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Introduction.

Formerly, A. Lichnerowicz defined a birecurrent (recurrent of the 2nd
order) Riemannian manifold by V2R=RQua, where R is the Riemannian curva-
ture tensor field, a is a covariant tensor field of order 2 and V is the covariant
differential. He proved that if a birecurrent M is compact and the scalar cur-
vature does nowhere vanish it is recurrent in the ordinary sense: VR=RRa,
where a is a 1-form on M. W. Roter treated this problem, but it contains
some errors.

It is known (Kobayashi-Nomizu [3], p. 305) that an irreducible recurrent
Riemannian manifold of dimension n is locally symmetric if n=3 and whether
it is irreducible or not, the universal covering manifold M of a connected com-
plete recurrent Riemannian M is either a globally symmetric space or M=
R"?xV?% where K" ? is an (n—2)-dimensional flat manifold and V? is a
2-dimensional Riemannian manifold. The main purpose of this paper is to prove
the following theorem.

THEOREM. If an irreducible Riemannian manifold M of dimension n (=3)
1s birecurrent, then M is recurrent in the ordinary sense.

The case where n=2 or M is reducible will be also considered in §3.

§1. Preliminary lemmas.

Although the following discussions are available for Riemannian manifolds
of class C% we suppose the manifolds to be of class C* for simplicity. ¢Differ-
entiable’ always means ‘ C-differentiable’. We use the local expression of each
tensor field with respect to a local coordinate system (x!, ---, x®). The indices
run from 1 to n and the summation convention is adopted. The Riemannian
metric of M is denoted by g whose components are (g;;) or (g*). The com-
ponents of curvature tensor field R are given by
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R jun=5 hij}/axk”a{ l;]'}/axh+{i7:;}{kin}_{l:;}{hin}’

where {jlk} are Christoffel’s symbols obtained from g. The Ricci tensor field

is denoted by S whose components are R,;=R*,;,; and K=g"R;; is the scalar
curvature field. The components of VS, for example, are denoted by V;R;, or
V'R;,. For a contra- or covariant tensor field 7 of degree p (components
Tiri» or Ty,.;,), We use the notation | T |2=g(T, T):T"l""'pTil._.ip, in particu-
lar |R|?>=R%**R,;;» and |S|*=R%“R;;. The value of R at p= M, for example,
is denoted by R,.

As indicated in the Introduction, M is said to be birecurrent or recurrent
of the 2nd order, if

(1.1) VER=RR®a or VuViRipn=aimRijrn

where « is a covariant tensor field of order 2 with components (a;;). From [L.I},
we have immediately

(1.2) V2S=S®a
(1.3) VK=Ka.

Heveafter, we consider such a bivecurrent Riemannian M. We call a the
birecurrence tensor field and a point p& M such that a,+0 is said to be regular.
If a vanishes identically on M, then V2R=0. It is known by Nomizu-Ozeki
that in a complete Riemannian manifold, V*R=0 (m=2) implies VR=0 and it is
remarked later that the assumption of completeness is not necessary. Namely,
if a=0 on M, then M is locally symmetric.

In a general birecurrent M, the following equation holds which is easily
verified.

1.4 ViV RIM)=2a4| R|*+2(V:R**'™YV,R pnim) -

Then, without loss of generality, we can assume that the bivecurrence tensor
field a of is symmetric. In fact, suppose the open submanifold M’=
{peM|R,+0} of M, then a is symmetric on M’ by [1.4). Let a’=(a’;,) be a

symmetric covariant tensor field defined by a’i,-:—%—(aifr a;;), then clearly V2R

=R®a’ holds on M’. Let pe6M—M’ be an arbitrary point, then R,=0 and

(V*R),=0 by [I.I). Hence the above expression of V2R holds also at p.
LEMMA 1.1.

(1.5) |R|?a=2|S|*a=K?a .

ProoOF. First, making use of (1.2) we have
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RoiR%pjnt+RyoR®:5,=0,
by the Ricci identity and the symmetricity of a. By a contraction, we get
(1.6) RqiR%+R*R;4,;=0.
On the other hand, operate V,, to the 2nd Bianchi’s identity :

szijkn+viRjzkh+ijzikh:O,
then we get

(1.7) QmRijent @imRient aimRiinn=0,
by [I.I}. By a contraction, we have
(1.8) QmRir—aimRipt aamBR1::*=0,
W‘here R;;,°=g%R,;;». By a contraction, we get

A |S|2— @i Ry R*¥*+agm PR *R*=0,
which induces
(1.9) a1m|S12=2a;m R R,

by [1.6). Next, multiplying R¥*" to and contracting with respect to the
indices, we get easily

(1.10) : aim| R|*=4a;n R, R,

where we have used and [(1.6). Lastly, by a contraction of [1.8), we have
aimK=2a;,R% .

Multiplying R!, and contraction with respect to /, we get

(1.11) A K*=4a;n R, R*

where we have used almR‘k:Vszle:%Vm(VkK):%aka. Summing up

K1.9Y, (1.10) and [1.11), we get the required equations. g.e.d.
Suppose that K#£0 on M. Then in the open submanifold M’'= {p= M| K,+0},
a;; is of the form

(1.12) aij:(vjviK)/K{
by [L.3)

LEMMA 1.2. Suppose that the scalar curvature field K does not vanish
identically on M of dimension =2. Then, n the open submanifold M'=
{p=s M|K,+0}, the following identity holds:
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i __1_ 2 2__ 2
(113) vvi((zlm +ISI*—K*)/K)
=(|[VR—RQVK/K|*+2|VS—SKRVK/K|%/K.
PrOOF. By straightforward calculations, we get

3V RIY/K)=|TR—RQVE/K|*/K+ 3 (T1 )| RI¥/K,

ViV«(|S|?/K)=2|VS—SQVK/K|?*/K+(Tr a)|S|?/K,
ViV, K=(Tr a)K ,

where Tr a=g%a,;, Now the Lemma immediately follows from Lemma 1.1
g.e.d.

LEMMA 1.3. Suppose M to be connected and of dimension =2. If there
exists a point peM such that R,=(VR),=0, then M 1s flat.

ProOOF. At first, we prove that if a point g M can be joined with p by a
geodesic, then R,=0. In fact, let c: [y, t;]—M be such a geodesic: c(t)=p,
c(t))=gq, where [t,, t,] is a closed interval of real number field. Let X, Y, Z, W
be vector fields along ¢ obtained by parallel displacements from arbitrary tangent
vectors X,, Y,, Z,, W, at p. By we have

CRX, Y, Z, WH)=VR(X, Y, Z W)=NRXX, Y, Z, W; ¢)
K(VRXX, Y, Z, W; eN=V:(NRXX, Y, Z, W; ¢))
=a(¢, ORX, Y, Z, W)

where ¢ denotes the tangent vector of ¢ and V; means the covariant differenti-
ation in the direction ¢é. By the assumption and by the uniqueness of solutions
of linear differential equations, we have

RX, Y, Z W)=(NR)X, Y, Z, W; ¢)=0, along c.

Since the initial tangent vectors X,, Y,, Z,, W, can be arbitrarily chosen,
we get R=0 along ¢, in particular R,=0.

Now let ¢ be an arbitrary point, then we can easily see that ¢ is joined
with p by a finite number of geodesic arcs, so that we also have R,=0.

LEMMA 1.4. Suppose a connected M of dimension =2 whose scalar curvature
K does not vanish identically and has some zero point. Then the subset M,=
{peM|K,=0} is a closed (n—1)-dimensional submanifold with respect to the
induced topology. Moreover, M, is totally geodesic as a Riemannian submanifold
with respect to the induced metric.

Proor. At first we prove that VAK=dK=0 on M, where d denotes the
differential. In fact, assume that (VK),=0 at p= M, Then K,=(VK),=0 hold,
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so that =0 all over M, which is verified quite analogously to the proof of
Lemma 1.3. This contradicts to the assumption for K. Then as is well known,
M, becomes a closed (n—1)-dimensional submanifold of M with respect to the
induced topology and it is a Riemannian submanifold with respect to the induced
metric.

Now, the normal vector field VK to M, satisfies V(VK)=Ka=0 along M, so
that M, is auto-parallel, namely totally geodesic. q.e.d

§2. Proof of Theorem.

Without loss of generality, we can assume that M is connected. If other-
wise, we may apply the following proof to each connected component. The
proof is divided into the following three cases 1)~3).

1) Case where the scalar curvature K+0 all over M.

We denote the set of all regular points of M by M”: M"={pesM|a,+0},

which is an open submanifold. By Lemma 1.1, —;—Rz—i—SZ—KZ:O holds on M7,
so that by we have
2.1 VR=RQVK/K,

on M”. Now consider an arbitrary point g€ M—M”. If ¢ is a limiting point
of a sequence of regular points, then also holds at ¢ by the continuity. If
g is not such a limiting point, there exists a neighborhood N of ¢ such that
a=0 on N. By [L.I), we have V2R=0 hence VR=0 on N, as is remarked in § 1.
Then K=const. and VK/K=0, so that holds also on N. Namely, M is
recurrent.

2) Case where the scalar curvature K=0 all over M.

If a=0 all over M, then VR=0 on M as is remarked in §1. Suppose now
that ¢ does not vanish identically and consider the open submanifold M” in 1).
Since K=0 on M”, we have R=0 on M” by Lemma 1.1. Then VR=0 on M”,
because M” is open. Namely, at each pe M”, R,=(VR),=0 hold. By
1.3, M is flat.

3) Case where the scalar curvature K#0 and has some zero point.

This case can not occur by the following reason. Let M be such a mani-
fold. Then M,={peM|K,=0} is a closed (n—1)-dimensional submanifold by
so that M—M, is an open Riemannian submanifold which is bire-
current. As in the case 1), holds on M—M,, in particular

(2.2) VS=SKVK/K,

on M—M, Now the covariant tensor field S/K of order 2 is well defined on
M—M,. Let p be an arbitrary point of M,, then (VK),#0 as in the proof of
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Namely there exists a differentiable vector field X on M such that
(VxK),+#0, where Vy denotes the covariant differentiation in the direction X.
Hence VyK+#0 on a neighborhood N of p. Taking account of S/K=
(VxS)/(VxK) is defined outside of M,n\N in N. Since the right hand side is
defined on N, S/K is also defined on N as a differentiable tensor field. Since
pEM, is an arbitrary point, we see that S/K is well defined as a differentiable
tensor field all over M. We can easily see that V(S/K)=0 on M—M,, making
use of [2.2). By the continuity, this holds also on M, hence all over M. Since
M is irreducible, we have S/K=A1g, A=const. Namely, S=2Kg on M—M, and
this holds on M by the continuity. Hence M is an Einstein manifold because
n=3, so that K=const. on M. This contradicts to the assumption for K.
Summing up the cases 1)~3), the proof is complete.

§3. Case where n=2 or M is reducible.

Suppose that n=2. If K+0 on M, M is recurrent, and if K=0 on M, M
is flat. Hence, if M is not recurrent, then K==0 and K has some zero point.
By the orbit defined by K=0 is a geodesic ¢ (or a set of geodesics).
Let p, be an arbitrary point of ¢. By lim (V2K/K)(p) exists. We denote
such a non recurrent M by V2 b

Next, suppose that M is reducible and n=3. Since the discussions in the
cases 1) and 2) of §2 are valid without the irreducibility of M, M is recurrent
if K#0 or K=0 all over M. Only the case 3) of §2 remains. Each point of
M has a neighborhood U admitting an orthogonal decomposition U=U,; X U,,
where U, and U, are Riemannian manifolds. Let R, (resp. R,) be the curvature
tensor field of U; (resp. U,). As in the recurrent case (Kobayashi-Nomizu,
p. 306), there are only the following possibilities: (1) V2R,=0 and V?*R,=0 (2)
R,=0 and VR,=R,Qa+#0 (3) V?’R,=R,Q®a+0 and R,=0, where R, (resp. R,)
is supposed as a tensor field on U in a natural way. In the case (1), V2R=0
and hence VR=0 by the remark in §1. Hence U is locally symmetric. In other
cases, since we can assume that, for example, U, is irreducible, only the case
(2) remains. Since U is the same situation as M in the case 3) of §2, (VK),#0
at any point pelU if K,=0 and U,={psU|K,=0} is an (n—1)-dimensional
Riemannian submanifold of U. The scalar curvature field K, of U, does not
vanish identically and the natural projection U—U, maps U, onto a subset
Ui={peU,| K,=0}. In this case, V,K,#0 along U,. Hence U; is a Riemannian
submanifold of codimension 1 of UU,, Now, ¢ induces a non zero birecurrent
tensor field on U,—U;, and also on U, By the former consideration of this
section, the only possible case is U,=V? Namely, U;=RK" *and U,=V? where
R™? is an (n—2)-dimensional flat manifold and V? is a 2-dimensional birecur-
rent manifold explained in the first part of this section. Now we have the
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following proposition.

PROPOSITION. Let M be a reducible birecurrent Riemannian manifold of
dimension n (=3). If either R+0 or R=0 all over M, then M is recurrent.
In other cases, let U be a mneighborhood of M admitting an orthogonal decom-
position into two Riemannian manifolds. Then, either U is locally symmetric or
U=R"?*XV? where R** is an (n—2)-dimensional flat manifold and V* is a
2-dimensional birecurrent Riemannian manifold explained in the first part of
this section.

If M is connected and complete, the universal covering manifold M of M
is either globally symmetric or M=R"?*xV? where R and V? are of the

same meaning in the above [Propositionl
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