy to see that $\pi_{A}^{-1}(x)$ is a smooth
curve of degree two in $\pi^{-1}(x)\cong P^{3}$ for any $x\in S$ . So $\pi_{A}$ makes $A$ a $P^{1}$-bundle
over S. $(\pi_{A})_{*}O_{A}(H^{*})$ defines a quotient vector bundle of rank three of $T_{P}^{}|_{S}$ ,

which is nothing other than the cotangent bundle $\tau^{\backslash }4$ of $S$ . Hence
$H^{0}(A, H^{*}+fH)\cong H^{0}(S, \tau g[tH])$ for any $t$ , where $H$ is the line bundle defined
by a hyperplane on $P$ . Let $\psi:F\rightarrow G$ be the natural morphism and let $\psi_{A}$ : $A\rightarrow M$

be its restriction. Then, for any $l\in M$, we have $\psi_{A}^{-1}(l)=\psi^{-1}(l)\cong l\subset P$ by $\pi$ . So
$\psi_{A}$ makes $A$ a $P^{1}$-bundle over $M$. Moreover, $H\{\psi^{-1}(l)\}=1$ and $H^{*}\{\psi^{-1}(l)\}=-2$ .
This implies that $[H^{*}+2H]_{A}=L_{A}$ for a certain $L\in Pic(M)$ .

$h^{0}(M, L)=h^{0}(A, H^{*}+2H)=h^{0}(S, T\forall[2H])$ . The exact sequence $0\rightarrow-2H_{s}$

$\rightarrow T_{p}^{\vee}|_{S}\rightarrow\tau y\rightarrow 0$ implies $h^{0}(S, \tau g[2H])=h^{0}(S, T_{P}^{}[2H])-1$ . The exact sequence
$0\rightarrow T_{\check{P}}[2H]\rightarrow H\oplus\cdots\oplus H\rightarrow 2H\rightarrow 0$ gives the exact sequence $ 0\rightarrow H^{0}(S, T_{P}^{}[2H])\rightarrow$

$H^{0}(S, H)\otimes H^{0}(S, H)\rightarrow H^{0}(S, 2H)$ . The last homomorphism is nothing but the
natural multiplication, and consequently it is surjective. Hence $h^{0}(S, T_{P}^{\vee}[2H])$

$=11$ . Putting things together we obtain $h^{0}(M, L)=10$ .
Clearly $M$ is a projective manifold with $b_{2}(M)=b_{2}(A)-1=b_{2}(S)=1$ . So any

non-trivial effective divisor on $M$ is ample. Hence $L$ is ample on $M$.
Now we calculate $d(M, L)$ . We regard $B=P(Ty)$ to be a submanifold of

$\pi^{-1}(S)=P(Tg|_{S})$ . Then $A$ is a divisor on $B$ . We may put $[A]_{B^{-}}-2H_{B}^{*}+aH$,
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since the fiber of $\pi_{A}$ is a curve of degree two. Note tbat $H^{*3}+c_{1}(T_{S})H^{*2}+$

$c_{2}(T_{S})H^{*}+c_{3}(T_{S})=0$ in $H^{6}(B;Z)$ . So we have $H^{5}=H^{4}H^{*}=0$, $H^{3}H^{*2}=2$ ,
$H^{2}H^{*3}=-6,$ $HH^{*4}=10$ and $H^{*5}=-10$ on $B$ . On the other hand $(H^{*}+2H)^{4}$

$(2H^{*}+aH)=L^{4}A=0$ . This gives $a=2$ . Now we have $d(M, L)=L^{3}HA=8$ .
Combining the above fact, we infer that $(M, L)$ is a polarized manifold with

$\Delta(M, L)=1,$ $d(M, L)=8$ . So (5.6) applies.
(6.2) A construction of even dimensional rational smooth hypercubics.
Let $D_{\alpha}$ be a general member of 2 $H_{\alpha}+H_{\beta}|$ , a linear system on $P_{\alpha}^{n}\times P_{\beta}^{n}$ . It

is easy to see that $\rho_{\alpha}=\rho_{|H_{\alpha}|}$ makes $D_{\alpha}$ a $P^{n-1}$-bundle over $P_{\alpha}^{n}$ . Similarly a
general member $D_{\beta}$ of $H_{\alpha}+2H_{\beta}|$ is a $P^{n-1}$-bundle over $P_{\beta}^{n}$ . Let $A$ be the
blowing-up of $P_{\alpha}^{n}\times P_{\beta}^{n}$ with center $C=D_{a}\cap D_{\beta}$ . Let $E_{\alpha}$ and $E_{\beta}$ be the proper
transform of $D_{\alpha}$ and $D_{\beta}$ respectively. Then $ E_{\alpha}\cap E_{\beta}=\emptyset$ . It is easy to see
$E_{\alpha}\cong D_{\alpha}$ and $[E_{\alpha}]_{E_{\alpha}}=[2H_{a}+H_{\beta}]-[H_{a}+2H_{\beta}]=H_{\alpha}-H_{\beta}$ . Hence $E_{\alpha}$ can be blown
down to a submanifold isomorphic to $P_{\alpha}^{n}$ . Similarly $E_{\beta}$ can be blown down to
$C_{\beta}\cong P_{\beta}^{n}$ . So we let $A=Q_{c_{\alpha}\cup c_{\beta}}(M)$ for a manifold $M$. Put $ L=2H_{\alpha}+2H_{\beta}-E_{c}\in$

$Pic(A)$ . Restricting to fibers of $A\rightarrow M$, we easily see that $L$ comes from
$Pic(M)$ . Moreover, using [7, (5.7)], we infer that $L$ is ample on $M$.

We have $K^{M}+(n-1)E_{\alpha}+(n-1)E_{\mathcal{B}}=K^{A}=-(n+1)H_{\alpha}-(n+1)H_{\beta}+E_{c}$ : In
view of $E_{a}=2H_{\alpha}+H_{\beta}-E_{c}$ and $E_{\beta}=H_{\alpha}+2H_{\beta}-E_{c}$ , we infer $K^{M}=-(2n-1)L$

on $M$. Namely, $(M, L)$ is a Del Pezzo manifold.
Let us calculate $d(M, L)$ . Put $\alpha=c_{1}(H_{\alpha})$ and $\beta=c_{1}(H_{\beta})$ . We have $E_{\alpha}E_{\beta}=0$

in $H^{4}(A;Z)$ since they don’t intersect. $L|_{E_{\alpha}}=2H_{\alpha}+2H_{\beta}-[E_{C}]_{E_{\alpha}}=2H_{\alpha}+2H_{\beta}-$

$[H_{\alpha}+2H_{\beta}]=H_{\alpha}$ implies $L{}^{t}H_{\alpha}^{s}E_{a}=H_{\alpha}^{t+s}E_{\alpha}=0$ in $H^{*}(A;Z)$ for $t+s>n$ . In view
of the above facts we make the following calculation: $d(M, L)=L^{2n}\{_{\lrcorner}4\}=$

$\langle E_{\alpha}+H_{\beta})(E_{\beta}+H_{\alpha})L^{2n-2}=(\alpha\beta)L^{2n-2}=\alpha\beta(E_{a}+H_{\beta})(E_{\beta}+H_{\alpha})L^{2n-4}=(\alpha\beta)^{2}L^{2n-4}=\cdots=$

$(\alpha\beta)^{n-1}L^{2}=(\alpha\beta)^{n}+(\alpha\beta)^{n-1}\alpha(2\alpha+\beta)+(\alpha\beta)^{n-1}\beta(\alpha+2\beta)=3$ .
Now (2.1) proves that $M$ is a hypercubic.
REMARK. $C_{a}$ and $C_{\beta}$ become n-dimensional linear subspaces disjoint to each

other (more precisely, in a general position). The existence of such submani-
folds of $M$ characterizes the hypercubics of the above type. However, there is
no such linear submanifold on a general hypercubic if $n\geqq 2$ .

(6.3) Using our theory on Del Pezzo manifolds we can easily show that
the tangent bundle of a Del Pezzo manifold $(M, L)$ cannot be ample unless
$(M, L)\cong(P^{3},2H)$ or $(P^{2},3H)$ . Recently T. Mabuchi used this fact in order to
prove the following conjecture of Hartshorne in three dimensional case: if the
tangent bundle of a manifold $M$ is amPle, then $M\cong P^{n}$ .

(6.4) Any K\"ahler deformation of a Del Pezzo manifold $(M, L)$ is also a
Del Pezzo manifold. The results in \S 3 and \S 5 imply that $(M, L)$ is rigid if
$n=\dim M\geqq 2$ and $d=L^{n}\geqq 6$ . Later we shall see that $(M, L)$ is rigid if $n\geqq 3$

and $d=5$ .
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Appendix.

Here, for the convenience of the reader, we review several results on Weyl
groups in the following mimeographed note:

Iwahori, N. ; Lie algebras and Chevalley groups (in Japanese), Seminar Notes
12 of Dept. Math., Univ. of Tokyo, 1965.

First we fix our notation.
$R$ : A given system of roots in a Euclidean space $E$ . We consider not

only simple roots, but the set of all the roots.
$S_{\alpha}$ : The reflection defined by $\alpha\in R$ .
$W$ : The Weyl group of $R,$ $i$ . $e$ . the subgroup of $GL(E)$ generated by

$\{S_{\alpha}\}_{\alpha\in R}$ .
$E(\sigma)$ : The eigenspace of $\sigma\in W$ with eigenvalue 1.
$1(\sigma):=co\dim E(\sigma)=\dim E(\sigma)^{\perp}$ , where $\perp$ means the orthogonal complement

in $E$ .
DEFINITION Al. A sequence $(\alpha_{1}, \cdots , \alpha_{l})$ of 1 roots is called a reduced

expression of $\sigma$ if $l=l(\sigma)$ and $\sigma=S_{\alpha_{1}}\cdots S_{\alpha},$ . Clearly there is no sequence
\langle $\beta_{1},$ $\cdots$ , $\beta_{m}$ ) of roots such that $\sigma=S_{\beta_{1}}\cdots S_{\beta_{m}}$ and $m<l(\sigma)$ .

PROPOSITION A2. Let $(\alpha_{1}, \cdots , \alpha_{l})$ be a reduced exPression of $\sigma\in W$. Then
$\alpha_{1},$

$\cdots$ , $\alpha_{l}$ are linearly indePendent and they form a base of $E(\sigma)^{\perp}$ .
PROOF. Let $F$ be the subspace of $E$ generated by $\alpha_{1},$

$\cdots$ , $\alpha_{l}$ . Clearly
$F^{\perp}\subset E(\sigma)$ . So $E(\sigma)^{\perp}\subset F$. Comparing the dimensions, we obtain the conclusion.

THEOREM A3. Any $\sigma\in W$ has a reduced expression.
First we prove several lemmata.
LEMMA A4. $1(\sigma S_{\alpha})=l(\sigma)\pm 1$ for any $\sigma\in W,$ $\alpha\in R$ .
PROOF. $1(\sigma S_{\alpha})\leqq l(\sigma)+1$ since $E(\sigma)\cap\alpha^{\perp}\subset E(\sigma S_{\alpha})$ . Similarly $1(\sigma)=1(\sigma S.S.)$

$\leqq 1(\sigma S_{a})+1$ . On the other hand, det $\tau=(-1)^{l(\tau)}$ for any $\tau\in W$ because the action
of $\tau$ on $E$ is real and orthogonal. Hence $l(\sigma S_{\alpha})\neq l(\sigma)$ . Combining the above
facts, we prove the lemma.

LEMMA A5. $l(\sigma S_{\alpha})=l(\sigma)-1$ if $\alpha\in E(\sigma)^{\perp}$ .
PROOF. Clearly $E(\sigma)\subset E(\sigma S_{\alpha})$ . So this follows from Lemma A4.
LEMMA A6. $\sigma$ is the identity if $ E(\sigma)^{\perp}\cap R=\emptyset$ .
PROOF. Let $f_{1},$ $\cdots$ , $f_{n-l(\sigma)}$ be a base of the dual space $E(\sigma)^{}$ of $E(\sigma)$ and

let $f_{n-l(\sigma)+1},$ $\cdots$ , $f_{n}$ be a base of $(E(\sigma)^{\perp})^{}$ . Then $f_{1},$ $\cdots$ , $f_{n}$ define a coordinate
system of $E$ in a natural way. Let $\{\alpha_{1}, \cdots , \alpha_{n}\}\subset R$ be the set of all simple
positive roots with respect to the lexicographical order defined by this coordinate
system. Since $ E(\sigma)^{\perp}\cap R=\emptyset$ , there is a positive integer $k_{j}\leqq n-l(\sigma)$ for any
$j=1,$ $\cdots$ , $n$ such that $f_{i}(\alpha_{j})=0$ for any $i<k_{j}$ and $f_{k_{j}}(\alpha_{j})>0$ . Here we regard
$f_{i}\in E^{}$ in view of $E=E(\sigma)\oplus E(\sigma)^{\perp}$ . By definition of $f_{i}$ , we have $f_{t}(x^{\sigma})=f_{i}(x)$

for any $x\in E$ and $i\leqq n-l(\sigma)$ . Hence $\alpha_{j}^{\sigma}$ is positive for each $1\leqq j\leqq n$ . This
implies that $\sigma$ is the identity (see [2, Chap. VI, 1, 5, 6 and 7]).
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Now we prove Theorem A3. We use the induction on [ $=l(\sigma)$ since every-
thing is trivial when $l=0$ . Suppose $1>0$ . Then $\sigma$ is not the identity, and
$ E(\sigma)^{\perp}\cap R\neq\emptyset$ by Lemma A6. Let $\alpha\in E(\sigma)^{\perp}\cap R$ . Then $l(\sigma S_{a})=l-1$ by Lemma
A5. Hence we can find a reduced expression $(\alpha_{l}, \cdots , \alpha_{l- 1})$ of $\sigma S_{\alpha}$ . Then
obviously $(\alpha_{l}, \cdots , \alpha_{l-1}, \alpha)$ is a reduced expression of $\sigma$ .

Supplementary notes.

After the present paper was finished, I found that V. A. Iskovskih has
obtained very similar results in the following paper:

[I] Fano 3-folds, I (translated by M. Reid), IZV. Akad. Nauk SSSR, AMS-
translations, 11 (1977), 485-527.

Every Fano threefold of index 2 in his terminology is a Del Pezzo threefold.
The converse is also true except $(P^{3},2H)$ . Therefore, many of my results are
included in Theorem (4.2) of [I]. Nevertheless I think the present paper to be
worth publishing because it deals with higher-dimensional cases too, the methods
of proofs are rather different, it does not need the hypothesis (1.14) in [I], and
the statement of [I], (4.2) is not quite correct in case $d=6$ . Namely, he over-
Iooks the Fano threefold $P(T_{P^{2}})$ of index 2. The error lies in the argument
(6.3) (e), where he claims that a degenerated Del Pezzo surface with one
ordinary double point can be considered as the anticanonical model of the blow
up of $P^{2}$ with center being colinear three points. But there is another type of
degenerated Del Pezzo surface. Let $x_{1},$ $x_{2},$ $x_{3}$ be points on $P^{2}$ , which is not
colinear, but $x_{3}$ is infinitely near to $x_{2}$ . Let $S$ be the blow up of these points.
Precisely speaking, $S=Q_{x_{3}}(Q_{x_{1}\cup x_{2}}(P^{2}))$ where $x_{3}$ is a point on $E_{x_{2}}$ but not on
the proper transform of the line on $P^{2}$ passing through $x_{1}$ and $x_{2}$ . Contract
the proper transform of $E_{x_{2}}$ to a point $w$ . Then we get a degenerated Del
Pezzo surface $S_{w}$ with an ordinary double point $w$ . We see easily that there
are exactly two lines on $S_{w}$ which passes through $w$ . Hence the claim (6.3)
(e) fails to be true in general. Indeed, this is really the case when $V=P(T_{P^{2}})$ .

Despite of this small defect, his paper is very interesting from my view-
point too.
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