Non existence of irreducible birecurrent Riemannian manifold of dimension $\geqq 3$

By Hidekiyo Wakakuwa

(Received Oct. 20, 1978)
(Revised Feb. 15, 1979)

Introduction.

Formerly, A. Lichnerowicz [1] defined a birecurrent (recurrent of the 2nd order) Riemannian manifold by $\nabla^{2} R=R \otimes a$, where R is the Riemannian curvature tensor field, a is a covariant tensor field of order 2 and ∇ is the covariant differential. He proved that if a birecurrent M is compact and the scalar curvature does nowhere vanish it is recurrent in the ordinary sense: $\nabla R=R \otimes \alpha$, where α is a 1 -form on M. W. Roter [2] treated this problem, but it contains some errors.

It is known (Kobayashi-Nomizu [3], p. 305) that an irreducible recurrent Riemannian manifold of dimension n is locally symmetric if $n \geqq 3$ and whether it is irreducible or not, the universal covering manifold \tilde{M} of a connected complete recurrent Riemannian M is either a globally symmetric space or $M=$ $R^{n-2} \times V^{2}$, where R^{n-2} is an ($n-2$)-dimensional flat manifold and V^{2} is a 2 -dimensional Riemannian manifold. The main purpose of this paper is to prove the following theorem.

Theorem. If an irreducible Riemannian manifold M of dimension $n(\geqq 3)$ is birecurrent, then M is recurrent in the ordinary sense.

The case where $n=2$ or M is reducible will be also considered in $\S 3$.

§ 1. Preliminary lemmas.

Although the following discussions are available for Riemannian manifolds of class C^{4}, we suppose the manifolds to be of class C^{∞} for simplicity. 'Differentiable' always means ' C^{∞}-differentiable'. We use the local expression of each tensor field with respect to a local coordinate system (x^{1}, \cdots, x^{n}). The indices run from 1 to n and the summation convention is adopted. The Riemannian metric of M is denoted by g whose components are $\left(g_{i j}\right)$ or $\left(g^{i j}\right)$. The components of curvature tensor field R are given by

$$
R_{j k h}^{i}=\partial\left\{\begin{array}{c}
i \\
h j
\end{array}\right\} / \partial x^{k}-\partial\left\{\begin{array}{c}
i \\
k j
\end{array}\right\} / \partial x^{h}+\left\{\begin{array}{c}
m \\
h j
\end{array}\right\}\left\{\begin{array}{c}
i \\
k m
\end{array}\right\}-\left\{\begin{array}{c}
m \\
k j
\end{array}\right\}\left\{\begin{array}{c}
i \\
h m
\end{array}\right\}
$$

where $\left\{\begin{array}{c}i \\ j k\end{array}\right\}$ are Christoffel's symbols obtained from g. The Ricci tensor field is denoted by S whose components are $R_{i j}=R^{k}{ }_{i k j}$ and $K=g^{i j} R_{i j}$ is the scalar curvature field. The components of ∇S, for example, are denoted by $\nabla_{i} R_{j k}$ or $\nabla^{i} R_{j k}$. For a contra- or covariant tensor field T of degree p (components $T^{i_{1} \cdots i_{p}}$ or $T_{i_{1} \cdots i_{p}}$, we use the notation $|T|^{2}=g(T, T)=T^{i_{1} \cdots i_{p}} T_{i_{1} \cdots i_{p}}$, in particular $|R|^{2}=R^{i j k h} R_{i j k h}$ and $|S|^{2}=R^{i j} R_{i j}$. The value of R at $p \in M$, for example, is denoted by R_{p}.

As indicated in the Introduction, M is said to be birecurrent or recurrent of the 2 nd order, if

$$
\begin{equation*}
\nabla^{2} R=R \otimes a \quad \text { or } \quad \nabla_{m} \nabla_{l} R_{i j k h}=a_{l m} R_{i j k h} \tag{1.1}
\end{equation*}
$$

where a is a covariant tensor field of order 2 with components $\left(a_{i j}\right)$. From (1.1), we have immediately

$$
\begin{align*}
& \nabla^{2} S=S \otimes a \tag{1.2}\\
& \nabla^{2} K=K a \tag{1.3}
\end{align*}
$$

Hereafter, we consider such a birecurrent Riemannian M. We call a the birecurrence tensor field and a point $p \in M$ such that $a_{p} \neq 0$ is said to be regular. If a vanishes identically on M, then $\nabla^{2} R=0$. It is known by Nomizu-Ozeki [4] that in a complete Riemannian manifold, $\nabla^{m} R=0(m \geqq 2)$ implies $\nabla R=0$ and it is remarked later that the assumption of completeness is not necessary. Namely, if $a=0$ on M, then M is locally symmetric.

In a general birecurrent M, the following equation holds which is easily verified.

$$
\begin{equation*}
\nabla_{j} \nabla_{i}\left(|R|^{2}\right)=2 a_{i j}|R|^{2}+2\left(\nabla_{i} R^{k h l m}\right)\left(\nabla_{j} R_{k h l m}\right) \tag{1.4}
\end{equation*}
$$

Then, without loss of generality, we can assume that the birecurrence tensor field a of (1.1) is symmetric. In fact, suppose the open submanifold $M^{\prime}=$ $\left\{p \in M \mid R_{p} \neq 0\right\}$ of M, then a is symmetric on M^{\prime} by (1.4). Let $a^{\prime}=\left(a^{\prime}{ }_{i j}\right)$ be a symmetric covariant tensor field defined by $a^{\prime}{ }_{i j}=\frac{1}{2}\left(a_{i j}+a_{j i}\right)$, then clearly $\nabla^{2} R$ $=R \otimes a^{\prime}$ holds on M^{\prime}. Let $p \in M-M^{\prime}$ be an arbitrary point, then $R_{p}=0$ and $\left(\nabla^{2} R\right)_{p}=0$ by (1.1). Hence the above expression of $\nabla^{2} R$ holds also at p.

Lemma 1.1.

$$
\begin{equation*}
|R|^{2} a=2|S|^{2} a=K^{2} a \tag{1.5}
\end{equation*}
$$

Proof. First, making use of (1.2) we have

$$
R_{a i} R_{k j h}^{a}+R_{k a} R_{i j h}^{a}=0
$$

by the Ricci identity and the symmetricity of a. By a contraction, we get

$$
\begin{equation*}
R_{a i} R_{j}^{a}+R^{a b} R_{i a b j}=0 \tag{1.6}
\end{equation*}
$$

On the other hand, operate ∇_{m} to the 2nd Bianchi's identity:

$$
\nabla_{l} R_{i j k h}+\nabla_{i} R_{j l k h}+\nabla_{j} R_{l i k h}=0
$$

then we get

$$
\begin{equation*}
a_{l m} R_{i j k h}+a_{i m} R_{j l k h}+a_{j m} R_{l i k h}=0 \tag{1.7}
\end{equation*}
$$

by (1.1). By a contraction, we have

$$
\begin{equation*}
a_{l m} R_{i k}-a_{i m} R_{l k}+a_{a m} R_{l i k}^{a}=0 \tag{1.8}
\end{equation*}
$$

where $R_{l i k}^{a}=g^{a b} R_{l i k b}$. By a contraction, we get

$$
a_{l m}|S|^{2}-a_{i m} R_{l k} R^{i k}+a_{a m} R_{l i k}^{a} R^{i k}=0
$$

which induces

$$
\begin{equation*}
a_{l m}|S|^{2}=2 a_{i m} R_{l k} R^{i k} \tag{1.9}
\end{equation*}
$$

by (1.6). Next, multiplying $R^{i j k h}$ to (1.7) and contracting with respect to the indices, we get easily

$$
\begin{equation*}
a_{l m}|R|^{2}=4 a_{i m} R_{l k} R^{i k} \tag{1.10}
\end{equation*}
$$

where we have used (1.8) and (1.6). Lastly, by a contraction of (1.8), we have

$$
a_{l m} K=2 a_{i m} R_{l}^{i}
$$

Multiplying R_{k}^{l} and contraction with respect to l, we get

$$
\begin{equation*}
a_{l m} K^{2}=4 a_{i m} R_{l k} R^{i k} \tag{1.11}
\end{equation*}
$$

where we have used $a_{l m} R_{k}^{l}=\nabla_{m} \nabla_{l} R_{k}^{l}=\frac{1}{2} \nabla_{m}\left(\nabla_{k} K\right)=\frac{1}{2} a_{k m} K$. Summing up (1.9), (1.10) and (1.11), we get the required equations.
q. e.d.

Suppose that $K \not \equiv 0$ on M. Then in the open submanifold $M^{\prime}=\left\{p \in M \mid K_{p} \neq 0\right\}$, $a_{i j}$ is of the form

$$
\begin{equation*}
a_{i j}=\left(\nabla_{j} \nabla_{i} K\right) / K \tag{1.12}
\end{equation*}
$$

by (1.3).
Lemma 1.2. Suppose that the scalar curvature field K does not vanish identically on M of dimension $\geqq 2$. Then, in the open submanifold $M^{\prime}=$ $\left\{p \in M \mid K_{p} \neq 0\right\}$, the following identity holds:

$$
\begin{align*}
& \nabla^{i} \nabla_{i}\left(\left(\frac{1}{2}|R|^{2}+|S|^{2}-K^{2}\right) / K\right) \tag{1.13}\\
= & \left(|\nabla R-R \otimes \nabla K / K|^{2}+2|\nabla S-S \otimes \nabla K / K|^{2}\right) / K .
\end{align*}
$$

Proof. By straightforward calculations, we get

$$
\begin{aligned}
& \frac{1}{2} \nabla^{i} \nabla_{i}\left(|R|^{2} / K\right)=|\nabla R-R \otimes \nabla K / K|^{2} / K+\frac{1}{2}(\operatorname{Tr} a)|R|^{2} / K, \\
& \nabla^{i} \nabla_{i}\left(|S|^{2} / K\right)=2|\nabla S-S \otimes \nabla K / K|^{2} / K+(\operatorname{Tr} a)|S|^{2} / K, \\
& \nabla^{i} \nabla_{i} K=(\operatorname{Tr} a) K,
\end{aligned}
$$

where $\operatorname{Tr} a=g^{i j} a_{i j}$. Now the Lemma immediately follows from Lemma 1.1.
q. e. d.

Lemma 1.3. Suppose M to be connected and of dimension $\geqq 2$. If there exists a point $p \in M$ such that $R_{p}=(\nabla R)_{p}=0$, then M is flat.

Proof. At first, we prove that if a point $q \in M$ can be joined with p by a geodesic, then $R_{q}=0$. In fact, let $c:\left[t_{0}, t_{1}\right] \rightarrow M$ be such a geodesic: $c\left(t_{0}\right)=p$, $c\left(t_{1}\right)=q$, where $\left[t_{0}, t_{1}\right]$ is a closed interval of real number field. Let X, Y, Z, W be vector fields along c obtained by parallel displacements from arbitrary tangent vectors $X_{p}, Y_{p}, Z_{p}, W_{p}$ at p. By (1.1), we have

$$
\begin{aligned}
& \dot{c}(R(X, Y, Z, W))=\nabla_{\dot{c}} R(X, Y, Z, W)=(\nabla R)(X, Y, Z, W ; \dot{c}) \\
& \begin{aligned}
\dot{c}((\nabla R)(X, Y, Z, W ; \dot{c})) & =\nabla_{\dot{c}}((\nabla R)(X, Y, Z, W ; \dot{c})) \\
& =a(\dot{c}, \dot{c}) R(X, Y, Z, W)
\end{aligned}
\end{aligned}
$$

where \dot{c} denotes the tangent vector of c and $\nabla_{\dot{c}}$ means the covariant differentiation in the direction \dot{c}. By the assumption and by the uniqueness of solutions of linear differential equations, we have

$$
R(X, Y, Z, W)=(\nabla R)(X, Y, Z, W ; \dot{c})=0, \text { along } c .
$$

Since the initial tangent vectors $X_{p}, Y_{p}, Z_{p}, W_{p}$ can be arbitrarily chosen, we get $R=0$ along c, in particular $R_{q}=0$.

Now let q be an arbitrary point, then we can easily see that q is joined with p by a finite number of geodesic arcs, so that we also have $R_{q}=0$.

Lemma 1.4. Suppose a connected M of dimension $\geqq 2$ whose scalar curvature K does not vanish identically and has some zero point. Then the subset $M_{0}=$ $\left\{p \in M \mid K_{p}=0\right\}$ is a closed ($n-1$)-dimensional submanifold with respect to the induced topology. Moreover, M_{0} is totally geodesic as a Riemannian submanifold with respect to the induced metric.

Proof. At first we prove that $\nabla K=d K \neq 0$ on M_{0}, where d denotes the differential. In fact, assume that $(\nabla K)_{p}=0$ at $p \in M_{0}$. Then $K_{p}=(\nabla K)_{p}=0$ hold,
so that $K=0$ all over M, which is verified quite analogously to the proof of Lemma 1.3. This contradicts to the assumption for K. Then as is well known, M_{0} becomes a closed ($n-1$)-dimensional submanifold of M with respect to the induced topology and it is a Riemannian submanifold with respect to the induced metric.

Now, the normal vector field ∇K to M_{0} satisfies $\nabla(\nabla K)=K a=0$ along M_{0} so that M_{0} is auto-parallel, namely totally geodesic.
q.e.d

§ 2. Proof of Theorem.

Without loss of generality, we can assume that M is connected. If otherwise, we may apply the following proof to each connected component. The proof is divided into the following three cases 1)~3).

1) Case where the scalar curvature $K \neq 0$ all over M.

We denote the set of all regular points of M by $M^{\prime \prime}: M^{\prime \prime}=\left\{p \in M \mid a_{p} \neq 0\right\}$, which is an open submanifold. By Lemma 1.1, $\frac{1}{2} R^{2}+S^{2}-K^{2}=0$ holds on $M^{\prime \prime}$, so that by Lemma 1.2 we have

$$
\begin{equation*}
\nabla R=R \otimes \nabla K / K \tag{2.1}
\end{equation*}
$$

on $M^{\prime \prime}$. Now consider an arbitrary point $q \in M-M^{\prime \prime}$; If q is a limiting point of a sequence of regular points, then (2.1) also holds at q by the continuity. If q is not such a limiting point, there exists a neighborhood N of q such that $a=0$ on N. By (1.1), we have $\nabla^{2} R=0$ hence $\nabla R=0$ on N, as is remarked in $\S 1$. Then $K=$ const. and $\nabla K / K=0$, so that (2.1) holds also on N. Namely, M is recurrent.
2) Case where the scalar curvature $K=0$ all over M.

If $a=0$ all over M, then $\nabla R=0$ on M as is remarked in $\S 1$. Suppose now that a does not vanish identically and consider the open submanifold $M^{\prime \prime}$ in 1). Since $K=0$ on $M^{\prime \prime}$, we have $R=0$ on $M^{\prime \prime}$ by Lemma 1.1. Then $\nabla R=0$ on $M^{\prime \prime}$, because $M^{\prime \prime}$ is open. Namely, at each $p \in M^{\prime \prime}, R_{p}=(\nabla R)_{p}=0$ hold. By Lemma $1.3, M$ is flat.
3) Case where the scalar curvature $K \not \equiv 0$ and has some zero point.

This case can not occur by the following reason. Let M be such a manifold. Then $M_{0}=\left\{p \in M \mid K_{p}=0\right\}$ is a closed ($n-1$)-dimensional submanifold by Lemma 1.4, so that $M-M_{0}$ is an open Riemannian submanifold which is birecurrent. As in the case 1), (2.1) holds on $M-M_{0}$, in particular

$$
\begin{equation*}
\nabla S=S \otimes \nabla K / K \tag{2.2}
\end{equation*}
$$

on $M-M_{0}$. Now the covariant tensor field S / K of order 2 is well defined on $M-M_{0}$. Let p be an arbitrary point of M_{0}, then $(\nabla K)_{p} \neq 0$ as in the proof of

Lemma 1.4. Namely there exists a differentiable vector field X on M such that $\left(\nabla_{X} K\right)_{p} \neq 0$, where ∇_{X} denotes the covariant differentiation in the direction X. Hence $\nabla_{X} K \neq 0$ on a neighborhood N of p. Taking account of (2.2), $S / K=$ $\left(\nabla_{X} S\right) /\left(\nabla_{X} K\right)$ is defined outside of $M_{0} \cap N$ in N. Since the right hand side is defined on $N, S / K$ is also defined on N as a differentiable tensor field. Since $p \in M_{0}$ is an arbitrary point, we see that S / K is well defined as a differentiable tensor field all over M. We can easily see that $\nabla(S / K)=0$ on $M-M_{0}$, making use of (2.2), By the continuity, this holds also on M_{0} hence all over M. Since M is irreducible, we have $S / K=\lambda g$, $\lambda=$ const. Namely, $S=\lambda K g$ on $M-M_{0}$ and this holds on M by the continuity. Hence M is an Einstein manifold because $n \geqq 3$, so that $K=$ const. on M. This contradicts to the assumption for K.

Summing up the cases 1) ~ 3), the proof is complete.

§ 3. Case where $n=2$ or M is reducible.

Suppose that $n=2$. If $K \neq 0$ on M, M is recurrent, and if $K \equiv 0$ on M, M is flat. Hence, if M is not recurrent, then $K \not \equiv 0$ and K has some zero point. By Lemma 1.4, the orbit defined by $K=0$ is a geodesic c (or a set of geodesics). Let p_{0} be an arbitrary point of c. By (1.3), $\lim _{p \rightarrow p_{0}}\left(\nabla^{2} K / K\right)(p)$ exists. We denote such a non recurrent M by V^{2}.

Next, suppose that M is reducible and $n \geqq 3$. Since the discussions in the cases 1) and 2) of $\S 2$ are valid without the irreducibility of M, M is recurrent if $K \neq 0$ or $K=0$ all over M. Only the case 3) of $\S 2$ remains. Each point of M has a neighborhood U admitting an orthogonal decomposition $U=U_{1} \times U_{2}$, where U_{1} and U_{2} are Riemannian manifolds. Let R_{1} (resp. R_{2}) be the curvature tensor field of U_{1} (resp. U_{2}). As in the recurrent case (Kobayashi-Nomizu, [3], p. 306), there are only the following possibilities: (1) $\nabla^{2} R_{1}=0$ and $\nabla^{2} R_{2}=0$ (2) $R_{1}=0$ and $\nabla^{2} R_{2}=R_{2} \otimes a \neq 0$ (3) $\nabla^{2} R_{1}=R_{1} \otimes a \neq 0$ and $R_{2}=0$, where R_{1} (resp. R_{2}) is supposed as a tensor field on U in a natural way. In the case (1), $\nabla^{2} R=0$ and hence $\nabla R=0$ by the remark in $\S 1$. Hence U is locally symmetric. In other cases, since we can assume that, for example, U_{2} is irreducible, only the case (2) remains. Since U is the same situation as M in the case 3) of $\S 2,(\nabla K)_{p} \neq 0$ at any point $p \in U$ if $K_{p}=0$ and $U_{0}=\left\{p \in U \mid K_{p}=0\right\}$ is an ($n-1$)-dimensional Riemannian submanifold of U. The scalar curvature field K_{2} of U_{2} does not vanish identically and the natural projection $U \rightarrow U_{2}$ maps U_{0} onto a subset $U_{0}^{\prime}=\left\{p \in U_{2} \mid K_{2}=0\right\}$. In this case, $\nabla_{2} K_{2} \neq 0$ along U_{2}. Hence U_{0}^{\prime} is a Riemannian submanifold of codimension 1 of U_{2}. Now, a induces a non zero birecurrent tensor field on $U_{2}-U_{0}^{\prime}$, and also on U_{2}. By the former consideration of this section, the only possible case is $U_{2}=V^{2}$. Namely, $U_{1}=R^{n-2}$ and $U_{2}=V^{2}$, where R^{n-2} is an ($n-2$)-dimensional flat manifold and V^{2} is a 2 -dimensional birecurrent manifold explained in the first part of this section. Now we have the
following proposition.
Proposition. Let M be a reducible birecurrent Riemannian manifold of dimension $n(\geqq 3)$. If either $R \neq 0$ or $R=0$ all over M, then M is recurrent. In other cases, let U be a neighborhood of M admitting an orthogonal decomposition into two Riemannian manifolds. Then, either U is locally symmetric or $U=R^{n-2} \times V^{2}$, where R^{n-2} is an ($n-2$)-dimensional flat manifold and V^{2} is a 2-dimensional birecurrent Riemannian manifold explained in the first part of this section.

If M is connected and complete, the universal covering manifold \tilde{M} of M is either globally symmetric or $\tilde{M}=R^{n-2} \times V^{2}$, where R^{n-2} and V^{2} are of the same meaning in the above Proposition.

References

[1] A. Lichnerowicz, Courbure, nombres de Betti et espaces symétriques, Proc. Intern. Congr. Math. Cambridge, Mass., 1950, Vol. 2, 216-223.
[2] W. Roter, Some remarks on second order recurrent spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys., 12 (1964), 661-670.
[3] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Interscience, New York, Vol. 1, 1963.
[4] K. Nomizu and H. Ozeki, A theorem on curvature tensor fields, Proc. Nat. Acad. Sci. U.S.A., 48 (1962), 206-207.

Hidekiyo Wakakuwa
Department of Mathematics Tokyo Gakugei University Koganei, Tokyo 184
Japan

