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§1. Introduction.

Let £ be a domain in R?¢ and S* be hyper surfaces in R¢, i=1, 2, ---.
Denote by &' a symmetric form on L2%S*; do?), where do® is the surface
element of S*. Assume that surfaces don’t meet each other and each &' is
expressed in local coordinates as an integro-differential form. We shall be
concerned with a Dirichlet form & of local type on L%(2) such that

e(£2) is a dense subspace of 9[&],

" e - 50 28 20 o dnt 3 e, o) eCr(2) @
v o 20x, 0x, Apgd X P u', v u, v i .

Here a,, are Borel measurable, symmetric, locally bounded and locally uniformly
elliptic. u® denotes the restriction to S* of u. The purpose of this paper is to
construct a diffusion process on {2, whose resolvent G; satisfies the equation

1.2) ENG S, ©)=(f, P)r2c peple],

where €:(,)=&(,)+A(,)r2». With the aid of results by M. Fukushima [5],
there are d-dimensional diffusion and d-1-dimensional diffusions associated with
the first integro-differential term expressing the form &£ and the remaining &%s
respectively. So our diffusion process is considered to be superposition of such
diffusions. By using the same results in again, we have a diffusion process
whose Dirichlet form is € and whose state space is however outside some set
of zero capacity in general. Our present assertion is much stronger in that we
get a nice diffusion on the entire space £.

In N. Ikeda and S. Watanabe formulated a class of diffusions whose
infinitesimal generators are not necessarily described by differential operators.
Such diffusions are characterized by the system of measures called the system
of generators. It should be noticed that some examples in correspond to

(1) The definition of a Dirichlet form is referred to (or see .
& is called local type if &£(u,v) =0 for u,vE D[] such that Supp[u]\Supp[v]=(. For
a set E L?(E)=L*(E;dx), dx being the Lebesgue measure on E, and C%(E) =the space
of infinitely differentiable functions with supports in E.
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the special case in our context and the associated diffusions were constructed
from Brownian motions by the method of skew product.
On the other hand, the contrary case that all &' vanish reduces to the

study of the self-adjoint differential operator E--(z—r (a pq—fa—w) with discontinuous
0xp 0x,

coefficients a,,. In this connection, extensive study has been made by de Giogi
[8], J. Nash [14], G. Stampacchia and particularly the Hélder continuity
of resolvents has been shown. M. Kanda and H. Kunita could then
construct a diffusion by making use of those analytical results.

Our problem is to show the continuity of solutions of near the hyper
surfaces. To this end we extend L. Nirenberg’s methods which were used
to prove the differentiability of weak solutions of generalized Dirichlet problems.
Then we can follow Kunita’s arguments to construct a diffusion. In §2 we
formulate our assumptions and main results and prove them in the subsequent
three sections. Namely, in §3 we introduce some modified Sobolev spaces and
study basic properties of those spaces and their duals. Moreover we establish
generalized Sobolev’s inequalities. They will play important roles later. In §4
in the same way as we obtain a priori global estimates and local estimates
for solutions of Then by the method similar to we prove that those
solutions are Holder continuous. §5 is devoted to the construction of diffusion
processes. In §6 we see typical examples that all S* are compact or noncompact.

The author would like to thank Professor M. Fukushima for his generous
help. Thanks are due to Professor N. Ikeda for his useful suggestions.

§2. Assumptions and results.
We define Radon measures v,,(dx)=y,(dx:-dx4) on R* as follows:

dx;dxg-Ldxe+00(dxa)] if 1§P§q§d—1,
(2.1) qu(dx):qu<dx):
dxidxg-1dxg if 1=p=q=d,

where dx,, p=1, ---, d are one-dimensional Lebesgue measures and d,,(dx4) is
the d-measure. Let V={x=R?%;|x|<1} and & be a Dirichlet form on L*V)
satisfving the assumptions:

2.2) 2(V) is densely included in 9[&].
d ou ov .
2.3) e, v)= 3 1Sv Te Be mdvee W VECHV),

where a,, are Borel measurable, symmetric, bounded and satisfy the following :

(24) There exists a constant y=1 such that
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d d d
7Y Edv, s 2 Ep€qapedyp =T 2 £3dvp, on V
p=1 p.q=1 p=1
for every &=(§,, -, §,)= R
(2.5) A ECHHVINCEH(V) and ap(-, 0)eC#(Vy), 1=p, q=d.®

Note that a,, need not be continuous on V. Put &;(,)=¢&(,)+2(,)r2r). Then
we have the following :

THEOREM 1. Under the conditions (2.2), (2.3), (24) and (2.5) there exists a
unique diffusion process X on V whose resolvent G satisfies

{ G feale]
EAGf, ©=(f, P)r2a peI[&],

where f= L¥V) and 2>0.

Making use of [Theorem 1, we can get a diffusion associated with & defined

by (1.1). We shall formulate our statement more precisely. Let £ be an
arbitrary domain in R? and S?% i=1, 2, --- be hyper surfaces in R? with follow-
ing properties :
(2.7) For each i there are a locally finite open covering {U%¥}%,; of S*N{2 and
one-to-one transformations @%, j=1 such that (i) U:n\U*=0 if i#k,
(ii) QU U=V, @YU S' N\UNH={(X,, ---, X)€V; X4=0}, and (iii) &* and its in-
verse ¥'% are transformations of class Ct4/2+!, Moreover there are bounded
subdomains £?, =1 such that .QiC.Q—izUlSi and i\zjl.Qi:Q— U St

iz1

(2.6)

Let us introduce a Dirichlet form & of local type on L*2) and assume
that :

(2:8) (£2) is a dense subset of 9[&].
> ou_ 9v 1 i .
p%lS!}»a?; —a};amdx if Supp[u]N\S*=0 for any i,

2. -
@9 e ) us TH) 3w W)

o))
i)y 6%, 3x,

afyp(dX)
if Supp[u]cU% for some 1, j,

for u, veCy(f2), where a,, are Borel measurable, symmetric, locally bounded,

locally uniformly elliptic, i.e. for any compact set KC £, there is a constant

r=y(K)=1 such that r‘1|§|2§1 ngdspéqamgrl&[z on K for every £ R? aY,
=p,

satisfy (2.4), (2.5) for each 1, j.

(2) For a set E C*(E)=the space of & times continuously differentiable functions
in E, CE(E)={veC#(E); all derivatives up to order % are uniformly continuous in E},
E+(—)={(x1: “tty xd) EE; xd> (<)0} ’ E(): {(xly "t xd) ERd—l; (xlr sy X1, 0) EE} .



674 M. ToMISAKI

THEOREM 2. For a Dirichlet form & of local type satisfying (2.7), (2.8) and
(2.9) there exists a unique diffusion process X on £ such that

{ G.feoLe]
SX(GZf) 90):<f’ @)LZ(Q) QE@[S:' s

where G, is the resolvent and fe L¥Q), 2>0.
These theorems will be proved in §5.

(2.10)

§3. Some function spaces, their duals and a generalized Sobolev’s
inequality.

Let 2 be a domain in R® and v,, be Radon measures defined by (2.1)
(p, g=1, -, d). We consider the following space for 1<s<co,
V(D)= {ucs L*(2; dv,,); for each p (1=p=d) u have a version u‘? such

that u=u® y,,-a.e., u‘? is absolutely continuous in x, for a.e. (x;, -+, xp-1,
ou® . .

Xps1 ", Xq) and “ox e L32) and if p+#d, then u‘®(-, 0) is absolutely con-

. . » au(p)

tinuous in x, for a.e. (xy, =+, Xp-1, Xp+1, -+, Xa-1) and ——(+, 0)= L(2,)}.

0%,
Every uevU(2) has the weak partial derivative v:

0
Sgua;%d”pp:—ggw dvep  @ECH(D).

ou

0xy, '

We denote such v by
ou’®  gu
0x,  0xp
The following is easily verified by the same method as in Sobolev spaces.
PROPOSITION 3.1. (i) WUL) is complete with respect to the norm

Notice that a version u#‘?> can be chosen to be

31 il o=( 3§, | 2"yt |l 1oamas) ™

p=1J2 ax,,

(il) VU(R2) is reflexive.
(iii) Let E be a subdomain of 2 with closure ECQ. For ue UXR) and for
p (1= p=d) the difference quotient

1
Ahmu(x):?-l—{u(xl, v, Xpet, XptR, Xpiy, o, Xo)—ulxy, 0, Xg)}

belongs to UAE) for sufficiently small h and satisfies

ou
0x,

(B2 I4Pulsa, oy lllleg and lim|dpu— 0.
h-=0

L2¢E; dypp)
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Moreover we introduce two function spaces.
F5(2)=the closure of {usCY2); ||lulls o<co} in the space VU(N).
(2)=the closure of C3(2) in the space U(RQ).

The following is obvious.

PROPOSITION 3.2. F°(2) and FYL2) are complete and reflexive.

Here we shall assume that:
{3.3) {(xq, =+, xa)ER*; (x1, =+, x4-1)EQ,, |x4| <0} TR for some §>0.

In the presence of this assumption we make two remarks on % Q). Let
us define the norm |- |, o by

ulom( 12 [ urar)”

p=1
PROPOSITION 3.3. Under the assumption (3.3), (1) |-|.e 1S equivalent with
l-llz 0 in the space F¥2), and (ii) each us F*(L2) has a version # such that u=71
a.e. in 2, u(-, 0)=4(-, 0) a.e. in £, and 9(x’, x4) is absolutely continuous in x4
for a.e. x'=(xy, =+, Xg4-1)E82,.
PrOOF. (i) Let a be a function belonging to C5(R?) such that a(0)=1 and
a(—0)=0. Then

(35) [, " 0>2dx':SQO(S°_5~d% fa(ru(x’, 2ot dxrdx’

<o B3 o)

for every ueCYLQ) with |ul,q<oco, ¢=c(d) being some constant. Hence
{usCy(2); |ul,o<oo} coincides with {ueCWQ); llull, <o}, and the inequality
extends by continuity to all # of F%(2). This implies the assertion of (i).

(i) Fix any ueg*2). There is a version # such that u=# a.e. in 2,
o . . ) ou o1
#i(x’, x4) is absolutely continuous in x4 for a.e. x” and Tl P because of
d d

FH D UHQ). This & satisfies the required property: u(x’, 0)=#(x’, 0) a.e. x’
in £,. Indeed, choosing a sequence {u,}y—,CCN£2) such that |u,|, o< and
fu—unls 0—0 as n—co, we see that for the same function « as in (i)

SQ lu(x’, 0)—a(x’, 0)|2dx’

gz[sgo lu(x’, 0)—ualx’, 0)[2dx"

Siaﬁag: {alxdu(x’', xa)—a(xa)i(x’, xa)}dxq de’]

+a,
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0

=2(c+( atrordrat] acotdxdlu—ualia—=0 as n—oo.

Q.E.D.

Combining the way in [9, §0, Example 1] with that in [16, Lemma 1.1],
we are next led to

PROPOSITION 3.4. Let f be a uniformly Lipschitz function on R* such that
the derivative f’ is continuous except at a finite number of points of R*. If
ueF(Q), then fu)eF(2) and for each p

O ry=rf/(u) 3%
”ax’pf(u)——f <u)6xp’

where the right hand side is understood to be zero if f'(u) is not defined as a
Ffunction of x. Moreover, if f(0)=0 and ue F(L), then f(u)e Fy(2).

REMARK 3.5. Taking f(x)=|x| (xeR"), we have the following: If u, v
F(2) [resp. FYA)], then uVv=ut+v+|u—v|)/2€F(L) [resp. FH(L2)] and
hence if ucF(R) [resp. FYL)], then (0OVu)Al (=the unit contraction of
w)e F*(2) [resp. FY2)].®

Now we study the structure of the dual space of F(£2). We denote it by
F-5'(2) with 1/s+1/s'=1.

PROPOSITION 3.6. In order that a distribution T belongs to F~%(82) it is
necessary and sufficient that there exist (in general, nonunique) f,< L3(£2)
0=p=d), g,=L(2,) 0=p=d—1) such that

-1 (d)
(3.6) T=f— pél g&—Jr( GoXOB)— dE (g X0

Xp p=1 ax;;

where 08 is the Dirac distribution concentrated at the point 0= R'. Furthermore

. d s d-1 s , 1/s
ITlssor=in( 35 1151 dx+ 2 |, 1251%d27)",
the infimum being taken over the set of all f,e L), goe L¥(82,) satisfying
(3.6). dx’ denotes the Lebesgue measure on £,.
PrROOF. () can be identified with a closed subspace W of [L®(Q2)]¢*+?
X[LY(2,)]¢ by means of the map P: u——>(u, —aa—lir, e —ai, u(-, 0), f'%—(-, 0),
- au X1 axd axl
e, -3;—(-, 0)). The operator T* defined by <T%*, Puy=<T, u> is an element
d-1
of W’, the dual of W. Appealing to the Hahn-Banach theorem and the Riesz
theorem we find f,eL*(Q) 0=p=d) and g,=L*£2,) 0=p=d—1) such that
for ue g% (Q)

3) ﬁVU-——*max{u, v}, uAv=min{u, v}.
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T w={ (faut 3y g Yt (g, 0+ gy 7, 0.

In particular, for ueCP(2)CFy (2)

(@
o 1 gxa— S XerXIE

T wy=<fom )—1 3 p=1 0X, '’

uy .

This extends by continuity to all ue g3 (2) since C5(2) is dense in Fj (2).
Conversely suppose that a distribution T is represented as Then by

Holder’s inequality

(<Twl=( B |, 11+ B g1 dx) Tl o

for every u=Cy(f2), which extends by continuity to all ue 3 (£2) because of
the denseness of Cy(£) in &% (Q). Hence TeF %(L2). Thus the proof is com-
pleted. Q.E.D.

REMARK 3.7. When (3.3) is satisfied and for s=2, by virtue of
3.3 (i) we can take g,=0.

Next we want to prove

PROPOSITION 3.8. If (3.3) is satisfied, then C3(82) is dense in F~5(£2).

This follows immediately from

LEMMA 3.9. Let feL¥(82,) and 1=p=d—1. Under the condition (3.3) for
any €>0 there exist ¢, $=CF(82) such that

3.7 | fX0H—pllg-scor<e,
3.8) “——av(fx&(d))—gbh <.
' 0x, o F-SD)
ProOF. We may suppose p=1. Let us choose heC;(2,) and asCy(R?Y)

such that |f—hliscep <&/3 and a(0)=1, a(—0)=0. Then g,(x’, xq)=

0 oh
—af;«x')h-a.m(xd)a'(m and g4x', x)=5 (x)csn(xoalxa) belong to LYQ)

and hence there are ¢y, ¢,=Cy(£2) such that | g;—¢llzs<e/3 for each i=1, 2.
We shall show that (/)Egbl———g%—z- satisfies (3.8). By integration by parts
d

(o)
_S.Qo ax. ~(x")dx’ S a'(xdulx’, xd)dxd+SQo-aafl(x’)dx’S_ a(xd)a (x', x)dxq

=SQO~-—~ (xDu(x’, 0)dx’
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:<k>jfl(h Xa(kg?)f u> »

so that

(G trxat—, u)

5 \ dg:  Ofy
7 aN__ 7 (d) — _ LA
=|( 52 (= 5 h o), )|+ <ai= g W+ [( 2 = 20, )
<1l 250 gl el
LSy ax 15 Q0 1 LSO W LY ()
0
+llg.— ¢2”L8(Q) 9;: L8’ ()

<ellulllsr, 0,

for every usCy(f2). Since Cy(f2) is dense in 3 (L), we have (3.8). Moreover
noting that

0
X0l w={fi— g7, ) for ueCi(@),

with fi(x’, xa)=F(x" )M -5, 0(xa)a’(x40), fo{x’, x)=F(x") -50(x)a(xq), We obtain

Q.E.D.
REMARK 3.10. If feL3(Q)NLYRQ,), it is p0551b1e to select a function

¢ [resp. ¢] satisfying both of llf><5§‘3? ¢llg-scr<e and ||f XdF—ols-t<e

0 a
[reSp' Nigﬁc‘p'(fxaiw))—sb“9-3(.0><€ and “ o F-tD ]
In the above proof we may take g,(x’, xd)—:“ﬂr—a;-—(x’)[m’[;)(xd)ﬁ’(xd),
i, J\d)*—'*—‘ (x") co, 5)(xd>,3(xd> fl(x ld)*“‘f(x’ﬂm,&)(xd),@/(xd), ];2(75/, Xq)

=—f(x’ )1(0,5>(xd),8(xd) instead of gi, g, fi, f» respectively. Here 8 is a func-
tion in Cy(R') such that B(0)=1, PB(@)=0. Therefore if @=R?* and f(x")=0,
x’'€B,, B being an open ball in R?, then ¢, $=Cy(R?) in (3.8) can be
chosen to be ¢=¢=0 in B. Thus we are led to

ProOPOSITION 3.11. Let B be an open ball in R* and assume that Te<
F(RING(RY) is represented as (3.6) by means of some [y L(R*)NL*R%)
0=p=d), gp= LX(R*)NLYR* ) 0=p=d—1) such that f,=0 on B, g,=0 on
Bo. Then there exists a sequence {¢n}nCCF(R®) such that LimHT——gonllg-smd)

:li_{n|lT—§0an—2(Rd):0 and ¢,=0 on B (n=1).

Now we shall conclude this section with inequalities which are analogous
to Sobolev’s one.
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THEOREM 3.12. For any s, 1/2—1/d<1/s=1/2, there is a constant C,=
C.(d, s) such that

(3.9) el zsco; avyp =Cillullz, ue FY(2).
Moreover if £2 is bounded, then

610 Julw e =SC{ 5 [ () tve) " w2,

where C, 1is a constant depending on d, s and diam Q= suepglx—yl.
z,y

Proor. It follows from [2; §10] that

“u”LS(Q)§C1{ Z:J S (aa; ) dx—i—g de}w usC(8)

with ¢;=c¢,(d, s). Applying this to u(-, 0), we get

I, Olurap Seid—1, O £ (22 (0, 0Y ax'+{, uw', oran}”

0x

where x'=(x,, -+, x4-1)E 2,. Therefore is valid for u=C3(2) and so it is
for all ues FY0).

When diam 2=p <o, it is deduced by the same method as in [13; Lemma

2] that
w8 o)

for some constant c¢,=c,(d, s, p) and for every ueC§(£2), and hence

Juliocts S (ed s o)+ esd—1, 5, O B [ (Y avan)

which completes the proof. Q.E.D.
REMARK 3.13. If £ satisfies the condition (3.3), in view of [Proposition 3.3

(i) we have that for some C;=C,(d, s, 0)

(3.11) lullzsco; avp=Csluls e usFy 2.

§4. Global and local estimates, Holder continuity.
Let 2 be a domain in R?% Throughout this section we shall assume (3.3).

We define a symmetric bilinear form &; on F¥ ()X F*(L2) by

R o, )= 3 [ A (05 (00l d),

20x,

where derivatives are taken in the weak sense, v,, are defined by (2.1), and
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a,, are Borel measurable, symmetric, bounded and satisfies the following :

d d d
(42) T‘l ]§1 E%dvpp§p§q3:15p5qapqdl)pq§7 1;__:1 S%d”pp on 'Q’
for every £€=(&, -, £,)€R?, 1 (=1) being a constant. Denote €g(,) +4(, )2

by &g.; for 2=0. We simply write € and &, instead of &p and &p,; respec-
tively. From the condition (4.2) the form &; with 2>0 is bounded and coercive
on FH )X FHL), that is,

4.3) [€a(u, V)=V D|ulzolvlea,
(4.4) Ex(u, W= ' ADlulie,

for every usg¥ Q). Of course [4.3) holds for 4=0. In view of [Proposition 3.4
we obtain

PROPOSITION 4.1. Both of (F¥), &) and (FYR), &) are Dirichlet spaces
relative to L*2). Namely, for F=FQ) or FYQ), (i) F is dense in L*H2),
(ii) &€ is symmetric, bilinear and €(u, u)=0, ueF, (iii) F is a Hilbert space with
the inner product &,(,), and (iv) the unit contraction operates to the form &:
if ueg, then v=0VuUAIEF and E(v, v)=E(u, u).

Now we shall show a priori global estimate for solutions of the following
equation.

[ usFHR)
| €a(u, 9)=<T, ¢»  @eFUQ),

where 1=0 and T %% Q). It should be noticed that for >0 and T=F"%02)
there exists a unique solution of by the Riesz representation theorem.
Moreover in the case when £ is bounded and diam 2=p, by virtue of [(3.10)

(4.5)

(4.6) Eu, wyzDiluldo usFUR2)

with some constant D,=D,(d, p, 1) and hence a solution of [4.5) exists uniquely
for A=0 and Teg Q).

THEOREM 4.2. Let T be in F()NF Q) with s>d. Then for any A>0
there 1s a constant D,=D,(d, s, 0, 7, A) such that the solution u of (4.5) satisfies

4.7) ”u“Lm(.Q; d»n)_—<:Dz||T”SF-S(Q)+]|HHL2(.Q; dvyyd »
Furthermore if diam Q=p is finite, the solution u of (4.5) with 2=0 satisfies
(4.8) 2l z=co; wip =Dl Tl g-5c0

where Dy=Dyd, s, 0, p, 7).
PrROOF. We use the same method as in [16; Theorem 4.2]. By Remark
3.7 we are given T represented as by g,=0 and some f,= L(2)~\L¥ Q)
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O=p=d), g, L(LQ)NLY2,) 1=p=d—1). For k>0 we define
u(x)+k if u(x)<—=k
v(x)= 0 if —k=u(x)=k
u(x)—k if E<u(x).

~

v ou __ 0v
P ”8}&; on A(k) and v= ox,
=0 on A(k),, where A(R)={x€2; |u(x)|>k}. Hence by (4.4) we have

It follows from [Proposition 3.4 that ve< F¥Q), 6

T ADIvEe=E:(v, v)EE(u, v)=LT, v>.
On the other hand

- ov
T, vy={, fovdet 2 L(k)fpaxpd +pz:1L(k)0 £y Y (., 0)dx’

< d , 1/2
Z(pEZOSA(k) pdxt E SA k)ogpdx) lv]s0.

Therefore and Holder’s inequality lead us to

a-1 1/2
[oleeo; anpSeilvlnoseavaE |, fdet B, gdx)

<c(rV A 1)(d+1)( S | folodx+ ES 0}gplde,)usp“(A(k))m_”s’

where 1/t=(1—1/d—1/s)/2 and c¢,=c,(d, s, 6). Since
(h—Rwu(A) =l vleco; avyp  fOr h>E,

we get

(4.9) vis(A(h) = call Tl -sc(h— k)t (A(R))H/2-1/9

with A>k and c,=cJ(d, s, 6, 7, A).
If p=diam £<oco, by means of there are constants c,=c.(d, p),
¢,=c4d, s, p) such that

|vl Q£C<§S ( )dv )1/2 lvilLeco; SC(ég (av)zdv )1/2
2,2=~CL3 i ace ax Py ’ HHLE(D; dyyd) = = dace avp »p

and hence

V]2 a»mécsmr(dﬂ)( ANTALEE ES gpltdx’) v AR

Thus we arrive at (4.9) with c;=c¢,(d, s, 9, p, 1) instead of ¢, in this case, too.
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Since #(1/2—1/s)>1, appealing to [16; Lemma 4.1] we obtain the following
estimate :

|ul = kotcoll Tlla-scoyvun(A(ke) /#7118 pyp-ace. in L.

Here k=0 and ¢, is a constant depending on ¢, or ¢;. Put ko=|u]z2c0; av,; OF
0 according to diam £=o0 or <oo, which establishes the desired estimates.
Q.E.D.
Next we turn to the following local estimates. From now on we are con-
cerned with the estimates in the case that £ is a cube Q(a, p): Q(a, p)=
{(x1, =, xa)ERY; |xp—apl <p/2, 1=p=d}, where a=(ay, -, aq).
THEOREM 4.3. If u is a solution of

{ ue FXQ(a, p))
Exu, =0 =g Q(a, p))

(4.10)

for some 2=0, then there is a constant D,=D,(d, p, 1) such that

llu”L”<Q<a.p/z); dy11)§D4”uuL2<Q<a,p>; dvyy) -

In the course of the proof of we still utilize the idea of
Stampacchia [16; Theorems 5.1 and 5.2]. A function ueF*2) [resp. F¥2)]
is called to be nonnegative in a generalized sense if there is a sequence
{und o1 C{usCl(2); |ulso<oo} [resp. Cy(2)] of nonnegative functions such
that lim|u,—u], 0=0. Observing Remark 3.5, [43)] and [4.6] we obtain the

7L —00

following by the same method as [16; Theorem 3.4].
LEMMA 4.4. Fix 220. If u satisfies

{ ue F4(Q(a, p))
E(u, =0 =0, €C5(Q(a, p)),

(4.11)

then (u—~k)V0 does so for every k=0.

LEMMA 4.5. Let u be a solution of (4.11) for some 2=0. Assume that u is
nonnegative in a generalized sense. Then for each s, 1/2—1/d<1/s=<1/2, there
is a constant Dy=Dy(d, s, p, 1) and we get

d a€0 2
9 < 1-2/s it
SQ(a,m((‘Du) dVllzDstvn(Q(a, p)ﬂ {§0u750} )] pf‘:‘lg@(a,p)<u axp) d”pp
for every o=Cy(Q(a, p)).
PrROOF. Put 2=Q(a, p). Since ¢’u belongs to F¥L) and ¢*u=0 in a
generalized sense, €;(u, ¢*u)=0 and so &(u, ¢*u)=0. Hence

Ao AL padVpg

d S , 0u  0u
Pp.q=1 !290 axp axq
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lIA

d ou 0o
23 | oo Yoy, Gr@m

o8 o B ot (L0 2 )

q

A

that is,

d , 0u  oOu , 0p 0p
¥ ¢ ox, ox, Cmdvn=t, 5 | dx, ox, (ndve

p,g=1

By condition (4.2)

B g Yavmstr B (g8 Y avnn.

Therefore by using Holder’s inequality and we obtain

Sg(gou)zdvn

é{SQ(SDU)San}Z/S[yM(Qm {ou+0})]1-2

. e 1-2/8 d agD a:u ’
§C[U11(‘Qm {QDu 7_0} >] / pgl SQ(BJCP u+¢5x:) dvl’p

. cas 99 \?
= 2e(1+47) (20 fpu 0T 3 SQ(“"ax) @op

where ¢=c(d, s, p), completing the proof. Q.E.D.

PrROOF OF THEOREM 4.3. Put Q(p)=Q(a, p). Let u be a solution of
with some 2=0. For each 0<p,<p,=p we shall choose a function ¢=C;(Q(p))

such that ¢=1 on Q(p.), ¢=0 on Q(p,)° and |¢| =1,

0o :
Fi ‘ =4/(p.—p2). Since

for all #=0, (u—k)Vv 0 satisfies and is nonnegative in a generalized sense,
we see by applying to s=2d/(d—1),

(u—h)*dvy,

SQ(pg)mu>h}

< 2 _ 2
ZSQ(p)go (u—h)\ 0)dy,

écl(Pl_pz)ﬁzD’u(Q(Pﬂf\ {u > h} )]I/dg (u—nh)*dy,,

Qo pNiu>h}

<epi—poh—k)y (| (u—Rrdw)

QUpNIu>k}
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for h>k, with ¢;=c(d, p, 7). Taking S (u—h)tdvy as o(h, p) in [16;

QpXNtu>h)
Lemma 5.1], we get

(4.12) u=csllulregepy; ayp  Yura.e. in Qp/2),

where c¢,=cy(d, p, 7). The above argument may be repeated for —u. Thus the

theorem is proved. Q.E.D.
We proceed to the Holder continuity of solutions. In the rest of this

section, besides the assumptions stated before the following is presented :

(413)  a=CEQ(a, p))NCE3(Q(a, p)-) and a,-, 0)CHAQla, p))
for every p, q.

THEOREM 4.6. Assume (4.13). Let fe W3- Q(a, p)) and 21=0.Y If ue
FQ(a, p)) satisfies €;(u, )=(F, ©)r2cqca. p»» CEFAQ(a, p)), then u is Holder
continuous on Q(a, 7) (r<p) with exponent I, where 0<I=1/2 or 0<I<1 accord-
ing to d is odd or even.

PrROOF. The method of the proof is based on an idea of Nirenberg [15;
§5]. Put Q=0Q(a, p). In view of the Sobolev imbedding theorem (cf. [1;
Theorem 5.47]) and [Proposition 3.3 (ii), it is sufficient to verify that au belongs
to Wrez(Q Y\Wee2+y(Q ) for every a<=C(Q). Fix arbitrary a=C7(Q) and
e FH Q). Since apsFYQ), &(u, ap)=(f, ap)r2p. The left quantity equals
to &(au, ¢)+E(u, ¢):

— % ([ ou e _( Oa 00 .
Elw, SD)—p%:l(SQ 0x, 0x4 arad¥ng SQ 0xp u 0x, a”d/”)'

Consider the difference quotient of ¢:
Al — 1 - .
AP e(a)= 5 Ap(xs, =y Kooty Tethy Xewsy ooy Xa)—@(xy, -5 xa)},

where 1=r=d—1. Because ad¥p=FYQ) for sufficiently small h, we get

Exdnan), ©)=—(f, adP)r2qy+Fulu, o)+ E(u, 47¢),.
where

Frlu, @)=&;(d%(au), ¢)+&:(au, 4iP¢)

x ~xA(x1, vy X Ry e, X)) AP A p XY pe(d x) .

An application of [3.2), (4.2), (4.13) and [Proposition 3.3 (i) gives

(4) For a domain E W¥#(E) denotes the Sobolev space W*2(E)={u=L2(E); Du
e L2(E) for 0= |a| <k}, where Deu is the distributional partial derivative.
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i), o)l sellglh ot $ |2
p=1l0x,

0

<

Lz(Q; dypp)):C2lSDl2:Q ’
¢y, ¢, being positive constants independent of 4 and ¢. Setting ¢=4%(au)e
FHQ), we obtain by [4.6) that |4%)(au)!. ¢ is bounded by a constant independent

of h. Since by (3.2) Ai’,{(au)ebax (au) in L¥Q; dv,) as h—0, we see that
€]

. ) 0
“au), by choosing a subsequence if necessary, converges weakly to -3}"(0‘”)‘
r

We thus can utilize a theorem of Banach-Saks to get a subsequence {4“; (au)}
. . c e 0
whose arithmetic means converge strongly to 5% —(au), which implies —a—;—(au)
eF3(Q). Since fEe W/ YQ), a,p=CEH(QINCEQ2) and ap(-, 0)=CHHQ,),
repeating the above argument we obtain that for every a=Cy(Q) and 0=|j| <

Ld/2]

(4.14) Di.(au)= FYQ) or equivalently aDi,ueFiQ),

where DJ, denotes the partial differential operator Y ey with multi-index
X1 0xdq
7=y, =+, ja-1) of nonnegative integers, |j|=ji+ -+ +ja-1.
Now we shall show aueWt/EH(Q)AWE2H(Q), acsCH(Q). Fix again
any a=Cy(Q). Since u satisfies

d ou Oagp . .
p:Q=lSQ+7av.;C; _a}q apqu+ZSQ+ua§0dX—SQ+fagodx @ECO (Q+) ’
we have
0 0
7,29 [q. 0
@1y (Dugl syl @), o)
g K 0*u ou .
fet j' [ S— - , _—
B0 P(E Ay i+ oy Jodat |, DhCumapipds

for p=C5(Q,) and 0=|j|=[d/2]—1. Here A, belongs to C}¥*(Q.), B, and C
belong to C¥/#-%(Q,) and their supports are contained in Supp[a]. It follows
from that the right quantity of (4.15) extends to all o= L*Q.) and defines
a continuous linear functional on L2%Q,). Therefore

(4.16) Di. %{adq%(au)}evwg 0=1j1=[5]-1.

It is derived from ((4.14) and (4.16) that

o Fgton}= b o ez o} (525 550}
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belongs to L*Q,), and so by agq.=7'>0

Df,*az (auw)e L¥Q,) 0=17l S[—d]—l.
a ax?i - + = = 2
We then obtain
j _@2_ A,,va__ P 2 < |4 <|:£ —
Di, 57 {add dra (au)}EL (Q.) =l 2] 2,

by the same method as getting [4.16). Since for 0= |j| =[d/2]—2,
s 0° . . ;00 0 .
J, I e . ] -
Di {add o5 (au)} is given in terms of DY axaladd ox. (a ¢)} and other deriva
tives belonging to L*Q,),

3
Di, *ig (au)e L¥Q,)  0=1j] §[£} —2.
axd 2
Repeating this argument we conclude that the derivatives of au up to order
[d/2]+1 are in L*Q,), namely aque Wte/2+(Q,). We can also verify aue
Wtes+(Q ) in the same way as above. Thus the proof is completed.

Q.E.D.
§5. Construction of diffusion processes.

In this section we first construct a diffusion on R? and then prove Theo-
rems 1 and 2. We shall be concerned with the form & defined by on
FURYHYX FYR?). Namely

ou

40x,

.1) e, )= 3 S
b/ R

> (x)—gff(x)apq(x)vm(dx) u, vEFYRY).

0

(5.2) ap, are Borel measurable, symmetric, bounded and satisfy (4.2) for 2=R".
Moreover we assume that:

(6.3) For every a=(a,, -+, ag)€ R such that a,=0 there is a positive p satis-
fying (4.13).

For each Te% % R% and A2>0 we denote by G;T the unique solution of
with Q=R?: G, T€FYR?) and &,(G;T, ©)=<T, ¢>, o= F}R?. Then we
have

PROPOSITION 5.1. G,;feCu(R?%) for every f=Cy(RY) and 21>0.

ProoF. Fix arbitrary feCy(R?) and 2>0. In view of (5.3) and
4.6 there is an unbounded domain U such that U, coincides with R¢"! and G; f
is continuous in U. Let B(a, p) be a ball with radius p centered at a. If

(5) Cw(R%) =the space of continuous functions vanishing at oo,



Diffusion processes 687

B(a, p),=0, then

d 0G,f dp ,

Bea,py 0X, 0Xx4 O)G;fgodx:S

(a,

fedx,
0>

B(a,
peCy(B(a, p)).

Therefore we can apply Stampacchia’s results [16; §6] to obtain that G,f is
continuous in B(a, p/2). Thus G,f is continuous in R% It is derived from
that G;f vanishes at infinity. Indeed, €;(G,f, ¢)=0 for all
0= FYQ(a, 2)) provided Q(a, 2)N\Suppl f]=0. By virtue of

1/2
< 2
sup 1Gf1=Did, 2 {[  (Gaprdf

For any ¢>0, taking a sufficiently large [, we get

sup |Gif(a)]= sup Sup)]fo(XH

aEQ 0, 1+2)¢ ac€Q0,1+2)¢ zeQ(a,1

=pid, 2, 0f] | (Girran}<e,

which finishes the proof. Q. E.D.
PROPOSITION 5.2. Let s>d. Then G; is a continuous linear operator from
FHRINGHR?) into Co(R%) for each 2>0.
ProoF. First we remark the following: For every Teg %(R?)

THAD|GIT 3 ra=EHGT, GiT)=<T, G2T)=|T|lg-2cra>| GaT | 2, ra ,
so that
(5.4) 1GT22cre; avip=Ci|GaT s e =c:(yV AT | g-2cra>

for some ¢;>0.

Now by using [Proposition 3.8 and Remark 3.10 for any T€ F~3(RHYNF (R%)
there is a sequence {p,}n-1 C C7(R*) such that [T —¢ullg-scray — 0 and
|T—@nllg-2cra>—0 as n—oo. [Proposition 5.1, (4.7) and [5.4) assure that {G¢,} 5
is a Cauchy sequence in C.(R%) and G,;T must belong to C.(R%). Making use

of and again, we find a constant ¢, and
(5.5) SufleT | =co(|Tlg-scra>H T Il g-2cras) - Q.E.D.
R

Following [12; Proposition 2.1] we shall prove
PROPOSITION 5.3. G;i(C(R?)) is a dense subspace of Co(R%) for A>0.¢®
PrROOF. For ueCy(R?%) define the operator L by

(6) Co(R% =the space of continuous functions with compact supports.
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d da-1

(5.6) L“:p%'aip(ap‘faa,:q)ﬂ%{é%(“m“ 0>'aafq -, o>x5§ge).
Since a,, are bounded, L maps Cy(R?) into ¥~ 5(RY)NF *(R?) with s>d. Hence
u=G;(A—Lucs G (F (RHNFYR?)), from which G(F(RHNF(R?))is dense
in Co(R%). Combining this with [Proposition 3.8, Remark 3.10 and [Proposition 5.2|
we get the conclusion. Q.E.D.

Now we shall show

THEOREM 5.4. For the form & defined by (5.1), (5.2) and (5.3) there exists
a unique diffusion process X=[x,, {, P, (x€ R%) such that

Grf=E.L{ e fx)dt]  fECARY, 250

Proor. It is easy to see that (,; satisfies the resolvent equation:
Gi—G,+(A—wG;G,=0 (2, u>0). Since (FIR?), &) is a Dirichlet space relative
to L% R?) (see Proposition 4.1), AG; is sub-Markov. By [Proposition 5.3 we can
appeal to the Hille-Yoshida theorem to obtain a nonnegative, strongly continuous
and sub-Markov semigroup {T,; >0} on C.(R%) such that

Glf:Sje““thdt for fEC(RY, 2>0.

Therefore there exists uniquely an associated Hunt process X=[x,, {, P.]
(xeR?). It remains to verify the continuity of sample paths. For this end
we need

LEMMA 5.5. Assume s>d. Let B be an open ball and T€ FS(RHONF 4 R?)
be represented as (3.6) by means of freL*(RYNLAR?) (0=p=d) and g,<
L¥(RHNLARY) (0=p=d—1) such that f,=0 on B and g,=0 on B,. Then

GT(x)=E.[e *8G;T(x,,)] x€B,

where op=inf{t; t>0, x,< B}.
PROOF. By |[Proposition 3.11 there is a sequence {¢,}7CCy(R?) such that
E_{E”T_@nHg—scRdJ':Li_IE”T—QOn”SF-MRd):O and ¢,=0 on B (n=1). Hence by

IProposition 5.2 G,¢, converges uniformly to G;T as n—c0.™ On the other
hand Dynkin’s formula gives

Gaipa(X)=E [e %8G, 0,(x,,] xEB.
Making n— oo, we have
G:T(x)=E,[e*78G,;T(x,,)] x€B,

as desired. Q.E.D.
Let us prove the continuity of the sample paths. We follow Kanda’s
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argument [11]. Let B be an open ball and £ be any open set such that BN\R
=0. For a nonnegative ucCy(R?%) satisfying v=0 in B and »>0 in 2. Put
T=(A—L)u with L defined by [5.6), which implies u=G,;T. Since T satisfies
the assumption of u(x)=E,[e *"Bu(x,,]=0 (x&B). This gives
P.(x,5=42)=0 and since 2 is arbitrary, we have P,(x,,€0B)=1. Thus the
proof is complete. ‘ Q.E.D.

By virtue of (5.5) and the fact: (G, ¢)r2rar=(¢, Gid)r2crar, ¢, PECT(RY),
we can use the results by Blumenthal and Getoor [3; Theorem VI. 1.4] to get
the resolvent density g;(x, y), A>0 such that for each 1>0,

(5.7) gi(x, y) is nonnegative and jointly measurable,

(5.8) gi(-, y) and g:(x, -) are A-excessive,

(5.9) sz(.x>=ggz(x, y)f(y)d.vzggz(y, 0f(y)dy.

Moreover by [6; Theorem 4] we obtain the symmetric transition probability
density p(¢, x, ¥):

P.(xiedy, t<O=p(t, x, y)dy, pQi, x, »)=p(, y, x)

for each >0 and x, ye R%

Before we go to the proof of [Theorem I, we see

LEMMA 5.6. Given a Borel measurable symmetric bounded apq satisfying
the assumptions (2.4) and (2.5), there is an extension satisfying those assumptions
with 7 and R? instead of v and V respectively.

ProoF. Let {A4;}Y; be an open covering of 0V and {a;}¥, be C>-partition

N
of unity subordinate to {A;}Y;: a;eC5(A4,), 0=a;=1 and Z_,‘lai———l on a neigh-

borhood D of V. Then there are one-to-one transformations @;, 1<i<N and
open sets U;, 1=i<N such that for each i @; and its inverse ¥; are smooth
transformations, @,(A,)=U;, @,(ANV)={X=(X,, -+, Xg)€U;; X;>0} and if
Ap#0, then @,({(xy, -+, x)€A;; xa=0)={(X,, -, X9€U;; X4=0}. Put

a pee Vi(X) if Xed,(4.NV),
bho(X) = }l,ilrf}) ap° ViV, X, -+, Xa) if X=(X,, -+, Xq)

Cd/2l41 € {(Xl) B Xd)EU’L; XI:O}’
;1 njapq° wi(_ley XZ) Tty Xd) if X:(Xb Tty Xd)eUi"
Here [71,: {(Xl’ Tty Xd)e @Z(AlmD); (_ley XZ, Tty Xd)e @Z(Alm V)’ lé]:{_
[d/2]
[d/2]+1} and 5, 1<j<[d/2]+1 are unique solutions of jﬁl“(— D=1, 0=k
=[d/2].
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N N
Now e,,= g}lai(bﬁ,qo@i)+(l— g}lai)am satisfies (2.5) on V,, a certain neigh-

borhood of V (cf. [1; Theorem 4.26]). Furthermore note that e,;=a,, on V
and e,, satisfy (2.4) with the same constant 7 on V.. Let us choose functions
@, ¢=C=(R?) such that 0=¢, ¢=1 and

{lon V¢ {1 on V,
0on v 10 on Vs’

where VCVcV,cV,cV,cV,oV,cV,cV.. Then G pg=¢0p, ey, belong to
both of Ci¥*(R%) and C#*(R%) ap -, 0) belong to C#*(R%"') and a,, satisfy
(2.4) with some constant 7. Q.E.D.

PROOF OF THEOREM 1. Let us denote by &,, an extension of a,, in[Lemmal
5.6. Define the form & on FXR%) X FAR?) by

~ d 0 0 B
Eu, v)= % ISRd»éxﬂp'(x)faé);(x)apq(x)upq(dx) u, ve FYRY).

Since & satisfies the assumptions of there is a unique diffusion
process X=[%,, {, P,] (x€ R%) whose resolvent G, satisfies the equation

{ G feFYRY
Gty O=(f, Drecras  ETURY),

f being in L*(R%). Let &, be the first hitting time of V°: gy=inf{t; t>0,
#,€V<. Then X,=[2(tAé&y), év, P,] (x€V) which is called the part of X
on V satisfies the desired conditions of [Theorem 1. Indeed, it follows from
Fukushima’s result that

0

{ u(x)EExB Ve‘“f(ft)dt]e%(V)

Eu, ©)=(f, ©)rza e V),

where & is the form defined by (2.2) and [2.3). Noting that the solution of
is unique, we get the conclusion. Q.E.D.

We notice that there is the resolvent density satisfying (5.7), (5.8) and (5.9)
in this case, too. Because by

”G/IT”L“’(V; dvll)éC”T”sf-sw)

for some constant ¢ and any T (V) with s>d.

PROOF OF THEOREM 2. Let &% be a Dirichlet form on L% V) defined by
(2.2) and with coefficients @i, Then there is uniquely an associated
diffusion Y* on V by means of [Theorem 1. Considering the time changed
process, we may suppose that Y% has the speed measure |J¥(X)|dX, where
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O(xy , xa)
o(Xy, -, Xg)
Notice that ¢,<|J#|=<c, on V for some positive constants c,=c,(i, j) (k=1, 2).
We put X¥=@Q#¥(Y*¥). If UYcQ, X¥ is associated with &€ on U%* because
82(11, v)———é’”(uowij, vcl””)-l—l(ur»lp'“, 'l}"wij)LZ(V' 1Jt51d XD for u, ‘I}EQ[S] with
supports in U, If UYN\Q°+#0, X¥ijng, the part of X% on U¥NQ, is associ-
ated with € on U¥NnR2. In fact, setting X*=[x,, {, P.] (x€U%¥), we can
appeal to the results by Fukushima and find that

J¥(X) is the Jacobian determinant: J¥(X)=

if X=0%(x).

[

(5.10) i uW=E.| | e zoat]|ea

0
Ex(u, ©)=(f, Q)rewiine 0EF,

for 2>0 and fe L UNR2). Hence o=inf{t; t>0, x,sUYN\Q} and & is the
completion of CQ(U¥NL) with respect to the norm &,. Since the solution of
(5.10) is unique, X¥ijnp is the unique associated diffusion on U¥NQ2. By
X[UYNR2] we mean X% or X#ijno according to U¥N2°=0 or +0.

Let £2¢ i=1 be bounded subdomains as in (2.7). Noting that &(u, v)=
1Sp'qsdgaa:; %amdx for u, veCy(£2¥) and a,, are symmetric, bounded and
uniformly elliptic on Q¢ we can apply Kunita’s results [12; Theorem 1] to
obtain a unique associated diffusion X[£%] on £°.

Let us denote by © the collection of 2%, i=1 and U¥N%2, i, j=1. Then ©
is an open covering of £ and we have just showed that for each U@ there
is a unique diffusion X[U] on U associated with &. If U=U,NU,#0 for some
U, U,=0, then by utilizing the results due to Fukushima again, we get
that X[ U,y is equivalent with X[U,ly. Therefore the arguments of P. Cour-
rege and P. Priouret [4; Theorems 1 and 2] guarantee the existence of a
unique diffusion process X on £ whose part on U, Xy, is equivalent with X[U]
for every U=@®. Thus we have a desired diffusion process of the theorem.

Q.E.D.

§6. Examples.

1° First we see an example corresponding to the case that all S* are
noncompact in Put Si={(xy, -+, xa)ER%; xa=fi(x1, -, Xa-1)},
where each f? belongs to Cf¢/2#(R<¢-!), and assume (2.7) with Q=R¢ We
shall introduce the form &:

DLe]=Ce(RY),

©D L Ou ov = & ou dv ,
e, 0= 3 Ve, e, et 8 Blscar, or, e
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Here a,, and b}, (1=p, ¢=d, i=1) are Borel measurable, symmetric and satisfies
the following : For every compact subset K there are constants 7=7(K) and
A=A(K, 1) such that

ras Bt 8 ek,

p=1 p,9=1

d-1 d-1 X d-1 .
A2 EE 2 Ebb(0)=A X & xeESNK,

p=1 p,q=1 =1

for every £ R4 Moreover a,,C#* (U —S%) and b, CE¥P(S'N\UW) for all p, g,
i, 7 Where {U'};;, is an open covering of S* as in (2.7). bLy=bi,=

Z bopgna— if 1=p=<d—1. biy= Z b;q oft in do* stands for the surface
Xq dx, 0x,
element of St
Defining the transformation @%: x=(x,, -, xq4)— X=(X,, ---, X3) by x,=
Xy, 0y xg1=Xgo1, xq=Xg+f4(X,, -+, Xq-1) and writing its inverse by ¥'¢, we
get

d du dv , 5
(6.2) p? 1SS@ axp 8 bpqd
— d-1 a(u ,,?;) ’ 84(7};422 , ir vy i v ,
—p,q=1SRd-1 Aa)Xp (X7, 0) 0X, (X7, 0)bhge JUYX, 0)JUXNdX,

where X’'=(X,, -, X;-,) and J{(X")= {1+ p) (g§)} " Following [6: Theo-

rem 117 we now prove
PROPOSITION 6.1. The form & defined by (6.1) is closable on L*(R%).
PROOF. Assume that u,€CJ(R?), E(Un—Um, Un—Un)—0 as n, m—oco and
(Un, Un)recray—0 as n—oco. It suffices to show &(u,, u,)—0 as n— oo,

First we observe the following : lgédgm{—a%(aun—ﬂum)}zdx—>0 as n, m
p

—oco for every a=Cy(R%), so that by closability Dirichlet integrals

d 2
» S u,,) dx—0 as n—oo for every compact set K.
15psd 0xp

Set E;={x<=R%; |x|<1} and E,={x€R?; |x|<l}—E,., ({=2). Since for
each [

d 0Un Ous 0un,
< — —
0= %‘:Sm dx, 0xg apedx=1(E1) ES axp> dx—0 as n—oo,
we have
d aun aun & d aun aun
< O%n =3 >\ ¥ 9Un
O:ID,Q=ISR4 0x, 0x, @ped =1 p.q=1SEz 0xp, 0%, rd*
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O(Up—Um) O(Un—Un)

d
S lim S e e Apodx=1m EUp—Um, Un—Umn),
mes §= E; axp qu P x_m-*w (un " )

liA
Ms

—

U
-

which implies lnlgi lsp,zq§d R oz, ax—; @ pod x=0.

Fix 7 and [, and set E=[®*(S*N\E;)],. Then by

S 0Un Uy

S % - w07, O ax

2By ) 5[ 0 ) UK, 0 <<un ) WHX', 0)
q= P
X bige WX, 0) X)X’

=gy B[ R SO e dgt0 as n, meco.

On the other hand by the Sobolev imbedding theorem (cf. [1; Theorem 5.4])

e, oparzef ., ok T o o2

p=1

ol BL G ol o) o noee

p=1 0% p

with some constants ¢; (t:=1, 2). Therefore the completeness of the Sobolev
space WX E) gives

d O0up OUn 5 , - s
SSH’\EL axp' az;bpq <2(El, l) max j(X ) E S {aX (un )(X , 0)} dX

P, =1 X' €E

—0 as n—ooo,
from which we derive that

0

fIA

& Oun Uy
2 S lsae, o, e

i=1 p, St axp 8,4

lim
1 m-o p,q=1

M

A

>

=1 1

bi,dot

Ii

d S a(un um) a(”n Um)
sing; axp 0x,

é%ﬁ&(%——um Up—Un) .
Letting n tend to infinity, we obtain the conclusion. Q.E.D.
We denote by & the smallest closed extension of &. It is obvious that &
satisfies the conditions in Thus we are led to
THEOREM 6.2. For the smallest closed extension & of € defined by (6.1) there
1s a unique diffusion process X on R® and its resolvent G, satisfies
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{ Gifeal&]
ExGif, @=(f, Qreras  @EI[E],

for fe LXR%*) and 2>0.
According to the terminologies in [107], this diffusion possesses the speed
measure dx, the system of energy measures {a,dx+ X bida’; 1=p, ¢<d}
iz1

and the Killing measure k(dx)=0.

2° We next consider the case when each S* is a sphere centered at the
origin in Let S'={xeR?; |x|=p"} (=1, 2, ---) and assume (2.7)
with 2=R“. For each p, q, 1 (1=<p, ¢=d, i=1) a,, belongs to CH(N:—S?),

where Ni= E}l U% and {U%};;, is a finite open covering of S* as in (2.7). bk,
J

belongs to Ci#*(S?) for every 1=<p, g=<d—1, i=1. For convenience we introduce
polar coordinates (r, 8)=(r, 6,, -+, 64-,) defined by: x,=r cosf,sinf,---sinf;-,,
x,=rsinf;sin@, ---sinfy_;, x;=r cosfy+--8inby_y, -+, xg=r cosby_;, 0=Zr<-4co,
~r=60,==w, 0=60,=<=x, -+, 0=0,.,=n. a,, and b), are Borel measurable, sym-
metric and satisfies the following: For each i there are positive constants
7=7() and 2=A(:) such that
d d d .
73 Gnln O 3 Ehatur, OT X 8, 6 r<p’,

D,q=1

d-1 d-1 . ) d-1
A3 Gl )= 2 £E0(0" D=2 X S, 0),
p=1 pg=1 p=1

for every £= R?, where
(rsin@p., --sinfy-)* if 1=5p<=d-—2,
po(r, Oy, o, O04-1)=4 r7° if p=d—1,
1 if p=d.
We are now given the following form:

ILET=CF(RY)
(6.3) d
E(u, v):pE Sup(r, O vor, O)ap(r, 6)J@)ri-tdrdd

=1

o0

+ 38 (00 usle, Ovle’, Oielp®, 0)J0)a0

i=1 p,g=1

ou . . .
Uit 1=p=d—1, or 2% if p=d, and J(6)=sin 6, sin*6, -
a0, or

sin®~%2f,_;. By the same method as 1° we can prove the closability of &€ in

this case, too. It is easy to see that the smallest closed extension & satisfies

where u, means -
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the assumptions of Thus we arrive at
THEOREM 6.3. There is a unique diffusion process X on R* which is associ-
ated with the smallest closed extension € of (6.3):

{ GifEI[E]
ExG1f, ©=(f, Premey  9ECH(RY),
for f€ LYR®) and 2>0, G, being the resolvent of X.
Finally we note the following: Let & be the form defined by with
a,, and b, replaced by 0peptp/2 and (0pepp/2)|,-,1 respectively. Namely
ILEI=C5(RY)

1

(6.4) ° d
&, v)= E}Sup(r, 0)v,(r, O)pey(r, 6)JO)r*-"drd8

13 5 B 00 ustet, 00,06, Onle', 010120

Then & corresponds to the case that d —1-dimensional spherical Brownian motions
on {|x|=p’, i=1 are superposed on d-dimensional Brownian motion on R¢. In
fact, the spherical Brownian motion on S¢-!'={x=R¢%; |x|=1} is the diffusion

. 1 . .
with generator gdd'l, 4%~ being the spherical Laplace operator :

2
= aae'r[’ 47=(sin ﬁp)l‘pi(sin 19p)"‘1~~»a~ —+(sinf,)247"  (p=2).
1 »

4 2, 3

For every u, v=C>(S%"!) vanishing at 6,=—=, =, 6,=0, 7 2=p=d—1)

_Ssd—l(Ad—lu)y_]dﬁ: dz—)lSSd-lupvp#p(L NJdé .

p=1

Since

i} Supvp/zpjrd‘ldrdﬁz ﬁ) S(G(uo@))zdx ue 9e],

=1 p=1 axp

we obtain the desired conclusion.
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