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Strong Picard principle

By Mitsuru NAKAI

Consider the punctured unit disk $\Omega:0<|z|<1$ . We view $\Omega$ as the interior
of the bordered Riemann surface $\overline{\Omega}$ : $0<|z|\leqq 1$ with the relative boundary $\partial\Omega$ :
$|z|=1$ and the ideal boundary $z=0$ . By a density $P(z)$ on $\Omega$ we mean a non-
negative locally H\"older continuous function $P(z)$ on $\overline{\Omega}$ . We say that the strong
Picard Principle is valid for a density $P$ on $\Omega$ at $z=0$ if

(1) $u(z)=O(-\log|z|)$ $(z\rightarrow 0)$

for every nonnegative solution $u$ of the equation $Lu\equiv(\Delta-P)u=0$ on $\Omega$ . The
Purpose of this paper is to characterize completely those densities $P$ for which
the strong Picard principle is valid as follows:

THEOREM. The strong Picard Principle is valid for a density $P(z)$ on $\Omega$ at
$z=0$ if and only if the condition

(2) $-\int_{\Omega-E}P(z)\log|z|dxdy<+\infty$ $(z=x+iy)$

is satisfied for a closed subset $E$ of $\Omega$ thin at $z=0$ .
The proof will be given in nos. 3-4 after some preparations in nos. 1-2. An

open question related to a generalization of the above theorem to a Riemann
surface is stated in no. 5.

1. We denote by $\mathcal{P}$ the family of nonnegative solutions of the equation $Lu$

$=(\Delta-P)u=0$ on $\Omega$ with vanishing boundary values on $\partial\Omega$ . The family $\mathcal{P}$ forms
a halfmodule and its dimension is referred to as the elliptic dimension of $P$ (or

$L)$ at $z=0$ , dim $P$ in notation. More precisely dim $P$ is the cardinal number of
the set $\beta$ of extreme points of the convex set

$\{u\in \mathcal{P};-\int_{0}^{2\pi}[-\partial\partial\overline{r}u(re^{i\theta})]_{r=1}d\theta=1\}$ .

By the Martin-Choquest theorem there exists a unique measure $\mu_{u}$ on $\beta$ for

each $u$ in $\mathcal{P}$ such that $u=\int_{\beta}vd\mu_{u}(v)$ . It is easy to see that dim $P\geqq 1$ . After

Bouligand we say that the (ordinary) Picard Principle is valid for $P$ on $\Omega$ at
$-$
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$z=0$ if dim $P=1$ . In view of the above integral representation the condition is
equivalent to that $\mathcal{P}$ is generated by a single element $u;\mathcal{P}=R^{+}u$ where $R^{+}$ is
the set of nonnegative members in the field $R$ of real numbers. As for the
relation between the strong and ordinary Picard principle, which are equivalent
to each other for the zero density known as the Principle of positive singularity
cf. $e$ . $g$ . $[2]$ for harmonic functions, we have the following:

PROPOSITION. If the strong Picard Principle is valid for a density $P$, then
the ordinary Picard Principle is valid for P. The converse of this is not neces-
sarily true.

PROOF. Let $\Omega_{n}$ be the annulus $1/n<|z|<1(n=2,3, \cdots)$ so that the border
of $\Omega_{n}$ consists of $\partial\Omega:|z|=1$ and $\Gamma_{n}$ : $|z|=1/n$ . Suppose that the strong Picard
principle is valid for $P$ . Take an arbitrary $u$ in $\mathcal{P}$ corresponding to $P$ . Then,
by (1), tbere exists a nonnegative constant $c$ with $-c\log|z|\geqq u(z)$ on $\Omega$ . Let
$h_{n}$ be the harmonic function on $\Omega_{n}$ with boundary values $u$ on $\Gamma_{n}\cup\partial\Omega$ . Ob-
serve that $-c\log|z|\geqq h_{n+1}\geqq h_{n}\geqq u$ on $\Omega_{n}(n=2,3, \cdots)$ and therefore $\lim_{n\rightarrow}h_{n}(z)$

$=-b(u)$ logl $z|$ on $\Omega$ with a nonnegative constant $b(u)$ . In terms of the harmonic
Green’s function $g_{n}(z, \zeta)$ on $\Omega_{n}$ the functions $u$ and $h_{n}$ are related as

$ h_{n}(z)=u(z)+(2\pi)^{-1}\int_{\Omega_{n}}g_{n}(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta$ $(\zeta=\xi+i\eta)$ .

The integrand of the above increases as $n$ does and accordingly the Lebesgue-
Fatou theorem yields the identity

\langle 3) $ b(u)g(z, 0)=u(z)+(2\pi)^{-1}\int_{\Omega}g(z, \zeta)P(\zeta)u(\zeta)d\xi d\eta$

where $g(z, \zeta)=\log(|1-\overline{\zeta}z|/|z-\zeta|)$ is the harmonic Green’s function on $\Omega$ and
hence on the unit disk $|z|<1$ . Since $u-\succ b(u)$ is positively linear and $b(u)=0$ if
and only if $u=0$ , the fact that dim $P\geqq 1$ implies the existence of a $u_{0}$ in $\mathcal{P}$ with
$b(u_{0})=1$ . From the identities (3) for $u$ and $u_{t)}$ , it follows that

$ v(z)=-(2\pi)^{-1}\int_{\Omega}g(z, \zeta)P(\zeta)v(\zeta)d\xi d\eta$

for $v=u-b(u)u_{0}$ and therefore

$|v(z)|\leqq(2\pi)^{-1}\int_{\Omega}g(z, \zeta)P(\zeta)|v(\zeta)|d\xi d\eta$ .

Since $|v(z)|$ is nonnegative and subharmonic on $\Omega$ and dominated by the har-
monic Green potential on $\Omega$ of the measure $(2\pi)^{-1}P(\zeta)|v(\zeta)|$ , we may conclude
that $|v(\zeta)|=0$ on $\Omega,$ $i$ . $e$ . $u=b(u)u_{0}$ . Therefore $\mathcal{P}$ is generated by a single ele-
ment $u_{0}$ and thus the ordinary Picard principle is valid for $P$ .

To show that the converse is not necessarily true, we consider the density
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$P_{2}(z)=4/|z|^{2}$ on $\Omega$ . Observe that $u_{2}(z)=|z|^{-2}$ is a positive solution of $Ju=P_{2}u$

on $\Omega$ , and hence the strong Picard principle is not valid for $P_{2}$ . That the
ordinary Picard principle $is$ valid for $P_{2}$ is known (cf. [7]), and in fact many
proofs can be considered. We present here a proof, probably the simplest but
not too direct, based on a criterion of the Picard principle valid for rotation
free densities $P,$ $i$ . $e$ . $P(z)=P(|z|)$ , established in [5] (see also Godefroid [4]).

Let $Q(t)=e^{-2t}P(e^{-t})(0\leqq t<+\infty)$ and $a(t)$ be the Riccati component of $Q,$ $i$ . $e$ .
the unique nonnegative solution of $-a^{\prime}+a^{2}=Q$ on $[0, +\infty$ ). Then the Picard

principle is valid for $P$ if and only if $\int_{0}^{\infty}(1+a(t))^{-1}dt=+\infty$ . For our present

$P_{2},$ $Q_{2}(t)=e^{-2t}P_{2}(e^{-t})=4$ and its Riccati component $a_{2}=2$ . Therefore

$sr(1+a_{2}(t))^{-1}dt=\int^{\infty}3^{-1}dt=+\infty$ and the Picard principle is valid for $P_{\rightarrow}$

).

2. Before proceeding to the proof of the theorem we pause here to state a
remark. The prototype of the theorem was, in essence, shown by Brelot [1]

for rotation free densities for which exceptional thin sets need not come in. It
is, however, inevitable to consider thin sets for the case of general densities as
we are going to consider. A closed set $E$ in $\Omega$ is thin at $z=0$ , by definition,
if the closure of $E$ considered in the complex plane does not contain $z=0$ or
else there exists a superharmonic function $s$ on a certain disk $|z|<0<1$ such
that

$s(0)<\lim_{z\in E},\vec{\inf_{0}}s(z)$ .

We denote by $\mathcal{E}$ the family of closed subsets $E$ of $\Omega$ thin at $z=0$ . It is easy
to see that $E_{1}\cup E_{2}$ and $E_{1}\cap E_{2}$ belong to $\mathcal{E}$ along with $E_{1}$ and $E\underline{.)}$ . For con-
venience we list below Brelot’s results on properties of sets in $\mathcal{E}$ which we will
make use of in our proof and their proofs can be found in Brelot $[2, 3]$ .

(a) Let $\{s\}$ be the family of nonnegative superharmonic functions $s$ on
$\Omega-E$ with $E\in \mathcal{E}$ and satisfying

$\lim_{z\rightarrow e^{l}}\inf_{\theta}s(z)\geqq 1$ for every $\theta$ in $R$ and $h$ be the

lower envelope of the family $\{s\}$ which is harmonic in $\Omega-E$ . Then $\lim_{z\rightarrow}\sup_{0}h(z)$

$>0$ .
(b) For any $E\in \mathcal{E}$ there exists a decreasing zero sequence $\{a_{n}\}$ of positive

numbers $a_{n}<1$ such that the circles $\{|z|=a_{n}\}\cap E=\emptyset(n=1,2, \cdots)$ .
(c) Let $u$ be a bounded subharmonic function on $\Omega$ and $\lim_{\rightarrow}\sup_{1)}u(z)=\eta$ .

Then $\{z\in\Omega;u(z)\leqq\sigma\}$ belongs to $\mathcal{E}$ for any $\sigma<\eta$ .
(d) Let $\mu$ be a Borel measure on $|z|<1$ such that $\mu(0)=0$ and $g,,(z)=$

$J_{0^{g(z}’}\zeta)d\mu(\zeta)\not\equiv+\infty$ . Then $\{z\in\Omega;g_{\mu}(z)/g(z, 0)\geqq\epsilon\}$ belongs to $\mathcal{E}$ for every $\epsilon>0$ .
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3. PROOF OF THE NECESSITY OF (2). We assume the validity of the strong
Picard principle for $P$ at $z=0$ . By the proposition in no. 1 the corresponding
$\mathcal{P}$ is generated by a single element $u_{0}$ with $b(u_{0})=1$ :

(4) $g(z, 0)=u_{0}(z)+g_{\mu}(z)$

where $ d\mu(\zeta)=(2\pi)^{-1}P(\zeta)u_{0}(\zeta)d\xi d\eta$ . By (d) in no. 2 the set $\{z\in\Omega;g_{\mu}(z)/g(z, 0)$

$\geqq\epsilon\}$ belongs to $\mathcal{E}$ for every $\epsilon>0$ . Therefore, in view of (4), the set

$E_{\epsilon}=\{z\in\Omega;u_{0}(z)/g(z, 0)\leqq 1-\epsilon\}$

is closed in $\Omega$ and thin at $z=0$ for every $\epsilon>0$ . From $ g_{\mu}(z)<+\infty$ for every $z$

in $\Omega$ it follows that

$\int_{\Omega}P(\zeta)u_{0}(\zeta)d\xi d\eta<+\infty$ .

For definiteness let $E=E_{1/2}$ . Since $u_{0}(\zeta)>-2^{-1}\log|\zeta|$ on $\Omega-E$ , the above implies
(2) for $P$ .

4. PROOF OF THE SUFFICIENCY OF (2). We assume that $P$ satisfies (2). We
first show that the ordinary Picard principle is valid for $P$ . This was already

shown in [6] but we give here a relatively simpler proof based on the properties
of sets in $\mathcal{E}$ mentioned in no. 2.

There exists a unique bounded solution $e$ of $Lu=0$ on $\Omega$ with boundary
values 1 on $\partial\Omega$ , which is referred to as the P-unit. It may be of some inde-
pendent interest to observe that (2) is equivalent to

(5) $a=\lim_{z\rightarrow}\sup_{0}e(z)>0$ ,

although we only need the implication from (2) to (5). In fact, we have

$ 1=e(z)+(2\pi)^{-1}\int_{\Omega}g(z, \zeta)P(\zeta)e(\zeta)d\xi d\eta$ .

If we assume (5), then, by (c) in no. 2, the set $E=\{z\in\Omega;e(z)\leqq a/2\}$ belongs to
$\mathcal{E}$ and the above identity implies (2). Less trivial is the converse. We assume
the validity of (2). By (b) in no. 2 there exists a decreasing zero sequence $\{a_{n}\}$

in $(0,1)$ such that $\{|z|=a_{n}\}\cap E=\emptyset(n=1,2, \cdots)$ . We denote by $\Omega_{n}$ the punc-
tured disk $0<|z|<a_{n}$ and set $\Omega_{n}^{\prime}=\Omega_{n}-E$ . Let $h_{n}$ be as in (a) in no. 2 con-
structed for $\Omega_{n}^{\prime}$ instead of $\Omega-E$ . The integral equation

$ h_{n}(z)=e_{n}(z)+(2\pi)^{-1}\int_{\Omega_{n}^{\prime}}g_{n}^{\prime}(z, \zeta)P(\zeta)e_{n}(\zeta)d\xi d\eta$

has the unique solution $e_{n}$ which is the minimal positive solution of $Lu=0$ on
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$\Omega_{n}^{\prime}$ with boundary values 1 on $\partial\Omega_{n}$ : $|z|=a_{n}$ , where $g_{n}^{\prime}$ is the harmonic Green’s
function on $\Omega_{n}^{\prime}$ . This follows from the fact that

$\int_{\Omega_{n}^{l}}g_{n}^{\prime}(z, \zeta)P(\zeta)d\xi d\eta\leqq\int_{\Omega- E}g(z, \zeta)P(\zeta)d\xi d\eta<+\infty$

which is the consequence of (2). Observe that $h_{n}$ and $e_{n}$ are subharmonic on
$\Omega_{n}$ by putting $h_{n}=e_{n}=0$ on $E\cap\Omega_{n}$ and that $0<h_{n}<h_{n+1}<1$ and $0<e_{n}<e_{n+1}<1$

on $\Omega_{n+1}$ , and that

$ h_{n}(z)\leqq e_{n}(z)+(2\pi)^{-1}\int_{\Omega_{n}^{r}}g(z, \zeta)P(\zeta)d\xi d\eta$ .

Using the notation $ f^{*}(r)=(2\pi)^{-1}\int_{0}^{2}\sim f(re^{i\theta})d\theta$ for functions $f$ on $\Omega$ , and integrating

of both sides of the above with respect to $ d\theta$ over $[0,2\pi$ ), we get

$h_{n}^{*}(r)\leqq e_{n}^{*}(r)+(2\pi)^{-1}\int_{\Omega_{n}^{\prime}}$min $(\log r^{-1}, \log|\zeta|^{-1})P(\zeta)d\xi d\eta$ .

Since $A_{n}=\lim_{z\rightarrow}\sup_{0}h_{n}(z)=\lim_{r\rightarrow 0}h_{n}^{*}(r)$ and $B_{n}=\lim_{l\rightarrow}\sup_{0}e_{n}(z)=\lim_{r\rightarrow 0}e_{n}^{*}(r)$ , on letting $r\rightarrow 0$

in the above, we obtain

$A_{n}\leqq B_{7b}+C_{n}$ , $ C_{n}=(2\pi)^{-1}\int_{\Omega_{n}- E}P(\zeta)\log|\zeta|^{-1}d\xi d\eta$ .

Here $A.>0$ by (a) in no. 2. Clearly the sequence $\{A_{n}\}$ is increasing and the
sequence $\{C_{n}\}$ is decreasing and convergent to zero. Therefore there exists an
$n$ such that $B_{n}\geqq A_{n}-C_{n}>0$ . Since $e(z)\geqq\alpha e_{n}(z)$ on $\Omega_{n}$ with $\alpha=\min_{\partial\Omega_{n}}e$ , $a=$

$\lim_{l\rightarrow}\sup_{0}e(z)\geqq\alpha\lim_{l\rightarrow}\sup_{0}e_{n}(z)=\alpha B_{n}>0,$
$i$ . $e$ . (2) implies (5).

Consider the associated operator $\hat{L}v\equiv\Delta v+2\nabla$ log $e\cdot\nabla v$ to $L=\Delta-P$ . We say
that the (weak) Riemann theorem is valid for $\hat{L}$ if every bounded solution $v$ of
the equation $\hat{L}v=0$ on $\Omega$ has a limit at $z=0$ . We recall the following duality
theorem (cf. $e$ . $g$ . $[7]$ ): The Picard principle is valid for $L$ ( $i$ . $e$ . for $P$) if and
only if the Riemann theorem is valid for $\hat{L}$ . We thus have to show that $v$ has
a limit at $z=0$ for every bounded solution $v$ of $\hat{L}v=0$ on $\Omega$ . By adding a
suitable constant we may assume that $v>0$ on $\Omega$ . Observe that $u=ev$ is a
bounded solution of $Lu=0$ on $\Omega$ . Let $b=\lim_{z\rightarrow}\sup_{0}u(z)$ . Since $u$ and $e$ are bounded

and subharmonic on $\Omega,$ $(c)$ in no. 2 implies that the set

$E_{0}=\{z\in\Omega;e(z)\leqq a-\epsilon\}\cup\{z\in\Omega;u(z)\leqq b-\epsilon\}$

belongs to $\mathcal{E}$ for any $\epsilon$ in $(0, a)$ . Let $\{a_{n}\}$ be the sequence in (b) in no. 2 for
the set $E_{0}$ and $\Omega_{n}=\{z\in\Omega;0<|z|<a_{n}\}$ . Clearly

$ a+\epsilon\geqq e(z)\geqq a-\epsilon$ , $ b+\epsilon\geqq u(z)>b-\epsilon$
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on $\partial\Omega_{n}$ for sufficiently large $n$ and a fortiori

$(b+\epsilon)/(a-\epsilon)\geqq v(z)\geqq(b-\epsilon)/(a+\epsilon)$

on $\partial\Omega_{n}$ . Since the maximum and minimum of $v$ on $\overline{\Omega}_{n}$ : $0<|z|\leqq a_{n}$ are attained
on $\partial\Omega_{n}$ : $|z|=a_{n}$ , the above inequality for $v$ holds on $\overline{\Omega}_{n}$ . Therefore $\lim_{z\rightarrow 0}v(z)=$

$b/a$ exists and the ordinary Picard principle is valid for $P$ .
We denote by $G(z, \zeta)$ the Green’s function on $\Omega$ for the operator $L$ . Let

$\{z_{n}\}$ be the zero sequence in $\Omega$ such that $e(z_{n})\rightarrow a(n\rightarrow+\infty)$ . Consider the func-
tion $u_{n}(\zeta)=G(z_{n}, \zeta)/e(z_{n})$ which is a positive solution of $Lu=0$ on $\Omega-\{z_{n}\}$ with
vanishing boundary values on $\partial\Omega$ . Since

$ e(z_{n})=-(2\pi)^{-1}\int_{0}^{2\pi}[\frac{\partial}{\partial r}G(z_{n}, re^{i\theta})]_{r=1}d\theta$ ,

we see that

$-(2\pi)^{-1}\int_{0}^{2\pi}[\frac{\partial}{\partial r}u_{n}(re^{i\theta})]_{r=1}d\theta=1$ .

In view of the Harnack principle we may assume that $\{u_{n}\}$ converges to a posi-
tive solution $u_{0}$ on $\Omega$ by choosing a suitable subsequence of $\{u_{n}\}$ if necessary.
Since the Picard principle is valid for $P$ and $u_{0}$ belongs to $\mathcal{P},$ $\mathcal{P}$ is generated
by $u_{0},$

$i$ . $e$ . $\mathcal{P}=R^{+}u_{0}$ . By the Green formula

$\int_{\Omega}G(z_{n}, \zeta)P(\zeta)d\xi d\eta=2\pi(1-e(z_{n}))$

and accordingly

$\int_{\Omega}u_{n}(\zeta)P(\zeta)d\xi d\eta=2\pi e(z_{n})^{-1}(1-e(z_{n}))$ .

On taking the inferior limits of both sides of the above, we conclude, by the
Fatou lemma, that

$\int_{\Omega}u_{0}(\zeta)P(\zeta)d\xi d\eta\leqq 2\pi a^{-1}(1-a)<+\infty$ .

Hence we can define a function $h$ on $\Omega$ by

$ h(z)=u_{0}(z)+(2\pi)^{-1}\int_{\Omega}g(z, \zeta)u_{0}(\zeta)P(\zeta)d\xi d\eta$ .

It is easy to see that $h(z)$ is a positive harmonic function on $\Omega$ with vanishing
boundary values on $\partial\Omega$ and therefore, by the classical Picard principle, $h(z)=$

$cg(z, 0)$ with $c$ in $R^{+}$ . In particular $u_{0}(z)\leqq cg(z, 0)$ on $\Omega$ and (1) is valid for $u_{0}$ .
Any positive solution $u$ of $Lu=0$ on $\Omega$ satisfies $u(z)=O(u_{0}(z))(z\rightarrow OI$ , we finally
conclude the validity of the strong Picard principle for $P$ .
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5. Let $\Omega$ be a parabolic end in the sense of Heins. A density $P$ on $\Omega$ is
a 2-form $P(z)dxdy$ on $\overline{\Omega}$ such that $P(z)$ is a nonnegative locally H\"older con-
tinuous function of each local parameter $z=x+iy$ . Let $\mathcal{P}=\mathcal{P}_{P}$ be the family
of nonnegative solutions $u$ of the equation $(Lu(z))dxdy=0$ with $L=\Delta-P$ on $\Omega$

with vanishing boundary values on $\partial\Omega$ . The dimension of the half module $\mathcal{P}$

is referred to as the elliptic dimension, dim $P$ in notation, of $P$ (or $L$ ) at the
ideal boundary $\delta$ of $\Omega$ . In particular dim $0$ is referred to as the harmonic dimen-
sion of (the ideal boundary of) $\Omega$ . Let $g(z, \zeta)$ be the harmonic Green’s function
on $\Omega$ . Assume $\Omega$ is of harmonic dimension one, then

$g(z, \delta)=\lim_{\zeta\rightarrow\delta}g(z, \zeta)$

exists and we call it an Evans harmonic function on $\Omega$ . We say that the (ordi-

nary) Picard Principle is valid for $P$ (or $L$ ) at $\delta$ if dim $P=1$ and that the strong
Picard Principle is valid for $P$ (or $L$ ) at $\Omega$ if $u(z)=O(g(z, \delta))(z\rightarrow\delta)$ for every
nonnegative solution $u$ of $Lu=0$ on $\Omega$ . By a verbatim application of the proof
for the proposition in no. 1, we see that the strong Picard principle implies the
ordinary Picard principle. The condition corresponding to (2) is

(6) $\int_{\Omega- E}P(z)g(z, \delta)dxdy<+\infty$ ,

where $E$ is a closed subset of $\Omega$ “thin” at $\delta$ . The P-unit $e$ is the unique bounded
solution of $Lu=0$ on $\Omega$ with boundary values 1 on $\partial\Omega$ . The condition corre-
sponding to (5) is

(7) $\lim_{z}\sup_{\rightarrow\delta}e(z)>0$ .

Although we are unable to demonstrate at present, it sounds plausible that (6)

and (7) are equivalent and that (6) is necessary and sufficient for the validity of
the strong Picard principle for $P$. These are certainly true if the properties
$(a)-(d)$ in no. 2 hold for the present end $\Omega$ , most of which are very far from
being able to settle at present.

Still assuming that the harmonic dimension of $\Omega$ is one, let us consider the
following condition

(8) $\int_{\Omega}P(z)g(z, \delta)dxdy<+\infty$

much stronger than (6). In view of the identity

$ 1=e(z)+(2\pi)^{-1}\int_{\Omega}g(z_{f}\zeta)P(\zeta)e(\zeta)d\xi d\eta$

it is easy to see that (8) is equivalent to the following condition
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(9) $\lim_{\rightarrow}\inf_{\delta}e(z)>0$ ,

which is also much stronger than (7). Under the condition (9), Ozawa [9] proved
that $\mathcal{P}_{P}$ and $\mathcal{P}_{0}$ are isomorphic, and therefore dim $P=1$ . In view of this, by a
similar reasoning as in the last part of no. 4, we conclude that (8) implies the
validity of the strong Picard Principle for $P$. This is the motivation why we
venture to state the above conjecture.
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