A negative answer to a conjecture of conformal transformations of Riemannian manifolds

By Norio EJIRI

(Received June 16, 1979)

1. Introduction.

Let (M, g), or simply M, be an n-dimensional differentiable manifold with Riemannian metric g. We denote by $C_{0}(M, g)$ the largest connected group of conformal transformations of (M, g), and by $I_{0}(M, g)$ the largest connected group of isometries of (M, g).

Riemannian manifolds with constant scalar curvature admitting an infinitesimal non-isometric conformal transformation have been extensively studied by various authors, and the following conjecture has been well-known.

Conjecture. Let (M, g) be an n-dimensional compact Riemannian manifold. If
(i) $n>2$
(ii) the scalar curvature of (M, g) is constant
(iii) $C_{0}(M, g) \neq I_{0}(M, g)$,
then (M, g) is isometric to a Euclidean n-sphere S^{n}.
This conjecture has been proved in various forms under some stronger assumptions. Typical results may be quoted as follows.

Theorem A (Yano and Nagano [8]). The conjecture is true if, instead of (ii),
(ii) $\mathrm{A}_{\mathrm{A}}(M, g)$ is Einstein.

Theorem B (Nagano [6]). The conjecture is true if, instead of (ii), (ii) ${ }_{\mathrm{B}}$ the Ricci tensor of (M, g) is parallel.

Theorem C (Goldberg and Kobayashi [2], [3]). The conjecture is true if, instead of (i) and (ii),
(i) ${ }_{c} \quad n>3$
(ii)c $I_{0}(M, g)$ is transitive on M.

Theorem D (Lichnerowicz [5]). The conjecture is true if instead of (ii), (ii) ${ }_{\mathrm{D}}$ the scalar curvature and the length of the Ricci tensor of (M, g) are constant.
Theorem E (Hsiung [4]). The conjecture is true if, instead of (ii), (ii) $_{\mathrm{E}}$ the scalar curvature and the length of curvature tensor of (M, g) are con-
stant.
THEOREM F (Obata [7]). The conjecture is true if, instead of (iii), (iii) $_{\mathrm{F}} C_{0}(M, g) \neq I_{0}\left(M, e^{2 \phi} g\right)$ for any smooth function ϕ on M.

The purpose of this paper is to show that the conjecture itself is not true. A counter example will be given by a warped product of a circle and an ($n-1$)dimensional manifold. Our main theorem can be stated as follows.

THEOREM. The conjecture is not true. More precisely, let F be an $(n-1)$ dimensional compact Riemannian manifold with positive constant scalar curvature. Then there exists a positive function f on a circle S^{1} such that the warped product $S^{1} \times{ }_{f} F$ satisfies all assumptions of the conjecture.

The author expresses his deep gratitude to Professor K. Ogiue who encouraged him and gave him a lot of valuable suggestions.

2. Warped products.

In [1], R. L. Bishop and B. O'Neill studied some properties of warped products. Let (B, h) and (F, g) be Riemannian manifolds and f a positive C^{∞}-function on B. Consider the product manifold $B \times F$ with projections $\pi: B \times F \rightarrow B$ and $\widetilde{\tau}: B \times F \rightarrow F$. The warped product $B \times{ }_{f} F$ is the manifold $B \times F$ with Riemannian metric \tilde{g} defined by

$$
\tilde{g}(X, Y)=h\left(\pi_{*} X, \pi_{*} Y\right)+(f(\pi(x)))^{2} g\left(\widetilde{\varpi}_{*} X, \widetilde{\sigma}_{*} Y\right) \quad \text { for } X, Y \in T_{x}(B \times F)
$$

We say that $X \in T_{x}(B \times F)$ is horizontal (resp. vertical) if $\widetilde{w}_{*} X=0$ (resp. $\pi_{*} X=0$). We identify $T_{x}(B \times F)$ with $T_{\pi(x)}(B)+T_{\varpi(x)}(F)$. Note that, for $p \in F, \widetilde{\sigma}^{-1}(p)$ is totally geodesic in $B \times{ }_{f} F$ and $\pi \mid \widetilde{w}^{-1}(p): \widetilde{w}^{-1}(p) \rightarrow B$ is an isometry. We denote by $\tilde{\nabla}, \nabla$ and D the covariant differentiations on $\left(B \times{ }_{f} F, \tilde{g}\right),(F, g)$ and (B, h), respectively. We shall review some basic properties of warped products.

Lemma 2.1 ([1]). Let X, Y (resp. V, W) be vector fields on B (resp. F). Then
(1) $\tilde{\nabla}_{X} V=\tilde{\nabla}_{V} X=(X f / f) V$,
(2) $\mathfrak{S g}\left(\tilde{\nabla}_{V} W\right)=-f \cdot g(V, W) \operatorname{grad} f=-(1 / f) \tilde{g}(V, W) \operatorname{grad} f$,
(3) $\mathfrak{B}\left(\tilde{\nabla}_{V} W\right)=\nabla_{V} W$,
where \mathfrak{F} (resp. $\mathfrak{B})$ denotes the horizontal (resp. vertical) component.
We denote by S, R and \tilde{R} the curvature tensor of B, F and $B \times{ }_{f} F$, respectively.

Lemma 2.2 ([1]). Let X, Y, Z (resp. U, V, W) be vector fields on B (resp. $F)$. Then
(1) $\quad \tilde{R}_{U V} W=R_{U V} W-(\|\operatorname{grad} f\| / f)^{2}[\tilde{g}(U, W) V-\tilde{g}(V, W) U]$
(2) $\quad \tilde{R}_{X V} Y=-(1 / f)\left(\left(D^{2} f\right)(X, Y)\right) V=-(1 / f) \tilde{g}\left(D_{X} \operatorname{grad} f, Y\right) V$
(3) $\widetilde{R}_{X Y} U=R_{V W} X=0$
(4) $\tilde{R}_{X V} W=\tilde{R}_{X W} V=(1 / f) \tilde{g}(V, W) \cdot D_{X} \operatorname{grad} f$
(5) $\tilde{R}_{X Y} Z=S_{X Y} Z$,
where $D^{2} f$ is the Hessian of f.
Lemma 2.3 ([1]). $B \times{ }_{f} F$ is complete if and only if B and F are complete.
Lemma 2.4. If $\operatorname{dim} B=1$, then $X=f(d / d t)$ is an infinitesimal conformal transformation of $\left(B \times{ }_{f} F, \tilde{g}\right)$ such that $L_{X} \tilde{g}=2 f^{\prime} \tilde{g}$, where $d / d t$ is a unit vector field on $(B, h), L_{X}$ is the Lie differentiation in the direction of X and $f^{\prime}=$ $\nabla_{(d / d t)} f$.

Proof. Let V and W be vector fields on F. Then, by Lemma 2.1, we have

$$
\begin{aligned}
& \left(L_{X} \tilde{g}\right)(V, W)=X \cdot \tilde{g}(V, W)-\tilde{g}([X, V], W)-\tilde{g}(V,[X, W]) \\
& \quad=f\left((d / d t)\left(f^{2} g(V, W)\right)=2 f^{2} f^{\prime} g(V, W)=2 f^{\prime} \tilde{g}(V, W),\right. \\
& \begin{aligned}
\left(L_{X} \tilde{g}\right)(d / d t, V) & =X \cdot \tilde{g}(d / d t, V)-\tilde{g}([X, d / d t], V)-\tilde{g}(d / d t,[X, V])=0, \\
\left(L_{X} \tilde{g}\right)(d / d t, d / d t) & =X \cdot \tilde{g}(d / d t, d / d t)-2 \tilde{g}([X, d / d t], d / d t) \\
\quad & =2 f^{\prime} \tilde{g}(d / d t, d / d t),
\end{aligned}
\end{aligned}
$$

which prove that $L_{X} \tilde{g}=2 f^{\prime} \tilde{g}$.
(Q.E. D.)
3. Scalar curvature of $B \times{ }_{f} F$ with $\operatorname{dim} B=1$.

Let \boldsymbol{R} be the real line with the standard Riemannian metric and (F, g) an ($n-1$)-dimensional Riemannian manifold. Let f be a positive C^{∞}-function on \boldsymbol{R} and consider the warped product ($\boldsymbol{R} \times{ }_{f} F, \tilde{g}$) as in $\S 2$. Let ρ and $\tilde{\rho}$ be the scalar curvature of F and $\boldsymbol{R} \times{ }_{f} F$, respectively. Then we have the following.

Lemma 3.1.

$$
\tilde{\rho}=-2(n-1) f^{\prime \prime} / f-(n-1)(n-2)\left(f^{\prime} / f\right)^{2}+(1 / f)^{2} \rho .
$$

Proof. Let $d / d t, e_{1}, \cdots, e_{n-1}$ be a local field of orthonormal frames of $\boldsymbol{R} \times{ }_{f} F$, where $d / d t$ denotes a unit vector field on \boldsymbol{R}. Then we have

$$
\tilde{\rho}=2 \sum_{a=1}^{n-1} \tilde{g}\left(\tilde{R}_{e_{a} d / d t} e_{a}, d / d t\right)+\sum_{a, b=1}^{n-1} \tilde{g}\left(\tilde{R}_{e_{a} e_{b}} e_{a}, e_{b}\right) .
$$

On the other hand, Lemma 2.2 implies

$$
\begin{aligned}
& \tilde{g}\left(\tilde{R}_{e_{a} d / d t} e_{a}, d / d t\right)=-\left(f^{\prime \prime} / f\right) \\
& \tilde{g}\left(\tilde{R}_{e_{a} e_{b} e_{a}}, e_{b}\right)=\tilde{g}\left(R_{\left.e_{a} e_{b} e_{a}, e_{b}\right)-\left(f^{\prime} / f\right)^{2}}\right. \\
& =(1 / f)^{2} g\left(R_{f e_{a} f e_{b}} f e_{a}, f e_{b}\right)-\left(f^{\prime} / f\right)^{2} .
\end{aligned}
$$

Since $f e_{1}, \cdots, f e_{n-1}$ are orthonormal with respect to g, we obtain

$$
\begin{equation*}
\tilde{\rho}=-2(n-1)\left(f^{\prime \prime} / f\right)-(n-1)(n-2)\left(f^{\prime} / f\right)^{2}+(1 / f)^{2} \rho . \tag{Q.E.D.}
\end{equation*}
$$

This, combined with Lemma 2.3 and Lemma 2.4 implies the following.
Proposition 3.2. Let F be an $(n-1)$-dimensional complete Riemannian manifold with constant scalar curvature ρ and let $\tilde{\rho}$ be a constant. If the differential equation in Lemma 3.1 admits a non-constant positive solution f, then $\boldsymbol{R} \times{ }_{f} F$ is an n-dimensional complete Riemannian manifold with constant scalar curvature $\tilde{\rho}$ admitting an infinitesimal non-isometric conformal transformation.

We show that the differential equation in Lemma 3.1 admits a positive periodic solution if ρ and $\tilde{\rho}$ are positive constants, that is we have the following.

Lemma 3.3. If ρ and $\tilde{\rho}$ are positive constants, then the differential equation

$$
2(n-1) f f^{\prime \prime}+(n-1)(n-2)\left(f^{\prime}\right)^{2}+\tilde{\rho} f^{2}-\rho=0
$$

admits a positive periodic solution.
Proof. If we put $x=f(t)$ and $y=f^{\prime}(t)$, then the differential equation can be written as

$$
\left\{\begin{array}{l}
x^{\prime}=y \tag{*}\\
y^{\prime}=-((n-2) / 2)\left(y^{2} / x\right)+(\rho / 2(n-1))(1 / x)-(\tilde{\rho} / 2(n-1)) x .
\end{array}\right.
$$

Since $\left(^{*}\right)$ is invariant under $(t, x, y) \rightarrow(-t, x,-y)$, if $(x(t), y(t))$ is a solution, so is $(x(-t),-y(-t))$. If $(x(t), y(t))$ is a solution of $\left(^{*}\right)$ with initial condition $(x(0), y(0))=(a, 0)$, then the solution $(x(-t),-y(-t))$ also satisfies the same initial condition, where $a \neq 0$ is an arbitrary real number. Therefore, by the uniqueness of solution, we have $(x(t), y(t))=(x(-t),-y(-t))$. This implies that an orbit passing through ($a, 0$) is symmetric (in the reverse sense) with respect to x-axis. On the other hand, if we put $\xi=x-\sqrt{\rho / \tilde{\rho}}$ and $\eta=y$, then (*) implies

$$
\binom{\xi^{\prime}}{\eta^{\prime}}=\left(\begin{array}{ll}
0 & 1 \\
-\tilde{\rho} /(n-1) & 0
\end{array}\right)\binom{\xi}{\eta}+(\text { higher order terms }) .
$$

Since eigenvalues of the matrix representing the linear term are pure imaginary, an orbit $(x(t), y(t))$ with initial condition $(x(0), y(0))=(a, 0)$ for a sufficiently close to $\sqrt{\rho / \tilde{\rho}}$ intersects the x-axis again at $\left(x\left(t_{0}\right), 0\right)$ for some $t_{0}>0$. These imply that an orbit $(x(t), y(t))$ with initial condition $(x(0), y(0))=(a, 0)$ for a sufficiently close to $\sqrt{\rho / \tilde{\rho}}$ is a closed curve. Moreover note that no orbit can intersect the y-axis. Therefore (*) admits positive periodic solutions.

Orbits are illustrated as follows (Note that orbits are symmetric (in the reverse sense) with respect to the y-axis as well, since $\left({ }^{*}\right)$ is invariant under $(t, x, y) \rightarrow(-t,-x, y))$;

Since a periodic function on R can be considered as a function on a circle S^{1}, Proposition 3.2 and Lemma 3.3 yield the following.

Theorem 3.4. Let F be an ($n-1$)-dimensional compact Riemannian manifold with positive constant scalar curvature ρ and let $\tilde{\rho}$ be a positive constant. If f is a positive non-constant periodic solution of the differential equation in Lemma 3.3, then $S^{1} \times{ }_{f} F$ is an n-dimensional compact Riemannian manifold with positive constant scalar curvature $\tilde{\rho}$ admitting an infinitesimal non-isometric conformal transformation.

References

[1] R.L. Bishop and B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969) 1-49.
[2] S.I. Goldberg and S. Kobayashi, The conformal transformation group of a compact Riemannian manifold, Amer. J. Math., 84 (1962) 170-174.
[3] S.I. Goldberg and S. Kobayashi, The conformal transformation group of a compact homogeneous Riemannian manifold, Bull. Amer. Math. Soc., 68 (1962) 378-381.
[4] C.C. Hsiung, On the group of conformal transformations of a compact Riemannian manifold, J. Differential Geometry, 2 (1968) 185-190.
[5] A. Lichnerowicz, Sur les transformations conformes d'une variété riemannienne compacte, C. R. Acad. Sci. Paris, 259 (1964) 697-700.
[6] T. Nagano, The conformal transformations on a space with parallel Ricci tensor, J. Math. Soc. Japan, 11 (1959) 10-14.
[7] M. Obata, The conjectures on conformal transformations of Riemannian manifolds, J. Differential Geometry, 6 (1971) 247-258.
[8] K. Yano and T. Nagano, Einstein spaces admitting a one-parameter group of conformal transformations, Ann. of Math., 69 (1959) 451-461.

Norio EJIRI
Department of Mathematics
Tokyo Metropolitan University
Tokyo 158
Japan

