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Isometry of Kaehlerian manifolds to complex
projective spaces
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§j1. Introduction.

Let M be a complex n-dimensional connected Kaehlerian manifold covered
by a system of real coordinate neighborhoods {U; x"}, where, here and in the
sequel, the indices A, i, j, k, -~ run over the range {1, 2, ---, 2n} and let gy,
F* {;*:}, Vi, Kiji*, K;; and K be respectively the Hermitian metric tensor, the
complex structure tensor, the Christoffel symbols formed with g;;, the operator
of covariant differentiation with respect to {;";}, the curvature tensor, the Ricci
tensor and the scalar curvature of M.

A vector field v" is called a holomorphically projective (or H-projective, for
brevity) vector field [2, 3, 5, 7] if it satisfies

(1'1) Lv{jni} ZVjViv”-i—ka“i"
:65}1(71:““5?,0]'_szjtFih'—‘sz,;tth

for a certain covariant vector field p; on M, called the associated covariant
vector field of v*, where L, denotes the operator of Lie derivation with respect
to v In particular, if p; is zero vector field then v” is called an affine vector
field. When we refer in the sequel to an H-projective vector field v?, we
always mean by p; the associated covariant vector field appearing in [(1.I)

Recently, the present authors [9, 10] and one of the present authors
proved a series of integral inequalities in a compact Kaehlerian manifold with
constant scalar curvature admitting an H-projective vector field and then obtained
necessary and sufficient conditions for such a Kaehlerian manifold to be iso-
metric to a complex projective space with Fubini-Study metric.

The purpose of the present paper is to continue the joint work [9, 10] of
the present authors and to prove the following theorem.

THEOREM A. If a complex n>1 dimensional, compact, connected and simply
connected Kaehlerian manifold M with constant scalar curvature K admits a
non-affine H-projective vector field v*, then M is isometric to a complex projective
space CP™ with Fubini-Study metric and of constant holomorphic sectional cur-
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ature —~]—{—
vature = 1)

In the sequel, we need the following theorem due to Obata [4£]. (See also
61

THEOREM B. Let M be a complete, connected and simply connected Kaehlerian
manifold. In order for M to admit a non-trivial solution ¢ of a system of
partial differential equations

(1.2) VViont %(zspjgin—l'gngn +ongi—FiFatoi—FinFi'¢)=0,

where ¢,=Nyno and Fu;=F;'g.;, ¢ being a positive constant, il is necessary and
sufficient that M is isometric to a complex projective space CP™ with Fubini-
Study metric and of constant holomorphic sectional curvature c.

We assume in this paper that Kaehlerian manifolds under consideration are
connected.

§2. Preliminaries.

Let M be a complex n-dimensional Kaehlerian manifold. The complex
structure tensor F;" and the Hermitian metric tensor g;; of M satisfy

2.1) F"EFit=—0%, V;F*=0, V,;F;=0,
(2.2) giFit+ g Fif=0
and
(2.3) gii— 8 Fi F=0.
We have [7, 9, 10], for the curvature tensor K,;",
24 Kyt F"— K " Fi' =0,
(2.5) Kpji" + K FiPF =0,
(2.6) KpjieFn'+ Ky jin Fi' =0
and
2.7) Kijin—KpjosFi'Fr*=0,

where Kkjih:Kkﬁtg[,h.
Using and the first Bianchi identity

KijintKipjnt+Kjinn=0,

we have
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2chFj‘=2g"‘Kkuqu‘=-'Zg'“Kkuqu“
= _ZKktst“:"‘(Kkzsj—‘Kkstj)F”
=K1 i F=Kp s F**

from which

(2.8) K s FP=2K,.F},
(2.9) K. F**=—K; F;*
and

(2.10) KisnFP=—K, Fy',

g’ being contravariant components of g;; and F*/=g*F,J,
From we have, for the Ricci tensor K;=K,;,

(2.11) K F'+K,;Fit=0,

(2.12) K;i— K, F/F$=0,
(2.13) KM"Ft—K!'F*=0

and

(2.14) K"+ K F'F"=0,

where K;"=K;, g*".
A Kaehlerian manifold M has the constant holomorphic sectional curvature
k if and only if

k
(2.15) Kyjt= Z(5£‘gﬁ—55-‘gu+F;."F,~i—F,-"Fu—ZijFi") .
We define tensor fields G,; and Z,;" [9, 10] on M by
K
(2.16) Gji:Kji_%gji
and
K
(2.17) ijih:Kkjih_‘m(52gji_5,)}gki+FkhFji—thFki”_2ijFih)

respectively. If G;;=0 for n>1 then M is a Kaehler-Einstein manifold and K
is a constant and if Z,;;,*=0 for n>1 then M is of constant holomorphic sec-
. K

1 _,
tional curvature 2D

We easily see that the tensor fields G;; and Z, ;" satisfy

(2.18) G;=Gi;, G;ugh=0, Z;'=Gy,
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(2.19) ijih:_ jkih > ijin:Zink_j
and
(2.20) Zyi" v Zin*+ 24" =0,

where ijih:ijitgth-
The tensor fields G;; and Z,;" also satisfy

(2.21) G;iF+G . Fit=0,
(2.22) G;i— G FitFi=0,
(2.23) G/"F—GF,*=0,
(2.24) G:"+G FitF=0,
(2.25) Zyjii' Ft—Zy 3" Fi'=0,
(2.26) Zyji*+Zy i’ FPF =0,
(2.27) ZijicFnt+ Zpsn Fit =0,
(2.28) Zyjin—ZrjtsFit Fa*=0,
(2.29) Zj1sF¥=2G o F} ,
(2.30) Z,;F"=—G ;,F*

and

(2.31) ZisnF9=—G y,Fit,

where G;"=G;, g'".
If the scalar curvature K is a constant, then, from (2.17) and the
second Bianchi identity

ViKyji" +VK " +V K" =0,

we have

(2.32) Vi Zo s V200 4V Zi0 =0,
from which and [2.18) and [2.19),

(2.33) ViZijit=V1G;i—V,G ;.

A vector field «* on M is said to be contravariant analytic if
(2.34) (ViudFit+(Vou)F;=0
or equivalently if

(2.35) Viui—(Nu)F F*=0,
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where u;=g,u*. A vector field " on M is contravariant analytic if and only if
(2.36) L, F"=0,

where L, denotes the operator of Lie derivation with respect to u*. It is
known that if M is compact then a necessary and sufficient condition for a
vector field u* on M to be contravariant analytic is that

(2.37) ViV;ul+ K" ut=0

holds, where Vi=gi"V,.
For an H-projective vector field v* on M defined by we have

(2.38) YV, vt=2(n+1)p;
and
(2.39) ViV, v+ K" vi=0.

shows that the associated covariant vector field p; is gradient. Putting
1

(2.40) pzmvtv‘ ,
we have
(2.41) 0=Y0.

We have, for the H-projective vector field v*, from
(2.42) ViLogin=20;8intpign+pn&s—FuFn'0e—FpnFip.,
from which
(2.43) ViLogin=2p7gin+pibh+prdi+F/Fatp.+Fu'Fip.,
(2.44) ViLogtt=—2p;8" —p'0} —p"0;+F;'F* p,+-F;"F*p,
and
(2.45) VL,g=—2p g""— p'g"— pt gl +FIiFM o, Fi*Fitp, ,

where p"=p;g*".
Substituting into the well known formula [7, 8]

Lkajih:VkLv {jh i} —ijv{k " i} ’
we find

(2.46) Lkajih:‘“angpi"{‘a?kai
F(F" V00— FNep ) Fit+(Fi'N 0, — FiV 0 ) Fi*

from which, contracting with respect to & and &,



72 K. Yano and H. HIRAMATU

(2.47) L,,K,-iz———Zanpi—-Z(ths)Fj‘Fi” .

Suppose that an H-projective vector field v* on M is contravariant analytic.
Then, applying the operator L, of Lie derivation with respect to v™ to both
sides of we have

Lijiz(LvKtl)thF iy

from which and we see that if n>1 then p” is also contravariant analytic
and

(2.48) LoK;i=—2(n+1)Y,p;

holds.

If a Kaehlerian manifold M is compact, then we see, from that an
H-projective vector field v* on M is contravariant analytic or equivalently L,F;*
=0 holds and moreover if n>1 then the associated vector field p" is also contra-
variant analytic and (2.48) holds.

For a contravariant analytic H-projective vector field »* on a complex n>1
dimensional Kaehlerian manifold M with constant scalar curvature K, we have
[9, 10], for the tensor field G,

(2.49) L,G;i=—Vw;—V;w;,
where we have put
(2.50) wn:(n+1)ph+%?h
and w;=g;w", and, for the tensor field Z,;",

1

(251)  LoZpj"= {0RLoG ji— 07 LoG 4i— Fa"(LoG s) Fi' + F (LG k) i

2(n+1)
—Fy (LoG j0) Fi" + FH(LoG 1) Fi"}

§3. Proof of Theorem A.

In this section, we prove For this purpose, we need a series
of lemmas. We use freely formulas (2.1)~(2.51) in the proofs of all lemmas
and Theorem A in this section.

LEMMA 1 (Yano and Hiramatu [9]). If, in a compact Kaehlerian manifold
M, a non-constant function ¢ satisfies

3.1 Vjvi$0n+ —46‘(2§0jgih+90igjn +¢ngji_'Fjith§Dt'_ thitSDt)ZO ’

where ©r=Nyxo, ¢ being a constant, then the constant c¢ is necessarily positive.
ProOOF. Transvecting (3.1) with g**, we have
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VAp+(n+1cp;=0,
from which

) 1 ) 1

where A=g/"V,V,, ¢’=g%p; and dV denotes the volume element of M. Since
¢ is a non-constant function, two inequalities

SMgojgojd V>0, SM<A¢)24 V>0

hold and consequently ¢ is necessarily positive.

LEMMA 2 (Yano and Hiramatu [9]). If a complete and simply connected
Kaehlerian manifold M with positive constant scalar curvature K admits a non-
affine H-projective vector field v* and if the vector field w™ defined by (2.50) is
a Killing vector field, then M 1is isometric to a complex projective space CP™

. .. . . . K
with Fubini-Study metric of constant holomorphic sectional curvature ———

n(n+1)°
ProOOF. We have, from ((1.1),
(3.2) Vi(Vivn+Vav)=20;8in+p:8in+or8si—FsiFn' pe— FinFi' pe .
If w" is a Killing vector field then

Viw n + Vh Wwi— 0
holds and consequently

K
2(n+1)viph+ ﬁ(vivh”l‘vhvi):(),
from which and we find

VN:pnt+ (2p;gintpi8m+pngji—FsuFr'pe—FinFitp)=0.

K
dn(n+1)

Thus the lemma follows from Theorem B.
REMARK. Using Lemma 1, we see that if, in M is compact then
we can remove the positiveness of the scalar curvature K from the assumption.
LEMMA 3 (Yano and Hiramatu [9]). For an H-projective vector field v* on
a complex n>1 dimensional compact Kaehlerian manifold M with constant scalar
curvature K, we have

1 A
(3.3) SM(VLw‘)%i V= 7SM(v,-wi+\71-w,-)(Vszrvsz)d V.

PrROOF. By using a well known formula [7, 8] on a compact orientable
Riemannian manifold, we have

SM(V"Viw"+Ki"wi)whd V-SM(Vtw‘)2d v+ %—SM(vjwi+v,-wj>(wwf+vz'wf)d V=0.
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On the other hand, as was stated in Section 2, the associated vector field p” is
contravariant analytic and hence satisfies

ViV p"+ K" pi=0.

Consequently follows from and the above relations since K is
a constant.

LEMMA 4 (Yano and Hiramatu [9]). For an H-projective vector field v* on
a complex n>1 dimensional compact Kaehlerian manifold M with constant scalar
curvature K, we have

1
4(n+1)

ProoF. The associated vector field p”* is contravariant analytic and hence
satisfies

(3.4) SMGﬁp"wid V= SM(iji+Viwj)(V"wi+Viwj)d V.

vjvjpi+Kjipj:0 y
from which and the equality
ViV p'=Y",p;—K;;p’
we find
Vinpt: ‘_ZKji‘Oj .

Using the above relation, [2.40), [2.41), [2.50) and we have

. , K ,
SMGjipr’d VZSMKﬁp’w‘d V—%gMptwta’ V

_ 1 A __,Ii ¢
_—ﬂM(viv[p wtdv—os gMptw av

K

— l t i —_—
=5 |, TtV In(nt1)

S (V. 9,0)widV
M

- 2(n1+1)

. 1
T 4An+1)

LEMMA 5 (Yano and Hiramatu [9]). For an H-projective vector field v on
a complex n>1 dimensional compact Kaehlerian manifold M with constant scalar
curvature K, we have

1

) i T —
SM(VLV”“’ widV= s

SM(Vtw‘)Za’ %

SM(V,-wi—{—Viwj)(ij"+Viwj)d V.

. ! o
(3.5) SM(VJL,,G DwidV= —2—5M<vjwi+viwj)<ww ViV,
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PROOF. Integrating
V(LG ) w't =(V LoG ji)wi+(LoG i) V'
=(PLG s+ 5 (LG ) (T Vo)
over M and using (2.49), we have [3.5).
LEMMA 6 (Yano and Hiramatu [9]). For an H-projective vector field v* on

a complex n>1 dimensional compact Kaehlerian manifold M with constant scalar
curvature K, we have

_n
2(n+1)

PROOF. Substituting into
MLV G i) w =V LG ji))w— g (Lo{ " })Graw'— g (Lo{s* H)G juw®,

(3.6) SMg’”'(LvV,,G DwidV= SM(iji—l-Viwj)(Vfwi—I—Viwj)d V.

we have
Y (LG ) wi=(VL,G j)w*—2G j;p7w* .

Integrating this over M and using Lemmas 4 and 5, we have (3.6).

LEMMA 7 (Yano and Hiramatu [10]). For an H-projective vector field v™
on a complex n>1 dimensional compact Kaehlerian manifold M with constant
scalar curvature K, we have

1

k AP —
3.7 SM(V LZuyMg" wad V=—

S LTt Vaw )(Vw +Vw)d V.

ProoF. By using (2.51), we have
(vkLvijih)gjiwh

. 1
T 2An+1)

{(V*LyG i) g7 w , — (VLG j)w?
—F (VLG ) Fit gt wpn+FM(N* LG ) Fit g7 wh
—F (VLG ) Fi" g wn+F (VLG ) Fi* g wy}
Here we notice that
—FMNEL,G ) F it g wy=—F"(V* LG ;) Fi'w, =0,
FrVEL,G p)Fit g7 wa=(VL,G ;)wt,

_'Fkt<vkLijt)Fihgﬁwh:th(vkLthk)Fihgjiwh:(ijvGﬁ)u’i
and
th(vkLvGkt)Fihgﬁwh:(ijiji)wi

hold. Therefore we have
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g 1 L )
(VEL,Zyji") g7 wa= Tl {(V*LoG ) g7 w o +2(NL,G j)w'}.

Integrating this over M and using (2.49) and Lémmas 3 and 5, we find

B S
2(n+1)

_ 1
T 2An+l)
1

= —{| Tawrave| (VLCwidv)

| (P*LoZug wad V= {1 (P*LG g wd V2] (WLGwd V)

[, @G g T av+2] (LG utav)

1 o
— WATow N iwt+Tiwd
— SM(VJwﬂrVLw,)(V WiHViwhdV .
LEMMA 8 (Yano and Hiramatu [10]). For an H-projective vector field v
on a complex n>1 dimensional compact Kaehlerian manifold M with constant
scalar curvature K, we have

68 | (PLZiuwgiurdv= 3 | v )@ vwnay.

2(n+1)
ProoF. By using Z,;;*g’*=G,* and

iy n—1
(V*Z ;Mg =G = 5

V*K=0,
we have
(VELoZjin) 8" wh={V*L(Zs ;i gen)} 7 "
=(V*LoZy ;M) g7 Wi+ G p' (N Logen)w™ .
Substituting (2.43) into this, we find
(VEL,Zy jin) @ wh=(V*LyZy ;M) g7 wa+2G jip7w'

and consequently, integrating this over M and using Lemmas 4 and 7, we have
3.8).

Now we prove Theorem A. Using

kakjih:VkZhijk
and
(Lvijih)gﬂ:LvGkh_ijihngji ’

we have

(vkLvijin>gjiwh:(vkLvGkn)wh—“(kahijk)(ngﬁ)wh"‘ijih(vkng”)wh .
Substituting (2.33) and (2.45) into this, we find
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(V*LoZp jin) 87w =(VLyG j)w' — (VoG ;) Log?Hw™
(VG n ) Log? ) w™ +4G s p 0,

from which, integrating over M,

|, T Lzimgrwrav={ LG w'av=| (TG LgwrdV

+SM(V]-GM)(L,,g“)w"dV+4SMGﬁp"w"dV.
Here we notice that we have, using [(2.44) and (2.49),

[ TG gt aV={ CuTiLugyuraV+{ Gl TutaV
M M M
=-—4SMGjipjwid V—SM(LUGmgﬁV,wth

:—4SMGjip"w"d V+2SM(Vtw‘)2dV

and, using

n—1
2n

(ijih)gji: V. K=0,

[, TG g wrdV=—{ o"LI,Cyw"dV.
Consequently, we have

[ (T LoZisinrgrwrav

=25M(Vtwt)2d V+SM(VJ'LUG,-¢)wid V—SMg”(LDVkGﬁ)wid v,

from which, using Lemmas 3, 5 and 6,

2n-+3

k . Ji, R —__ v
| (VHLZigwrd V=5 s

SM(iji+viwj)(vjwi+viwj)dV.
From this and Lemma 8, we have

SM(vjwiJrviwj)(wwi+Vfwf)d V=0,

from which
ijiJrviu)j:O ,
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that is, the vector field w” is a Killing vector field. Thus, Theorem A follows
from

(1]
(2]
[3]
(4]
(5]
[6]
[7]
(8]
£9]

[10]
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