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\S 1. Introduction.

In this note we shall investigate some properties of lagrangian imbeddings
of compact smooth n-manifolds into the complex n-space $C^{n}$ from the view
point of differential topology.

As for lagrangian immersions, considerably many facts are known. One of
the most interesting results already obtained would be the theorem due to
Gromov [3], Lees [5], Weinstein [11] which says that a smooth n-manifold $M$

admits a lagrangian immersion into $C^{n}$ if and only if the complexification
$\tau(M)\otimes_{R}C$ of the tangent bundle $\tau(M)$ of $M$ is a trivial complex vector bundle.
On the other hand, Lees [5] obtained the homotopy theoretic classification theo-
rem of lagrangian immersions of a smooth n-manifold $L$ into a smooth sym-
plectic $2n$-manifold $M$.

On the contrary, as for lagrangian imbeddings very few are known. First
we consider what kind of compact manifolds admit lagrangian imbeddings into
$C^{n}$ . A familiar example of a compact manifold admitting lagrangian imbeddings
into $C^{n}$ is the n-torus $T^{n}$ whose lagrangian imbeddings are defined by $n$ func-
tions in involution (see [2]). However we can prove the following theorem
which shows that there are many other examples of compact orientable mani-
folds than $T^{n}$ which admit lagrangian imbeddings into $C^{n}$ if $n\geqq 3$ . (For the
case $n=2$ , it is easily seen that $T^{2}$ is the only compact orientable surface that
admits a lagrangian imbedding into $C^{2}.$ )

THEOREM 1. Let $M$ be a comPact orientable smooth n-manifold which admits
an immersion into the euclidean $(n+1)$-sPace $R^{n+1}$ . Then $M\times S^{1}$ admits a lagran-
gian imbedding into $C^{n+1}$ .

Since an orientable smooth n-manifold $M$ admits an immersion into $R^{n+1}$ if
and only if it is s-parallelizable, Theorem 1 can be restated as follows.

COROLLARY 1. Let $M$ be a compact smooth $s$-Parallelizable n-manifold.
Then $M\times S^{1}$ admits a lagrangian imbedding into $C^{n+1}$ .

Recalling that every compact n-manifold $M$ with $n\leqq 3$ is immersible in $R^{n+1}$

(for $n=3$ , see [4]), we have:
COROLLARY 2. Let $M$ be a compact orientable smooth n-manifold with $n\leqq 3$ .
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Then $M\times S^{1}$ admits a lagrangian imbedding into $C^{n+1}$ .
Secondly, we consider if the standard n-sphere $S^{n}$ admits a lagrangian im-

bedding into $C^{n}$ . Since $S^{n}$ is s-parallelizable, the complexification of its tangent
bundle is trivial, and therefore, $S^{n}$ admits lagrangian immersions into $C^{n}$ . Wein-
stein [11] has given an explicit form of a lagrangian immersion of $S^{n}$ into $C^{n}$

with one point of self-intersection.
We shall prove the following.
THEOREM 2. For $n\neq 1,3S^{n}$ does not admit a lagrangian imbedding into

$C^{n}$ .
For the case $n=1$ , every imbedding of $S^{1}$ into $C^{1}$ is trivially lagrangian.

For the case $n=3$ , at present we could not decide whether $S^{3}$ admits a lagran-
gian imbedding into C’ or not.

We also give some examples of non-orientable compact n-manifolds which
admit lagrangian imbeddings into $C^{n}$ at the end of \S 2 and \S 3.

The author is grateful to Professor T. Nakamura for his helpful advices and
suggestions during the preparation of this paper.

\S 2. Definitions and basic properties.

First we give some definitions.
A smooth manifold $M$ is call $ed$ a symplectic manifold (with symplectic struc-

ture $\omega$), if there is given a non-degenerate closed 2-form $\omega$ on $M$.
Let $f:L\rightarrow M$ be an immersion [or an imbedding] of a smooth n-manifold

$L$ into a symplectic $2n$-manifold $M$ with symplectic structure $\omega$ . $f$ is called a
lagrangian immersion [or a lagrangian imbedding], if $f^{*}\omega=0$ . If $f:L\rightarrow M$ is a
lagrangian imbedding, then $f(L)$ (or $L$ ) is called a lagrangian submanifold of $M$.

A real vector space $V$ is called a symplectic vector space (with symplectic
structure $\omega$), if there is given a non-degenerate skew-symmetric bilinear form
ru on it. As an example, we take the complex vector space $C^{n}$ of n-tuples of
complex numbers $(z^{1}, \cdots , z^{n})$ . If we set

$z^{i}=x^{i}+\sqrt{-1}y^{i}$ , $x^{i},$ $y^{i}\in R,$ $i=1,$ $\cdots$ $n$ ,

then $C^{n}$ can be identified with the real vector space $R^{2n}$ of $2n$ -tuples of real
numbers by means of the correspondence $(z^{1}, \cdots , z^{n})\rightarrow(x^{1}, \cdots , x^{n}, y^{1}, \cdots , y^{n})$ .
This space has the standard symplectic structure $\omega_{0}$ given by

$\omega_{0}(z, w)={\rm Im}(z, w)$ for $z,$ $w\in C^{n}$ ,

using the standard hermitian inner product

$(z, w)=\sum_{i=1}^{n}z^{i}\overline{w}^{i}$ .
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Let $\lambda$ be an n-dimensional subspace of a $2n$-dimensional symplectic vector
space $V$ with symplectic structure $\omega$ . $\lambda$ is called a lagrangian subspace, if
$\omega(u, v)=0$ for all $u,$

$ v\in\lambda$ .
A real vector bundle $\xi$ is called a symPlectic vector bundle (with symplectic

structure $\omega$), if, for each point $x$ of the base space, the fibre $\xi_{x}$ of $\xi$ over $x$ is
a symplectic vector space with symplectic structure $\omega_{x}$ which varies continuously
with $x$ .

Let $\eta$ be an n-dimensional sub-bundle of a $2n$-dimensional symplectic vector
bundle $\xi$ with symplectic structure $\omega$ . $\eta$ is called a lagrangian sub-bundle, if $\omega$

vanishes when restricted to $\eta$ .
If $M$ is a symplectic manifold with symplectic structure $\omega$, then the tangent

bundle $\tau(M)$ of $M$ is clearly a symplectic vector bundle with symplectic struc-
ture $\omega$ . If $f:L\rightarrow M$ is an immersion, then $f$ is lagrangian if and only if $\tau(L)$

is a lagrangian sub-bundle of the induced symplectic vector bundle $f^{*}\tau(M)$ with
symplectic structure $ f^{*}\omega$ .

Next we list some basic facts about symplectic vector bundles. For further
details, see for example [11].

First let us consider the symplectic vector space $C^{n}$ and its lagrangian sub-
space $\lambda$ (cf. [1]). Note that $C^{n}$ has the standard euclidean inner product

$\langle u, v\rangle={\rm Re}(u, v)$ for $u,$ $v\in C^{n}$ .

Hence $\lambda$ has a euclidean structure induced from that of $C^{n}$ . On the other hand
it follows from the definition that

$\omega_{0}(u, v)={\rm Im}(u, v)=0$ for all $u,$
$ v\in\lambda$ ,

hence we have
$(u, v)=\langle u, v\rangle$ for all $u,$

$ v\in\lambda$ .
This shows that $C^{n}$ considered a hermitian vector space has a structure of the
complexification of the euclidean vector space $\lambda$ . In other words if we define a
linear map $\varphi:\lambda\otimes_{R}C\rightarrow C^{n}$ by

$\varphi(u\otimes(a+\sqrt{-1}b))=au+b\sqrt{-1}u$ for $u\in\lambda,$ $a,$ $b\in R$ ,

then $\varphi$ is an isomorphism between hermitian vector spaces. (Here $\lambda\otimes_{R}C$ is con-
sidered a hermitian vector space in the usual way.) In particular, $\sqrt{-1}\lambda$ is
orthogonal to $\lambda$ .

The following proposition enables us to generalize the above facts to sym-
plectic vector bundles.

PROPOSITION 1. Let $\xi$ be a symplectic vector bundle with symplectic struc-
ture $\omega$ . Then there exists a complex structure $J$ on $\xi$ and a hermitian inner
product $h$ with respect to $J$ on $\xi$ such that
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$(^{*})$ $\omega_{x}(u, v)={\rm Im} h_{x}(u, v)$

for all $u,$ $v\in\xi_{x}$ and all pOints $x$ of the base space B. Such a comPlex structure
$J$ and a hermitian inner product $h$ are unique up to homotopy.

Such a complex structure $J$ is said to be compatible with $\omega$ .
PROOF. Making use of a similar argument as in the case of a euclidean

vector bundle or a hermitian vector bundle, we can show that there exists a set
of local coordinate systems $\{(U_{i}, \varphi_{i})\}_{i\in I},\bigcup_{i\in I}U_{i}=B$ , such that $(\varphi_{i})_{x}$ : $C^{n}\rightarrow\xi_{x}$ is an

isomorphism between symplectic vector spaces for each $x\in U_{i},$ $i\in I$ . Hence we
can reduce the structure group of $\xi$ to the real symplectic group $Sp(2n, R)$ .
Since the unitary group $U(n)$ is the maximal compact subgroup of $Sp(2n, R)$ ,

we can further reduce the structure group of $\xi$ to $U(n)$ , and here the reduction
is unique up to homotopy. Let $\{(U_{i}, (0_{i})\}_{i\in I^{\prime}}$ be a set of local coordinate systems

such that
$i\in IU,U_{i}=B$ , $(\varphi_{i})_{x}^{-1}\circ(\varphi_{j})_{x}\in U(n)$ for $x\in U_{i}\cap U_{j}$ .

Then we can define a complex structure $J$ on $\xi$ and a hermitian inner product
$h$ with respect to $J$ by the formulas

$J_{x}=(\varphi_{i})_{x}\circ J_{0}\circ(\varphi_{i})_{x}^{-1}$ , $(\varphi_{i})_{x}^{*}h=(, )$ ,

where $J_{0}$ is the canonical complex structure on $C^{n}$ . Now it is clear that $h$

satisfies the condition $(^{*})$ . Conversely, any compatible complex structure is
obtained in this way. This completes the proof of Proposition 1.

Thus every symplectic vector bundle has a structure of a hermitian vector
bundle determined by its symplectic structure uniquely up to homotopy. As an
example, let $M$ be a K\"ahler manifold with complex structure $J$ and fundamental
two form $\omega$ . Then we can regard $M$ as a symplectic manifold with symplectic
structure $\omega$ . In this case, $J$ is a compatible complex structure on the symplectic
vector bundle $\tau(M)$ .

In view of the above facts, we assume henceforth that every symplectic
vector bundle is equiPped with a complex structure $J$ compatible with its sym-
plectic structure, and hence is given a structure of a hermitian vector bundle.

Now the next lemma is an immediate consequence of the above arguments.
LEMMA 1. Let $\xi$ be a symplectic vector bundle with symplectic structure $\omega$ .

If $\xi$ has a lagrangian sub-bundle $\eta$ , then $\xi$ considered a hermitian vector bundle
has a structure of the complexification of $\eta$ .

Applying Lemma 1 to lagrangian immersions, we have:
LEMMA 2. Let $f:L\rightarrow M$ be a lagrangian immersion. Then the induced her-

mitian vector bundle $J^{*}\tau(M)$ has a structure of the complexificatiOn of $\tau(L)$ . In
particular, we have an isomorphism
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$\nu(f)=(-1)^{n(n-1)/2}\tau(L)$

between oriented vector bundles, where $\nu(f)$ is the normal bundle off with
orientation defined in the usual way.

REMARK 1. Suppose that a smooth n-manifold $L$ admits a lagrangian im-
mersion into $C^{n}$ . Then it follows from Lemma 2 that $\tau(L)\otimes {}_{R}C$ is trivial. (Ac-

cording to Weinstein [11], the converse is also true.) Hence the total Pontrjagin
class $p(L)$ and the total Stiefel-Whitney class $w(L)$ of $\tau(L)$ satisfy the conditions

$p(L)=1$ , $w(L)^{2}=1$ .

Now let us specialize to the case $L$ is an orientable compact lagrangian
submanifold.

PROPOSITION 2. Let $M$ be a symplectic $2n$-manifold with symplectic struc-
ture ru and let $f:L\rightarrow M$ be a lagrangian imbedding of an oriented compact
smooth n-manifold L. If a homology class $a\in H_{n}(M, Z)$ is represented by $L$ ,
then we have

(i) $a\cdot a=(-1)^{n(n-1)/2}\chi(L)$ ,

(ii) $\langle c_{n/2}, a\rangle=0$ if $n\equiv 2$ modulo 4,

where $a\cdot a$ denotes the self-intersection number of a $,$

$\chi(L)$ the Euler number of
$L,$ $c_{n/2}$ the $n/2$-th Chern class of $M$ and $\langle, \rangle$ the Kronecker index.

Using the Poincar\’e isomorphism $D:H_{n}(M, Z)\rightarrow H_{comp}^{n}(M, Z)$ , the self-inter-
section number $a$ .a of a is defined by $a\cdot a=\langle Da, a\rangle$ .

PROOF. (i) $ByLemma2wehavef^{*}Da=e(\nu(L))=(-1)^{n(n-1)/2}e(\tau(L))$ . Hence
we have $a\cdot a=\langle Da, a\rangle=\langle Da, f_{*}[L]\rangle=\langle f^{*}Da, [L]\rangle=(-1)^{n(n- 1)/2}\langle e(\tau(L)), [L]\rangle=$

$(-1)^{n(n-1)/2}\chi(L)$ . Here $e(\xi)$ is the Euler class of $\xi$ , and $[L]$ is the fundamental
class of $L$ .

(ii) From Lemma 2 it follows that $f^{*}c_{2k+1}$ is of order two. Hence we have
$\langle c_{2k+1}, a\rangle=\langle c_{2k+1}, f_{*}[L]\rangle=\langle f^{*}c_{2k+1}, [L]\rangle=0$ . This completes the proof.

COROLLARY 3. Let $L$ be an orientable compact smooth n-manifold. If $L$

admits a lagrangian imbedding into $C^{n}$ , then we have

$\chi(L)=0$ .

PROOF. This follows immediately from Proposition 2 (i).

Finally we remark on the existence of a non-orientable compact lagrangian
submanifold of $C^{n}$ . (See also the remark at the end of \S 3.)

Let $S^{2n-1}\subset C^{n}$ be the standard unit sphere in $C^{n}$ , and let $\pi;S^{2n-1}\rightarrow CP(n-1)$

be the natural projection to the complex projective space. Then we have the
next proposition which is also stated implicitly in [11]. For the proof, see
[11, Lecture 3].
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PROPOSITION 3. Let $L$ be an $(n-1)$-dimensional submanifold of $CP(n-1)$ .
Then $L$ is a lagrangian submanifold of $CP(n-1)$ if and only if $\pi^{-1}(L)$ is a
lagrangian submanifold of $C^{n}$ .

Since $RP(n-1)$ naturally imbedded in $CP(n-1)$ is a lagrangian submanifold
of $CP(n-1)$ , it follows from Proposition 3 that $\tilde{L}_{n}=\pi^{-1}(RP(n-1))$ is a compact
lagrangian submanifold of $C^{n}$ . $\tilde{L}_{n}$ is the total space of a non-trivial principal
$S^{1}$-bundle over $RP(n-1)$ . Since $RP(n-1)$ is non-orientable for $n$ odd, $\tilde{L}_{n}$ is
non-orientable for $n$ odd as well. (If $n$ is even, then $\tilde{L}_{n}=S^{n-1}\times S^{1}.$ )

\S 3. Proof of Theorem 1.

Suppose now that a compact orientable smooth n-manifold $M$ admits an
immersion $f:M\rightarrow R^{n+1}$ . Without loss of generality we may assume that the
immersion $f$ is in general position (cf. [9, Theorem 4.6]). Let $N\subset M\times R^{n+1}$ be
defined by

$N=$ { $(x,$ $v);x\in M$, $v$ perpendicular to $f_{*}\tau(M)_{x}$ }

and let $E:N\rightarrow R^{n+1}$ be the map dePned by

$E(x, v)=f(x)+v$ for $x\in M,$ $v\in R^{n+1}$ .
$N$ is the total space of the normal bundle of $f$ and $E$ is the exponential map of
$f$. Now we choose a smooth field of normal vectors $e:M\rightarrow N$ and put $e(x)=$

$(x, e_{x})$ . Then we can identify $N$ with $M\times R$ by the map sending $(x, te_{x})$ to
$(x, t)$ and $E$ can be considered a map from $M\times R$ into $R^{n+1}$ written in the form

$E(x, t)=f(x)+te_{x}$ for $x\in M,$ $t\in R$ .
Considering $R^{n+1}$ the real plane of $C^{n+1}$ , we next define the map $E^{c}$ : $(M\times R)$

$\times R^{n+1}\rightarrow C^{n+1}$ to be a natural extension of $E$ :

$E^{c}(x, t, y)=E(x, t)+\sqrt{-1}y$ for $x\in M,$ $t\in R,$ $y\in R^{n+1}$ .
Here and for the rest of \S 3, the symbol $\sqrt{-1}$ denotes the imaginary unit, and
$\sqrt{-1}$ also denotes the canonical complex structure on $C^{n+1}$ .

Now we denote by $D_{\text{\’{e}}}^{n+2}$ the $\epsilon$ -neighborhood of $0\in R\times R^{n+1}$ . We choose
$\epsilon_{0}>0$ sufficiently small so that the restriction of $E^{c}$ to $M\times D_{\epsilon}^{n_{0}+2}$ gives rise to an
immersion. From now on, we use the notation $E_{0}^{c}$ for $E^{c}|M\times D_{\epsilon_{0}}^{n+2}$ . Since $E_{0}^{c}$

is locally a diffeomorphism, we can define a symplectic structure $\omega_{1}$ on $M\times D_{\epsilon_{0}}^{n+2}$

by $\omega_{1}=(E_{0}^{c})^{*}\omega_{0}$ , where $\omega_{0}$ is the standard symplectic structure on $C^{n+1}$ . Thus
we can make $M\times D_{\epsilon}^{n_{0}+2}$ into a symplectic manifold so that $E_{0}^{c}$ becomes locally a
symplectic diffeomorphism. Henceforth we regard $M\times D_{\epsilon}^{n_{0}+2}$ as a symplectic
manifold with symplectic structure $\omega_{1}$ .

Next we define an imbedding $g:M\times C\rightarrow(M\times R)\times R^{n+1}$ to be the map de-
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fined by

$g(x, a+\sqrt{-1}b)=(x, a, be_{x})$ ,
or equivalently by

$(-\vee M\circ g)(x, a+\sqrt{-1}b)=x$ ,

$(E^{c}\circ g)(x, a+\sqrt{-1}b)=f(x)+(a+\sqrt{-1}b)e_{x}$ ,

where $\pi_{M}$ denotes the natural projection from $M\times R\times R^{n+1}$ to $M$. Let $S_{\text{\’{e}}}^{1}\subset C$ be
the e-circle around $0$ and let

$g^{\prime}$ : $M\times S_{\epsilon}^{1}\rightarrow M\times R\times R^{n+1}$

be the restriction of $g$ to $M\times S_{\epsilon}^{1}$ . Clearly we have

(3.1) $g^{\prime}(x, \epsilon e^{i\theta})=$ ( $x,$ $\epsilon$ cos $\theta,$ $\epsilon(\sin\theta)e_{x}$) ,

(3.2) $(E^{c}\circ g^{\prime})(x, \epsilon e^{i\theta})=f(x)+e^{i\theta}e_{x}$ .
Here $e^{i\theta}$ denotes cos $\theta+\sqrt{-1}$ sin $\theta$ . For $\epsilon<\epsilon_{0},$ $g^{\prime}(M\times S_{\epsilon}^{1})$ is contained in $M\times D_{\epsilon}^{n_{0}+2}$ ,
and hence $E_{0}^{c}\circ g^{\prime}$ gives rise to an immersion of $M\times S^{1}$ into $C^{n+1}$ . From now
on we fix $\epsilon$ so as to satisfy $\epsilon<\epsilon_{0}$ . Now we have the following.

LEMMA 3. The immersion $E_{0}^{c}\circ g^{\prime}$ : $M\times S_{\text{\’{e}}}^{1}\rightarrow C^{n+1}$ is a lagrangian immersion.
PROOF. First we define two functions $\lambda,$ $\mu:M\times D_{\epsilon_{0}}^{n+2}\rightarrow R$ by the identity

(3.3) $P=(x(p), \lambda(p),$ $\mu(P)e_{x(p)}+v(p))$ ,

where $v(P)\in f_{*}\tau(M)_{x(p)}$ . Above formula implies that

$E_{0}^{c}(p)=f(x(p))+\overline{v}(p)+\{\lambda(p)+\sqrt{-1}\mu(p)\}e_{x(p)}$ ,

where $x(p)=\pi_{M}(p)$ and $\overline{v}(p)\in\sqrt{-1}f_{*}\tau(M)_{x(p)}$ . In terms of these functions $\lambda,$

$\mu$

we define a function $h:M\times D_{\epsilon_{0}}^{n+2}\rightarrow R$ by

$h=\frac{1}{2}(\lambda^{2}+\mu^{2})$ ,

and consider the Hamiltonian vector field $X_{h}$ associated with the Hamiltonian $h$ .
We shall prove that each $g^{\prime}(\{x\}\times S_{\text{\’{e}}}^{1})$ is a trajectory of $X_{h}$ . For any point

$p_{0}\in g^{\prime}(M\times S_{\text{\’{e}}}^{1})$ we can choose a neighborhood $U$ of $p_{0}$ in such a way that the
restriction of $E_{0}^{c}$ to $U$

$E_{U}^{c}$ : $U\rightarrow C^{n+1}$

gives rise to a diffeomorphism (hence a symplectic diffeomorphism) onto its
image $\overline{U}\subset C^{n+1}$ . Taking a smaller $U$, if necessary, we can choose local coordi-
nates $(x^{1}, \cdots , x^{n}, \lambda, y^{1}, \cdots , y^{n}, \mu)$ on $U$ which satisfy the following conditions:

(a) $(x^{1}, \cdots , x^{n})$ are local coordinates of $M$ at $x_{0}=\pi_{M}(p_{0})$ ,
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(b) $p=(x(p),$ $\lambda(p),\sum_{i=1}^{n}y^{i}(p)f_{*}(\frac{\partial}{\partial x^{i}})_{x(p)}+\mu(p)e_{x(p))}$ ,

$(orE_{U}^{c}(p)=f(x(p))+\sum_{t=1}^{n}y^{i}(p)\sqrt{-1}f_{*}(\frac{\partial}{\partial x^{i}})_{x(p)}+\{\lambda(p)+\sqrt{-1}\mu(p)\}e_{x}$ ,

$x(p)=\pi_{M}(p))$ .

To simplify the argument. we consider the vector field $(E_{U}^{c})_{*}X_{h}$ instead of $X_{h}$ .
Clearly we have a local coordinates $(\overline{x}^{1}, \cdots , \overline{x}^{n},\overline{\lambda},\overline{y}^{1}, \cdots , \overline{y}^{n},\overline{\mu})$ on $\overline{U}$ defined by

$\overline{x}^{i}=x^{i}\circ(Eb)^{-1}$ , $\overline{\lambda}=\lambda\circ(E\theta)^{-1}$ , $\overline{y}^{i}=y^{i}\circ(E_{U}^{c})^{-1}$ , $\overline{\mu}=\mu\circ(E_{U}^{c})^{-1}$ .
Let us define $\overline{h}$ by $\overline{h}=h\circ(E_{U}^{c})^{-1}$ . Since $E_{U}^{c}$ is a symplectic diffeomorphism, we
have

(3.4) $(E_{U}^{c})_{*}X_{h}=X_{fi}$ ,

where $X_{\overline{h}}$ is the Hamiltonian vector field with Hamiltonian $\overline{h}$ on $\overline{U}$ . Here we
recall that the Hamiltonian vector field $X_{\overline{h}}$ is related to the gradient vector field
of $\overline{h}$ grad $\overline{h}$ by the formula

(3.5) $X_{i}=\sqrt{-1}$grad $\overline{h}$ ,

while grad $\overline{h}$ is defined by the condition

\langle grad $\overline{h},$ $ X\rangle$ $=X(\overline{h})$ for every vector field $X$ on $\overline{U}$ ,

where $\langle, \rangle$ is the standard Riemannian metric on $C^{n+1}$ . Using the definition of
grad $\overline{h}$ , we have

$|\langle(grad\overline{h})_{l}^{-},$

$(\frac{\partial}{\partial\overline{x}^{i}})_{\overline{p}}\rangle=(\frac{\partial\overline{h}}{\partial\overline{x}^{i}})_{\overline{p}}=0$ ,

$|\langle(grad\overline{h})_{\overline{p}},$
$(\frac{\partial}{\partial\overline{y}^{i}})_{\overline{p}}\rangle=(\frac{\partial\overline{h}}{\partial_{J^{i}}})_{\overline{p}}=0$ ,

(3.6)

1 $\langle(grad\overline{h})_{\overline{p}}\langle(grad\overline{h})_{\overline{p}}, e_{x(p)}\rangle=\langle(grad\overline{h})_{\overline{p}},(\frac{\partial}{\partial\overline{\lambda}})_{\overline{p}}(\frac{\partial\overline{h}}{\overline{p}\partial\overline{\lambda}\rangle=})_{\overline{p}}=\overline{\lambda}(\overline{p})\sqrt{-1}e_{x(p)}\rangle=\langle(grad\overline{h})_{\overline{p}},(\frac{\rangle=\partial}{\partial\overline{\mu}})(\frac{\partial\overline{h}}{\partial\overline{\mu}})_{\overline{p}}=\overline{\mu}(\overline{p})$

,

where $\overline{p}=E_{U}^{c}(p)$ . These formulas imply that $($ grad $\overline{h})_{\overline{p}}$ is orthogonal to the sub-
space spanned by the vectors

$(\frac{\partial}{\partial\overline{x}^{1}})_{\overline{p}},$ $\cdots$ $(\frac{\partial}{\partial\overline{x}^{n}})_{\overline{p}},$ $(\frac{\partial}{\partial\overline{y}^{1}})_{\overline{p}},$ $\cdots$ $(\frac{\partial}{\partial_{5^{i^{n}}}})_{\overline{p}}$.

Next we assume that the point $\overline{p}\in\overline{U}$ satisfies the condition $\overline{y}^{1}(\overline{p})=\ldots$

$=\overline{y}^{n}(\overline{p})=0$ , that is, $\overline{p}$ is in the image of $E_{U^{\circ}}^{c}g$ . Then it is easy to see that the



Lagrangian imbeddings 289

subspace spanned by the vectors $(\partial/\partial\overline{x}^{1})_{\overline{p}},$ $\cdots$ , $(\partial/\partial\overline{x}^{n})_{\overline{p}},$ $(\partial/\partial\overline{y}^{1})_{\overline{p}},$ $\cdots$ , $(\partial/\partial\overline{y}^{n})_{\overline{p}}$ is
orthogonal to the vectors $e_{x(p)}$ and $\sqrt{-1}e_{x(p)}$ . Therefore by (3.6) we have

$($ grad $\overline{h})_{\overline{p}}=\overline{\lambda}(\overline{p})e_{x(p)}+\overline{\mu}(\overline{p})\sqrt{-1}e_{x(p)}$ ,
hence by (3.5)

(3.7) $X_{li}(\overline{p})=-\overline{\mu}(\overline{p})e_{x(p)}+\overline{\lambda}(\overline{p})\sqrt{-1}e_{x(p)}$ .

Let $p=g^{\prime}(x, \epsilon e^{it})$ be any point of $g^{\prime}(M\times S_{\epsilon}^{1})$ . Then by (3.1), (3.3), (3.4) and (3.7)

we have

$(Eb)_{*}X_{h}(p)=X_{k}(\overline{p})=\{-\overline{\mu}(\beta)+\sqrt{-1\lambda}(\overline{p})\}e_{x(p)}=\{-\mu(p)+\sqrt{-1}\lambda(p)\}e_{x(p)}$

$=\epsilon$ ( $-\sin t+’-1$ cos $t$ ) $e_{x(p)}$ .
Comparing this formula with (3.2), we see that

(3.8) $H_{t}(g^{\prime}(x, \epsilon e^{i\theta}))=g^{\prime}(x, \epsilon e^{i(\theta+t)})$ ,

where $H_{t}$ denotes the time $t$ integral of $X_{h}$ .
Finally we show that the subspace $(E_{0}^{c})_{*T}(g^{\prime}(M\times S_{\epsilon}^{1}))_{p}$ of $C^{n+1}$ is lagrangian

for every point $p\in g^{\prime}(M\times S_{\epsilon}^{1})$ . First we consider the case $p=g^{\prime}(x, \epsilon)$ . Then
$(E_{0}^{c})_{*}\tau(g^{\prime}(M\times S_{\epsilon}^{1}))_{p}$ is spanned by the vectors in $f_{*}\tau(M)_{x}$ and $\sqrt{-1}e_{x}$ . Clearly
$f_{*}\tau(M)_{x}$ and $\sqrt{-1}e_{x}$ are complex orthogonal. Hence $(E_{0}^{c})_{*}\tau(g^{\prime}(M\times S_{\epsilon}^{1}))_{p}$ is
lagrangian. We next consider the case $p=g^{\prime}(x, \epsilon e^{it})$ is an arbitrary point of
$g^{\prime}(M\times S_{\epsilon}^{1})$ . From (3.8) it follows that $p=H_{t}(g^{\prime}(x, \epsilon))$ and that $H_{t}$ leaves

$g^{\prime}(M\times S_{\epsilon}^{1})$ invariant. Hence we have $(E_{0}^{c})_{*}\tau(g^{\prime}(M\times S_{\epsilon}^{1}))_{p}=(E_{0}^{c})_{*}(H_{t})_{*}$

$\tau(g^{\prime}(M\times S_{\epsilon}^{1}))_{g^{\prime}(x,\epsilon)}$ . On the other hand $H_{t}$ is known to preserve the symplectic
structure. Hence $(E_{0}^{c})_{*}\tau(g^{\prime}(M\times S_{\epsilon}^{1}))_{p}$ is lagrangian. This completes the proof of
Lemma 3.

Next we shall construct a lagrangian imbedding of $M\times S^{1}$ into $C^{n+1}$ which
is close to the lagrangian immersion $E_{0}^{c}\circ g^{\prime}$ just obtained. Though we can not
remove the self-intersections of a given lagrangian immersion in general (cf.

[10], [11] and Theorem 2), this can be done easily in our case. In fact, replac-
ing $g^{\prime}$ by $\tilde{g}^{\prime}=F\circ g^{\prime}$ with an appropriate symplectic diffeomorphism $F$ of
$M\times D_{\epsilon}^{n_{0}+2}$ , we obtain a lagrangian imbedding $E_{0}^{c}\circ\tilde{g}^{\prime}$ of $M\times S^{1}$ into $C^{n+1}$ as
follows.

First consider the Hamiltonian vector field $X_{\lambda}$ with Hamiltonian $\lambda$ on the
symplectic manifold $M\times D_{\epsilon}^{n_{0}+2}$ . Then, if $t_{0}>0$ is small enough, we can choose
an open neighborhood $W\subset M\times D_{\epsilon}^{n_{0}+2}$ of $g(M\times D_{\epsilon}^{2})$ in such a way that the time $t$

integral $F_{t}$ : $W\rightarrow M\times D_{\epsilon}^{n_{0}+2}$ of $X_{\lambda}$ gives rise to a symplectic diffeomorphism onto
an open set for $|t|<t_{0}$ . Since $f$ is in general position, we have $e_{x}\neq e_{y}$ if $x\neq y$

and $f(x)=f(y)$ . This implies the injectivity of $(E_{0}^{c}\circ F_{t})|M:M\rightarrow C^{n+1}$ , since
$(E_{0}^{c}\circ F_{t})|M$ is explicitly given by $E_{0}^{c}\circ F_{t}(x, 0, O)=f(x)+t\sqrt{-1}e_{x}$ . Replacing $\epsilon$
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by a smaller one, if necessary, $(E_{0}^{c}\circ F_{t})|g^{\prime}(M\times S_{\epsilon}^{1})$ is also injective; hence
$(E_{0}^{c}\circ F_{t}\circ g^{\prime}):M\times S_{\epsilon}^{1}\rightarrow C^{n+1}$ is a lagrangian imbedding. This completes the proof.

REMARK 2. Let $M$ be a non-orientable compact n-manifold which admits
an immersion $f:M\rightarrow R^{n+1}$ in general position. Then we can construct a lagran-
gian immersion of the total space of a certain principal $S^{1}$-bundle over $M$ in
the same way as in the proof of Theorem 1. If there exists an orientable
neighborhood $U\subset M$ of the inverse image of the self-intersections of $f$, then our
method of removing the self-intersections applies to this case also, and hence
we obtain a non-orientable compact lagrangian submanifold of $C^{n+1}$ . For exam-
ple, it can be shown that the product of the Klein’s bottle and $S^{1}$ admits a
lagrangian imbedding into $C^{3}$ .

\S 4. Proof of Theorem 2.

To begin with, we shall introduce the notion of a weakly lagrangian im-
mersion.

Suppose given a vector bundle $\xi$ over a topological space $M$ and two sub-
bundles $\eta_{0},$ $\eta_{1}$ of $\xi$ . $\eta_{0}$ and $\eta_{1}$ are said to be homotopic, if there exists a sub-
bundle $\overline{\eta}$ of $\xi\times I$ such that $\tilde{\eta}|_{Mx0}=\eta_{0}$ and $\tilde{\eta}|_{M\times 1}=\eta_{1}$ .

DEFINITION 1. Let $\xi$ be a symplectic vector bundle with symplectic struc-
ture $\omega$ and let $\eta$ be a sub-bundle of $\xi$ . We call $\eta$ a weakly lagrangian sub-
bundle, if $\eta$ is homotopic to a lagrangian sub-bundle of $\xi$ .

Let $f:L\rightarrow M$ be an immersion of a smooth manifold $L$ into a symplectic
manifold $M$ with symplectic structure $\omega$ . We call $f$ a weakly lagrangian im-
mersion, if $\tau(L)$ is a weakly lagrangian sub-bundle of the symplectic vector
bundle $f^{*}\tau(M)$ with symplectic structure $ f^{*}\omega$ .

Now we are getting down to the proof of Theorem 2. To prove Theorem
2 we shall determine which $S^{n}$ admits a weakly lagrangian imbedding into $C^{n}$ .

As we can see easily, the condition that an immersion $f$ is weakly lagran-
gian depends only on the regular homotopy class of $f$. Furthermore we have
$\tau(L)=(-1)^{n(n-1)/2}\nu(f)$ for a weakly lagrangian immersion $f$ of $L$ , just as in the
case of a lagrangian immersion. On the other hand, we recall that every im-
bedding of $S^{n}$ into $C^{n}$ is regularly homotopic to the standard one (cf. [7]).

Thus we conclude that in case there exists a weakly lagrangian imbedding of
$S^{n}$ into $C^{n}$ , the standard imbedding $\iota$ is weakly lagrangian, and hence satisfies
the condition $\tau(S^{n})=(-1)^{n(n-1)/2}\nu(\iota)$ . Clearly the normal bundle of the standard
imbedding of $S^{n}$ into $C^{n}$ is trivial. Thus in order that there exists a weakly
lagrangian imbedding of $S^{n}$ into $C^{n},$ $\tau(S^{n})$ should be trivial and eventually
$n\neq 1,3,7$ is not in the case. Here making use of the homotopy theory, we
reach the following conclusion.
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PROPOSITION 4. $S^{n}$ admits a weakly lagrangian imbedding into $C^{n}$ if and
only if $n=1,3$ .

Let $S^{n}=\{(x^{1}, \cdots , x^{n+1})\in R^{n+1} ; (x^{1})^{2}+\cdots+(x^{n+1})^{2}=1\}$ . Then the standard
imbedding $\iota$ : $S^{n}\rightarrow C^{n}$ is given by $c(x^{1}, \cdots , x^{n+1})=(x^{1}, \cdots x^{n+1},0, \cdots 0)$ . Let

$f_{n}$ : $S^{n}\rightarrow G_{2n,n}$ denote the Gauss map of $\iota$ which carries $x\in S^{n}$ to the tangent
plane of $\iota(S^{n})$ at $\iota(x)$ , where $G_{2n,n}$ is the Grassmann manifold consisting of all
n-planes in $C^{n}$ ; and let $[f_{n}]\in\pi_{n}(G_{2n.n})$ denote the homotopy class represented
by $f_{n}$ . According to Arnold [1], we use the notation $\Lambda(n)$ for the lagrangian
Grassmann manifold consisting of all lagrangian subspaces of $C^{n}$ . Let $i_{n}$ : $\Lambda(n)$

$\rightarrow G_{2n.n}$ be the natural inclusion and let $(i_{n})_{*}:$ $\pi_{n}(\Lambda(n))\rightarrow\pi_{n}(G_{2n.n})$ be the homo-
morphism induced by $i_{n}$ . Now the proof of Proposition 4 is based on the fol-
lowing lemma.

LEMMA 4. $S^{n}$ admits a weakly lagrangian imbedding into $C^{n}$ if and only

if $[f_{n}]\in Image(i_{n})_{*}$ .
PROOF. Using the fact that $S^{n}$ admits a weakly lagrangian imbedding if

and only if $\iota$ is weakly lagrangian, the proof is immediate from Definition 1.
Now our problem is reduced to determining the homomorphism $(i_{n})_{*}:$ $\pi_{n}(\Lambda(n))$

$\rightarrow\pi_{n}(G_{2n.n})$ .
Here we note the following. The lagrangian Grassmann manifold $\Lambda(n)$ is

identiPed with the coset space $U(n)/O(n)$ by means of the correspondence $U\lambda_{R}$

$\rightarrow[U]$ , where $\lambda_{R}$ is the real plane of $C^{n}$ and $[U]$ is the coset of $U\in U(n)$ (cf.

[1]). On the other hand, the Grassmann manifold $G_{2n,n}$ is identified with
$O(2n)/O(n)\times O(n)$ by means of the correspondence $O\lambda_{R}\rightarrow[O]$ , where $O\in O(2n)$ .
Under these identifications $i_{n}$ : $\Lambda(n)\rightarrow G_{2n.n}$ takes the form

$i_{n}([U])=[j_{n}(U)]=[\left(\begin{array}{ll}A & -B\\B & A\end{array}\right)]$ ,

where $j_{n}$ : $U(n)\rightarrow 0(2n)$ is the natural inclusion and

$A=(U+\overline{U})/2$ , $B=(U-\overline{U})/2\sqrt{-1}$ .

PROOF OF PROPOSITION 4. Now the proof will be divided into four steps.
Let $p_{n}$ : $U(n)\rightarrow\Lambda(n)$ be the natural projection.
STEP 1. $(p_{n})_{*}:$ $\pi_{n}(U(n))\rightarrow\pi_{n}(\Lambda(n))$ is surjective, if $n=3.7$

$\pi_{3}(\Lambda(3))\cong Z_{4}$ , $\pi_{7}(\Lambda(7))\cong Z_{2}$ .

PROOF. Consider the diagram
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$(p_{n})_{*}$

$\pi_{n}(O(n))\rightarrow\pi_{n}(U(n))\rightarrow\pi_{n}(\Lambda(n))\rightarrow\pi_{n- 1}(O(n))$

$\pi_{n}(O(n+2))\downarrow\rightarrow\pi_{n}(U(n+2))\rightarrow\pi_{n}(\Lambda(n+2))\rightarrow\pi_{n- 1}(O(n+2))$

$\pi_{n}(V_{n+2.2})\downarrow$

$\pi_{n-1}(O(n))\downarrow$

where the horizontal lines and the vertical line are parts of the homotopy exact
sequences of the natural fibrations. Let $\Lambda$ and $0$ be the direct limits as $ n\rightarrow\infty$

of $\Lambda(n)$ and $0(n)$ , with the direct limit topology respectively. Then it is easily
checked that $\pi_{i}(\Lambda(n))\cong\pi_{i}(\Lambda)$ for $n\geqq i+1$ . Furthermore we have $\pi_{i}(\Lambda)\cong\pi_{i+6}(O)$

according to [6, \S 24]. Then the facts $\pi_{n-1}(O(n))=0$ for $n=3,7$ imply the sur-
jectivity of $(p_{n})_{*}$ , and the facts $\pi_{n}(O(n))\cong Z$ for $n=3,7\pi_{n}(V_{n+k.k})\cong Z_{2}$ for $n$

odd, $k\geqq 2$ and the informations on $\pi_{i}(O)$ yield the latter part of Step 1.
STEP 2. $\pi_{3}(G_{6,3})\cong\pi_{3}(V_{6,3})\cong Z_{2},$ $\pi_{7}(G_{14.7})\cong\pi_{7}(V_{14,7})\cong Z_{2}$ .
PROOF. Consider the following commutative diagram

$\pi_{n}(O(n))$

$\}j*$

$\pi_{n}(O(2n))$

$\nearrow^{h*}$
$\#(p_{n}^{\prime})_{*}$

$\pi_{n}(O(n))\rightarrow\pi_{n}(V_{2n.n})-\pi_{n}(G_{2n.n})\rightarrow 0$ ,

where the horizontal line and the vertical line are parts of the homotopy exact
sequences of the natural fibrations. The homomorphisms $h,$ $j:O(n)\rightarrow 0(2n)$ are

defined by $h(A)=\left(\begin{array}{ll}A & O\\O & I\end{array}\right),$ $j(A)=\left(\begin{array}{ll}I & O\\O & A\end{array}\right)$ respectively. Since $h$ and $j$ are con-

jugate in $O(2n)$ , they are homotopic to each other and hence $h_{*}=j_{*}$ . Now us-
ing the fact that $\pi_{n}(V_{n+k.k})\cong Z_{2}$ ( $k\geqq 2,$ $n$ odd) we obtain the required results.

STEP 3. $(i_{3})_{*}:$ $\pi_{3}(\Lambda(3))\rightarrow\pi_{3}(G_{6,3})$ is surjective.
$(i_{7})_{*}:$ $\pi_{7}(\Lambda(7))\rightarrow\pi_{7}(G_{14,7})$ is zero.

PROOF. Consider the diagram
$(j_{n})_{*}$

$\pi_{n}(U(n))\rightarrow\pi_{n}(O(2n))\rightarrow\pi_{n}(O(2n)/U(n))\rightarrow 0$

$\downarrow(p_{n})_{*}(i_{n})_{*}\pi_{n}(V_{2n,n})\downarrow(p_{n}^{\prime\prime})_{*}\downarrow(p_{n}^{\prime})_{*}$

$\pi_{n}(\Lambda(n))\rightarrow\pi_{n}(G_{2n.n})$

$\downarrow$

$0$
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where the upper horizontal line is a part of the homotopy exact sequence of
the natural fibration. According to Step 2, $(p_{n}^{\prime\prime})_{*}$ is bijective, and Step 1 and
the fact that $\pi_{n-1}(O(n))=0$ for $n=3,7$ imply that $(p_{n})_{*}$ and $(p_{n}^{\prime})_{*}$ are surjective.
Hence the generators of $\pi_{n}(U(n))$ and $\pi_{n}(O(n))$ determine those of $\pi_{n}(\Lambda(n))$ and
$\pi_{n}(G_{2n.n})$ respectively. Since we know that $\pi_{3}(O(6)/U(3))=0,$ $\pi_{7}(O(14)/U(7))\cong Z_{2}$ ,
using the knowledge of stable homotopy groups (cf. [6]), we can conclude that
$(j_{3})_{*}$ is an isomorphism and $(j_{7})_{*}$ sends a generator of $\pi_{7}(U(7))$ into twice a
generator or $\pi_{7}(O(14))$ . This implies the assertion of Step 3.

STEP 4. $[f_{n}]$ is the generator of $\pi_{n}(G_{2n.n})$ for $n=3,7$ .
PROOF. Let $\iota^{\prime}$ : $S^{n}\rightarrow R^{n+k}$ be the standard imbedding. If $n$ is odd and $k\geqq 2$ ,

the generator of $\pi_{n}(V_{n+k,k})\cong Z_{2}$ is represented by a maP $g:S^{n}\rightarrow V_{n+k,k}$ which
assigns to a point $x\in S^{n}$ the orthogonal k-frame consisting of the vector $\iota^{\prime}(x)$

followed by the i-th basis vectors $e_{i}$ with $n+2\leqq i\leqq n+k$ (cf. [8, \S 25]). Here
applying Step 2, the generator of $\pi_{n}(G_{2n,n})$ is represented by a map $g_{n}$ : $ S^{n}\rightarrow$

$G_{2n.n}$ which assigns to a point $x\in S^{n}$ the normal plane of $\iota(S^{n})$ at $\iota(x)$ . Then
the duality of Grassmann manifolds $G_{n+k,n}\cong G_{n+k,k}$ shows that $f_{n}$ also repre-
sents the generator of $\pi_{n}(G_{2n,n})$ .

Proposition 4 clearly follows from Steps1,2,3 and 4.
Now it would be clear that Theorem 2 is a direct consequence of Proposi-

tion 4.
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