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1. Introduetion.

Let $S$ be a compact Riemann surface of genus $g(\geqq 3),$ $h$ be an automorphism
of $S$ with fixed points, and $T$ denotes the number of these fixed points. Let
$\langle h\rangle$ denote the cyclic group generated by $h$ , whose order is an odd prime number
$p$ . Let $ S/\langle h\rangle$ be the surface obtained by identifying the equivalent points on $S$

under the elements of $\langle h\rangle$ . If $ S/\langle h\rangle$ has genus zero, then $S$ can be defined by
an equation of the form

(1) $y^{p}=\prod_{j=1}^{T}(x-c_{j})^{\delta_{j}}$ ,

where $c_{j}(1\leqq j\leqq T)$ are complex numbers which are different from each other,

$1\leqq\delta_{j}\leqq p-1$ , and $\sum_{j=1}^{T}\delta_{j}\equiv 0(mod p)$ . Throughout the present paper we consider

only these surfaces. We show that they are characterized by non-negative
integral solution (under suitable conditions) of the system of linear equations,
which are derived from J. Lewittes’ method [4]. We investigate also the
Weierstrass gap sequence at the point $Q_{j}$ on $S$ corresponding to $(c_{j}, 0)$ .

A matrix representation $R_{1}(h)$ of $\langle h\rangle$ is obtained by letting it act on the
complex g-dimensional space $A_{1}(S)$ of Abelian differentials of the first kind.
Let $n_{k}$ with $0\leqq k\leqq P-1$ denote the multiplicity of $\epsilon^{k}(\epsilon=\exp\{(2\pi i)/p\})$ in the
diagonal form of $R_{1}(h)$ . The upper (resp. lower) bound of $\{n_{k}\}$ is taken over
all compact Riemann surfaces of fixed genus $g$ with an automorphism $h$ which
satisfy properties mentioned above. This upper (resp. lower) bound we call
simply the upper (resp. lower) bound of $\{n_{k}\}$ , and it is denoted by $n^{*}$ (resp.
$n_{*})$ . Lewittes has given upper and lower bound of $\{n_{k}\}$ if $T>0,$ [$4$, Theorem
4 $(c)$]. Our bounds given in this paper are ones improved on Lewittes’ results
except for $T\equiv 0(mod P)$ . In section 4, we consider the condition $(A_{0})$ , and
show that an automorphism $h$ satisfies the condition $(A_{0})$ with respect to $\lambda$

$(1\leqq\lambda\leqq p-1)$ if and only if $n_{\lambda}=n^{*}$ (resp. $n_{p-\lambda}=n_{*}$ ). This condition $(A_{0})$ contains
the Kato’s condition (A), [3, p. 398]. Kato has shown that if an automorphism
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$h$ satisfies the condition (A), then there exists a Weierstrass point $Q$ on $S$ such
that the number $2g-1$ is a gap value at $Q$ . Thus the vector of Riemann
constants $K(Q)$ is a half period, [3, p. 400]. In Corollary 1, we show that the
converse is also true.

ACKNOWLEDGEMENT. The author is grateful to Dr. A. Kobori, Dr. Y.
Kusunoki, and Dr. T. Kato for their kind encouragement and helpful comments.

2. Preliminary.

Throughout this paper, let $P$ and $g(\geqq 3)$ always denote an odd prime
number and the genus of $S$ respectively. In (1), let an automorphism $h$ be
represented such as

(2) $h(x, y)=(x, \epsilon y)$ .
For each $j(1\leqq j\leqq T)$ , let $z_{j}$ be a local parameter at $Q_{j}$ on $S$ corresponding to
$(c_{j}, 0)$ , and let $\beta_{j}(1\leqq\beta_{j}\leqq p-1)$ be the solution of $\delta_{j}\beta_{j}\equiv-1(mod P)$ . Then we
have

(3) $ h^{-1}(z_{j})=\epsilon^{\beta_{f}}z_{j}+\cdots$

Let $\alpha_{j}(1)=p-\delta_{j}$ , and let a positive integer $\alpha_{j}(k)(1\leqq\alpha_{j}(k)\leqq p-1)$ be the solution
of

(4) $\alpha_{j}(k)\equiv k\alpha_{j}(1)(mod P),$ $2\leqq k\leqq P-1,1\leqq j\leqq T$ .

Then the multiplicity $n_{k}(0\leqq k\leqq p-1)$ are given by

(5) $\left\{\begin{array}{l}n_{0}=0=the genus of S/\langle h\rangle,\\n_{k}=-1+\sum_{j=1}^{T}(1-\alpha_{j}(k)/p), 1\leqq k\leqq p-1, [ 4, p. 743].\end{array}\right.$

Let $\gamma(Q_{j})=\{\gamma_{1}, \gamma_{2}, \cdots , \gamma_{g}\}$ denote the Weierstrass gap sequence at $Q_{j}$ . Then
Lewittes [4] has shown that

(6) $R_{1}(h)=diagona1\{\mu^{\gamma_{1}}, \mu^{\gamma_{2}}, \cdots , \mu^{\gamma_{g}}\},$ $\mu=\epsilon^{\beta_{j}}$ .
Throughout this paper, for any real number $q$ let $[q]$ denote the integer

part of $q$ , and for any integer $q$ let $\overline{q}$ denote the minimum non-negative integer
less than $P$ such that $q\equiv\overline{q}(mod P)$ .

DEFINITION. Let $t_{\alpha}(1\leqq\alpha\leqq P-1)$ be the number of fixed points of $h$ at
which a$!(1)=\alpha(i. e. \beta_{j}\alpha\equiv 1(mod p))$ . In other words, $t_{a}$ is the number of
factors of the form $(x-c_{j})^{\delta}!$ in (1), where

(7) $\alpha=p-\delta_{j}$ for some $j(1\leqq j\leqq T)$ .
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Let $ a_{ka}=p-\overline{k\alpha}=p([k\alpha/p]+1)-k\alpha$ , and $\Gamma(\beta_{j}, \alpha_{j}(k))$ denote the number of
gap values at $Q_{j}$ which are congruent to $\alpha_{j}(k)(mod p)$ .

From the above definition, we have

(8) $T=\sum_{a=1}^{p-1}t_{\alpha}$

and (5) can be written as

\langle 9) $\sum_{\alpha=1}^{p-1}$ a $kat_{a}=p(n_{k}+1)$ , $1\leqq k\leqq p-1$ .

The condition $\sum_{j=1}^{T}\delta_{j}\equiv 0(mod p)$ imposed on (1) is contained in the above equa-

tion (9). In the case of $p=3$, this idea has been mentioned implicitly by C.
Maclachlan [5] using the theory of Fuchsian groups. We generalized his idea
to the case of an arbitrary prime number, and represent a compact Riemann
surface as an algebraic curve.

LEMMA 1. The matrix $A=(a_{ij})$ is symmetric and has following properties:

(i) $a_{ij}=a_{p-i.p-j}$ $(1\leqq i, j\leqq(p-1)/2)$ ,

(ii) $a_{ij}+a_{i.p-j}=p$ $(1\leqq i\leqq p-1,1\leqq j\leqq(p-1)/2)$ ,

$\sum_{j=1}^{p-1}$ a $ij^{=p(p-1)/2}$ $(1\leqq i\leqq p-1)$ .

PROOF. (i) follows at once from $(p-i)(P-j)\equiv ij(mod p)$ .
(ii) is trivial from $[ij/p]+[i(P-j)/p]+2-i=1$ . $q$ . $e.d$ .

LEMMA 2. Let $m_{j}(k)p+\alpha_{j}(k)(1\leqq j\leqq T, 1\leqq k\leqq P-1)$ denote the first nongap
value at $Q_{j}$ on $S$ which is congruent to $\alpha_{j}(k)(mod P)$ . Then

(i) $m_{j}(k)=n_{k}=\Gamma(\beta_{j}, \alpha_{j}(k))$ ,

(ii) $T-2=2g/(p-1)=n_{i}+n_{p-i}$ $(1\leqq i\leqq(P-1)/2)$ .
PROOF. Since the number $P$ is a nongap value at $Q_{j}$ , natural numbers

$ip+\alpha_{j}(k)(1\leqq k\leqq p-1, m_{j}(k)\leqq i)$ are nongap values at $Q_{j}$ . This yields $m_{j}(k)=$

$\Gamma(\beta_{j}, \alpha_{j}(k))$ . $m_{j}(k)=n_{k}$ follows from (4) and (6). Using (ii) and (iii) of
Lemma 1, we have $T=n_{l}+n_{p-i}+2$ from (9). Then the Riemann-Hurwitz
relation gives that $g=(n_{i}+n_{p-i})(p-1)/2$ . $q$ . $e$ . $d$ .

We have

(10) $\Gamma(j, k)=\Gamma(k, j)=n_{\overline{jk}}$ for $1\leqq j,$ $k\leqq p-1$

from (i) of Lemma 2. Thus the number of gap values congruent to $k(mod P)$

at which $h^{-1}$ is locally represented by $z\rightarrow\exp\{(2\pi ji)/p\}z$ is equal to the number
of gap values congruent to $j(mod P)$ at which $h^{-1}$ is locally represented by
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$z\rightarrow\exp\{(2\pi ki)/p\}_{Z}$ .
LEMMA 3. Let $S$ be a compact Riemann surface of genus $g,$ $Q$ be a point

on S. Let $\sigma_{k}(1\leqq k\leqq p-1)$ denote the first nongap value at $Q$ which is congruent
to $k(mod p)$ . SuppOse that an odd prime number $P$ is the first nongap value
at $Q$ .
(i) If $g=(p-1)(mp-2)/2,$ $m\geqq 2$ , and $\sigma_{p- 1}=mp-1$ , then $\sigma_{p-k}=k\sigma_{p- 1}$

$(2\leqq k\leqq P-1)$ .
(ii) If $g=(p-1)mp/2,$ $m\geqq 1$ , and $\sigma_{1}=mp+1$ , then $\sigma_{k}=k\sigma_{1}(2\leqq k\leqq P-1)$ .

PROOF. (i) The numbers $ip+j(0\leqq i\leqq m-2,1\leqq j\leqq p-1)$ and $(m-1)P+s$
$(1\leqq s\leqq p-2)$ are gap values at $Q$ from Jenkins theorem, [2]. Since $mP$–1 is a
nongap value at $Q$ , we have $mp+(p-k)\leqq\sigma_{p-k}\leqq k\sigma_{p- 1}(2\leqq k\leqq P-1)$ . If there
exists some $i(2\leqq i\leqq p-1)$ such as $\sigma_{p-i}<i\sigma_{p-1}$ , then the number of gap values
at $Q$ is at most $g-1$ . This contradicts the gap theorem. (ii) follows from the
same discussion as (i). $q$ . $e$ . $d$ .

3. Gap sequences.

From (i) of Lemma 2, the gap sequence at $Q_{j}$ is completely determined
by $\{n_{k}\}$ . Since the family $\{\beta_{j}\}$ has only $p-1$ possible values, we have the
following result.

PROPOSITION 1. Assume that $T>4$ . The family of gap sequences { $\gamma(Q_{j})$ ;
$1\leqq j\leqq T\}$ on $S$ constitutes of at most $p-1$ kinds of different gap sequences.

REMARK 1. The assumption “ $T>4$ “ means that the fixed points of $h$ are
all Weierstrass points [4; Theorem 6].

However, there really exists a surface such that $\{\gamma(Q_{j})\}$ constitutes of the
same gap sequence even if the family $\{\beta_{j}\}$ has $p-1$ possible values. We give
such an example. Consider the condition

(I) $t_{\alpha}=t_{p-\alpha}\neq 0$ for all $\alpha(1\leqq\alpha\leqq(p-1)/2, p\geqq 3)$ and $T>4$ .

If an automorphism $h$ satisfies the condition (I), then we have

(11) $n_{k}=-1+\sum_{a=1}^{r}t_{\alpha}=-1+T/2$ for all $k(1\leqq k\leqq p-1)$

from (ii) of Lemma 1 and (9), where $r=(P-1)/2$ . Such a surface $S$ is defined
by an equation of the form

$y^{p}=\prod_{\alpha=1}^{r}\prod_{j=1}^{t_{\alpha}}(x-c_{j}^{(\alpha)})^{\alpha}(x-c_{J^{(\alpha)}}^{\prime})^{p-\alpha}$

where $c_{j}^{(\alpha)}$ and $c_{J^{(\alpha)}}^{\prime}(1\leqq j\leqq t_{\alpha}, 1\leqq\alpha\leqq r)$ are different complex numbers from
each other. Since $T$ is an even number in this case, we may set $T=2m(m\geqq 3)$ .
Then $\gamma(Q_{j})=\{ip+k;0\leqq i\leqq m-2,1\leqq k\leqq p-1\}$ for all $j(1\leqq j\leqq T)$ . Farkas has
given such a surface in the case of $p=3$ and $T=6$ [ $1$ ;p. 135]. In the last
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section we give compact Riemann surfaces which have Weierstrass points with
exactly $p-1$ kinds of different gap sequences.

4. The upper and the lower bounds of $\{n_{k}\}$ .
In this section, we give explicitly the upper bound $n^{*}$ (resp. the $1ower_{akS}$

bound $n_{*}$ ) of $\{n_{k}\}$ in the case of $T>4$ . This has been given by Theorem 4(c)

of Lewittes [4]. Our bounds given in this section are ones improved on
Lewittes’ results except for $T\equiv 0(mod p)$ . From (i) of Lemma 2 and the
fact that a gap value does not exceed $2g-1$ , we have

(12) $n^{*}=\left\{\begin{array}{ll}T-T/p-1 & if T\equiv 0(mod p),\\T-[T/p]-2 & if T\not\equiv O(mod P), where T>4.\end{array}\right.$

We get $n_{*}=T-n^{*}-2$ by (ii) of Lemma 2. This yields

(13) $n_{*}=\left\{\begin{array}{ll}T/p-1 & if T\equiv 0(mod P),\\[T/p] & if T\not\equiv O(mod P), where T>4.\end{array}\right.$

PROPOSITION 2. Assume that $T>P$ for $p\geqq 5$ , and that $T>4$ for $p=3$ . Then
the number $P$ is the first nongap value at every fixed Point of $h,$ $i$ . $e$ . $n_{k}\neq 0$ for
every $k(1\leqq k\leqq P-1)$ .

PROOF. Every fixed point of $h$ is a Weierstrass point, for $T>4$ . Suppose
that the number $P$ is not the first nongap value at a fixed point of $h$ . Then
there exists a certain number $k(1\leqq k\leqq p-1)$ such that $n_{k}=0$ . This yields
$n_{p-k}=T-2$ from (ii) of Lemma 2. This contradicts equation (12). $q$ . $e$ . $d$ .

We define the number $J$ as follows:

(14) $J=\left\{\begin{array}{ll}1 & if \xi=0,\\p-1 & if \xi=1,\\p-\xi+1 & if2\leqq\xi<p-1,\end{array}\right.$

where $T=mP+\xi>4$ and $0\leqq\xi<p$ .
Let a natural number $\lambda(1\leqq\lambda\leqq p-1)$ be given, and let $\beta(k)(1\leqq k\leqq J$,

$1\leqq\beta(k)\leqq p-1)$ be the solution of

(15) $k\beta(k)\equiv\lambda(mod P)$ .

We define the number $\alpha(k)(1\leqq\alpha(k)\leqq p-1,1\leqq k\leqq J)$ to be the solution of

(16) $\alpha(k)\beta(k)\equiv 1(mod p)$ .

We consider the following condition:
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$\langle A_{0})$ $\left\{\begin{array}{ll}T=\sum_{k=1}^{J}t_{\alpha(k)}>4, and & \\J-1=\sum_{h=2}^{J}(k-1)t_{a(k)} & if T\not\equiv 1(mod P),\\p-1=\sum_{k=2}^{J}(k-1)t_{\alpha(k)} & if T\equiv 1(mod P).\end{array}\right.$

REMARK 2. These $\alpha(k)$ are different from $\alpha_{j}(k)$ dePned by (4).

THEOREM 1. Let a natural number $\lambda(1\leqq\lambda\leqq P-1)$ be given. An automor-
phism $h$ satisfies the condition $(A_{0})$ with $res$pect to $\lambda$ if and only if $n_{\lambda}=n^{*}$

$\langle resP\cdot n_{p-\lambda}=n_{*})$ .
PROOF We, at first, prove only if part of the theorem. Assume that

$n_{\lambda}=n^{*}$ . We may complete the proof by considering four cases:
Case 1. $T=mP$ where $m>1$ for $p=3$ and $m\geqq 1$ for $p\geqq 5$ . Then $J=1$ from

\langle 14). Suppose there exists a fixed point $Q_{j}$ of $h$ at which $h^{-1}$ is locally
represented by $z_{j}\rightarrow\exp\{(2\pi\beta i)/p\}z_{j}$, where $\beta$ $(1\leqq\beta\leqq p-1)$ satisfies $\beta k\equiv\lambda$

\langle $mod P$ ) for a certain $k(1\leqq k\leqq p-1)$ . We get $n_{\lambda}=m(P-1)-1$ by the assump-
tion. Then $t_{\alpha}$ is not equal to zero, where $\alpha(1\leqq\alpha\leqq P-1)$ is the solution of
$\alpha\beta\equiv 1(mod P)$ . If $k\neq 1$ , then we have $\Gamma(\beta, k)=n_{\lambda}$ from (10). This yields that
there is a gap value greater than $2g-1$ at $Q_{j}$ , for $2g-1=P\{m(p-1)-2\}+1$ .
This contradicts the gap theorem. Thus $k=1$ , and $\beta=\lambda$ . This means $a_{\beta\alpha}=$

$a_{\lambda\alpha}=(p-1)$ , because $\beta=\lambda\equiv\lambda\alpha\beta(mod P)$ . Since $a_{\beta\mu}=a_{\lambda\mu}\leqq(p-2)$ for every

$\mu(\neq\alpha)$ and $T=mp=\sum_{\mu=1}^{p-1}t_{\mu}$ , we have $ p(n_{\lambda}+1)=P\{m(P-1)\}=a_{\lambda\alpha}t_{\alpha}+\sum_{\mu\neq a}a_{\lambda\mu}t_{\mu}\leqq$

$(p-1)f_{a}+\sum_{\alpha\neq\alpha}(p-2)t_{\mu}=r_{a}+(p-2)mp$ from (9). Therefore $T=t_{a}=mp$ . Thus

$h$ satisPes the condition $(A_{0})$ .
Case 2. $T=mp+\xi>4$ , where $2\leqq\xi\leqq p-1$ . Then $J=p-\xi+1$ from (14). Sup-

pose there exists a fixed point $Q_{j}$ of $h$ at which $h^{-1}$ is locally represented by
$z_{j}\rightarrow\exp\{(2\pi\beta i)/p\}z_{j}$, where $\beta(1\leqq\beta\leqq p-1)$ satisfies $\beta k\equiv\lambda(mod p)$ for a certain
$k(1\leqq k\leqq p-1)$ . And for this $\lambda$ , we have $n_{\lambda}=m(P-1)+\xi-2$ by the assumption.
Then $t_{\alpha}$ is not equal to zero, where $\alpha(1\leqq\alpha\leqq p-1)$ is the solution of $\alpha\beta\equiv 1$

$(mod P)$ from the definition of $t_{\alpha}$ . If the number $k$ satisfies the inequality
$J<k\leqq P-1$ , then we get $\Gamma(\beta, k)=n_{\lambda}$ by (10). There is a gap value greater
than $2g-1$ at $Q_{j}$ , because $(2g-1)=p\{m(p-1)+\xi-3\}+J$. This is the contra-
diction. Thus the number $k$ satisfy the inequality $1\leqq k\leqq J$. We conclude that
$t_{\mu}$ is equal to zero for all $\mu$ , where $\mu$ satisPes $\mu\eta\equiv\lambda(mod p)$ for every $\eta$

satisfying $J<\eta\leqq p-1$ . From the above discussion we see that there exists at
most $J$ pairs of positive integers $\alpha(k)$ and $\beta(k)$ which satisfy (15) and (16).

Since $k\beta(k)\equiv\lambda\equiv\lambda\alpha(k)\beta(k)(mod p)$ , we have $\beta(k)\cdot$ (\‘A\mbox{\boldmath $\alpha$}(k)--k)\equiv O $(mod p)$ . This
yields that $\lambda\alpha(k)\equiv k(mod p)$ for each $k$ , because $1\leqq\beta(k)\leqq p-1$ . Hence we get
$a_{\lambda a(k)}=p-k$ from the dePnition, and (9) can be written as $p(n_{\lambda}+1)=$
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$p\{m(P-1)+\xi-1\}=\sum_{k=1}^{J}at=\sum_{k=1}^{J}(p-k)t_{\alpha(k)}=pT-\sum_{k=1}^{J}kt_{\alpha(k)}$ . This reduces

to $p(m+1)=\sum_{k=1}^{J}kt_{a(k)}=T+\sum_{k=2}^{J}(k-1)t_{a(k)}$ . Then we have the condition $(A_{0})$ .
Case 3. $T=mp+1$ and $m\geqq 1$ . We have $(2g-1)=p\{m(p-1)-1\}$ .
According to the similar discussion as above, we get the condition $(A_{0})$ .
Case 4. $p\geqq 7$ and $5\leqq T\leqq p-1$ . We have $(2g-1)=p(T-3)+(p-T+1)$ and

$J=p-T+1$ . Therefore $n_{\lambda}=T-2$ from the assumption. Then there exists at
most $J$ pairs of positive integers $\alpha(k)$ and $\beta(k)$ which satisfy (15) and (16).

This yields $p(T-1)=\sum_{k=1}^{J}(p-k)t_{\alpha(k)}$ by (9). Thus the condition $(A_{0})$ holds.

Conversely, we assume that an automorphism $h$ satisfies the condition $(A_{0})$ .
If $T=mp>4$, then $J=1$ by (14). Thus we have $k=1$ and $t_{a(1)}=mpi$ . $e$ . $\beta(1)=\lambda$

and $\alpha(1)\beta(1)=\alpha(1)\lambda\equiv 1(mod p)$ from (15) and (16). This yields $p\{n_{\lambda}+1\}=$

$a_{\lambda\alpha(1)}t_{a(1)}=(p-1)mp$ , which reduces to $n_{\lambda}=m(p-1)-1=n^{*}$ . In the case of
$T=mp+\xi>4(\xi\neq 0)$ , if we discuss the preceding argument conversely, then
we have (12). $q$ . $e$ . $d$ .

The case of $J=1$ ( $i$ . $e$ . $T\equiv 0(mod p)$ , so that $g\equiv 1(mod p)$ ) in $(A_{0})$ , we have

(II) $T=mp=t_{\alpha(1)}>4$ .
If an automorphism $h$ satisfies the condition (II), then all $\beta_{j}$ (dePned by (3))

have the same common value, whence all gap sequences $\gamma(Q_{j})$ are the same.
Suppose that $3\leqq J\leqq p-1$ . If $t_{\alpha(q)}\neq 0$ for a certain $q([(J+1)/2]+1\leqq q\leqq J)$ ,

then $t_{\alpha(\zeta)}=0$ for $\zeta(\zeta\neq q, [(J+1)/2]+1\leqq\zeta\leqq J)$ and $t_{\alpha(q)}=1$ . In this case the
condition $(A_{0})$ can be written as

$(A_{q})$
$\left\{\begin{array}{l}T=1+\sum_{k=1}^{B}t_{\alpha(k)}\not\equiv 1(mod p),\\J-q=\sum_{k\approx 2}^{B}(k-1)t_{\alpha(k)}, and t_{\alpha(q)}=1\\for a certain q(B+1\leqq q\leqq J, 3\leqq J\leqq p-1), where B=[(J+1)/2].\end{array}\right.$

THEOREM 2. Assume that $T>4$ , $T\not\equiv O$ , and $T\not\equiv 1(mod P)$ . The number
$2g-(J-q+1),$ $B+1\leqq q\leqq J$, is a $gaP$ value at a fixed Point of an automorphism
$h$ if and only if $h$ satisfies the condition $(A_{q})$ , where $B=[(J+1)/2]$ .

PROOF. Every fixed point of $h$ is a Weierstrass point, for $T>4$ . We set
$T=mp+\xi>4,2\leqq\xi<P$ and $m\geqq 0$ . Assume that $h$ satisPes the condition $(A_{q})$

for a certain $q(B+1\leqq q\leqq J)$ . Since $t_{\alpha(q)}=1$ , there exists a point $Q_{j}$ on $S$ at
which $h^{-1}$ is locally represented by $z_{j}\rightarrow\exp\{(2\pi\beta(q)i)/p\}z_{j}$, where natural numbers
$\alpha(q)$ and $\beta(q)$ satisfy $q\beta(q)\equiv\lambda(mod P)$ and $\alpha(q)\beta(q)\equiv 1(mod P)$ . We have
$\Gamma(\beta(q), q)=n_{\lambda}=T-m-2=n^{*}$ from (10) and Theorem 1. Let $\sigma_{q}=m_{q}p+q$ denote
the first nongap value at $Q_{j}$ which is congruent to $q(mod p)$ . Then $m_{q}=n_{\lambda}=$
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$[(2g-J+q-1)/p]+1$ from (i) of Lemma 2, because $2g-(J-q+1)=p(T-m-3)+q$
$=p(n_{\lambda}-1)+q$ . This shows that the number $2g-(J-q+1)$ is a gap value at $Q_{j}$ .

Assume that the number $2g-(J-q+1)$ is a gap value at a fixed point $Q_{j}$

of $h$ , where $h^{-1}$ is locally represented by $z_{j}\rightarrow\exp\{(2\pi\beta i)/p\}z_{j}$ at $Q_{j}$ . The
first nongap value which is congruent to $q$ $(mod p)$ can be written as
$p\{(2g-J+q-1)/p+1\}+q=p\{T-(m+2)\}+q$ . This means that $\Gamma(\beta, q)=n_{\lambda}=$

$T-(m+2)$ for a certain $\lambda(1\leqq\lambda\leqq p-1)$ . Here the number $\lambda$ is the solution of
$q\beta\equiv\lambda(mod P)$ and $n_{\lambda}=n^{*}$ . Thus an automorphism $h$ must satisfy the condition
(A). Clearly $t_{\alpha(q)}\neq 0$ , where $\alpha(q)(1\leqq\alpha(q)\leqq p-1)$ is the solution of $\beta(q)\alpha(q)=$

$\beta\alpha(q)\equiv 1(mod p)$ . Thus an automorphismh satisfies the condition $(A_{q})$ . $q$ . $e$ . $d$ .
Now we consider the case of $q=J(2\leqq J\leqq p-1)$ and $T\not\equiv 1(mod p)$ in $(A_{q})$ .

Then we get

$(A_{J})$ $t_{\alpha(J)}=1$ and $t_{\alpha(1)}=T-1$ ,

where natural numbers $\alpha(1)$ and $\alpha(J)$ satisfy $\alpha(J)\beta(J)\equiv 1,$ $J\beta(J)\equiv\beta(1)$ , and
$\alpha(1)\beta(1)\equiv 1(mod p)$ for an arbitrary given natural number $\beta(1)(1\leqq\beta(1)\leqq p-1)$ .

An automorphism $h$ satisfies the condition (II) or $(A_{J})$ is equivalent that $h$

satisfies the $Kat0’ s$ condition (A) [3]. Kato has shown that if $h$ satisfies the
condition (A), then $2g-1$ is a gap value at a fixed point of $h[3;P\cdot 400]$ . We
show that the converse is also true.

COROLLARY 1. Assume that $T>4$ and $T\not\equiv 1(mod p)$ . The number $2g-1$ is
a $gaP$ value at a certain fixed Point of $h$ if and only if $h$ satisfies the Kato’s
condition (A).

PROOF. Every Pxed point of $h$ is a Weierstrass point. Assume that the
number $2g-1$ is a gap value at a certain fixed point of $h$ . It is sufficient to
prove in the case of $T=mp>4$ , that is the condition (II). Since $J=1$ , the
condition $(A_{0})$ is equivalent to the condition (II). The fact that the number
$2g-1$ is a gap value at a certain fixed point of $h$ implies the condition $(A_{0})$ .

$q$ . $e$ . $d$ .
REMARK 3. (i) Let $Q$ be a fixed point of $h$ corresponding to $t_{\alpha(J)}$ in the

condition $(A_{J})$ . Then the vector of Riemann constants $K(Q)$ is a half period,
([3], [6]).

(ii) Suppose that $T>4$ and that $T\equiv 0$ or $T\equiv(p-1)(mod P)$ . Then an
automorphism $h$ satisfies the condition $(A_{0})$ if and only if $h$ satisfies the Kato’s
condition (A).

Consider the case of $q=J-1(3\leqq J\leqq p-1)$ in $(A_{q})$ . Then we have

$(A_{J-1})$ $t_{\alpha(J-1)}=t_{\alpha(2)}=1$ and $t_{\alpha(1)}=T-2$ ,

where $\alpha(k)$ ( $k=1,2$ , and $J-1;1\leqq\alpha(k)\leqq P-1$ ) are natural numbers which
satisfy $\alpha(k)\beta(k)\equiv 1,$ $k\beta(k)\equiv\beta(1)(mod p)$ for an arbitrary given natural number
$\beta(1)(1\leqq\beta(1)\leqq p-1)$ .
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COROLLARY 2. Assume that $T>4$ , and that $T\not\equiv j$ ($j=0,1$ , and $p-1$). An
automorphism $h$ satisfies the condition $(A_{J-1})$ if and only if the number $2g-2$

is a gap value at a certain fixed point of $h$ .
PROOF. This is an immediate consequence of Theorem 2. Moreover, if $h$

satisfies the condition $(A_{J-1})$ , then $2g-2$ is a gap value at the fixed point of $h$

corresponding to $t_{\alpha(J-1)}$ . $q$ . $e$ . $d$ .
When $q=J-2(4\leqq J\leqq p-1)$ , the condition $(A_{J-2})$ can be written as $t_{\alpha(J-2)}=1$ ,

$t_{\alpha(2)}+2t_{\alpha(3)}=2$ , and $T=1+\sum_{k=1}^{3}t_{\alpha(k)}$ . We therefore have following solutions:

$(A_{J-2})_{2}$ $t_{\alpha(J-2)}=1,$ $t_{\alpha(2)}=2$ , and $t_{\alpha(1)}=T-3$ ,

$(A_{J- 2})_{3}$ $t_{a(J-2)}=t_{\alpha(3)}=1$ , and $t_{\alpha(1)}=T-2$ .

In each case, the number $2g-3$ is a gap value at the fixed point of $h$ corre-
sponding to $t_{\alpha(J-2)}$ .

COROLLARY 3. Assume that $T>4$ and that $T\not\equiv j$ ($j=0,1,$ $p-1$ , and $p-2$)
$(mod p)$ . An automorphism $h$ satisfies the condition $(A_{J-2})$ if and only if the
number $2g-3$ is a gap value at a fixed point of $h$ .

5. Examples.

Throughout this section, let $\{c_{j}^{(\delta_{a})} ; 1\leqq j\leqq T\}$ always denote complex numbers
which are different from each other. Then equation (1) can be written as

(1) $y^{p}=\prod_{\alpha=1}^{p- 1}\prod_{j=1}^{t_{\alpha}}(x-c\}^{\delta_{\alpha})})^{\delta_{\alpha}}$ .

In (1) , let an automorphism $h$ be represented such as (2). For a given $t_{\alpha}$

$(1\leqq\alpha\leqq p-1),$ $\delta_{\alpha}$ is determined by

(7) $\delta_{\alpha}=p-\alpha$ .
We, at first, show two examples related to Proposition 1.
EXAMPLE 1. Let $S$ be defined by

$y^{p}=\prod_{j=1}^{l_{1}}(x-c_{J^{p- 1)}}^{(})^{p-1}\cdot\prod_{j=1}^{l_{1}(mp+1)}(x-c_{J}^{(1)})\cdot\prod_{\delta=2}^{r}\prod_{j=1}^{\iota_{\delta}}(x-c_{j}^{(\delta)})^{\delta}(x-c\}^{p-\delta)})^{p-\delta}$ ,

where $p\geqq 5$ , $r=(P-1)/2$ , and $l_{\delta}$ , $m$ $(1\leqq\delta\leqq r)$ are natural numbers. We
have $t_{1}=l_{1}$ , $t_{p- 1}=l_{1}(mp+1)$ , and $t_{\delta}=t_{p-\delta}=l_{\delta}$ $(2\leqq\delta\leqq r)$ . This yields $n_{k}=$

$kl_{1}m-1+\sum_{\delta=1}^{r}l_{\delta}(1\leqq k\leqq p-1)$ from (9), and $g=r(mpl_{1}+2\sum_{\delta=1}^{r}l_{\delta}-2)$ . Let $Q_{k}$ be

the point corresponding to $(c_{1}^{(k)}, 0)$ for each $k(1\leqq k\leqq p-1)$ . The gap sequences
$\gamma(Q_{k})(k=1,2, \cdots , p-1)$ are different from each other, because $n_{k}\neq n_{k^{l}}$ for
$k\neq k^{\prime}$ .
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EXAMPLE 2. Let $S$ be defined by

$y^{p}=\prod_{j=1}^{2(l+2-p)}(x-c_{J^{p-1)}}^{(})^{p-1}\cdot\prod_{j=1}^{p+r-l}(x-c_{J^{p-2)}}^{(})^{p-2}\cdot\prod_{j=3}^{p-1}(x-c_{j}^{(p-j)})^{p- j}$ ,

where $p\geqq 7,$ $r=(P-1)/2,1$ is a natural number such that $2r\leqq l\leqq 3r$ . Then $t_{1}=$

$2(l+2-p)$ , $t_{2}=p+r-l$ , and $t_{\alpha}=1(3\leqq\alpha\leqq p-1)$ . We have $n_{k}=l-k,$ $n_{p-k}=$

$r+k-1$ for $k=1,2,$ $\cdots$ , rand $g=r(l+r-1)$ . Let $Q_{k}$ be the point corresponding
to $(c_{1}^{(k)}., 0)$ for each $k(1\leqq k\leqq p-1)$ . The gap sequences $\gamma(Q_{k})(1\leqq k\leqq p-1)$ are
different from each other.

The next example has respect to the condition (II).

EXAMPLE 3. Let $S$ be defined by

$y^{p}=\prod_{j=1}^{mp}(x-c_{j})^{p-\alpha}$ for any $\alpha(1\leqq\alpha\leqq P-1)$ ,

where $m>1$ for $p=3$, and $m\geqq 1$ for $p\geqq 5$ . We have $\gamma(Q_{j})=\{ip+(p-k);0\leqq i\leqq$

$mk-2,1\leqq k\leqq p-1,$ $m\geqq 2$} or $\gamma(Q_{j})=\{ip+(p-k);0\leqq i\leqq k-2,2\leqq k\leqq p-1, m=1\}$

for all $j(1\leqq j\leqq T)$ from (i) of Lemma 3.
EXAMPLE 4. We consider the condition $(A_{J})$ . Without loss of generality,

we take $\beta(1)=p-1$ . Then $\alpha(1)=p-1$ and $\alpha(J)=p-J$. Therefore $(A_{J})$ can be
written as

$t_{p-J}=1$ and $t_{p-1}=T-1$ for a certain $J(2\leqq J\leqq p-1)$ .
The number $\delta$ can be determined from (7) . The compact Riemann surface
with an automorphism $h$ which satisfies the condition $(A_{J})$ is defined by an
equation

$y^{p}=(x-c_{1})^{J}\prod_{j=1}^{T-1}(x-c_{j+1})$ for a certain $J(2\leqq J\leqq p-1)$ .

This has been given by Kato [3, p. 406 (71)].

We consider the case of $g=mp(p-1)/2(m\geqq 1)$ and represent the gaP

sequence explicitly. Such a surface is defined by

$y^{p}=(x-c_{1})^{p-\alpha}\prod_{j=1}^{mp+1}(x-c_{j+1})^{\alpha}$ for any $\alpha(1\leqq\alpha\leqq(p-1)/2)$ .

Then $t_{\alpha}=1$ and $r_{p-\alpha}=mp+1$ . Let $Q_{\beta}$ and $Q_{p-\beta}$ denote the fixed points of $h$

corresponding to $(c_{1},0)$ and $(c_{2},0)$ respectively, where $\alpha\beta\equiv 1(mod p)$ . We have
$n_{k}=ma_{k,p-\alpha}(1\leqq k\leqq p-1)$ from (9) and (ii) of Lemma 1. Since $\beta(p-\alpha)\equiv(p-1)$

$(mod p)$ , we get $\Gamma(\beta, 1)=n_{\beta}=ma_{\beta.p-\alpha}=m$ from (10) and the definition of $a_{\beta.p-\alpha}$ .
Let $\sigma_{k}(1\leqq k\leqq P-1)$ denote the first nongap value at $Q_{\beta}$ which is congruent to
$k(mod p)$ . Then $\sigma_{1}=mp+1$ . This yields $\sigma_{k}=k\sigma_{1}(2\leqq k\leqq p-1)$ from (ii) of
Lemma 3. Thus $\Gamma(\beta, k)=km(1\leqq k\leqq P-1)$ . From (i) of Lemma 2, we have
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$\gamma(Q_{\beta})=\{jp+k;1\leqq k\leqq p-1,0\leqq j\leqq km-1\}$ . Moreover we have $\Gamma(p-\beta, p-k)$

$=\Gamma(\beta, k)=mk$ , which shows that $\gamma(Q_{p-\beta})=\{(j+1)p-k;1\leqq k\leqq p-1,0\leqq j\leqq$

$mk-l\}$ . Therefore $2g-1=\{m(p-1)-1\}p+(p-1)$ is a gap value at $Q_{\beta}$ .
EXAMPLE 5. We consider the condition $(A_{J-1})$ in the case of $T\not\equiv j(j=0,1$ ,

and $p-1$ ) $(mod P)$ and $T>4$ . Without loss of generality, we take $\beta(1)=1$ . Then
$\alpha(])=j$ for each $j$ ($j=1,2$ , and $J-1$ ). In this case $(A_{J-1})$ can be written as
follows:

$(A_{J-1})$ $t_{J-1}=t_{2}=1$ and $t_{1}=T-2$ for a certain $J(3\leqq J\leqq p-1)$ .
The compact Riemann surface $S$ of genus $g$ with an automorphism $h$ which
satisfies the condition $(A_{J-1})$ is defined by an equation

$y^{p}=(x-c_{1})^{p-J+1}(x-c_{2})^{p- 2}\cdot\prod_{j=1}^{T-2}(x-c_{j+2})^{p- 1}$ for a certain $J$

$(3\leqq J\leqq p-1)$ , where $p\geqq 7$ . Then the number $2g-2$ is a gap value at the fixed
point corresponding to $(c_{1},0)$ .

The next two examples are related to the condition $(A_{J-2})$ .
EXAMPLE 6. Let $S$ be dePned by

$y^{p}=(x-c_{1})^{p-J+2}(x-c_{2})^{p-3}\prod_{j=1}^{T- 2}(x-c_{j+2})^{p-1}$ for a certain $J$

$(4\leqq J\leqq p-1)$ , where $p\geqq 11,$ $T>4$ , and $T\not\equiv j$ ($j=0,1,$ $p-1$ , and $p-2$) $(mod p)$ .
Then $t_{1}=T-2$ , and $t_{3}=t_{J-2}=1$ . Thus an automorphism $h$ satisfies the condi-
tion $(A_{J- 2})_{3}$ . The number $2g-3$ is a gap value at the point on $S$ corresponding
to $(c_{1},0)$ .

EXAMPLE 7. Let $S$ be defined by

$y^{p}=(x-c_{1})^{p-J+2}\prod_{f=1}^{2}(x-c_{j+1})^{p-2}\prod_{j=1}^{T-3}(x-c_{j+3})^{p-1}$

for a certain $J(4\leqq J\leqq p-1)$ , where $p\geqq 11,$ $T>4$ , and $T\not\equiv j(j=0,1,$ $p-1$ , and
$p-2)(mod P)$ . Then $t_{1}=T-3,$ $t_{2}=2$ , and $t_{J-2}=1$ . Thus an automorphism $h$

satisfies the condition $(A_{J-2})_{2}$ . The number $2g-3$ is a gap value at the point
on $S$ corresponding to $(c_{1},0)$ .
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