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Introduction.

Formerly, A. Lichnerowicz [1] defined a birecurrent (recurrent of the 2nd
order) Riemannian manifold by $\nabla^{2}R=R\otimes a$ , where $R$ is the Riemannian curva-
ture tensor field, $a$ is a covariant tensor field of order 2 and $\nabla$ is the covariant
differential. He proved that if a birecurrent $M$ is compact and the scalar cur-
vature does nowhere vanish it is recurrent in the ordinary sense: $\nabla R=R\otimes\alpha$ ,
where $\alpha$ is a l-form on $M$. W. Roter [2] treated this problem, but it contains
some errors.

It is known (Kobayashi-Nomizu [3], p. 305) that an irreducible recurrent
Riemannian manifold of dimension $n$ is locally symmetric if $n\geqq 3$ and whether
it is irreducible or not, the universal covering manifold $\tilde{M}$ of a connected com-
plete recurrent Riemannian $M$ is either a globally symmetric space or $M=$

$R^{n-2}\times V^{2}$ , where $R^{n- 2}$ is an $(n-2)$-dimensional flat manifold and $V^{2}$ is a
2-dimensional Riemannian manifold. The main purpose of this paper is to prove
the following theorem.

THEOREM. If an irreducible Riemannian manifold $M$ of dimension $n(\geqq 3)$

is birecurrent, then $M$ is recurrent in the ordinary sense.
The case where $n=2$ or $M$ is reducible will be also considered in \S 3.

\S 1. Preliminary lemmas.

Although the following discussions are available for Riemannian manifolds
of class $C^{4}$ , we suppose the manifolds to be of class $C^{\infty}$ for simplicity. ‘ Differ-
entiable ’ always means ’

$C^{\infty}$-differentiable’. We use the local expression of each
tensor field with respect to a local coordinate system $(x^{1}, \cdots , x^{n})$ . The indices
run from 1 to $n$ and the summation convention is adopted. The Riemannian
metric of $M$ is denoted by $g$ whose components are $(g_{ij})$ or $(g^{ij})$ . The com-
ponents of curvature tensor field $R$ are given by
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$R_{jkh}^{i}=\partial\left\{\begin{array}{l}i\\hj\end{array}\right\}/\partial_{X^{k}}-\partial\left\{\begin{array}{l}i\\kj\end{array}\right\}/\partial x^{h}+\left\{\begin{array}{l}m\\hj\end{array}\right\}\left\{\begin{array}{l}i\\km\end{array}\right\}-\left\{\begin{array}{l}m\\kj\end{array}\right\}\left\{\begin{array}{l}i\\hm\end{array}\right\}$ ,

where $\left\{\begin{array}{l}i\\jk\end{array}\right\}$ are Christoffel’s symbols obtained from $g$ . The Ricci tensor field

is denoted by $S$ whose components are $R_{ij}=R_{ikj}^{k}$ and $K=g^{ij}R_{ij}$ is the scalar
curvature field. The components of $\nabla S$ , for example, are denoted by $\nabla_{i}R_{jk}$ or
$\nabla^{i}R_{jk}$ . For a contra- or covariant tensor field $T$ of degree $P$ (components
$T^{i_{1}\cdots i_{p}}$ or $T_{t_{1}\cdots i_{p}}$ ), we use the notation $|T|^{2}=g(T, T)=T^{i_{1}\cdots i_{p}}T_{i_{1}\cdots i_{p}}$ , in particu-
lar $|R|^{2}=R^{ijkh}R_{ijkh}$ and $|S|^{2}=R^{ij}R_{ij}$ . The value of $R$ at $p\in M$, for example,
is denoted by $R_{p}$ .

As indicated in the Introduction, $M$ is said to be birecurrent or recurrent
of the 2nd order, if

(1.1) $\nabla^{2}R=R\otimes a$ or $\nabla_{m}\nabla_{l}R_{ijkh}=a_{lm}R_{ijkh}$

where $a$ is a covariant tensor field of order 2 with components $(a_{ij})$ . From (1.1),

we have immediately

\langle 1.2) $\nabla^{2}S=S\otimes a$

(1.3) $\nabla^{2}K=Ka$ .

Hereafter, we consider such a birecurrent Riemannian $M$. We call $a$ the
birecurrence tensor field and a point $p\in M$ such that $a_{p}\neq 0$ is said to be regular.
If $a$ vanishes identically on $M$, then $\nabla^{2}R=0$ . It is known by Nomizu-Ozeki [4]

that in a complete Riemannian manifold, $\nabla^{m}R=0(m\geqq 2)$ implies $\nabla R=0$ and it is
remarked later that the assumption of completeness is not necessary. Namely,
if $a=0$ on $M$, then $M$ is locally symmetric.

In a general birecurrent $M$, the following equation holds which is easily
verified.

(1.4) $\nabla_{j}\nabla_{i}(|R|^{2})=2a_{ij}|R|^{2}+2(\nabla_{i}R^{khlm})(\nabla_{j}R_{khlm})$ .
Then, without loss of generality, we can assume that the birecurrence tensor

field $a$ of (1.1) is symmetric. In fact, suppose the open submanifold $M^{\prime}=$

$\{p\in M|R_{p}\neq 0\}$ of $M$, then $a$ is symmetric on $M^{\prime}$ by (1.4). Let $a^{\prime}=(a_{ij}^{\prime})$ be a
symmetric covariant tensor field defined by $a_{ij}^{\prime}=\frac{1}{2}(a_{ij}+a_{ji})$ , then clearly $\nabla^{2}R$

$=R\otimes a^{\prime}$ holds on $M^{\prime}$ . Let $p\in M-M^{\prime}$ be an arbitrary point, then $R_{p}=0$ and
\langle $\nabla^{2}R)_{p}=0$ by (1.1). Hence the above expression of $\nabla^{2}R$ holds also at $p$ .

LEMMA 1.1.

\langle 1.5) $|R|^{2}a=2|S|^{2}a=K^{2}a$ .

PROOF. First, making use of (1.2) we have
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$R_{ai}R_{kjh}^{a}+R_{ka}R^{a_{ijh}}=0$ ,

by the Ricci identity and the symmetricity of $a$ . By a contraction, we get

(1.6) $R_{ai}R_{j}^{a}+R^{ab}R_{iabj}=0$ .
On the other hand, operate $\nabla_{m}$ to the 2nd Bianchi’s identity:

$\nabla_{l}R_{ijkh}+\nabla_{i}R_{jlkh}+\nabla_{j}R_{likh}=0$ ,
then we get

(1.7) $a_{lm}R_{ijkh}+a_{im}R_{jlkh}+a_{jm}R_{likh}=0$ ,

by (1.1). By a contraction, we have

(1.8) $a_{lm}R_{ik}-a_{im}R_{lk}+a_{am}R_{lik^{a}}=0$ ,

where $R_{lik}^{a}=g^{ab}R_{likb}$ . By a contraction, we get

$a_{fm}|S|^{2}-a_{im}R_{tk}R^{ik}+a_{am}R_{lik^{a}}R^{ik}=0$ ,

which induces

(1.9) $a_{lm}|S|^{2}=2a_{im}R_{lk}R^{ik}$ ,

by (1.6). Next, multiplying $R^{tjkh}$ to (1.7) and contracting with respect to the
indices, we get easily

(1.10) $a_{lm}|R|^{2}=4a_{im}R_{lk}R^{ik}$ ,

where we have used (1.8) and (1.6). Lastly, by a contraction of (1.8), we have

$a_{lm}K=2a_{im}R_{l}^{t}$ .
Multiplying $R_{k}^{\ell}$ and contraction with respect to $l$ , we get

(1.11) $a_{lm}K^{2}=4a_{im}R_{lk}R^{ik}$

where we have used $a_{lm}R_{k}^{l}=\nabla_{m}\nabla_{l}R^{\iota_{k}}=\frac{1}{2}\nabla_{m}(\nabla_{k}K)=\frac{1}{2}a_{km}K$. Summing up

(1.9), (1.10) and (1.11), we get the required equations. $q$ . $e$ . $d$ .
Suppose that $K\not\equiv O$ on $M$. Then in the open submanifold $M^{\prime}=\{p\in M|K_{p}\neq 0\}$ ,

$a_{ij}$ is of the form

(1.12) $a_{ij}=(\nabla_{j}\nabla_{i}K)/K$ ,

by (1.3).

LEMMA 1.2. SuppOse that the scalar curvatu $re$ field $K$ does not vanish
identically on $M$ of dimension $\geqq 2$ . Then, in the open submanifold $M^{\prime}=$

$\{p\in M|K_{p}\neq 0\}$ , the following identity holds:
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(1.13) $\nabla^{i}\nabla_{i}((\frac{1}{2}|R|^{2}+|S|^{2}-K^{2})/K)$

$=(|\nabla R-R\otimes\nabla K/K|^{2}+2|\nabla S-S\otimes\nabla K/K|^{2})/K$ .

PROOF. By straightforward calculations, we get

$\frac{1}{2}\nabla^{i}\nabla_{i}(|R|^{2}/K)=|\nabla R-R\otimes\nabla K/K|^{2}/K+\frac{1}{2}$ (Tr $a$ ) $|R|^{2}/K$ ,

$\nabla^{i}\nabla_{i}(|S|^{2}/K)=2|\nabla S-S\otimes\nabla K/K|^{2}/K+(Tra)|S|^{2}/K$ ,

$\nabla^{i}\nabla_{i}K=(Tra)K$ ,

where Tr $a=g^{ij}a_{ij}$ . Now the Lemma immediately follows from Lemma 1.1.
$q$ . $e$ . $d$ .

LEMMA 1.3. SuppOse $M$ to be connected and of dimension $\geqq 2$ . If there
exists a Point $p\in M$ such that $R_{p}=(\nabla R)_{p}=0$ , then $M$ is flat.

PROOF. At first, we prove that if a point $q\in M$ can be joined with $p$ by a
geodesic, then $R_{q}=0$ . In fact, let $c:[t_{0}, t_{1}]\rightarrow M$ be such a geodesic: $c(t_{0})=p$ ,
$c(t_{1})=q$ , where $[t_{0}, t_{1}]$ is a closed interval of real number field. Let $X,$ $Y,$ $Z,$ $W$

be vector fields along $c$ obtained by parallel displacements from arbitrary tangent

vectors $X_{p},$ $Y_{p},$ $Z_{p},$ $W_{p}$ at $p$ . By (1.1), we have

$\dot{c}(R(X, Y, Z, W))=\nabla_{\dot{c}}R(X, Y, Z, W)=(\nabla R)(X, Y, Z, W;\dot{c})$

$\dot{c}((\nabla R)(X, Y, Z, W;\dot{c}))=\nabla_{\dot{c}}((\nabla R)(X, Y, Z, W;\dot{c}))$

$=a(\dot{c},\dot{c})R(X, Y, Z, W)$

where $\dot{c}$ denotes the tangent vector of $c$ and $\nabla_{\dot{c}}$ means the covariant differenti-
ation in the direction $\dot{c}$ . By the assumption and by the uniqueness of solutions
of linear differential equations, we have

$R(X, Y, Z, W)=(\nabla R)(X, Y, Z, W;\dot{c})=0$ , along $c$ .

Since the initial tangent vectors $X_{p},$ $Y_{p},$ $Z_{p},$ $W_{p}$ can be arbitrarily chosen,
we get $R=0$ along $c$ , in particular $R_{q}=0$ .

Now let $q$ be an arbitrary point, then we can easily see that $q$ is joined
with $P$ by a finite number of geodesic arcs, so that we also have $R_{q}=0$ .

LEMMA 1.4. SuPpose a connected $M$ of dimension $\geqq 2$ whose scalar curvatu $re$

$K$ does not vanish identically and has some zero Point. Then the subset $M_{0}=$

$\{p\in M|K_{p}=0\}$ is a closed $(n-1)$-dimensional submanifold with resPect to the
induced toPology. Moreover, $M_{0}$ is totally geodesic as a Riemannian submanifold
with $resPect$ to the induced metric.

PROOF. At first we prove that $\nabla K=dK\neq 0$ on $M_{0}$ , where $d$ denotes the
differential. In fact, assume that $(\nabla K)_{p}=0$ at $p\in M_{0}$ . Then $K_{p}=(\nabla K)_{p}=0$ hold,
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so that $K=0$ all over $M$, which is verified quite analogously to the proof of
Lemma 1.3. This contradicts to the assumption for $K$. Then as is well known,
$M_{0}$ becomes a closed $(n-1)$-dimensional submanifold of $M$ with respect to the
induced topology and it is a Riemannian submanifold with respect to the induced
metric.

Now, the normal vector field $\nabla K$ to $M_{0}$ satisfies $\nabla(\nabla K)=Ka=0$ along $M_{0}$ so
that $M_{0}$ is auto-parallel, namely totally geodesic. $q$ . $e.d$

\S 2. Proof of Theorem.

Without loss of generality, we can assume that $M$ is connected. If other-
wise, we may apply the following proof to each connected component. The
proof is divided into the following three cases $1$ ) $\sim 3$).

1) Case where the scalar curvature $K\neq 0$ all over $M$.
We denote the set of all regular points of $M$ by $M^{\prime\prime}$ : $M^{\prime\prime}=\{p\in M|a_{p}\neq 0\}$ ,

which is an open submanifold. By Lemma 1.1, $\frac{1}{2}R^{2}+S^{2}-K^{2}=0$ holds on $M^{\prime\prime}$ ,

so that by Lemma 1.2 we have

(2.1) $\nabla R=R\otimes\nabla K/K$ ,

on $M^{\prime\prime}$ . Now consider an arbitrary point $q\in M-M^{\prime\prime}$ . If $q$ is a limiting point
of a sequence of regular points, then (2.1) also holds at $q$ by the continuity. If
$q$ is not such a limiting point, there exists a neighborhood $N$ of $q$ such that
$a=0$ on $N$. By (1.1), we have $\nabla^{2}R=0$ hence $\nabla R=0$ on $N$, as is remarked in \S 1.
Then $K=const$ . and $\nabla K/K=0$ , so that (2.1) holds also on $N$. Namely, $M$ is
recurrent.

2) Case where the scalar curvature $K=0$ all over $M$.
If $a=0$ all over $M$, then $\nabla R=0$ on $M$ as is remarked in \S 1. Suppose now

that $a$ does not vanish identically and consider the open submanifold $M^{\prime\prime}$ in 1).

Since $K=0$ on $M^{\prime\prime}$ , we have $R=0$ on $M^{\prime\prime}$ by Lemma 1.1. Then $\nabla R=0$ on $M^{\prime\prime}$ ,
because $M^{\prime\prime}$ is open. Namely, at each $p\in M^{\prime},$ $R_{p}=(\nabla R)_{p}=0$ hold. By Lemma
1.3, $M$ is flat.

3) Case where the scalar curvatu $reK\not\equiv O$ and has some zero Poini.
This case can not occur by the following reason. Let $M$ be such a mani-

fold. Then $\Lambda I_{0}=\{p\in M|K_{p}=0\}$ is a closed $(n-1)$-dimensional submanifold by
Lemma 1.4, so that $M-M_{0}$ is an open Riemannian submanifold which is bire-
current. As in the case 1), (2.1) holds on $M-M_{0}$ , in particular

(2.2) $\nabla S=S\otimes\nabla K/K$ ,

on $M-M_{0}$ . Now the covariant tensor field $S/K$ of order 2 is well defined on
$M-M_{0}$ . Let $P$ be an arbitrary point of $M_{0}$ , then $(\nabla K)_{p}\neq 0$ as in the proof of
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Lemma 1.4. Namely there exists a differentiable vector field $X$ on $M$ such that
$(\nabla_{X}K)_{p}\neq 0$, where $\nabla_{X}$ denotes the covariant differentiation in the direction $X$.
Hence $\nabla_{X}K\neq 0$ on a neighborhood $N$ of $p$ . Taking account of (2.2), $S/K=$

$(\nabla_{X}S)/(\nabla_{X}K)$ is defined outside of $M_{0}\cap N$ in $N$. Since the right hand side is
defined on $N,$ $S/K$ is also defined on $N$ as a differentiable tensor field. Since
$p\in M_{0}$ is an arbitrary point, we see that $S/K$ is well defined as a differentiable
tensor field all over $M$. We can easily see that $\nabla(S/K)=0$ on $M-M_{0}$ , making
use of (2.2). By the continuity, this holds also on $M_{0}$ hence all over $M$. Since
$M$ is irreducible, we have $S/K=\lambda g,$ $\lambda=const$ . Namely, $S=\lambda Kg$ on $M-M_{0}$ and
this holds on $M$ by the continuity. Hence $M$ is an Einstein manifold because
$n\geqq 3$ , so that $K=const$ . on $M$. This contradicts to the assumption for $K$.

Summing up the cases $1$ ) $\sim 3$), the proof is complete.

\S 3. Case where $n=2$ or $M$ is reducible.

SuPpose that $n=2$ . If $K\neq 0$ on $M$, $M$ is recurrent, and if $K\equiv 0$ on $M,$ $M$

is flat. Hence, if $M$ is not recurrent, then $K\not\equiv O$ and $K$ has some zero point.
By Lemma 1.4, the orbit defined by $K=0$ is a geodesic $c$ (or a set of geodesics).

Let $p_{0}$ be an arbitrary point of $c$ . By (1.3), $\lim_{p\rightarrow p_{0}}(\nabla^{2}K/K)(p)$ exists. We denote
such a non recurrent $M$ by $V^{2}$ .

Next, suppose that $M$ is reducible and $n\geqq 3$ . Since the discussions in the
cases 1) and 2) of \S 2 are valid without the irreducibility of $M,$ $M$ is recurrent
if $K\neq 0$ or $K=0$ all over $M$. Only the case 3) of \S 2 remains. Each point of
$M$ has a neighborhood $U$ admitting an orthogonal decomposition $U=U_{1}\times U_{2}$ ,

where $U_{1}$ and $U_{2}$ are Riemannian manifolds. Let $R_{1}$ (resp. $R_{2}$) be the curvature
tensor field of $U_{1}$ (resp. $U_{2}$). As in the recurrent case (Kobayashi-Nomizu, [3],
p. 306), there are only the following possibilities: (1) $\nabla^{2}R_{1}=0$ and $\nabla^{2}R_{2}=0$ (2)
$R_{1}=0$ and $\nabla^{2}R_{2}=R_{2}\otimes a\neq 0$ (3) $\nabla^{2}R_{1}=R_{1}\otimes a\neq 0$ and $R_{2}=0$ , where $R_{1}$ (resp. $R_{2}$)

is supposed as a tensor field on $U$ in a natural way. In the case (1), $\nabla^{2}R=0$

and hence $\nabla R=0$ by the remark in \S 1. Hence $U$ is locally symmetric. In other
cases, since we can assume that, for example, $U_{2}$ is irreducible, only the case
(2) remains. Since $U$ is the same situation as $M$ in the case 3) of \S 2, $(\nabla K)_{p}\neq 0$

at any point $p\in U$ if $K_{p}=0$ and $U_{0}=\{p\in U|K_{p}=0\}$ is an $(n-1)$ -dimensional
Riemannian submanifold of $U$. The scalar curvature field $K_{2}$ of $U_{2}$ does not
vanish identically and the natural projection $U\rightarrow U_{2}$ maps $U_{0}$ onto a subset
$U_{0}^{\prime}=\{p\in U_{2}|K_{2}=0\}$ . In this case, $\nabla_{2}K_{2}\neq 0$ along $U_{2}$ . Hence $U_{0}^{\prime}$ is a Riemannian
submanifold of codimension 1 of $U_{2}$ . Now, $a$ induces a non zero birecurrent
tensor field on $U_{2}-U_{0}^{\prime}$ , and also on $U_{2}$ . By the former consideration of this
section, the only possible case is $U_{2}=V^{2}$ . Namely, $U_{1}=R^{n-2}$ and $U_{2}=V^{2}$ , where
$R^{n- 2}$ is an $(n-2)$-dimensional flat manifold and $V^{2}$ is a 2-dimensional birecur-
rent manifold explained in the first part of this section. Now we have the
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following proposition.
PROPOSITION. Let $M$ be a reducible birecurrent Riemannian manifold of

dimension $n(\geqq 3)$ . If either $R\neq 0$ or $R=0$ all over $M$, then $M$ is recurrent.
In other cases, let $U$ be a neighborhood of $M$ admitting an orthogonal decom-
position into two Riemannian manifolds. Then, either $U$ is locally symmetric or
$U=R^{n-2}\times V^{2}$ , where $R^{n-2}$ is an $(n-2)$ -dimensional flat manifold and $V^{2}$ is a
2-dimensional birecurrent Riemannian manifold explained in the first part of
this sectio $7l$ .

If $M$ is connected and complete, the universal covering manifold $\tilde{M}$ of $M$

is either globally symmetric or $\tilde{M}=R^{n-2}\times V^{2}$ , where $R^{n-2}$ and $V^{2}$ are of the
same meaning in the above Proposition.
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