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This is a sequel to our previous work [2], in which we defined the funda-
mental sequences of ordinal diagrams. Here we conclude our first objective: an
accessibility proof of ordinal diagrams.

Let $S$ be a set with a linear ordering $<$ . An accessibility proof of the
system $(S, <)$ is a “concrete” proof which establishes that there is no (strictly)
$<$ -decreasing, infinite sequence of elements of S. When there is an accessibility
proof of $S,$ $(S, <)$ is said to be accessible, or $S$ is said to be $<$ -accessible.

At present there are no means to completely characterize the “concreteness“
of accessibility proofs. An example of a ”concrete” accessibility proof is seen
in the theory of eliminators for $\epsilon_{0}$ (cf. [1]).

In the accessibility proof of ordinal diagrams which is to be presented in
this article, the notion of strong accessibility plays an essential role. This is
not an elementary concept and the inductive definition involving higher order
quantifiers is introduced in the course of the proof. Therefore our proof does
not deserve a claim of concreteness in strict sense. It is nevertheless an improve-
ment from the set-theoretical proof, which employs the transfinite induction (as

a general principle), as in our proof the difficulty concentrates in one part, and
it is a preparation for the more constructive proof in a subsequent paper.

For our present approach to the accessibility of ordinal diagrams, it is neces-
sary to generalize the theory of ordinal diagrams, namely we shall consider
systems of ordinal diagrams with three basic well-ordered sets rather than two
of them. An account of such systems will be given in the first part of this
article. It is also there that a sequence of systems of ordinal diagrams is studied.
This materializes the notion of strong accessibility, thereby supplying us with a
means to carry out the accessibility proof (the second part). Our major task is
to show that every ordinal diagram is strongly accessible, and the crucial part
of the proof depends heavily on the construction of fundamental sequences.

In the course of our proof, we often use the terms “accessible” and “well-
ordered” for a set with a linear ordering. The full meaning of the former is
that the set has a primitive recursive linear ordering for which fundamental
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sequences are defined, and there is a “good” accessibility proof for it. The
latter means the set theoretical well-ordering. Full acquaintance with the re-
ferences [1] (\S 26) and [2] is assumed for the reader, and we shall take over
much of the notational convention from them. Here, however, we shall relin-
quish the notational distinction between an ordinal diagram and an occurrence
of it in another ordinal diagram. The distinction be made from the content.

I. Extended systems of ordinal diagrams.

We shall define and develop a theory which is a generalization of the theory
of ordinal diagrams as presented in \S 26 of [1]. We follow \S 26 of [1], hence
quote the numbers of definitions and propositions there. For example, [Defini-

tion 26.1] will mean Definition 26.1 in \S 26 of [1].

\S 1. An extended system of ordinal diagrams.

DEFINITION 1.1. (cf. [Definition 26.1]) Let I and A be non-empty, ”accessible”
sets; namely each of I and A is (at most countable and) primitive recursive,
has a primitive recursive well-ordering for which a good “accessibility proof”
exists. (This includes the existence of fundamental sequences which are dePned
primitive recursively; cf. [2].) Let $S$ be a non-empty, (at most) countable, well-
ordered set for which fundamental sequences are defined; namely, there is a
specific way to define a sequence of elements converging to a limit element
from below. Note that no constructive nature is imposed on the well-ordering
of S. We shall henceforth assume those requisites for I, A and $S$ respectively
throughout. We also assume that the notion of fundamental sequences applies
to an entire set. Namely, if I has a limit order type, then there is a primitive
recursive, increasing sequence from I, say $\{i_{m}\}_{m}$ , such that for any $i$ in I, $i<i_{m}$

for some $m$ . With A and $S$ likewise, save that for $S$ primitive recursiveness is
not required.

The system of ordinal diagrams (o.d.’s) $O(I, A, S)$ based on I, A and $S$ is
defined as follows.

1) Every member of $S$ is an o.d. (of $O(I,$ $A,$ $S)$).

2) Let $i$ be an element of I (an indicator), $a$ of A and $\alpha$ of $O(I, A, S)$ (which

has already been defined). Then $(i, a, \alpha)$ is an o.d. (of $O(I,$ $A,$ $S)$).

An o.d. whose last application of the formation rule is either 1) or 2) is
said to be connected.

3) Let $n>1$ and suppose $\alpha_{1},$ $\alpha_{2},$
$\cdots$ , $\alpha_{n}$ are connected o.d.’s which have

already been defined. Then $\alpha_{1}\#\alpha_{2}\#\cdots\#\alpha_{n}$ is an o.d., which is not connected.
Each of $\alpha_{1},$ $\alpha_{2},$

$\cdots$ , $\alpha_{n}$ is called a component of the o.d. thus defined.
We often deal with a situation where I and A are held constant while $S$
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varies. For this reason we may write $O(S)$ for $O(I, A, S)$ .
DEFINITION 1.2. 1) Equality relation $(=)$ for o.d.’s is defined as [Definition

26.4].

2) The ordering $<_{i}$ for every $i$ , where $i$ is either an element of I or a
symbol $\infty$ , is defined as for $O(I, A)$ except for the two bases (cf. [DePnition
26.7]).

2.1) The elements of $S$ are ordered by the original ordering of $S$ for every $i$ .
2.2) Let $s$ be an element of $S$ and let $\alpha$ be an o.d. with at least one appli-

cation of 2) in DePnition 1.1 ( $i,$ $e$ . $\alpha$ contains ( )). Then $ s<i\alpha$ .
DEFINITION 1.3. The notions of i-sections and i-subsections of $\alpha$ for each $i$

in I (an indicator) are dePned as in [Definition 26.5]. An element of $S$ does not
have any section and has a sole subsection, that element itself, for every $i$ .

The notions of “i-active“, “connected to a sub-o.d.” etc. are defined as in
[Definition 26.5].

REMARK. Although the notion of o.d.’s in the present content is wider than
the original one, dePned in [1], we shall call both kinds simply o.d.’s.

From now on we assume that I, $A$ , and $S$ are given, and that an o.d. means
that of $O(I, A, S)$ . All elementary propositions concerning o.d.’s can be proved
in the same manner as in \S 26 of [1]. Needless to say, this excludes the acces-
sibility proof. We shall here note only a few points.

PROPOSITION 1.1. (cf. [Proposition 26.9]). If $\beta$ is an $0$ . $d$ . and $\alpha$ is an i-sec-
tion of $\beta$ , then $\alpha<i\beta$ .

PROOF. We may assume that $\beta$ is connected. There is an application of
2) of Definition 1.1 to $\beta$ . Let $\gamma$ be a component of $\alpha$ . If $\gamma$ is an element of $S$ ,

then $\gamma<i\beta$ by dePnition. If $\gamma$ is not an element of $S$ , then $\gamma$ and $\beta$ are both
connected and not in S. $\alpha$ is an i-section of $\beta$ and $\gamma\leqq i\alpha$ by definition, hence
by definition $\gamma<i\beta$ , from which follows $\alpha<i\beta$ .

PROPOSITION 1.2. (cf. [Proposition 26.8]) $O(I, A, S)$ is linearly ordered for
every $<_{i}$ , where $i$ is either an element of I or $\infty$ .

PROOF. For the elements of $S,$ $<_{i}$ is the ordering of S. Suppose $\alpha<i\beta$ and
$\beta<i\gamma$, where $\alpha$ is an element of $S$ while $\gamma$ is not. Then $\alpha<i\gamma$ by definition.
Other cases involving the elements of $S$ are dealt with similarly. The proof for
other cases is the same as for $O(I, A)$ .

PROPOSITION 1.3. (cf. [Proposition 26.10]) Let $\beta$ be a connected $0$ . $d$ . If $\alpha$

is an i-subsection of $\beta$ which is distinct from $\beta$ , then $\alpha<l\beta$ for every $l\leqq i$ .
PROPOSITION 1.4. A successor element of $O(I, A, S)$ has a component $s_{0}$ , where

$s_{0}$ is the least element of $S$ , and every $0$ . $d$. has a successor common to all $i’ s$ .
Namely the successor of $\alpha$ is $\alpha\# s_{0}$ , which we denote by $\alpha+1$ . Here the order
of $comPonents$ in $\alpha\# s_{0}$ is immaterial.
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\S 2. Valuation and approximation.

In this section we assume that $\alpha$ is a connected o.d. of $O(I, A, S)$ and $j$ is
an element of I ( $i$ . $e$ . an indicator). We are to dePne valuations and approxima-
tions for $\alpha$ and $j$ . See \S 26 of [1] for various notions and notations.

DEFINITION 2.1. 1) The 0th j-valuation of $\alpha,$ $v_{0}(j, \alpha)$ , is the maximum j-
active value of $\alpha$ , presuming that $\alpha$ has a value (cf. [Definition 26.42]).

Note that any connected o.d. has the 0th j-valuation unless $\alpha$ is an element
of S.

2) Kernels are defined as in [Definition 26.41]. In particular, the elements
of $S$ occurring j-active in $\alpha$ are j-kernels of $\alpha$ .

PROPOSITION 2.1. (cf. [Proposition 26.43]). If $v_{0}(j, \beta)<v_{0}(j, \alpha)=(i, a)$ , then
$\beta<j\alpha$ .

PROOF. Let $(i, a, \gamma)$ be any j-subsection of $\alpha$ whose outermost value is $(i, a)$ .
We prove that

$(^{*})$ $\eta<_{l}(i, a, \gamma)$ for every $\eta$ and 1, where $\eta$ is a
j-subsection of $\beta$ and $l\geqq j$ .

If $\eta$ is an element of $S$ (hence is a j-kernel), then $\eta<_{l}(i, a, \gamma)$ by the definition
of $<_{l}$ . Otherwise the proof for $O(I, A)$ goes through.

DEFINITION 2.2. $apr(O, j, \alpha)=\alpha_{0}$ is defined as for $O(I, A)$ ; the notion that
$\beta$ j-omits $\alpha_{0}$

’ also ([Definition 26.44]).

PROPOSITION 2.2. (cf. [Lemma 26.45]) If $\eta$ j-omits $\alpha_{0}$ (in $\alpha$), then $\eta<_{l}\alpha_{0}$

for every $l\geqq j$ .
PROOF. If $\eta$ is an element of $S$ , then $\eta<_{l}\alpha_{0}$ by definition. Otherwise the

proof in [1] goes through.
PROPOSITION 2.3. (cf. [Proposition 26.46]) SuPpose $v_{0}(j, \alpha)=v_{0}(j, \beta)=(i, a)$

and $apr(O, j, \beta)<iapr(O, j, \alpha)$ . Then $\beta<j\alpha$ .
PROOF. We can show that for any j-subsection of $\beta$ , say $\eta,$ $\eta<_{l}\alpha_{0}$ for all

$l\geqq j$ ; for if $\eta$ is an element of $S$ , then $\eta<_{l}\alpha_{0}$ by definition; otherwise the proof
in [1] goes through.

DEFINITION 2.3. $\alpha_{1}=apr(1, j, \alpha)$ and the notion that $\beta$ j-omits $\alpha_{1}$ are defined
as in [Definition 26.48] and [Definition 26.50].

PROPOSITION 2.4. Let $\eta$ be a j-subsection of $\alpha$ which satisfies that either $\eta$

j-omits $\alpha_{0}$ or $\eta$ contains (j-active) $\alpha_{0}$ and, for each occurrence of $\alpha_{0}$ in $\eta$ , say
$a_{0}$ , there is an indicator connected to $\theta_{0}$ which is less than $i$ . Let $\alpha_{0}^{1},$ $\cdots$ , $\alpha_{0}^{m}$ be
all the occurrences of $\alpha_{0}$ in $\eta$ and $q_{k}$ be the least such indicator connected to
$\alpha_{0}^{k}$ . Let $q=q(\eta)=\max(q_{1}, \cdots , q_{m})$ . If $\eta$ omits $\alpha_{0}$ , let $q=j$ . Then $\eta<_{l}\alpha_{0}$ if $q<l\leqq i$ .

The proof in [Proposition 26.47] goes through. Note that any element of
$S$ occurring in $\alpha$ which is not contained in $\alpha_{0}$ omits $\alpha_{0}$ .
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PROPOSITION 2.5. If $\eta$ omits $\alpha_{1}$ (in $\alpha$), then $\eta<_{l}\alpha_{1}$ for any $l$ such that $ j\leqq$

$l\leqq t$ (cf. [Proposition 26.51]).

Note that any element of $S$ (in $\alpha$) is $<_{l}\alpha_{1}$ by definition.
PROPOSITION 2.6. SuPpose $v_{0}(j, \alpha)=v_{0}(j, \beta)=(i, a)$ and $\alpha_{0}=\beta_{0}$ . If $\beta_{1}<\alpha$ ,

then $\beta<j\alpha$ (cf. [Proposition 26.52]).

DEFINITION 2.4. 1) Suppose $(i_{0}, \alpha_{0}),$ $(i_{1}, \alpha_{1}),$ $\cdots$ $(i_{n}, \alpha_{n})$ have been defined.
Then $(i_{n+1}, \alpha_{n+1})$ is defined as in [Definition 26.53]. The notion that $\beta$ j-omits
$\alpha_{n}$ is defined as in [Definition 26.55].

PROPOSITION 2.7. $n\geqq 1$ . SuPpose $\alpha_{n}=\beta_{n}$ and $v_{n+1}(j, \beta)<v_{n+1}(j, \alpha)$ . Then
$\beta<j\alpha$ . If $\alpha_{n}=\beta_{n},$ $v_{n+1}(j, \alpha)=v_{n+1}(j, \beta)=i_{n+1}$ and $\beta_{n+1}<i_{n+1}\alpha_{n+1}$ , then $\beta<j\alpha$

([Proposition 26.56]).

DEFINITION 2.5. $\alpha_{(n,k)}$ is defined as in [Definition 26.57].

PROPOSITION 2.8. Either $\alpha_{(n,k)}$ is $\alpha_{n+1}$ or $\alpha_{(n,k)}$ occurs as a compOnent of
the $\delta$ in a sub-o. $d$ . of the form $(i_{n+1}, c, \delta)$ ([Proposition 26.58]).

PROPOSITION 2.9. If $\beta_{(n,k-1)}=\alpha_{(n,k-1)},$ $v_{n+1}(j, \beta)=v_{n+1}(j, \alpha)=i_{n+1}$ and $\beta_{(n.k)}$

$<_{i_{n+1^{+1}}}\alpha_{(n.k)}$ , then $\beta_{n+1}<_{i_{n+1}}\alpha_{n+1}$ ([Proposition 26.61]).

\S 3. Fundamental sequences.

Given an indicator $j_{0}$ and a connected o.d. of $O(I, A, S)$ which is not the
least element of $S$ , say $\tilde{a}$ , we can define the fundamental sequence for $(j_{0},\tilde{\alpha})$ ,
following the material in [2]. We shall remark only a few points.

DEFINITION 3.1. The scanned pairs (sp), the marked places, and other con-
cepts defined in \S 1 of [2] for $O(I, A)$ are defined for our $(j_{0},\tilde{\alpha})$ exactly parallel
to the original definition. We have only to add the following case to Definition
1.1 in [2]:

(0) $\gamma$ is an element of S. Stop. This is the last reduction place.
Recall that if $\alpha$ is an o.d., then its successor, which will be denoted by

$\alpha+1$ , is $\alpha\# s_{0}$ , where $s_{0}$ is the least element of S. So, when $s$ is a successor
of $t$ in $S$ , then $t+1=t\# s_{0}<is$, hence $s$ is not the successor of $t$ in 0(I, $A,$ $S$).

As for the consequences of the definition, see \S 1.1 of [2].

DEFINITION 3.2. Reduction of the last reduction place. See Definition 1.3
of [2]. We note here only the following cases. Let $(t, \nu)$ be the last reduction
pair.

(0) $\nu$ is an element of $S$ , say $s$ . If $s$ is a limit element of $S$ , then there is
a fundamental sequence for $s$ in the ordering of $S$ , namely an increasing sequence
of elements of $S$ which converges to $s$ from below. This is defined to be the
reduction sequence of $s$ in 0(I, $A,$ $S$). If $s$ is a successor element of $S$ and $t$ is
its predecessor, then let $t_{m}=t\#\cdots\# t$ (with $m+1$ components). Let $\{t_{m}\}_{m}$ be
the reduction sequence of $s$ .
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We shall use the symbol $0$ for the least element of I as weil as of A.
$b$ . $3$) $\nu=(0,0, s_{0})$ .
Case 1. $\epsilon$ is the maximal element of S.

Let $\nu_{m}=\epsilon\#\epsilon$ fl $\cdots\#\epsilon$ .
Case 2. $s_{m}\uparrow S$ . Let $\nu_{m}=s_{m}$ .
$e.4)$ Note that the $\alpha$ in this case is not an element of S.
Now we can follow the rest of the material in [2]. In the proof given in

\S 2.1 of [2], only the following change is needed: (0) is a new case (which
causes no trouble) and in $b$ . $3$) either $\nu_{m}=\epsilon\#\cdots\#\epsilon$ or $\nu_{m}=s_{m}$ . It is easy to see
that $\{\nu_{m}\}_{m}$ satisfies the condition. For the proofs of Propositions 2.3 and 2.4 in
[2], those cases are irrelevant.

In \S 3.2 of [2], the case (0) must be added, and $b$ . $3$) needs a change.
(0) Suppose $s_{m}\uparrow s$ in $S$ and $\beta<_{i}s$ . Then by definition of the ordering $<_{i}$ ,

all the components of $\beta$ are elements of $S$ , say $t_{1},$ $\cdots$ , $t_{k}$ . $t_{1},$ $\cdots$ , $t_{k}<s$ in $S$

and there is an $m$ such that $t_{1},$ $\cdots$ , $t_{k}<s_{m}$ . So $\beta<_{i}s_{m}$ . SuPpose $s$ is the suc-
cessor of $t$ in $S$ and $\beta<_{i}s$ . Then the components of $\beta\leqq t$ , so $\beta<it\#\cdots\# t$ for
an appropriate number of $t’ s$ . $b$ . $3$) SuPpose $\beta<i(0,0, s_{0})$ . Then $\beta$ cannot con-
tain $()$ . Therefore all the components of $\beta$ are elements of $S$ , hence $\beta<_{i}\epsilon\#$

. . $\#\epsilon$ for some number of $\epsilon’ s$ for Case 1 and $\beta<is_{m}$ for some $m$ for Case 2.
REMARK. Suppose $(j, \gamma)$ is a sp (of $(j_{0},\tilde{a})$) and $\gamma$ is of the form $(i, a, \alpha\# s)$ ,

where $s$ is an element of $S$ and is a least component of $\alpha\# s$ and $s\neq s_{0}$ . We
wish to clarify the forms of $\gamma_{m}$ for $(j, \gamma)$ .

Due to the condition on $s,$ $\alpha\# s$ is not $s_{0}$ and not a successor (in $O(I,$ $A,$ $S)$).
Since $s$ is an element of $S$ , it is not the case that all the components of $\alpha\# s$

are marked. This fact eliminates certain cases. $(j, \gamma)$ is not the last reduction
pair. Only (3.3), (4.3), (5.2) and (5.3) are possible and [1] is not possible for
these cases. Therefore by DePnition 1.4 of [2] $\gamma_{m}=(i, a, \alpha\# s_{m})$ for all possible
cases, where $\{s_{m}\}_{m}$ is the reduction sequence of $s$ in $O(I, A, S)$ .

\S 4. Equivalence of two theories of o.d.’s.

Although it is not necessary for the accessibility proof, we shall show that
two theories of o.d.’s, one with two basic sets and one with three, are equivalent,
provided that the constructive aspect of the basic sets are sacrificed. Namely,
given I, A and $S,$ $O(I, A)$ can be embedded in $O(I, A, S)$ as a subsystem, and,
in particular, if $S$ is a singleton, then two systems are isomorphic.

On the other hand, $O(I, A, S)$ can be embedded in a system $O(I, B)$ for an
appropriate B. Since constructivity is not assumed for the ordering of $S$ , it
cannot be imposed on $B$ either.

PROPOSITION 4.1. $O(I, A)$ can be emedded in $O(I, A, S)$ as a subsystem for
any S. In particular $O(I, A)$ is isomorphic to 0(I, $A,$ $\{s_{0}\}$ ).
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PROOF. Replace $0$ in any o.d. of $O(I, A)$ by $s_{0}$ , the least element of S.
This defines a natural, order-preserving mapping from $O(I, A)$ into $O(I, A, S)$

regardless of S.
PROPOSITION 4.2. Given $O(I, A, S)$ , let $B$ be SUA, where the ordering of $B$

is induced from those of A and $S$ by placing the elements of $S$ below the ele-
ments of A. Then $O(I, A, S)$ is embedded in $O(I, B)$ (for every ordering $<_{i}$).

PROOF. If $s$ is an element of $S$ , then assign $(0, s, 0)$ (an o.d. of $O(I,$ $B)$ ) to
it. For a compound element of $O(I, A, S)$ , the induction hypotheses apply: to
$(i, a, \alpha)$ assign $(i, a, \alpha^{*})$ where $\alpha^{*}$ is assigned to $\alpha$ , and to $\alpha_{1}\#\cdots\#\alpha_{m}$ assign
$\alpha_{1}^{*}\#\cdots\#\alpha_{m}^{*}$ . We can easily establish that the number of components of $\alpha$ and
that of $\alpha^{*}$ are the same, and the assignment is one-to-one.

Also, if $\sigma$ is a j-section of $\alpha$ , then $\sigma^{*}$ is a j-section of $\alpha^{*}$ .
The order-preserving property of the map is established by induction on

$\omega\cdot 1+\iota$ (cf. \S 26 of [1]).

Compare, as an exampie, the $\underline{\dot{t}}mages$ of $s$ and $(i, a, \alpha)$ , viz. $(0, s, 0)$ and
$(i, a, \alpha^{*})$ ; here $s$ is an element of S. $0\leqq i$ and $s<a$ in $B$ , so $(0, s, O)<_{\infty}(i, a, \alpha^{*})$ ,

from which follows $(0, s, 0)<l(i, a, \alpha^{*})$ for every $1>0$ . The O-section of $(0, s, 0)$

is $0$ , so it is $<_{0}(i, a, \alpha^{*})$ . Therefore $(0, s, 0)<0(i, a, \alpha^{*})$ . Thus the relations
$s<l(i, a, \alpha)$ is preserved under the assignment for every $l$ .

As another example, consider $(i, a, \alpha)<_{p}(k, b, \beta)$ , where $<_{p}$ holds with the
condition that there is a $P$-section of $(k, b, \beta)$ , say $\sigma$ , such that $(i, a, \alpha)\leqq p\sigma$ .
By the induction hypothesis $(i, a, \alpha^{*})\leqq p\sigma^{*}$ . $\sigma^{*}$ is a $P$-section of $(k, b, \beta^{*})$ . So
$(i, a, \alpha^{*})<p(k, b, \beta^{*})$ . Other cases can be dealt with in a similar manner.

Therefore the mapping is order preserving for every $<_{i}$ .
It should be noted that with the assignment defined above the image of

$\alpha+1$ is not the successor of $\alpha^{*}$ , for $(\alpha+1)^{*}=(\alpha\# s_{0})^{*}=\alpha^{*}\#(0, s_{0},0)$ .

\S 5. #-extension of a well-ordered system.

DEFINITION 5.1. Let $J$ be a well-ordered set with an ordering $<$ . $J^{\#}$ is
defined as follows. The elements of $J^{\#}$ are those of the form $a_{1}\#\cdots\# a_{m},$ $m\geqq 1$ ,
where each of $a_{1},$

$\cdots$ , $a_{m}$ is an element of J. Each of $a_{1},$
$\cdots$ , $a_{m}$ is called a

component of $a_{1}\#\cdots\# a_{m}$ . Two elements of $J^{\#}$ are identified when they share
exactly the same components (including repetition). Suppose $\alpha=a_{1}\#\cdots\# a_{m}$ and
$\beta=b_{1}\#\cdots\# b_{n}$ , where the components are arranged in the non-increasing order.
Then $\alpha<\beta$ (in $J^{\#}$ ) if and only if $a_{1}=b_{1},$

$\cdots,$ $a_{m}=b_{m}$ and $m<n$ or there is an $l$

such that $1\leqq l\leqq m,$ $n$ and $a_{1}=b_{1},$ $\cdots$ , $a_{l-1}=b_{l-1}$ and $a_{l}<b_{l}$ .
Note that here we are assuming that each element of $J$ has a name and by

an element of $J$ we mean its name.
DEFINITION 5.2. Let $S$ be a set well-ordered by $<$ . If there is a sequence
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of elements of $S$ which is $<$ -decreasing and whose first (greatest) element is $\alpha$ ,

then we say that the sequence is led by $\alpha$ .
PROPOSITION 5.1. The ordering $<$ defined in Definition 5.1 is a linear order-

ing of $J^{\#}$ . It is also a well-ordering.
PROOF. Linearity of $<$ is obvious. For well-ordering, we shall prove the

following statement:
$(^{*})$ Suppose there is an infinite, (strictly) $<$ -decreasing sequence of elements

of $J^{\#}$ led by $\alpha$ . Then we can construct an infinite, decreasing sequence of ele-
ments of $J$ whose leading element is $\leqq$ a maximum component of $\alpha$ . We can
then conclude that there can be no such sequence from $J^{\#}$ .

The proof of $(^{*})$ is by transfinite induction on the maximum component of
$\alpha$ . The detail is exactly parallel to the proof of Lemma 26.19 of [1].

As a corollary of Proposition 5.1, we can claim the following.
PROPOSITION 5.2. Let $O(I, A, S)$ be a system of $0$ . $d$ . $s$ and let $i$ be an ele-

ment of I or $\infty$ . SuppOse there is an infinite $<_{i}$-decreasing sequence of $0$ . $d$ . $s$

from $O(I, A, S)$ . Then we can construct an infinite, $<_{i^{-}}decreasing$ sequence of
connected o.d.’s.

PROOF. Let $J$ be the set of all connected o.d.’s of $O(I, A, S)$ . Then $O(I, A, S)$

$=J^{\#}$ . For every $<_{i}$ , the ordering of $J^{\#}$ defined as in Definition 5.1 coincides
with the $<_{i}$ of $O(I, A, S)$ . Therefore this proposition is a case of Proposition 5.1.

REMARK. In the proof of Proposition 5.1 (adopted from Lemma 26.19 of
[1]), we used transfinite induction freely. This is, however, only for the sim-
plicity of argument. We can rewrite the proof in a more constructive manner
by considering the least element of $J$ for which $(^{*})$ does not hold, provided that
$J$ is “accessible” with regards to $<$ and that a decreasing sequence as in $(^{*})$ is
concretely given.

This remark is valid also for similar cases in the subsequent content. In
particular, if we take $O(I, A)$ for $O(I, A, S)$ in Proposition 5.2, then the accessi-
bility of $O(I, A)$ (for an ordering $<_{i}$ ) is reduced to that of the connected ordinal
diagrams, since the transition can be made “constructive”.

\S 6. Successive extensions of a system of ordinal diagrams.

DEFINITION 6.1. Let $J_{0},$ $J_{1},$
$\cdots,$

$J_{n}$ be non-empty, well-ordered, (at most)

countable, disjoint sets, where fundamental sequences are defined for each sys-
tem. Define $J^{n}=J_{0}*J_{1}*\cdots*J_{n}$ to be the set $J_{0}\cup J_{1}\cup\cdots UJ_{n}$ with the ordering
induced from the given orderings of $J_{0},$ $J_{1},$ $\cdots$ , $J_{n}$ as follows; the elements of
$J_{i},$ $0\leqq i\leqq n$ , are ordered by the ordering of $J_{i}$ , and when $i<j$ every element of
$J_{i}$ precedes the elements of $J_{j}$ . Note that no constructive nature is imposed on
those sets.



Ordinal diagrams 9

PROPOSITION 6.1. 1) $J^{n}$ is well-ordered by the ordering defined as in De-
finition 6.1. Fundamental sequences for $J^{n}$ are constructed from those for $J_{0},$ $J_{1}$ ,

, $J_{n}$ in a natu ral manner.
2) *is associative.
PROOF. 1) The well-ordering property is obvious. Let $i>0$ and let $\lambda$ be

the least element of $J_{i}$ . If $J_{i- 1}$ has a limit order type, then there is an increas-
ing sequence from $J_{i- 1}$ . This serves as the fundamental sequence for $\lambda$ in $J^{n}$ .

2) Obvious.
DEFINITION 6.2. $J^{n}(n\geqq 1)$ is called an extension of $J_{0}$ (by $J_{1}*\cdots*J_{n}$ ).

This makes sense, for $J^{n}$ can be identified with $J_{0}*(J_{1}*\cdots*J_{n})$ (cf. 2) of
Proposition 6.1).

DEFINITION 6.3. Let $\{J_{n}\}_{n},$ $n=0,1,2,$ $\cdots$ be a sequence of non-empty, well-
ordered, (at most) countable, disjoint sets, where fundamental sequences are
defined for each system. Then $\{J_{n}\}_{n}$ is called an annexing sequence (of sets,

for $J_{0}$).

From now on $\{J_{n}\}_{n}$ is assumed to be an annexing sequence whenever it is
considered.

PROPOSITION 6.2. SuppOse $0\leqq n<m$ . There is a natural embedding of $O(J^{n})$

into $O(J^{m})$ ; or $O(J^{n})$ is a subsystem of $O(J^{m})$ with rega rds to every $<_{i}$ . Con-
sequently the embedding of $O(J^{n})$ into $O(J^{m})$ is an extension of the one into $O(J^{l})$

when $n<l<m$ .
DEFINITION 6.4. Given an annexing sequence $\{J_{n}\}_{n}$ , define $J^{\infty}$ to be the

set $ n=0UJ_{n}\infty$ ordered as follows: for every $n$ the elements of $J_{n}$ are ordered by the

ordering of $J_{n}$ , and every element of $J_{n}$ precedes the elements of $J_{m}$ if $n<m$ .
We write $J^{\infty}$ also as $U*J_{n}$ .

PROPOSITION 6.3. $J^{\infty}$ is well-ordered by the ordering defined as above, and
$J^{n}$ is an initial segment of $J^{\infty}$ for every $n$ . $J^{\infty}$ can be rega rded as an extension

of $J_{0}$ , for $J^{\infty}$ is isomorphic to $J_{0}*(\bigcup_{n=1}^{\infty}*J_{n})$ , which makes sense. Fundamental

sequences for $J^{\infty}$ are natu rally induced from these for $\{J_{n}\}_{n}$ . For $J^{\infty}$ itself, take
the diagonal sequence: let $\{j_{n,m}\}_{m}$ be the fundamental sequence for $J_{n}$ . Then
$\{j_{n,n}\}_{n}$ serves as one for $J^{\infty}$ .

PROPOSITION 6.4. There is a natural embedding of $O(J^{n})$ into $O(J^{\infty})$ for
every $n$ , and for any element of $O(J^{\infty})$ there is an $n$ such that it belongs to $O(J^{n})$

(up to the embedding). The natural embedding of $O(J^{n})$ into $O(J^{\infty})$ is an exten-
sion of the one of $O(J^{m})$ (into $O(J^{\infty})$ ) if $m<n$ .

DEFINITION 6.5. Let $\alpha$ and $\beta$ be o.d.’s of $O(J^{n})$ and $O(J^{m})$ respectively, where
$m$ and $n$ may or may not be equal, and $\infty$ is allowed. Then $\alpha<i*\beta$ is defined
to be the relation $\alpha<i\beta$ in $O(J^{l})$ where $l=\max(m, n)$ . (See Propositions 6.2
and 6.4).
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$<_{i}^{*}$ is a relation defined for the elements of U $O(J^{n})$

n
(when $O(J^{n})$ is regarded

as a subsystem of $O(J^{m})$ for any $n,$ $m$ where $n<m$). We shall often omit the $*$

of $<i*$ and shall call this relation as the $‘‘<_{i}$ for the sequence $\{O(J^{n})\}_{n}$ .
PROPOSITION 6.5. $<_{i}^{*}$ is a linear ordering of $\bigcup_{n}O(J^{n})$ and is an extension of

the $<_{i}$ for $O(J^{n})$ for every $n$ . There is a natu ral isomorPhism between $\bigcup_{n}O(J^{n})$

with $<\beta$ and $O(J^{\infty})$ with $<_{i}$ .
This is an immediate consequence of Proposition 6.4 and Definition 6.5.
Propositions 6.2, 6.4 and 6.5 claim that $O(J^{\infty})$ can be regarded as the limit

of $\{0(J^{n})\}_{n}$ , or $O(J^{\infty})$ is isomorphic to $\bigcup_{n}O(J^{n})$ where the latter has the ordering

$<_{i}^{*}$ for every $i$ . Let us state this fact as a definition.
DEFINITION 6.6. $O(J^{\infty})$ is isomorphic to U $O(J^{n})$

n
will mean that Propositions

6.2, 6.4 and 6.5 hold.
PROPOSITION 6.6. Let $J*K$ be an extension of $J$ and let $\beta$ be an $0.d$ . of

$O(J*K)$ . Then there is an $0.d$ . of $O(J)$ (indeed an $0.d$ . of $O(\{s_{0}\})$), say $\alpha$ , satis-
fying $\beta<i\alpha$ for every $i$ (in $O(J*K)$ ), and $\alpha$ can be so chosen that it is connected

if and only if $\beta$ is.
PROOF. Replace each occurrence of an element of $J*K$ in $\beta$ by $(0,0, s_{0})$ to

obtain $\alpha$ , where $s_{0}$ is the least element of J.
As an immediate consequence of this and Proposition 5.2, we have
PROPOSITION 6.7. Given a well-ordered set $J$ , the following two statements

are equivalent for every $i$ .
(1) There is an extension of $J$ , say $J*K$ , and there is $a$ $<_{i}$-decreasing (in-

finite) sequence from $O(J*K)$ whose initial entry is an $0.d$ . of $O(J)$ .
(2) There is an extension of $J$ , say $J*L$ , and there is $a$ $<_{i}$-decreasing (in-

finite) sequence of connected o.d.’s in $O(J*L)$ whose initial entry is an $0.d$ . of
0(J).

II. Accessibility proof.

\S 7. Strong accessibility and conclusion.

DEFINITION 7.1. Let $S$ be a set with linear ordering $<$ , and let $\alpha$ be an
element of S. $\alpha$ is said to be $<$ -accessible if it can be “concretely” shown that
there is no infinite (strictly) $<$ -decreasing sequence from $S$ whose initial entry
is $\alpha$ .

DEFINITION 7.2. Given (a well-ordered set) $J$ , let $\alpha$ be an o.d. of $O(I, A, J)$

$(=O(J))$ . $\alpha$ is said to be strongly accessible if for any extension of $J$ , say $J*K$ ,

there is no infinite $<_{0}$-decreasing sequence from $0(J*K)$ whose initial entry
is $\alpha$ .

More precisely, $\alpha$ is strongly accessible if, whenever we suppose that there
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is a $J*K$ an extension of $J$ and there is a sequence from $O(J*K)$ whose initial
entry is $\alpha$ and which is $<_{0}$-decreasing, then we can demonstrate that the sequence
actually stops at a finite stage.

Let us note that strong accessibility is not a concrete notion inasmuch as
the choice of $K$ is not necessarily concrete.

The definition makes sense due to Proposition 6.2.
We are to show the accessibility of o.d.’s (of $O(I, A)$ for any given I and A

where I and A are “accessible”) for every $<_{i}$ , undertaking the following process.
1. Let $W$ be the set of strongly accessible elements of $O(I, A)$ . Then $W$

is $<_{i}$-accessible for every $i$ .
$2^{o}$ . $W=O(I, A)$

It is, however, more convenient if we deal with the generalized version of
o.d.’s, namely a system $O(I, A, J)$ with $J$ as a parameter. Therefore our objec-
tive is to establish 1 and $2^{o}$ above for $O(I, A, J)$ .

We shall henceforth use the term “accessible” for elements of $O(J)$ when
they are accessible “modulo $J’$ . Namely the well-foundedness is established in
a manner that it will become an accessibility proof when $J$ is accessible in the
original sense.

PROPOSITION 7.1. A strongly accessible $0.d$ . of $O(I, A, J)(=O(J))$ is $<_{0^{-}}$

accessible in $O(J)$ .
PROOF. Suppose not: there is a $<_{0}$-decreasing, infinite sequence from $O(J)$

whose initial entry is $\alpha$ a strongly accessible o.d. Let $K=\{a\}$ (the singleton $a$ ,
where $a$ is a dummy symbol). Then the sequence becomes a $<_{0}$-decreasing
sequence from $O(J*K)$ whose initial entry is $\alpha$ , contradicting the strong acces-
sibility of $\alpha$ .

Note that the proof can be “concrete” when the argument is restricted to
the case where $J$ is “accessible” in a concrete sense; in particular that is so
when $J=\{s_{0}\}$ .

DEFINITION 7.3. Given $O(I, A, J)$ , let $W(J)$ denote the set of strongly acces-
sible elements of $O(I, A, J)$ . When $J$ needs not be specified, we may omit $J$

from $W(J)$ .
PROPOSITION 7.2. If $\alpha$ and $\beta$ are o.d.’s of $O(J)$ satisfying $\beta<0\alpha$ and $\alpha$ is

an element of $W(J)$ ( $i$ . $e$ . $\alpha$ is strongly accessible), then $\beta$ is also. This means
that $W(J)$ form $s$ an initial segment $of<_{0}$ in $O(J)$ .

PROPOSITION 7.3. $W=W(J)$ is not empty for any J. In fact $J^{\#}\subseteqq W$.
PROOF. It suffices to show that $(0,0, s_{0})$ belongs to $W$, where $s_{0}$ is the

least element of $J$ (cf. Proposition 7.2 and the proof of Proposition 5.1). But
this follows from the fact that $\beta<0(0,0, s_{0})$ in $O(J*K)$ means that $\beta$ is an
element of $(J*K)^{\#}$ .

PROPOSITION 7.4. If $\alpha$ is strongly accessible and $\beta$ is a sub-o. $d$ . of $\alpha$ , then
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$\beta$ is strongly accessible.
As an immediate consequence of Proposition 7.1, we have
PROPOSITION 7.5. $W$ is accessible $for<_{0}$ .
PROPOSITION 7.6. Let $\alpha$ be an $0$ . $d$ . of $O(J)$ and let $J*K$ be an extension of

J. Then $\alpha$ is an element of $W(J)$ if and only if $\alpha$ is an element of $W(J*K)$ .
As a consequence, there is a natural embedding of $W(J)$ into $W(J*K)$ and
$O(J)\cap W(J*K)=W(J)$ .

Also, if $\alpha$ is strongly accessible in $O(J)$ and if $\beta$ is an o.d. of $0(J*K)$ and
$\beta\leqq 0\alpha$ , then $\beta$ is strongly accessible.

PROOF. Suppose $\alpha$ belongs to $W(J)$ but not to $W(J*K)$ . Then there is an
extension of $J*K$ , say $(J*K)*L$ , relative to which $\alpha$ is not strongly accessible.
But $(J*K)*L$ is isomorphic to $J*(K*L)(2)$ of Proposition 6.1), so there is an
inPnite $<_{0}$-decreasing sequence from $O(J*(K*L))$ led by $\alpha$ , which means that
$\alpha$ is not strongly accessible as an o.d. of $O(J)$ , yielding a contradiction.

Suppose $\alpha$ does not belong to $W(J)$ . Then there is an extension of $J$ , say
$J*L$ , such that there is a $<_{0}$-decreasing sequence from $O(J*L)$ led by $\alpha$ . But
this sequence can be regarded as a sequence from $O((J*K)*L)$ . So $\alpha$ does not
belong to $W(J*K)$ .

PROPOSITION 7.7. Let $\{J_{n}\}_{n}$ be an annexing sequence. Then $W(J^{\infty})$ and
$\bigcup_{n}W(J^{n})$ are isomorphic with regards to the isomorphism between $O(J^{\infty})$ and

U $O(J^{n}):$

n cf. Prop0siti0n 6.5. $More$ precisely: 1) Supp0se $\alpha$ is an element of
$W(J^{\infty})$ . There is an $n$ such that $\alpha$ can be regarded as an $0$ . $d$ . of $O(J^{n})$ and for
this $ n\alpha$ is an element of $W(J^{n})$ .

2) SuppOse conversely that $\alpha$ is an element of $W(J^{n})$ . Then $\alpha$ is an element
of $W(J^{\infty})$ .

PROOF. 1) Suppose $\alpha$ is an element of $W(J^{\infty})$ and $\alpha$ belongs to $O(J^{n})$ .
SuPpose $\alpha$ is not an element of $W(J^{n})$ . Then there is an extension of $J^{n}$ , say
$J^{n}*K$ , such that there is an infinite, $<_{0}$-decreasing sequence from $O(J^{n}*K)$ led
by $\alpha$ . But this sequence can be regarded as a sequence from $O(J^{\infty}*K)$ , yielding
a contradiction.

2) Let $\alpha$ be an element of $W(J^{n})$ . Suppose it is not strongly accessible in
$O(J^{\infty})$ . Then there is an extension of $J^{\infty}$, say $J^{\infty}*K$ , such that there is an in-
finite, $<_{0}$-decreasing sequence from $O(J^{\infty}*K)$ whose initial entry is $\alpha$ . $J^{\infty}*K$ is

isomorphic to $J^{n}*((U*J_{i})*K)i=n+1\infty$ which is an extension of $J^{n}$ . This means that

$\alpha$ is not strongly accessible as an o.d. of $O(J^{n})$ , yielding a contradiction.
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\S 8. Accessibility of $W$.
Here we shall show that the set of strongly accessible elements is accessi-

ble for every $<_{i}$ .
PROPOSITION 8.1. Given $J,$ $W=W(J)$ is accessible for every $<_{i}$ , where $ i=\infty$

is included.
PROOF. $W$ is accessible for $<_{0}$ (Proposition 7.5). Suppose that the proposi-

tion is not true and let $i$ be the least element of IU $\{\infty\}$ for which $W$ is not
accessible. $i>0$ . Suppose first $i$ is an indicator (viz., $i$ is not $\infty$ ). Let $\alpha$ be an
element of $W$ and $(k, b, \beta)$ be an i-subsection of $\alpha$ such that $k<i$ (presuming

that such exists). First we shall show that
(1) the set $K^{\prime}$ of all such connected sub-o.d.’s of $\alpha$ for all $\alpha$ the elements

of $W$ is well-ordered by $<_{i}$ .
(1) is proved as follows. Let $(k, b, \beta)$ and $(p, c, \gamma)$ be two such o.d.’s.

$(k, b, \beta)<_{i}(p, c, \gamma)$ if and only if $(k, b)<(p, c)$ or $(k, b)=(p, c)$ and $\beta<_{k}\gamma$ . By
Proposition 7.4, $\beta$ and $\gamma$ belong to W. $k<i$ . So by the choice of $i$ , there can-
not be an infinite, $<_{k}$ -decreasing sequence from $W$ led by $\gamma$ . From this fol-
lows (1).

Now introduce a new symbol for each element of $K^{\prime}$ and call the set of
those new symbols K. Let $\prec$ be its well-ordering induced by $<_{i}$ . Let $\alpha$ be an
element of $W=W(J)$ and let $\alpha^{\prime}$ be the figure obtained from $\alpha$ by replacing every
element of $K^{\prime}$ by its name in K. By identifying an element of $J$ occurring in
$\alpha^{\prime}$ with its corresponding element in JUK, $\alpha^{\prime}$ can be regarded as an o.d. of
$O(J*K)$ . It can be easily shown that if $l<i$ , then there is no l-section of $\alpha^{\prime}$ .
Let $l\geqq i$ . If $\sigma$ is an l-section of $\alpha$ , then $\sigma^{\prime}$ is an l-section of $\alpha^{\prime}$ . ( $\sigma^{\prime}$ is defined
since $\sigma$ is an i-subsection of $\alpha.$ ) If $\delta$ is an l-section of $\alpha^{\prime}$ , then there is an l-
section of $\alpha$ , say $\sigma$ , such that $\sigma^{\prime}=\delta$ .

Next we wish to show $\alpha^{\prime}\leqq 0\alpha$ in O(J*K), regarding $\alpha$ as an o.d. of $O(J*K)$ .
In fact we shall prove that for every $j$

(2) $\alpha^{\prime}\leqq j\alpha$ and, for any j-section of $\alpha^{\prime}$ , say $\delta$ , there is a j-section of $\alpha$ , say
$\sigma$ , such that $\delta\leqq j\sigma$ in $O(J*K)$ .

First consider the case where $\alpha$ does not contain any indicator which is less
than $i$ . Then $\alpha^{\prime}$ is $\alpha$ , hence $\alpha^{\prime}=\alpha$ in $0(J*K)$ . Next consider the case where
$\alpha$ is of the form $(k, b, \beta)$ with $k<i$ . Let $\alpha^{\prime}$ be its name in K. Then $\alpha^{\prime}<j\alpha$ in
$O(J*K)$ is obvious for every $j$ . Suppose $\alpha=(k, b, \beta)$ where $k\geqq i$ and there is
an (i-active) indicator $<i$ in $\alpha$ . Then $\alpha^{\prime}=(k, b, \beta^{\prime})$ and $\beta^{\prime}\leqq k\beta$ by the induc-
tion hypothesis, so $\alpha^{\prime}\leqq ja$ if $j\geqq k$ . Let $j<k$ and let $\delta$ be a j-section of $\alpha^{\prime}$ .
Then $\delta$ is a j-section of $\beta^{\prime}$ , hence the induction hypothesis applies and there is
a j-section of $\beta$ , say $\sigma$ , such that $\delta\leqq j\sigma$ . $\sigma$ is a j-section of $\alpha$ , so $\delta\leqq j\sigma<j\alpha$ .
This together with $\alpha^{\prime}\leqq k\alpha$ implies that $\alpha^{\prime}\leqq j\alpha$ for every $j<k$ . In case $\alpha$ is not
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connected, apply the induction hypothesis to each component. This proves (2).

Thirdly, we wish to show that
(3) for every $ j\geqq i\alpha<j\beta$ implies $\alpha^{\prime}<_{j}\beta^{\prime}$ , and $\alpha<i\beta$ implies $\alpha^{\prime}<_{j}\beta^{\prime}$ for every

$j\leqq i$ .
It suffices to prove (3) for connected $\alpha$ and $\beta$ .
(3.1) $\alpha$ and $\beta$ are elements of J. Obvious.
(3.2) $\alpha$ is an element of $J$ and $\beta$ is an element of $K^{\prime}$ . $\alpha^{\prime}$ is an element of

$J$ and $\beta^{\prime}$ is an element of K. So $\alpha^{\prime}<_{j}\beta^{\prime}$ for every $j$ .
(3.3) $\alpha$ is of the form $(p, a, \delta)$ where $P<i$ , and $\beta$ is $(q, b, \gamma)$ where $q<i$ .

Then $\alpha<l\beta$ for one $l\geqq i$ implies $\alpha<j\beta$ for every $j\geqq i$ . In particular $\alpha<_{i}\beta$ , hence
$\alpha^{\prime}\prec\beta^{\prime}$ in K. Therefore $\alpha^{\prime}<_{j}\beta^{\prime}$ for every $j$ .

(3.4) $\alpha$ is an element of $J$ or of $K^{\prime}$ , and $\beta$ is $(q, b, \gamma)$ where $q\geqq i$ . Then $\alpha^{\prime}$

is an element of JUK and $\beta$ is $(q, b, \gamma^{\prime})$ , hence $\alpha^{\prime}<_{j}\beta^{\prime}$ for every $j$ .
(3.5) $\alpha$ is $(p, a, \delta)$ where $P\geqq i$ and $\beta$ is $(q, b, \gamma)$ where $q\geqq i$ . $\alpha^{\prime}$ is $(p, a, \delta^{\prime})$

and $\beta^{\prime}$ is $(q, b, \gamma^{\prime})$ . Suppose $\alpha<\infty\beta$ . Then either $(p, a)<(q, b)$ , in which case
$\alpha^{\prime}<_{\infty}\beta^{\prime}$ is obvious, or $(p, a)=(q, b)$ and $\delta<p\gamma$ , in which case $\delta^{\prime}<_{p}\gamma^{\prime}$ by the
induction hypothesis, hence $\alpha^{\prime}<_{\infty}\beta^{\prime}$ . Let $j$ be an indicator such that $j\geqq i$ and
$\alpha<j\beta$ . Then there are two cases. Let $\iota$ be the least indicator such that $\iota>j$

and there is an $\iota$ -section of $\alpha and/or\beta$ if such exists; if there is no such sec-
tion, then let $\iota$ be $\infty$ .

1’. $\alpha<’\beta$ and, for every j-section of $\alpha$ , say $\sigma,$ $\sigma<j\beta$ . By the induction
hypothesis, $\alpha^{\prime}<_{\iota}\beta^{\prime}$ . Let $\rho$ be a j-section of $\alpha^{\prime}$ . Then there is a j-section of $\alpha$ ,
say $\sigma$ , such that $\sigma^{\prime}=\rho$ . $\sigma<j\beta$ , hence $\rho=\sigma^{\prime}<_{j}\beta^{\prime}$ by the induction hypothesis.
If $ j<l<\iota$ , then there is no l-section of $\alpha^{\prime}$ or $\beta^{\prime}$ . So $\alpha^{\prime}<_{j}\beta^{\prime}$ .

$2^{o}$ . There is a j-section of $\beta$ , say $\sigma$ , such that $\alpha\leqq j\sigma$ . $\sigma^{\prime}$ is a j-section of
$\beta^{\prime}$ and $\alpha^{\prime}\leqq j\sigma^{\prime}$ by the induction hypothesis. So $\alpha^{\prime}<_{j}\beta^{\prime}$ .

Suppose $\alpha<i\beta$ . Then $\alpha^{\prime}<_{i}\beta^{\prime}$ (proved above), and, since there is no j-section
of $\alpha^{\prime}$ if $j<i$ , this implies $\alpha^{\prime}<_{j}\beta^{\prime}$ for every $j<i$ .

Now suppose there is a $<_{i}$-decreasing sequence of elements of $W(=W(J))$ ,
$\alpha_{0i}>\alpha_{1i}>\alpha_{2i}>\ldots$ Then by (2) and (3) $\alpha_{00}\geqq\alpha_{00}^{\prime}>\alpha_{10}^{\prime}>\alpha_{20}^{\prime}>\cdots$ in $O(J*K)$ .
$\alpha_{0}$ is strongly accesible, therefore such a sequence must be finite. This means
that the original sequence $\alpha_{0},$ $\alpha_{1},$ $\alpha_{2},$

$\cdots$ is also finite. Therefore, $W$ must be
$<_{i}$ -accessible.

When $ i=\infty$ , we consider each component of an element of $W$ and give a
new name to it. The rest of the proof for $i$ an indicator goes through.

With Proposition 8.1, we have completed the first objective in our project:
see 1o in \S 7.

Note that, if $J$ is ”accessible”, then the accessibility proof can be made con-
crete; see the comment subsequent to Proposition 7.1.

DEFINITION 8.1. Let $\alpha$ be an o.d. of $O(J)=O(I, A, J)$ . We say that $\alpha$ is
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strongly accessible in connected o.d.’s (abbreviated to c-strongly accessible), if $\alpha$

is connected and for any extension of $J$ , say $J*K$ , there is no infinite, $<_{0^{-}}de-$

creasing sequence of connected o.d.’s from $O(J*K)$ led by $\alpha$ .
PROPOSITION 8.2. 1) If $\alpha$ is connected, then the strong accesibility of $\alpha$

imPlies the strong accessibility in connected $0$ . $d$. $s$ .
2) The elements of $J$ are c-strongly accessible.
3) $SuPPose$ every connected $0$ . $d$. of $O(J)$ is c-strongly accessible. Then for

every $J*K$ an extension of $J$ every connected $0$ . $d$ . of $0(J*K)$ is also c-strongly
accessible.

4) Under the same assumptiOn as in 3), the set of connec ted $0$ . $d$ . $s$ of $O(J*K)$

is well-ordered $by<_{0}$ , or is accessible $for<_{0}$ , for every $J*K$ an extension of J.
PROOF. 2) By Proposition 7.3 and 1) above.
3) Let $\alpha$ be a connected o.d. of $0(J*K)$ . If $\alpha$ is not c-strongly accessible,

then there is an extension of $J*K$ , say $(J*K)*L$ , such that there is an infinite,
$<_{0}$-decreasing sequence of connected o.d.’s from $O((J*K)*L)$ led by $\alpha$ . By
Proposition 6.6, there is a connected o.d., say $\gamma$ , of $O(J)$ satisfying $\gamma_{0}>\alpha$ . So
adding $\gamma$ to the sequence as the initial entry, we see that $\gamma$ is not c-strongly
accessible (since $(J*K)*L$ is isomorphic to $J*(K*L)$ ). This contradicts the
assumption.

4) Under the assumption, every connected o.d. of O(J*K) is c-strongly
accessible (cf. 3)). Then the $<_{0}$-accessibility of the set of c-strongly accessible
elements of $O(J*K)$ is proved as Proposition 7.1.

PROPOSITION 8.3. SuPpose every connected $0$ . $d$ . of $O(J)$ is c-strongly accessi-
ble and let $J*K$ be an extension of J. Then $O(J*K)$ is well-ordered by $<_{0}$ .

PROOF. By 4) of Proposition 8.2, and Proposition 5.2.
Proposition 8.3 has an immediate consequence:
PROPOSITION 8.4. SuppOse every connected $0$ . $d$ . of $O(J)$ is c-strongly accessi-

ble. Then every $0$ . $d$ . of $O(J)$ is strongly accessible, $viz.,$ $W=W(J)=O(J)$ .
In the light of Proposition 8.4, we now know that in order to establish

Step $2^{o}$ of \S 7 it suffices to show that every connected o.d. of $O(J)$ is c-strongly
accessible. Let us state it explicitly.

3. Every connected o.d. of $O(J)$ is c-strongly accessible.
This then is our goal and the rest of this article is devoted to the proof

of $3^{o}$ .
PROPOSITION 8.5. Let $\{J_{n}\}_{n}$ be an annexing sequence and let $i$ be an indi-

cator. If $\{\alpha_{n}\}_{n}$ is a sequence of $0$ . $d$ . $s$ satisfying that $\alpha_{n}$ is an $0$ . $d$ . of $W(J^{n})$

(namely $\alpha_{n}$ is strongly accessible) for every $n$ , and $\alpha_{n+1}<_{i}\alpha_{n}$ for every $n$ , whe $re$

$<_{i}$ is the ordering for $\{O(J^{n})\}_{n}$ (cf. Definition 6.5), then the sequence $\{\alpha_{n}\}_{n}$ is
in fact finite.

PROOF. We have the following facts at our disposal.
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1) U $W(J^{n})$

n
is isomorphic to $W(J^{\infty})$ (Proposition 7.7).

2) $W(J^{\infty})$ is well-ordered by $<_{i}$ for every $i$ (Proposition 8.1 applied to $J^{\infty}$).

By virtue of 1), we may regard the sequence $\{a_{n}\}_{n}$ as a sequence from
$W(J^{\infty})$ satisfying $\alpha_{n+1}<i\alpha_{n}$ for every $n$ . Namely $\{\alpha_{n}\}_{n}$ is a $<_{i}$-decreasing
sequence from $W(J^{\infty})$ , contradicting 2). Therefore $\{\alpha_{n}\}_{n}$ must be finite.

PROPOSITION 8.6. The set of c-strongly accessible elements of 0(J) is well-
ordered by $<_{0}$ .

PROPOSITION 8.7. If $\alpha$ is a c-strongly accessible element of $O(J)$ and $\beta$ is a
connected $0$ . $d$ . of O(J*K) satisfying $\beta\leqq 0\alpha$ , then $\beta$ is also c-strongly accessible.

PROOF. Follow the proof of Proposition 7.6.
PROPOSITION 8.8. $\alpha$ is strongly accessible if and only if every compOnent of

$\alpha$ is c-strongly accessible.
PROOF. It can be easily shown that each component of a strongly accessi-

ble o.d. is strongly accessible. Therefore by 1) of Proposition 8.2 each com-
ponent of $\alpha$ is c-strongly accessible. This proves the “only if” part.

For the “if” part, suppose every component of $\alpha$ is c-strongly accessible but
$\alpha$ is not strongly accessible. Then there is an extension of $J$ , say $J*K$ , and
there is an infinite, $<_{0}$-decreasing sequence from $O(J*K)$ led by $\alpha$ . Let $C$ be
the set of c-strongly accessible elements of $O(J*K)$ . $C$ is well-ordered by $<_{0}$

(Proposition 8.6). Therefore $C^{\#}$ is well-ordered by $<_{0}$ (Proposition 5.1). If $\beta<0\alpha$

for a $\beta$ from $O(J*K)$ , then each component of $\beta$ is c-strongly accessible (Prop-

osition 8.7). This is true for every entry of the infinite sequence assumed as
above. Therefore each entry of the sequence belongs to $C^{\#}$ . This means that
there is an infinite, $<_{0}$-decreasing sequence from $C^{\#}$ , contradicting the well-
ordered property of $C^{\#}$ . Thus, $\alpha$ must be strongly accessible.

PROPOSITION 8.9. If $\alpha$ is c-strongly accessible and $\beta$ is a connected sub-o. $d$ .
of $\alpha$ , then $\beta$ is c-strongly accessible.

PROOF. By Proposition 8.7.

\S 9. Accessibility proof.

We are now in the position to complete our program, namely the proof of
$3^{o}$ in \S 8. We restate what must be proved as a proposition.

PROPOSITION. Given any system of $0$ . $d$ . $sO(I, A, J)$ , every connected $0$ . $d$ . of
$O(I, A, J)$ is c-strongly accessible.

PROOF. We suppose the contrary and deduce a contradiction.
Suppose for some I, $A$ , and $J$ there is a connected o.d. of $O(I, A, J)$ which

is not c-strongly accessible. Let I and A be accessible sets for which the sup-
position holds. Fix such I and A. The proof will be split into several steps.

I. There is a value $(i, a)$ (of (I, $A$)) such that there is a $J$ and an o.d. $\alpha$ of
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0(I, $A,$ $J$ ) which satisfy that every component of $\alpha$ is c-strongly accessible (hence
$\alpha$ is strongly accessible: Proposition 8.8) but $(i, a, \alpha)$ is not c-strongly acces-
sible.

For, otherwise, for every $(i, a)$ and every $J$ , if each component of $\alpha$ an o.d.
of $O(I, A, J)$ is c-strongly accessible, then so is $(i, a, \alpha)$ . By 2) of Proposition
8.2, each element of $J$ is c-strongly accessible. Therefore, for every $J$ , every
connected o.d. of $O(I, A, J)$ is c-strongly accessible. But this contradicts our
assumption.

II. Let $(i, a)$ be the least value (of (I, $A$)) which satisfies I above; there are
a $J$ and an o.d. of $O(I, A, J)$ , say $\alpha$ , such that every component of $\alpha$ is c-
strongly accessible and $(i, a, \alpha)$ is not c-strongly accessible.

Let us fix a $J$ and an $\alpha$ satisfying II and let us denote $(i, a, \alpha)$ by $\tilde{\alpha}$ . Since
I and A will be fixed throughout the rest of the proof, we shall write $O(J)$ for
$O(I, A, J)$ .

III. $\alpha$ is strongly accessible (Proposition 8.8).

IV. We can construct an annexing sequence $\{J_{n}\}_{n}$ where $J_{0}=J$ and an in-
finite, $<_{0}^{*}$-decreasing sequence of connected o.d.’s from $\{O(J^{n})\}_{n}$ , say $\{\tilde{\alpha}_{n}\}_{n}$ ,

where $\tilde{\alpha}_{0}=\tilde{a}$ and $\tilde{\alpha}_{n}$ is an o.d. of $O(J^{n})$ which is not c-strongly accessible (See

Definition 6.5 for $<_{0}^{*}.$), such that $\tilde{\alpha}_{n}$ is of the form $(i, a, \alpha_{n})$ where each com-
ponent of $\alpha_{n}$ is c-strongly accessible (hence $\alpha_{n}$ is strongly accessible) and $\{\alpha_{n}\}_{n}$

is a $<_{i}^{*}$-decreasing sequence from $\{O(J^{n})\}_{n}$ ; namely $\alpha_{n}$ is an o.d. of $W(J^{n}),$ $\alpha_{0}$

$=\alpha$ , and $\alpha_{n+1}<i\alpha_{n}$ in $O(J^{n+1})$ .
Proposition 8.5 claims that the sequence $\{\alpha_{n}\}_{n}$ must stop at a finite stage.

In other words an infinite sequence satisfying IV cannot exist. Therefore our
supposition is erroneous, or the proposition must hold.

This means that the proof of IV will complete the proof of Proposition,
hence our task.

Proof of IV. Put $J_{0}=J$ and $\tilde{\alpha}_{0}=\tilde{\alpha}=(i, a, \alpha)$ , hence $\alpha_{0}=\alpha$ . Suppose we have
constructed $J_{n}$ and $\tilde{\alpha}_{n}=(i, a, \alpha_{n})$ so as to satisfy the condition. $\tilde{\alpha}_{n}$ is an o.d.
of $O(J^{n})$ which is not c-strongly accessible while each component of $\alpha_{n}$ is c-
strongly accessible. Since $\tilde{\alpha}_{n}$ is not c-strongly accessible, there is an extension
of $J^{n}$ , say $J^{n}*K$ , and an infinite, $<_{0}$-decreasing sequence of connected o.d.’s

’ $f$ from $0(J^{n}*K)$ led by $\tilde{\alpha}_{n}$ , say $\{\beta_{m}\}_{m}$ . $\beta_{0}=\tilde{\alpha}_{n}$ . Let $K$ be $J_{n+1}$ . $\beta_{1}<0\tilde{\alpha}_{n}=(i, a, \alpha_{n})$ .
$\beta_{1}$ is connected and not c-strongly accessible, hence is not strongly accessible
(Proposition 8.8). Let us rewrite $\tilde{a}_{n}$ as $\tilde{\eta}=(i, a, \eta)$ . $\tilde{\eta}$ is not strongly accessible
as an element of $O(J^{n+1})$ (cf. Proposition 7.6). Let $\{\tilde{\eta}_{m}\}_{m}$ be the fundamental
sequence of $\tilde{\eta}$ in $O(J^{n+1})$ with regards to $<_{0}$ (cf. Definition 1.3 of [2] and De-
finition 3.2 of this article). Since $\beta_{1}<0\tilde{\eta}$ , there is an $m$ such that $\beta_{1}<_{0}\tilde{\eta}_{m}$

V. $\eta_{m}$ is not strongly accessible since $\beta_{1}$ is not.
We shall give a prescription to construct an o.d. of $O(J^{n+1})$ of $the_{-}^{-}form^{--}$
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$(i, a, \delta)$ , where $(i, a, \delta)<_{0}(i, a, \eta)=\tilde{\eta},$ $\delta<i\eta,$
$\delta$ is strongly accessible (as an ele-

ment of $O(J^{n+1}))$ and $(i, a, \delta)$ is not c-strongly accessible. Put $\tilde{a}_{n+1}=(i, a, \delta)$ and
$\alpha_{n+1}=\delta$ . a $n+1$ satisfies the condition in IV.

The construction of $(i, a, \delta)$ depends on the form of $\tilde{\eta}_{m}$ .
VI. For every sub-o.d. of $\eta$ , say $\gamma,$ $\gamma$ is strongly accessible as an o.d. of

$O(J^{n})$ as well as one of $O(J^{n+1})$ (cf. Propositions 7.4 and 7.6). It is so in parti-
cular for a proper scanned o.d. of $\tilde{\eta}$ with regards to $<_{0}$ .

VII. For any proper scanned o.d. of $(0,\tilde{\eta})$ , say $\gamma,$ $\gamma_{m}$ is strongly accessible,
where $\{\gamma_{m}\}$ is the reduction sequence for $\gamma$ .

For, let $j$ be the indicator corresponding to $\gamma$ . $\gamma$ is strongly accessible (cf.
VI), and $\gamma_{m}<_{l}\gamma$ for every $l$ such that $h=h(\gamma)\leqq l\leqq j$ (cf. Proposition 2.1 of [2]).

Here $h=0$ . So $\gamma_{m}<_{0}\gamma$ , and hence $\gamma_{m}$ is strongly accessible (Proposition 7.2).

VIII. There is a connected sub-o.d. of $\tilde{\eta}_{m}$ , say $u$ , such that $u$ is of the
form $(i, a, \delta)$ , satisfying that $u<_{0}\tilde{\eta},$ $\delta<i\eta,$ $\delta$ is strongly accessible and $u$ is not
c-strongly accessible. This $U$ satisfies the requirement in V.

To find the $u$ as desired, we only need to go over all the cases in the
definition of reduction sequences; those are seen in Definitions 1.3 and 1.4 of
[2] and Definition 3.2 of this article. $(j, \gamma)$ or $(t, \nu)$ in those dePnitions is here
$(j,\tilde{\eta})$ for some $j$ and the symbol $0$ (an o.d.) there is $s_{0}$ (the least element of
$J^{n+1})$ here.

IX. $j$ in $(j,\tilde{\eta})$ above satisfies that $j\leqq i$ and $h=h(\tilde{\eta})=0$ .
In the beginning $j=0$ . But the actual construction of a reduction sequence

may be executed on $(j,\tilde{r_{/}})$ where $j>0$ , due to the possibility of (2) and (5.3).

According to the dePnition of (2) and (5.3), however, $j\leqq i$ is secured. $h=0$ is
obvious.

In the sequel, we quote the numbering in Definitions 1.3 (for $(t,$ $\nu)$ ) and 1.4
(for $(j,$ $\gamma)$ ) of [2]; see also Definition 3.2 of this article for (0), $b$ . $3$) and $e$ . $4$). For
the reader’s convenience, we first list the case descriptions (cf. Definition 3.1 of this
article and DePnition 1.1 of [2]: See also Corollary of Proposition 1.5 in [2].).

As we follow the notation in [2], there may be some notational incoherence,
for which we must be excused.

Let $(j, \gamma)$ be a scanned pair under consideration.
(0) $\gamma$ is an element of $J^{n+1}$ .
(1) $\gamma$ is of the form $(i, a, s_{0})$ .
(2) $\gamma=(i, a, \alpha+1)$ where $\alpha$ is not empty and it is not the case that $a=0$ ,

$j<i,$ $\gamma=apr((n, k+1),$ $j,$ $\gamma$) where $n>0$ and $v_{n+1}(j, \gamma)<i$ . The excluded case is
named as (2).

In the subsequent cases, we assume that $\gamma$ is of the form $(i, a, \alpha)$ where a
is a limit o.d.

(3) $\gamma=apr(0, j, \gamma)$ .
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(3.1) and (3.2) $\alpha$ is connected and is marked. $j>i$ (Proposition 1.7 of [2]).
(3.3) Not all the components of $\alpha$ are marked.
(4) $\gamma=apr((0, k+1),$ $j,$ $\gamma$).
(4.1) $\alpha$ is connected and marked, $a=0,$ $j\leqq i$ and $i$ is a successor.
(4.2) $a$ is connected and marked and (4.1) is not the case.
(4.3) Not all the components of $\alpha$ are marked.
(5) $\gamma=apr((n, k+1),$ $j,$ $\gamma$) where $n>0$ .
(5.1) $i=i_{n+1}=v_{n+1}(j, \gamma)$ and $\alpha$ is connected and marked.
(5.2) $i=i_{n+1}$ and not all the components of $\alpha$ are marked.
(5.3) $i_{n+1}<i$ .
[1] (for (3.3), (4.3) and (5.2)) $\gamma=(t, b, \lambda\#\nu)$ where $\nu$ is a least, with respect

to $<_{t}$ , component of $\lambda\#\nu$ and is of the form $(i, 0, \alpha)$ and (3.2) applies to the
pair $(t, \nu)$ .

$[2^{o}]$ [1] is not the case.
Now the construction of $u$ .
(0) $\nu$ is an element of $J^{n+1}$ . This does not apply to $\tilde{\eta}$ , since $\tilde{\eta}$ is not strongly

accessible.
(1) $\nu=(i, a, s_{0})$ .
a) $a\neq 0$ .
$a$ . $1$ ) $a_{m}\uparrow a$ and $\nu_{m}=(i, a_{m}, s_{0})$ . So is strongly accessible and $(i, a_{m})$ is less

than $(i, a)$ . So $\nu_{m}$ is strongly accessible (II), contradicting V. Therefore this
case is non-applicable.

$a$ . $2$) $a=b+1,$ $i\leqq i$ and $\nu_{m}=(i, b, \cdots , (i, b, s_{0})\cdots)$ . Non-applicable since $(i, b)$

$<(i, a)$ . (The proof is by induction on $m.$)

$a$ . $3$) $a=b+1$ and $t>i$ . Non-applicable since $t\leqq i$ is secured (IX).

b) $a=0$ .
$b$ . $1$ ) $i_{m}\uparrow i$ and $\nu_{m}=(i_{m}, 0, s_{0})$ . Non-applicable since $(i_{m}, O)<(i, a)$ .
$b.2)$ $i=i_{0}+1$ .
$b$ . $2.1$ ) $a_{m}\uparrow A$ and $\nu_{m}=(i_{0}, a_{m}, s_{0})$ . Non-applicable.
$b$ . $2.2$) A has the maximal element $e$ .
$b.2.2;1)t\geqq i$ and $h\geqq i=i_{0}+1$ . Non-applicable, since $h=0$ is the case here(IX).
$b$ . $2.2;2$) $t\geqq i$ and $h<i$ . Non-applicable, since neither (2) nor (5.3) applies

to this case, hence $t=0$ must hold, while here $t\geqq i=i_{0}+1$ .
$b$ . $2.2;3$) $t<i$ and $\nu_{m}=(i_{0}, e, \cdots , (i_{0}, e, s_{0})\cdots)$ . Non-applicable since $(i_{0}, e)$

$<(i, a)$ .
$b.3)$ $i=0$ .
Case 1. $J^{n+1}$ has the maximal element $\epsilon$ and $\nu_{m}=\epsilon\#\cdots\#\epsilon$ .
Case 2. $s_{m}\uparrow J^{n+1}$ and $\nu_{m}=s_{m}$ .
Both are non-applicable, since in either case $\nu_{m}$ is strongly accessible (Pro-

position 7.3), contradicting V.
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(2) $\gamma=(i, a, \alpha+1)$ .
(2.1) $a=0,$ $j\leqq i,$ $i=i_{0}+1$ and there is an $(i_{0},0)$-dominant of $\gamma$ in $\alpha$ .
(2.1; 1) $j<i$ and $r_{m}=(i, 0, \alpha_{m}\#(i_{0},0, \mu))$ , where $\mu=(i, 0, \alpha)$ . $\alpha$ is strongly

accessible.
Case 1. $\mu$ is strongly accessible. Then $(i_{0},0, \mu)$ is strongly accessible (since

$(i_{0}, O)<(i, 0))$ and $\alpha_{m}$ is strongly accessible (VII), hence $\alpha_{m}\#(i_{0},0, \mu)$ also.
$\alpha_{m}\#(i_{0},0, \mu)<_{i}\alpha+1$ . Take $\gamma_{m}(=\tilde{\eta}_{m})$ as the desired $v$ . This in particular implies
$u$ is not c-strongly accessible (V).

Case 2. $\mu$ is not strongly accessible. $\mu<_{0}\tilde{\eta}(=\gamma)$ and $\alpha<_{i}\alpha+1=\eta$ . So take
$\mu$ as the $u$ .

(2.1; 2) $j=i$ and $\gamma_{m}=\mu\#\cdots\#\mu\#(i, 0, \alpha_{m}\#(i_{0},0, \mu))$ .
Case 1. $\mu$ is strongly accessible. Since $\gamma_{m}(=\tilde{\eta}_{m})$ is not strongly accessible

$(i, 0, \alpha_{m}\#(i_{0},0, \mu))$ is not c-strongly accessible (Proposition 8.8). Put $u=(i,$ $0,$ $\alpha_{m}$

$\#(i_{0},0, \mu))$ .
Case 2. $\mu$ is not strongly accessible. Put $ u=\mu$ .
(2.2) Not (2.1).
$c$ . $1$ ) $t>i$ . Non-applicable.
$c.2)$ $t\leqq i$ .
$c$ . $2.1$ ) $a_{m}\uparrow a$ and $\nu_{m}=(i, a_{m}, \mu)$ . If $\mu$ is strongly accessible, then so is $\tilde{\eta}_{m}$

since $(i, a_{m})<(i, a)$ , yielding a contradiction. So $\mu$ is not strongly accessible.
Take $\mu$ as $u$ .

$c.2.2)$ $a=b+1$ and $\nu_{m}=(i, b, \cdots , (i, b, \mu)\cdots)$ . Take $\mu$ as $U$ .
$c.2.3)$ $a=0,$ $t=i$ and $\nu_{m}=\mu\#\cdots\#\mu\#\rho_{m}$ . Either $\mu$ or $\rho_{m}$ is not strongly

accessible. If $\mu$ is strongly accessible, then so is $\rho_{m}$ , since $\rho_{m}$ is either empty,
$(i_{0}, a_{m}, \mu)$ or $(i_{0}, e, \cdots, (i_{0}, e, \mu\#\cdots\#\mu)\cdots)$ , where $(i_{0}, a_{m}),$ $(i_{0}, e)<(i, a)$ . So $\mu$ is
not strongly accessible. Take $\mu$ as $u$ .

$c$ . $2.4$) $i_{m}\uparrow i$ and $\nu_{m}=(i_{m}, 0, \mu)$ . Take $\mu$ as $u$ .
$c.2.5)$ $i=i_{0}+1$ and $\nu_{m}=(j_{0}a_{m}, \mu)$ or $\nu_{m}=(i_{0}, e, \cdots , (i_{0}, e, \mu\#\cdots\#\mu)\cdots)$

where $(i_{0}, a_{m}),$ $(i_{0}, e)<(i, a)$ . Take $\mu$ as $v$ .
In the following $\gamma$ is of the form $(i, a, \alpha)$ .
(3.1) and (3.2) $j>i$ . Non-applicable.
(3.3) [1] $\gamma=(t, b, \lambda\#\nu)$ and $\gamma_{m}=\kappa_{m}\#\mu_{m}$ where $\mu_{m}=(t, b, \lambda\#\nu_{m})$ . $\lambda\#\nu$ is

strongly accessible and the values in $\kappa_{m}$ connected to $\lambda\#\nu$ are less than $(t, b)$ .
So $\kappa_{m}$ is strongly accessible, and hence $\mu_{m}$ must not be strongly accessible. $\nu_{m}$

is strongly accessible (VII), hence so is $\lambda\#\nu_{m}$ . $\lambda\#\nu_{m}<_{l}\lambda\#\nu$ . Take $\mu_{m}$ as $U$ .
$[2^{Q}]$ $u=\nu_{m}(=\overline{\eta}_{m})$ .
(4.1) $i=i_{0}+1$ .
(4.1; 1) $j<i$ and $\gamma_{m}=(i, 0, \alpha_{m}\#(i_{0},0, \alpha))$ .
(4.1; 2) $j=i$ and $\gamma_{m}=\alpha\#\cdots\#\alpha\#(i, 0, \alpha_{m}\#(i_{0},0, \alpha))$ .
$\alpha$ is strongly accessible, hence so are $\alpha_{m}$ and $(i_{0},0, \alpha)$ . $\alpha_{m}\#(i_{0},0, a)<i\alpha$ .
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Take $(i, 0, a_{m}\#(i_{0},0, \alpha))$ as $u$ for both cases.
(4.2) A component of $\nu_{m}$ is either $\alpha$ or $\rho_{m}$ , where in $\rho_{m}$ all the values con-

nected to $\alpha$ are less than $(i, a)$ . So $\nu_{m}$ is strongly accessible in any case.
Therefore (4.2) is non-applicable.

(4.3) See (3.3).

(5.1.1) See (4.1).

(5.1.2) See (4.2).

(5.2) See (3.3).

(5.3) and (2) are only transitive steps, hence irrelevant in the construction
of $u$ .

Note that when a case is not applicable for the reason that $\eta_{m}$ is strongly
accessible, $\tilde{\eta}$ is strongly accessible to begin with.

This completes the proof of VIII, hence of the proposition.

References

[1] G. Takeuti, Proof theory, North-Holland Publishing Co., Amsterdam, 1975.
[2] G. Takeuti and M. Yasugi, Fundamental sequences of ordinal diagrams, Comment.

Math. Univ. St. Paul., 25 (1976), 1-80.

Gaisi TAKEUTI Mariko YASUGI
Department of Mathematics Institute of Information Science
University of Illinois University of Tsukuba
Urbana, Illinois 61801 Ibaraki 305
U. S. A. Japan


	I. Extended systems of ...
	\S 1. An extended system ...
	\S 2. Valuation and approximation.
	\S 3. Fundamental sequences.
	\S 4. Equivalence of two ...
	\S 5. #-extension of a ...
	\S 6. Successive extensions ...

	II. Accessibility proof.
	\S 7. Strong accessibility ...
	\S 8. Accessibility of ...
	\S 9. Accessibility proof.

	References

