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1. Introduction.

Let $(M, g)$ , or simply $M$, be an n-dimensional differentiable manifold with
Riemannian metric $g$ . We denote by $C_{0}(M, g)$ the largest connected group of
conformal transformations of $(M, g)$ , and by $I_{0}(M, g)$ the largest connected
group of isometries of $(M, g)$ .

Riemannian manifolds with constant scalar curvature admitting an infinites-
imal non-isometric conformal transformation have been extensively studied by
various authors, and the following conjecture has been well-known.

CONJECTURE. Let $(M, g)$ be an n-dimensional compact Riemannian manifold.
If

(i) $n>2$

(ii) the scalar curvature of $(M, g)$ is constant
(iii) $C_{0}(M, g)\neq I_{0}(M, g)$ ,

then $(M, g)$ is isometric to $a$ Euclidean $n$-sphere $S^{n}$ .
This conjecture has been proved in various forms under some stronger as-

sumptions. Typical results may be quoted as follows.
THEOREM A (Yano and Nagano [8]). The conjecture is $t$ rue if, instead of

(ii),
$(ii)_{A}$ $(M, g)$ is Einstein.

THEOREM $B$ (Nagano [6]). The conjecture is true if, instead of (ii),
$(ii)_{B}$ the Ricci tensor of $(M, g)$ is parallel.

THEOREM $C$ (Goldberg and Kobayashi [2], [3]). The conjecture is true if,
instead of (i) and (ii),
$(i)_{C}$ $n>3$

(ii)c $I_{0}(M, g)$ is transitive on $M$.
THEOREM $D$ (Lichnerowicz [5]). The conjecture is true if instead of (ii),

$(ii)_{D}$ the scalar curvature and the length of the Ricci tensor of $(M, g)$ are con-
stant.

THEOREM $E$ (Hsiung [4]). The conjecture is true if, instead of (ii),
$(ii)_{E}$ the scalar curvature and the length of curvature tensor of $(M, g)$ are con-
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stant.
THEOREM $F$ (Obata [7]). The conjecture is true if, instead of (iii),

$(iii)_{F}$ $C_{0}(M, g)\neq I_{0}(M, e^{2\phi}g)$ for any smooth function $\phi$ on $M$.
The purpose of this paper is to show that the conjecture itself is not true.

A counter example will be given by a warped product of a circle and an $(n-1)-$

dimensional manifold. Our main theorem can be stated as follows.
THEOREM. The conjecture is not true. More precisely, let $F$ be an $(n-1)-$

dimensional compact Riemannian manifold with positive constant scalar curvature.
Then there exists a positive function $f$ on a circle $S^{1}$ such that the warped prod-
uct $S^{1}\times_{f}F$ satisfies all assumpti0ns of the conjecture.

The author expresses his deep gratitude to Professor K. Ogiue who encour-
aged him and gave him a lot of valuable suggestions.

2. Warped products.

In [1], R. L. Bishop and B. O’Neill studied some properties of warped prod-
ucts. Let $(B, h)$ and $(F, g)$ be Riemannian manifolds and $f$ a positive $C^{\infty}$-func-
tion on $B$ . Consider the product manifold $B\times F$ with projections $\pi;B\times F\rightarrow B$

and $\varpi;B\times F\rightarrow F$. The warped product $B\times_{f}F$ is the manifold $B\times F$ with Rie-
mannian metric $\tilde{g}$ defined by

$\tilde{g}(X, Y)=h(\pi_{*}X, \pi_{*}Y)+(f(\pi(x)))^{2}g(\varpi_{*}X, \varpi_{*}Y)$ for $X,$ $Y\in T_{x}(B\times F)$ .
We say that $X\in T_{x}(B\times F)$ is horizontal (resp. vertical) if $\varpi_{*}X=0$ (resp. $\pi_{*}X=0$).

We identify $T_{x}(B\times F)$ with $T_{\pi(x)}(B)+T_{\varpi(x)}(F)$ . Note that, for $p\in F,$ $\varpi^{-1}(p)$

is totally geodesic in $B\times_{f}F$ and $\pi|\varpi^{-1}(p):\varpi^{-1}(p)\rightarrow B$ is an isometry. We de-
note by V, $\nabla$ and $D$ the covariant differentiations on $(B\times_{f}F,\tilde{g}),$ $(F, g)$ and
$(B, h)$ , respectively. We shall review some basic properties of warped products.

LEMMA 2.1 ([1]). Let $X,$ $Y$ (resp. $V,$ $W$ ) be vector fields on $B$ (resp. $F$).

Then

(1) $\forall_{X}V=\forall_{V}X=(Xf/f)V$,
(2) $\mathfrak{H}\Phi_{V}W$ ) $=-f\cdot g(V, W)$ grad $f=-(1/f)\tilde{g}(V, W)$ grad $f$,
(3) $\mathfrak{V}(\forall_{V}W)=\nabla_{V}W$,

where $\mathfrak{H}$ (resp. $\mathfrak{V}$ ) denotes the horizontal (resp. vertical) component.
We denote by $S,$ $R$ and fi the curvature tensor of $B,$ $F$ and $B\times_{f}F$, respec-

tively.
LEMMA 2.2 ([1]). Let $X,$ $Y,$ $Z$ (resp. $U,$ $V,$ $W$ ) be vector fields on $B$ (resp.

$F)$ . Then

(1) $ R_{UV}W=R_{UV}W-(\Vert$ grad $f\Vert/f)^{2}[\tilde{g}(U, W)V-\tilde{g}(V, W)U]$

(2) $R_{XV}Y=-(1/f)((D^{2}f)(X, Y))V=-(1/f)\tilde{g}$ ( $D_{X}$ grad $f,$ $Y$ ) $V$

(3) $R_{XY}U=R_{VW}X=0$
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(4) $\tilde{R}_{XV}W=\tilde{R}_{XW}V=(1/f)\tilde{g}(V, W)\cdot D_{X}$ grad $f$

(5) $\tilde{R}_{XY}Z=S_{XY}Z$,

where $D^{2}f$ is the Hessian of $f$.
LEMMA 2.3 ([1]). $B\times_{f}F$ is complete if and only if $B$ and $F$ are complete.
LEMMA 2.4. If dim $B=1$ , then $X=f(d/dt)$ is an infinitesimal conformal

transformation of $(B\times_{f}F,\tilde{g})$ such that $L_{X}\tilde{g}=2f\tilde{g}$ , where $d/dt$ is a unit vector
field on $(B, h)$ , $L_{X}$ is the Lie differentiation in the direction of $X$ and $f^{\prime}=$

$\nabla_{(dfdt)}f$.
PROOF. Let $V$ and $W$ be vector fields on $F$. Then, by Lemma 2.1, we have

$(L_{X}\tilde{g})(V, W)=X\cdot\tilde{g}(V, W)-\tilde{g}([X, V], W)-\tilde{g}(V, [X, W])$

$=f((d/dt)(f^{2}g(V, W))=2f^{2}f^{\prime}g(V, W)=2f^{\prime}\tilde{g}(V, W)$ ,

$(L_{X}\tilde{g})(d/dt, V)=X\cdot\tilde{g}(d/dt, V)-\tilde{g}([X, d/dt], V)-\tilde{g}(d/dt, [X, V])=0$ ,

$(L_{X}\tilde{g})(d/dt, d/dt)=X\cdot\tilde{g}(d/dt, d/dt)-2\tilde{g}([X, d/dt], d/dt)$

$=2f^{\prime}\tilde{g}(d/dt, d/dt)$ ,

which prove that $L_{X}\tilde{g}=2f^{\prime}\tilde{g}$ . (Q. E. D.)

3. Scalar curvature of $B\times_{f}F$ with $\dim B=1$ .
Let $R$ be the real line with the standard Riemannian metric and $(F, g)$ an

$(n-1)$-dimensional Riemannian manifold. Let $f$ be a positive $C^{\infty}$-function on $R$

and consider the warped product $(R\times fF,\tilde{g})$ as in \S 2. Let $\rho$ and $\tilde{\rho}$ be the
scalar curvature of $F$ and $R\times fF$, respectively. Then we have the following.

LEMMA 3.1.

$\tilde{\rho}=-2(n-1)f^{\prime}/f-(n-1)(n-2)(f^{\prime}/f)^{2}+(1/f)^{2}\rho$ .
PROOF. Let $d/dt,$ $e_{1},$

$\cdots$ , $e_{n-1}$ be a local field of orthonormal frames of
$R\times fF$, where $d/dt$ denotes a unit vector field on $R$ . Then we have

$\tilde{\rho}=2\sum_{a=1}^{n-1}\tilde{g}(\tilde{R}_{e_{a}a/dt}e_{a}, d/dt)+\sum_{a.b=1}^{n-1}\tilde{g}(\tilde{R}_{e_{a}e_{b}}e_{a}, e_{b})$ .

On the other hand, Lemma 2.2 implies

$\tilde{g}(R_{e_{a}d/dt}e_{a}, d/dt)=-(f^{\prime}/f)$

$\tilde{g}(R_{e_{a}e_{b}}e_{a}, e_{b})=\tilde{g}(R_{e_{a}e_{b}}e_{a}, e_{b})-(f^{\prime}/f)^{2}$

$=(1/f)^{2}g(R_{fe_{a}fe_{b}}fe_{a}, fe_{b})-(f^{\prime}/f)^{2}$ .
Since $fe_{1},$ $fe_{n- 1}$ are orthonormal with respect to $g$ , we obtain

$\tilde{\rho}=-2(n-1)(f^{\prime}/f)-(n-1)(n-2)(f^{\prime}/f)^{2}+(1/f)^{2}\rho$ . (Q. E. D.)
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This, combined with Lemma 2.3 and Lemma 2.4, implies the following.
PROPOSITION 3.2. Let $F$ be an $(n-1)$-dimensional complete Riemannian mani-

fold with constant scalar curvature $\rho$ and let $\tilde{\rho}$ be a constant. If the differential
equation in Lemma 3.1 admits a non-constant Positive solution $f$, then $R\chi_{f}F$ is
an n-dimensional complete Riemannian manifold with constant scalar curvature $\tilde{\rho}$

admitting an infinitesimal non-isometric conformal transformation.
We show that the differential equation in Lemma 3.1 admits a positive

periodic solution if $\rho$ and $\tilde{\rho}$ are positive constants, that is we have the following.
LEMMA 3.3. If $\rho$ and $\tilde{\rho}$ are Positive constants, then the differential equation

$2(n-1)ff^{\prime}+(n-1)(n-2)(f^{\prime})^{2}+\tilde{\rho}f^{2}-\rho=0$

admits a pOsitive Periodic solution.
PROOF. If we put $x=f(t)$ and $y=f^{\prime}(t)$ , then the differential equation can

be written as

$(^{*})$ $\left\{\begin{array}{l}x^{\prime}=y\\y^{\prime}=-((n-2)/2)(y^{2}/x)+(\rho/2(n-1))(1/x)-(\tilde{\rho}/2(n-1))x.\end{array}\right.$

Since $(^{*})$ is invariant under $(t, x, y)\rightarrow(-t, x, -y)$ , if $(x(t), y(t))$ is a solution,

so is $(x(-t), -y(-t))$ . If $(x(t), y(t))$ is a solution of $(^{*})$ with initial condition
$(x(O), y(O))=(a, 0)$ , then the solution $(x(-t), -y(-t))$ also satisfies the same
initial condition, where $a\neq 0$ is an arbitrary real number. Therefore, by the
uniqueness of solution, we have $(x(t), y(t))=(x(-t), -y(-t))$ . This implies that
an orbit passing through $(a, 0)$ is symmetric (in the reverse sense) with respect

to x-axis. On the other hand, if we put $\xi=x-\sqrt{\rho/\tilde{\rho}}$ and $\eta=y$ , then $(^{*})$ implies

$\left(\begin{array}{l}\xi^{\prime}\\\prime\eta\end{array}\right)=\left(\begin{array}{ll}0 & 1\\-\tilde{\rho}/(n-1) & 0\end{array}\right)\left(\begin{array}{l}\xi\\\eta\end{array}\right)+$ (higher order terms).

Since eigenvalues of the matrix representing the linear term are pure imaginary,
an orbit $(x(t), y(t))$ with initial condition $(x(O), y(O))=(a, 0)$ for $a$ sufficiently

close to $\sqrt{\rho/\tilde{\rho}}$ intersects the x-axis again at $(x(t_{0}), 0)$ for some $t_{0}>0$ . These
imply that an orbit $(x(t), y(t))$ with initial condition $(x(O), y(O))=(a, 0)$ for $a$

sufficiently close to $\sqrt{\rho}/\tilde{\rho}$ is a closed curve. Moreover note that no orbit can
intersect the y-axis. Therefore $(^{*})$ admits positive periodic solutions.

Orbits are illustrated as follows (Note that orbits are symmetric (in the
reverse sense) with respect to the y-axis as well, since $(^{*})$ is invariant under
$(t, x, y)\rightarrow(-t, -x, y))$ ;
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$y$

Since a periodic function on $R$ can be considered as a function on a circle
$S^{1}$ , Proposition 3.2 and Lemma 3.3 yield the following.

THEOREM 3.4. Let $F$ be an $(n-1)$-dimensional compact Riemannian manifold
with positive constant scalar curvature $\rho$ and let $\tilde{\rho}$ be a positive constant. If $f$

is a positive non-constant peri0dic solution of the differential equation in Lemma
3.3, then $S^{1}\times_{f}F$ is an n-dimensional compact Riemannian manifold with positive
constant scalar curvature $\tilde{\rho}$ admitting an infinitesimal non-isometric conformal
transfo rmation.
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