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§0. Introduction.

0.1. The main purpose of this paper is to give an explicit calculation of
the dimension of the spaces of cusp forms on the Siegel upper half plane of
degree two with respect to some arithmetic discontinuous groups having zero-
dimensional cusps. Such groups are defined from A-hermitian forms of degree
two, where A is an indefinite division quaternion algebra over the rational num-
ber field @. The same result was obtained by H. Yamaguchi by quite a
different method ; while Yamaguchi uses the Hirzebruch-Riemann-Roch theorem,
our calculation is based on the Selberg trace formula.

Let G be the A-unitary group of degree two. Since A is indefinite, this
determines a linear algebraic group G over @ up to Q-isomorphisms. Denote
by a—a’ (a= A) the canonical involution of A and by ©O a maximal order of A,
and let M,(A) denote the total matrix algebra of degree two over A. As an
explicit presentation of G, we define the group of Q-rational points as

curfsnenls? o= ).

where S':<Z, ;,) for S:(g db>e M,(A). Let N be a natural number. We con-

sider the arithmetic discontinuous group I(N) of G4 such that
fe_fa b
ran={s=(? 7)=Go|a—1, b, c, d~1=ND}.

In particular, we set I'=I"(1). Since the group Gy of R-rational points of G is
conjugate in GL(4, R) to the real symplectic group Sp(2, R) of degree two (size
4), so we may identify the arithmetic groups I, I'(N) with the discontinuous
subgroups of Sp(2, R) by a fixed isomorphism of Gr to Sp(2, R). Denote by
$, the Siegel upper half plane of degree two: 9.,= {Z& My(C) | *Z=Z, Im(Z)>0}.
Then, Sp(2, R) operates on £, by
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A B
r=(o )i Z—>ZD=(AZ+BXCZ+D)"  (reSp2 R).
Put J(7, Z)=det (CZ+D). For any natural number &, let &,(I'(NV)) be the C-
vector space of cusp forms of weight 2 with respect to the group I'(N). Namely,
&,(['(N)) is the space of holomorphic functions f(Z) on 9. satisfying

(i) F2)=], 2)*f(Z)  for all yel'(N),
(ii) det{Im (2)} *2| AZ)] is bounded on 9,.

In this paper we shall calculate the dimension of the space ©,(['(N)) over C
explicitly. The result is the following:
THEOREM. Suppose k=5, N=3. Then,

dim@S(I'(N)=2""3"5""[I": F(N)](k—1)(k—3/2)(k——2)1”{(&)(1)-‘1)(?2’*‘1)
4274371 F(N)]N'spJgA)(P—l) ’

where d(A) is the product of prime numbers which ramify in A over Q and the
group index [I': '(N)] is given as

. — 10 ]‘ 1
[[: [(NY]=N pggl&)<1—?)<1_? 11 (1—5—)(1+ p)

0.2. T. Yamazaki [19], Y. Morita [6], and U. Christian [2], calculated
explicitly the dimension of the space of cusp forms with respect to the principal
congruence subgroup of the Siegel modular group Sp2, Z) of level N (N=3).
Yamazaki applied the Hirzebruch-Riemann-Roch theorem, while Morita, Christian
obtained the same result by using the Selberg trace formula ([7], Exposé 10 of
[8]. Especially if we take A=MyQ), O=M,Z), then the group I'(N) coin-
cides with the principal congruence subgroup of Sp(2, Z) of level N up to con-
jugations in Sp(2, R). So our dimension formula gives an analogy of their
result for the case where A is an indefinite division quaternion algebra over Q.

Our method of the calculation is essentially based on the results of Morita
[6] In §1, we shall study zeta functions associated with some quadratic forms
and calculate their special values after T. Shintani [II]. The purpose of §2
is to obtain some properties of the group I” and a fundamental domain of /" in
9,. In §3, we shall calculate dim¢S,(I'(IV)) using the results of the previous
two sections. In calculating the contribution to the dimension formula of the
unipotent elements, we shall use Shintani’s method (§3 of [11]). In the latter
of §3, we shall show after Morita [6] that the contribution to the dimension
formula of the non-unipotent elements vanishes.

This paper is presented to Faculty of Science, University of Tokyo for the
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master thesis in 1975. The author wishes to express his deep gratitude to Pro-
fessor Y. lhara for suggesting this problem to him, and Professor T. Shintani
for many valuable comments related to this subject.

0.3. Notation. We denote by Z, @, R, and C, respectively, the ring of
rational integers, the rational number field, the real number field, and the com-
plex number field. For any square matrix A with entries in C, we denote by
tA, tr (A), and det (A), respectively, the transposed matrix of A, the trace of A,
and the determinant of A. Let E, denote the unit matrix of size n. For any
real symmetric matrices Y,, Y, of the same size, we write Y,>Y, if V,—Y, is
positive definite. For any field F, F* denotes the group of invertible elements
in F. Let (a, b) denote the greatest common divisor of integers a and b.
Further, we denote by I'(s) and {(s) the gamma function and the Riemann zeta
function, respectively.

§1. Zeta functions associated with an indefinite division quaternion
algebra over Q.

1.1. Preliminaries. Let A be an indefinite division quaternion algebra over
). We denote by a—a’ the canonical involution of A and put N(a)=aa’, tr (a)
=a+a’. let © be a maximal order in A. Set, for any basis {u;} of O over Z,

d(A)=det (tr (uyu,))| V2.

This number is independent of the choice of O and {u;}. Denote by £O* (resp.
1) the unit group (resp. the unit group with norm 1) of .
Now we fix a maximal order © through out the present paper. Set

Ve={ac A | tr (a)=0}, L={aeD | tr (a)=0}.

Let L* be the dual lattice of L in V, with respect to the bilinear form tr(xy):

L¥*={bsVqy | tr(ab)sZ for all ac=L}.

First the following lemma is easily verified.
LEMMA 1. Let {vy, vs, vs} be any basis of L over Z. Then

det (tr (v,v;))=—2d(A)*.

Let K be a quadratic number field and let o be an order of K. Then there
uniquely exists a positive rational integer f(0) which satisfies 0=Z-f(0)og, 0x
being the maximal order of K. The number f(0) is called the conductor of o.
Denote by d(0) the discriminant of o. We call a a proper o-ideal if a is a Z-
lattice in K of Q-rank 2 and o={u=K | paCa}. We can classify all the proper
o-ideals with respect to multiplication by the elements of K*. Denote by A(0)
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the number of classes of proper o-ideals. Moreover, let E(o) (resp. £,(0)) be the
unit group (resp. the unit group with norm 1) of o. If d(6)<0, then the unit
group E(o) is a finite group and let w(o) be the order of E(p). If d(0)>0, let
e(0) be the fundamental unit of the group E,(v) satisfying e(0)>1.

Now we quote a theorem due to Eichler (see Satz 6 of [4]).

THEOREM (Eichler). (i) Let K be a quadratic number field. Then there exists
a Q-tsomorphism of K into A, if and only if the following condition holds:

K

1.1 <~p—>:#1 for every prime number p|d(A),

where (%) 1S the Legendre symbol.

(i) Let K be a quadratic number field satisfying the condition (1.1), and o
be an order of K. Then there exists a Q-isomorphism ¢ of K into A satisfying
e@)=@(K)ND, if and only if the conductor f(o) is coprime to d(A).

Now we take K and o as in (ii) of the theorem. For x, yeV, we say
that x is O'-conjugate to y if there exists an e=O' satisfying y=exe ', For
x€ Vg, put Q(x)=Q+Qx and ,=Q(x)N\D. Then £, is an order of the quad-
ratic field Q(x). For any rational number d such that Q(v/4 )=K, let F(o, d)
be the set of all x= Vq satisfying the following :

1 Nx)=—d,
2 There exists a Q-isomorphism ¢ of K into A such that ¢(0)=%9O,.

Call n(F(o, d)) the number of ©O'-conjugacy classes in F(v, d). The number
n(F(o, d)) is independent of the choice of d such that Q(+~/4 )=K and it has
been calculated by Eichler [4]:

2h(0)

2 —_ Anm\yy
(.2 mEC )= F50y: Bl

A0),

where

=11, {1-(5)}

Here we note that the formula has been proved precisely in the subsection
26 of Shimizu [9].
1.2. Zeta functions associated with the norm form. Put Am:A(%)R. Then

A. is isomorphic to the total matrix algebra M,(R) of degree 2 over R. We
fix an isomorphism A.=M,(R) throughout the present paper. We consider A
as being contained in M, R). Let g—g’ (g M,R)) be the canonical involution
of MyR). Put
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Ve={x& MyR) | tr (x)=0}.

Then, VoC Vg, and L, L* are Z-lattices in Vi, Write H for GL(2, R) and let
p be the representation of H on Vp defined as follows:

p(h)x=hxh’ (x€ Vg, heH).

Thus, H acts on Vz. We note that det (x)=N(x) for x=Vy. Denote by S(Vg)
the space of rapidly decreasing functions on Vg. For any feS(Vz), let f* be
the Fourier transform of f, which can be defined by setting

f *(x)=SVRf(y) exp 2nv/—1tr (xy)dy

(dy=dydyudy, for y:(iz _ij)evg).

By we have
LEMMA 2 (the Poisson summation formula). For any feS(Vg),

dA) T A= FXa).
Set Vi={xe Ve | (—1)""'det(x)>0} (i=1, 2),

O£, 9=, 1) ldet(l*dy  (Fes(Va).

Obviously, @;(f, s) (i=1, 2) are absolutely convergent for Re(s)>0, and they
are holomorphic functions of s for Re(s)>0. The following lemma is a part of

Lemma 15 of Shintani [11].

LEMMA 3. The functions @(f, s) (i=1, 2, f€S(Vg)) have analytic continua-
tions to meromorphic functions on the whole complex plane which satisfy the
following functional equations:

(DT s _pewarewporce-172(*% 7, L Y05 =9),

Set H.={heH | det(h)>0}, and let dh be the Haar measure on H, nor-
malized by

dh=det (h)* 1T dh, (h———(Z: Zi))

The group ©! is regarded as a discrete subgroup of H, (also of SL(2, R)). For
every as VNV, (1=1, 2), set

Ha:{hEH+ I P(h)a:a}, Qa:DlmHa .
Then we see easily that 2,={c€D, | N(e)=1}=FE,®,). For any bounded do-
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main U, such that U,cU,CV,, let W,={heH, | p(hacU,} and (W,), be a
fundamental domain of W, with respect to £2,. After Siegel [16], Shintani [11,
p. 50], set

ﬂ(a)=S(Ww)0dh /1, 1det (1-dy.

The number p(a) is finite and independent of the choice of U.,.

For any ©O'-invariant subset M in Vg (i.e., p(e)M=M for all e€"), denote
by M/~ the set of O'-conjugacy classes in M. Now define the zeta functions
£i(s), EX(s) (i=1, 2) as follows:

§i(s)= 2 @ Na)|™*, &)= X p@)|Na)|—* (=1, 2),
a€Lg/~ acLy/~
where L,;=LN\V,;, L¥=L*N\V,. For ac V4 (a#0), let ¢ be an isomorphism of

Q(v—N(a)) to Q(a), and let o be the order of Q(+/—N(a)) satisfying p(0)=5%,.
By an easy calculation, we have

T

m for e VQﬂVl,

(1.3) wla)=

T log &(0) for acVon\V,.
Thus, using the theorem of Eichler in the subsection 1.1 and the formulae
it is not difficult to see that

h(0)A(0)
w(o)| d(0) |*

h(0)A(0)

£i(s)= WC(ZS){Zl WJ ’

+4°3,
where the summation X, (resp. X.) indicates that o runs through all orders of
all imaginary quadratic number fields which satisfy d(0)=1mod 4 and (f(0), d(A))
=1 (resp. d(®)=0mod 4 and (f(0), d(A))=1). For any order o of any real quad-
ratic number field, set A*(0)=2r0)[E(): E,(0)])~*. Similarly, we have

_ L(@2s) h*(0)A(0) log (o) s 1*(0)A(0) log (o)
O R D L

where in the summation 3, (resp. X,), o runs through all orders of all real
quadratic number fields which satisfy d(0)=1 mod4 and (f(0), d(A))=1 (resp.
d(0)=0 mod 4 and (f(v), d(A))=1). If we note that all Dirichlet series in (1.32)
of are convergent for Re (s)>3/2, we see easily from the above representa-
tions of &,(s) (=1, 2) that our zeta functions &(s), £¥(s) (i=1, 2) are absolutely
convergent for Re (s)>3/2.

2

1 (D).

Put for simplicity v(A):-G—pld(A)
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PROPOSITION 1. (i) The zeta functions £i(s), &§¥(s) (1=1, 2) have analytic
continuations to meromorphic functions on the whole complex plane. They satisfy
the following functional equations:

§:(3/2—sN_ 101-2s_1/2-28 _ cosws O £, ¥(s)
(52(3/2—3))_d(A) 2 AOUS 1/2)(1/2 sin 7rs>(52*(s))'
(ii) They are holomorphic for s#3/2. Moreover, they have simple poles at
s=3/2 and the residues are given in the following table. The values of &(s),
&*(s) at s=0 are also given in the table:

the residue at s=3/2 the value at s=0
&1(s) v(A)/d(A) v(A)/4r
§a(s) v(A)/2d(A) ?
£1%(s) 2d(A)v(A) v(A)/4r
§:%(s) d(A)v(A) ?

We can prove by a usual argument using (cf. Theo-
rem 5 of [11]). Here we shall only prove the table in (ii).
PROOF OF THE TABLE. For the lattice M (M=L or L*), put

zf, M 9=\, wnr 3 fewadn,

where feS(Vg), M'=M—{0}, and X(h)=det (h)®.. Then it is easy to see that
the integrals Z(f, L, s), Z(f, L*, s) are absolutely convergent for Re (s)>3/2 and
that

Zf, L, S)=%$1(S)(Dl(f, s—3/2)+E()Ps(f, s—3/2),

A, L, S)=%51*(S)¢1(f, s—=3/2)+&:X()Po(f, s—3/2).

Let ©, be the upper half plane and let dz (z=9,) be the invariant measure
defined by dz=y*dxdy (z=x++/—1y). Then it is easily checked that

spe L T
(]"4) SH+/Dl,x(h)§1 X(h) dh= 2s ZSDI\Qle

=§13—U(A) (Re(s)>0).
For fes(Vpg), put

Z.(f, M, S)=S Xhy 25 Ap(Ma)dh — (M=L, or L¥).

Hi/ol,y(hyzl



132 T. ARAKAWA

It is not difficult to see from and that
(1.5) Z(fy Ly S>:Z+(f: L’ S)+d(A>—1 +(f*) L*’ 3/2_3)

— o U0 5 dAT A Re(5)>3/2).

Since the integrals Z,(f, L, s), Z.(f, L*, s) (feS8(Vy)) are easily seen to be entire
functions of s, Z(f, L, s) has an analytic continuation to a meromorphic func-
tion on the whole complex plane. We can take an feS(Vg) with compact sup-
port such that its support is contained in ¥V, and that f*(0)#0. Then we have

2, L, =3 8BS, s=3/2).
By the identity we see that
lim (s—3/2)8,()=d(A) (4.

Similarly, we can calculate the residues of the functions £,;*(s), &.(s), &,*(s) at
s=3/2. Finally, we note that the value of &,(s) (resp. &,*(s)) at s=0 can be
easily calculated from the residue of &,;*(s) (resp. &(s)) at s=3/2 due to the
functional equations of (i). ' q.e.d.

REMARK. The zeta functions &;(s), &*(s) (i=1, 2) are closely related to the
zeta functions associated with indefinite quadratic forms studied by Siegel [13],
[14]. could be induced from the results of those.

§ 2. Arithmetic discontinuous subgroups of SpH(2, R).

2.1. A-unitary group. We use the terminology in Shimura in this
subsection.

Let A be as in §1. Let W be the product of two copies of A: W=AXA
(A-space), and let f be a non-degenerate quaternion hermitian form on W. Then,
an A-unitary group G with respect to f is defined to be the group consisting
of all A-automorphisms ¢ of W such that f(xe, yo)=f(x, y). Since A is inde-
finite, the A-unitary group G is uniquely determined up to conjugations by Q-
regular endomorphisms of W independent of the choice of f (see Proposition 2.1
of [107.

So we take a quaternion hermitian form f as follows:
(2.1) fx, y)=xyet 2291 (x=(x1, x2), y=(31, y2)EW).

Now we define a linear algebraic group G defined over Q as the A-unitary
group with respect to the quaternion hermitian form on W. Let G4 denote
the group of Q-rational points of G. For oGy we may write xo=
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(x1a+x:0, x1¢+3:d) (x=(x1, x;)€W) with some aq, b, ¢, d€A. Thus we may

identify ¢ with a matrix (: j) of My(A). Then, from the form [2.) of £, we
have

cemfs=mialsC D=0 B}

,_(a" ¢ _q/a b _/a b
where S _(b, d,) for s_(c d)eMz(A). For any element s_~(c d)e M,(A),
- S belongs to Gg, if and only if

ad’+bc’=1, tr (ab’)=0, tr (¢d”)=0.

Put M=9X9. Then, M is a maximal lattice with respect to f which belongs

to the principal genus with the order © (see 2.3, 4.4 of [10]). Let I be the
group of all o= Gy satisfying Mo=M. Then we have

2.2) r={s=(¢ fl’)e Gala, b, ¢, den}.

We call a pair (¢, d) (¢, d=9) an O-coprime symmetric pair, if tr(cd’)=0 and
there exist some x, y=® such that cx-+dy=1. Two O-coprime symmetric pairs
(¢, d), (ci, dy) are said to be associated if there exists some e=£* such that
ci=¢c, di=ed. It is easy to show the following two lemmas. Especially,
is reduced to the fact that the class number of A is one.

LEMMA 4. If (¢, d) is an O-coprime symmetric pair, then there exist some
a, beD satisfying (g Z)el‘.

LEMMA 5. The associated classes of -coprime symmetric pairs (c, d) satis-

fying ¢=x0 correspond one to one onto the spaceVq by the correspondence (c, d)
—cd.

For any SeM,(A), S may be considered as an element of M,(R). The fol-
lowing proposition will be used in § 3.

PROPOSITION 2. Let S be an element of I. If all the eigenvalues of S are
one (i.e., S is a unipotent element of I'), then there exist some Yl and acL

such that
l a
— =1
s=r(; -
a b

ProOOF. Put S:<c d)' If ¢=0, the assertion is easily verified. We assume

¢x0. Since S is a unipotent element of G, it is not difficult to see that
2.3) c+¢’=0, a’+d=2.

Take any x€A (x=0), and put y=x(1—a)c’. Then we see easily from the
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relation that xa+yc=x, xb+yd=y. Since x~'yeV,, by there
exists an £-coprime symmetric pair (x;, y,) such that x=8x,, y=pfy, with some

* *
BeA. By we can take some yel” of the form rz(x , ) Thus
we have (0, 1)7S=(0, 1)7. Hence, we obtain P

1l «a
_1,___. M
rSr —(0 1) with some a=L. q.e.d.

2.2. Congruence subgroup. For any natural number N, define the principal
congruence subgroup I'(N) of I of level N as follows:

2.4) P(N)z{S:(? Z)EF‘ a—1,b, ¢c, d—1€ ND}.

Then the principal congruence subgroup /'(N) is a normal subgroup of I of
finite index. The following lemma is essentially well-known (see for example
Proposition 1| of [6]).

LEMMA 6. Suppose N=3. Let S be an element of the principal congruence
subgroup I'(N). Then some power of S is unipotent, if and only if it is uni-
potent. In particular, I'(N) is torsion free.

2.3. Fundamental domain. Let Gg denote the group of R-rational points of
G. Then the group Gpg is considered to be the subgroup of GL(4, R);

GR={g€M4(R)|g(§2 % g’=(EO2 Es }

where g':(‘g, g) for gz(? g) with A, B, C, De My(R). Put
E, 0
0 J

Then we have Sp(2, R)=KGrK™'. Let N be any natural number and define
discontinuous subgroups I'*, I'*(N) of Sp(2, R) as follows:

j:(__(l) (l))eMz(R) and  K=( e M(R).

(2.5) I'*=KI'K*, TI'*(N)=K['(N)K™*.

In the introduction we identified the groups I, I'(N) with I'*, I'*(N) respectively.

Let $, be the Siegel upper half plane of degree two. For any Xe& M,(C),
we use the symbol Abs(X) for the absolute value of det(X). After §2 of
Siegel [15], we construct a fundamental domain of the group I'™* in $,. The
following lemma is easily verified in the same manner as in Braun [1].

LEMMA 7. Suppose p is a real number satisfying p>3. Let Z=X+~—1Y
be any element of 9,. Then there exist some positive constants C;, C,, and 2
depending only on p satisfying the following inequalities:
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(i) %L Abs (Z—a]) #<C,det (Y) #**2exp (Atr (Y1),
(ii) (Z;)Abs (¢cZ—d]) #<C.det (Y) #**2exp(Atr (YY),

where the summation indicates that (¢, d) runs through all associated classes of
O-coprime symmetric pairs satisfying c¢=0.

Denote by P the set of all positive definite real symmetric matrices of size
2. The unit group £O* of O operates on P by
(2.6) Y — Yl (YeB, ee0X).

Let % be a fundamental domain of % in P under the operation Put P'=
{YeB | det (Y)=1}. Then the set RNP* is compact. Moreover, we may take
R such that R is a connected convex cone and that its boundaries lie on a finite
collection of hyperplanes.

Let {v,, v, vs} be a basis of L over Z, and put
Ve/L={x=2xvi€Vp| —1/22x:21/2 (=1, 2, 3)}.
Now define the subset § of £, as

(i) Abs(cZ+dJ)=1 for all Q-coprime
2.7) F={Z=X+/—1Y<E D, symmetric pairs (¢, d) with ¢=0

(ii) YeR, XJeVg/L
Denote by dZ the invariant measure on . normalized by
__ -3 — X1 X1z _ Vi Yie
dZ=det (V) 'dx,dx1sd x2d 3,0 y1ed ye (X (xm xz), Y (ym y2)>'

PROPOSITION 3. (i) The set § is a fundamental domain of the group I'™*
n ..

(ii) §F is connected and the boundaries of §F consist of a finite number of
algebraic surfaces.

(iii) For any positive number p, put

F)={Z=X++/—1Ye9, | YR, det (Y)>p, X/ Ve/L}.

Then there exists some positive constant ¢ independent of Z such that § is con-
tained in (o).

(iv) The volume S%dZ is finite.

Since is easily proved similarly as in §2 of [15], we omit the
proof (cf. §9 of [5)).
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§3. The dimension of the space of cusp forms.
3.1. The dimension formula of Godement. Let the groups I, I'(N), I'*,

and I'™(N) be the same as in [(2.2), [2.4), and [2.5). For any element r:(g g)
of Sp(2, R) and Z=9,, put

7<Z>=(AZ+BXCZ+-D)*,  J(r, Z)=det(CZ+D).

For any positive integer %, denote by &,(I™(N)) the complex vector space of
cusp forms of weight 2 with respect to the group I™(N). It is known that
the dimension of the space &,(I'*(N)) over C is finite. Moreover, we note that
its finiteness is easily verified similarly as in §13 of [5].

In Exposé 10 of [8], Godement expressed the dimension of the space of
cusp forms with respect to a discontinuous subgroup of the real symplectic
group as an integral of an infinite series. In our case, the theorem of Gode-
ment is stated as follows:

THEOREM (Godement). Suppose N=3, k>4. Let F(N) be a fundamental
domain of I'*(N) in 9,. Put

<Z>—2
24/ —1

reSP2, R), Z=X+v—1Y<9,),
a(k)=2"57"*k—1)k—3/2)(k—-2).

Hy(Z)=det( )"’ TGy, Z)* det (Y)*

Then

3.1 | X H(Z)| is bounded on 9,,
rels(N)

(32) dimC@k(l’*(N)):a(k)S%(N) B H(2)z.

Let § be the fundamental domain of the modular group I'™* in 9, defined in
(2.7). Since the subgroup I™(N) is a normal subgroup of I'*, the kernel function

2, H(Z)

rel~(N)

is I™-invariant due to the relation H/(0<Z)>)=Hj;-1,6(Z) (7, 6€Sp(2, R)). Hence,
by the dimension formula (3.2), we have

3.3) dime&,(I™*(N))=a(k)[[: F(N)]/Z)S% TEIE(N)H,(Z)dZ.

3.2. The contribution of unipotent elements. In this subsection we shall
calculate the contribution of unipotent elements to the dimension formula
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by the method introduced by Shintani [11, § 3].
Let IIy be the subset of I™*(N) consisting of all unipotent elements of I'*(NN)
different from the identity element. Then we see from that

(34) Iy

I

U U 7“1(1 Na])r (disjoint union),

TEF;,\f‘ acL’ 0 1

A B

where I’i’é:{( c D

)er*lczo}, and L'=L—{0}. Put

3.5) I, =S% |3 HAZ)|dZ.

Let D be a fundamental domain of I'¥ in ,. Then, by the decomposition
of Iy, we have I,=I,, where

I, =SD

By an easy calculation, we have

NaJ \-*
B, det(Y— 55 )  det (V)

az.

L=2N"z"d(A), _ det(hy dh.

Hy/

3, det(J+ 2y

Now we consider the integral

ha

9=\, xhy 3 dee(J+ ‘iﬁh ST

as a function of s. Define a function ¢(x) on Vg by

det (x)**2exp (—2z tr (x])) for xJ>0,
sO(x)={

otherwise .

Then, its Fourier transform is given by
- -1 X \7F
D=1 det(J——2)
where
7(R)=Q2nr)** = *((R)[(k—1/2))* (see Hilfssatz 37 of [12]).
By we obtain

o N _ 7(R) i
(36) I det(J+T20) "= T 3 plptha),

where h*=det (h) 'h for heH,.
PROPOSITION 4. (i) For 0<Re(s)<k—1/2, we have
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SH+/ 1

(i) The function I(s) is holomorphic for 0<Re(s)<k—1/2 and it satisfies
the relation:

Ak de t<j+f/(h)“ [dh<+oo

@a)y* I'(k—s)[(k—s—1/2)
4d(A) ['(R(E—1/2) £:%@3/2—y5s).

I(s)=
PROOF. As in [Proposition 1, we have

I(s)= %r(k)&(S)@l(so*, s—=3/2)+1(R)E(s)Po(p*, s—3/2).

By Lemma 19 of [11], the functions @,(p*, s—3/2) (i=1, 2) are absolutely con-
vergent if 1/2<Re(s)<k—1/2. Therefore, the integral I(s) is absolutely con-
vergent for 3/2<Re(s)<k—1/2. Further, we see easily from (3.6) that, for
0<Re(s)<k—1/2,

(k)
2d(A)

(see [Proposition 1)). Hence, the assertion (i) easily follows from Moreover,
the right hand of gives an analytic continuation of I(s) for Re (s)<k—1/2.
If Re(s)<0, we have

3.7 I()=r(R)Z(¢*, L, $)+5-—~Z:(p, L¥, 3/2—5)———‘~v(A)

(k)

I(s)= 5d(A) o Z(p, L*, 3/2—5).

Thus we easily obtain the relation in (ii). q.e.d.
By the bounded convergence theorem and the Fubini theorem, we see from
that the integral I, in converges and that

3.8) S% 3 HAZ)dZ=27 N d(AIG/D).

Thus, by and the equality we obtain the following :
PROPOSITION 5. Suppose N=3, k>4.

i zZ .

@) | 3 H@)ldz<+o0

(i) The contribution of unipotent elements ( the identity element) of the
group I'*(N) to the dimension formula (3.3) is given by

a(R)[': F(N)]/2S% TQINHT(Z)dZ:[F: P(N)]N‘33‘12"4PIHA)(19—1).

(iii) The contribution of the identity element of the group I'(N) to the
dimension formula (3.3) is given by
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a()[I: F(N)]/ZS%dZ.

3.3. Estimates of infinite series. We shall estimate some infinite series in
the dimension formula (cf. §4 of [6]).
Let ¥ be the fundamental domain of the group I'* in £, defined in (2.7).

PROPOSITION 6. Suppose k=5. Let Z=X++/—1Y be any element of ¥
Then there exist positive constants Cs, C,, and Cs independent of Z satisfying
the following inequalities:

(i) > |H{(Z)|<Csdet (Y)alz(cz;i’) Abs (cZ—d]J) - *+2,

*

relr—I,

(i) 3 |H®DI<G,

rer*-r,,
(iii) 2, | H(Z)| <Csdet (Y)*2.

rely,

ProoF. For every 5=<? g)e[’*, we have

3 HDI=1, 2)17 det(V)! 3 53 Abs(e(3<2) e —Z—a]} .

rel,,

Put Z,=6¢Z> and Z,=X,++/—1Y,. Moreover, set Y=tV, Y,=t,V, with ¢, ¢,
>0 and V, V,eP'. Since Y=4CZ-+D)Y,(CZ+D) and Z=F, we have VeRNB!
and {=¢,. As we noted in 2.3, RN\P* is compact. So there exists a positive
constant g, such that W>u,E, for any WeRN\$. By and (iii) of

we obtain
3.9 > > Abs (lete—Z__a])—k<C6 egx det (t,e Vi te+t V) k+si2

eEDX a€L

where C; is a positive constant independent of Z=&. We may assume that V),
is contained in RN\P' in the right hand of (3.9). Since det(E,+T)=1+tr (T)
for any T, we have

EZD}X det (t;eVile+1 V) k32 (p,t) 2k*3 ng {14+t tr (ele)} ~F¥3/2,

4

Take a basis {u;} of O over Z, and put e= i‘Zleiui for ee*. Then there
= 4

exists a positive constant g, such that tr(efe)> ”22{8"2' We note that, for any
1=

rational integers ¢, ¢,, &5, the number of rational integers e, satisfying N(e)==+1
(e=Xequ;) is at most four. Then it is easy to see from of that

3
IR B ETPIN) SR IS SN BN Jo ST
EED™ £1,89,83€EZ i=1

<Ci(t/8)°,
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where C, is a positive constant independent of Z&$. Since t/t,=|J(0, Z)|, we
obtain

S |HAZ)| < pui2**3CC, det (Y)¥2| J(6, Z)| -*#+%2.

relr., -8
Therefore, by and (iii) of we easily obtain the inequalities
(i), (ii), and (iii). g.e. d.

3.4. A classification of conjugacy classes. We shall classify conjugacy
classes of the group I'*(N) (N=3) in Sp(2, R) similarly as in Morita [6].
For any 6€Sp(2, R), denote by Cg(0) the centralizer of 0 in Sp(2, R). For

any yel'* denote by C(r) the centralizer of 7 in I'*. For the sake of con-
venience, set

0 b
A(a, b)= 0 (aeR*, beRY),

cosA 0 sind O

BQ, a)= (l1eR, a=R"),
—sin2 0 cosA O

1 O b1 b12

0 1 by by
T(by, bz, bo)= 0 (b1, b1, bER),

cosA sind

0
—sind  cos A
K= (AeR).
0 cosA sinid

—sind  cos A

The following proposition is essentially due to §1, §2 of (cf. Christian [2,
p. 131, p. 132]).

PROPOSITION 7. Suppose N=3. Let v be an element of I'*(N). Then 1 is
conjugate in Sp@2, R) to one of the following representatives from (i) to (vi).
For each representative 0 of the cases from (i) to (v), the centralizer Cg(0) of 6
in Sp2, R) is also given in the following:
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(1) 0=BQ, a) (sin A0, ax=+1),
Cr(0)={B(a, p) | ac R, B R*} ;

(ii) 0=A(ay, a;) (a}, a3, a.a,*1),
CR(a):{A(a: ﬁ) ‘ a, ‘BERX} if a,~da,,
ao={(y o)

(iliy 0=T(, 0,0)A(a, 1) (ax=£1),

VeGLQ, R)}--- if a=a,;

Cr(®)={T(0, 0, B)Ala, 1) | acR*, BeR}- if b%0,
a 0 0 0
)0 B 0 Ba}| o (B B e 0.
=1y o o o ||a=RS <ﬁs ﬁ)eSL(Z, R) if b=0;
0 8 0 B

(iv) o0=A(y, WKQA) (u=x=*1, sin 2x0),
Cr(0)={A(a, )K(B) | ac R*, BE R} ;

(v) 0=T(Q, b, 0)A(a, a™*) (ax=*1, bx0),
Cr(0)=1{T(0, B8, VA(a, ") | ac R*, BER} ;

(vi) 0=T(by, b1y, b2).

We note that every unipotent element of I'*(N)is conjugate in I'™* to some
element of the form (vi) by If y is a non-unipotent element of
I’'*(N) (N=3), we can prove that 7 is conjugate in Sp(2, R) to one of the repre-
sentatives from (i) to (v) similarly as in Theorem 1 of [6]. For each representa-
tive 6 from (i) to (v), the centralizer of 0 in Sp(2, R) has been determined by
3,4, 5,6 of [6] So, we omit the precise proof of

The following two lemmas are easily verified (cf. 10 of [6)).
LEMMA 8. Let 7 be an element of I'*(N)N* with N=3. Then, 1 is con-

Jugate in Sp2, R) to one of the following representatives:
€)) TQ0, b, 0)A(a, a ") with ax=*1,
@) T(by, bus, bs).

LEMMA 9. Let 11, 72 be elements of ['f which satisfy the relation y,=e7,e™}
with some e<I'™*. Suppose 1y, 7. are conjugate in Sp2, R) to T(0, b, 0)A(a, a™?)
with a>x41, b=x0. Then, ¢ is contained in ['*%.

3.5. The contribution of non-unipotent elements. By the same method used
in §6 of (cf. [2, p. 150~p. 1547), we shall prove that the contribution to the
dimension formula of all non-unipotent elements of I'*(N) (N_Z_S) vanishes.
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The following is the analogy of Theorem 4 of [6] and is similarly proved.
So we omit the proof.
PROPOSITION 8. Suppose k=5, N=3. Then we have

| siH@)1az< e,
where v runs over all elements of the group ['*(N) that are conjugate in
Sp2, R) to
1) B, a) (sinAx0, ax=+£1) or
(2) Alay, a))xE, or
3 T(00 bA(a, 1) (ax=£l) or
4)  Alg, wKQA)  (px==1, sin2=0).

PROPOSITION 9. Suppose k=5, N=3. Then the contribution to the dimen-
sion formula (3.3) of the elements of I'*(N) that are conjugate in Sp(2, R) to

) B(2, a) (sin Ax0, ax=+1) or

2 Alay, a)xE, or

3) T(, 0, bYA(a, 1) (ax=+1) or

4) Ay, KQ) (px+1, sin A1x0)
is zero. Hence, in the dimension formula (3.3), we may disregard all terms such
that v ts conjugate in Sp(2, R) to one of the above types of elements.

PrOOF. For yerl'* let &, be a fundamental domain of the centralizer C(7)

of 7 in .. Due to the relation H{0<{Z>)=H;-1,5(Z) (7, 6 Sp(2, R)) and Proposi-
tion 8, it is sufficient to show that

(3.10) S?W HA(Z)dZ=0

for any yeI'*(N) which is conjugate in Sp(2, R) to one of the above four types
of elements. The relation can be proved in the same manner as in Theo-

rem 5 of [6]. g.e.d.

For any positive number s, put
1
B={z=X+v=Treg det (V)>exp(<)},  Bi= U (.
S cel™,
The following proposition is an easy corollary of

PROPOSITION 10. Suppose k=5. Then we have

i) lm{ % 1HZ)dZ—>0,
§—++0JFs 7611‘-[’:0
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w § 2 |H(@]az< +eo.

PROPOSITION 11. Suppose k=5, N=3. The contribution to the dimension
formula (33) of the elements of I'(N) that are conjugate in Sp2, R) to
TQ, b, 0A(a, a™?) (axx=+1, b=0) is zero.

PRrROOF. Now let 7 be an element of I™*(N) that is conjugate in Sp(2, R)
to T(0, b, 0)A(a, a™*) (ax=+1, bx0). If 7 is not conjugate in ™ to any element
of I'%, we can prove the assertion more simply as in [Proposition 9, so we omit
the proof in such a case. Let Cy be the subset of I'*(N) consisting of all ele-
ments that are conjugate in Sp(2, R) to T(0, b, 0)A(a, a™?) (ex=*1, b=x0) and
are conjugate in I'* to some elements of I'*. Further, denote by C. the set of
all I'*-conjugacy classes in CyN['%. We may assume y=CyNI[*. Then, ere?
(eel*) belongs to I'% if and only if e by Thus, the centralizer
C(r) of 7y in I'* is contained in I'*. Hence, B, is stable by the operation of
C(). Let %, be a fundamental domain of C(y) in $,—B,. By the property
(3.1) and 8, we have

[ | = H@1dz<to.
F 1€ECN
Therefore, we see easily from 10 that

S > H(Z)dZ=lim 3 S% H(Z)dZ.
87,8

FrelCy $-+0 7€Cx

By the same arguments of [6, 6.2 in §6], we easily obtain

S% H{Z)dZ=0 (reCxnl%).
7, S
Hence we have proved

3.6. The index of the principal congruence subgroup to the full modular
group and the volume of the fundamental domain. Let the notation be as in
§ 2. For any natural number N, put

a b

F(D/ND):{S:(C d) modNDI a,b,c deD, S<(1) (1))55((1) (1)) mod NO} .

Then, I'(O/ND) is a finite group, and denote by #((D/ND)) the order of the
group I'(O/ND). Let N=IIp° be the decomposition of N into the product of
distinct prime numbers. Since we can easily prove that the canonical isomor-
phism of I" to I'(D/ND) defined by S—S mod NO is surjective, we have

u.r (N)]=pgv#(F (0/p°90)).
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Thus, by an easy calculation, we have

3.10) [[: [(NY]=N™ I (1—1—];5)(1—l) | (1—1)(1+l).

p?(‘l&) ﬁ.g ppi IdJ(VA) pz p
It is known that the Tamagawa number of the group G is one (see Theo-

rem 4.4.1 of [17]). From this fact, the volume of the fundamental domain of
I'* in §, is calculated. The result is the following :

(3.12) | az=2350m T (p—1p+D).

By 7,9, 11, and the equalities we obtain the

theorem in the introduction.
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