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\S 1. Introduction.

Let $X$ be a compact metric group and $\sigma$ be an automorphism of $X$ . It is
proved in [7] that if some point of the group $X$ has a dense orbit under $\sigma$

then $\sigma$ is ergodic with respect to the Haar measure of $X$. It is known that
the converse holds.

When $X$ is abelian and connected, it is known ([10]) that every auto-
morphism $\sigma$ is densely periodic if $X$ contains a subgroup $H$ such that $X/H$ is
a torus and $\cap\sigma^{n}H=\{e\}$ . When $X$ is totally disconnected, it is proposed in [3]

that an automorphism $\sigma$ with a dense orbit is densely periodic. This is obtained
by using the following proposition in [3]. If $X$ admits an automorphism $\sigma$

with a dense orbit, then $X$ contains a sequence $ X=F_{0}\supset F_{1}\supset\ldots$ of a-invariant
subgroups such that $\cap F_{n}=\{e\}$ , and for every $n\geqq 0$ the subgroup $F_{n+1}$ is normal
in $F_{n}$ and $F_{n}/F_{n+1}$ splits into a direct product $F_{n}/F_{n+1}=\times_{-\infty}^{\infty}\sigma^{j}\dot{F}_{n}$ of simple
subgroups $\sigma^{j}\dot{F}_{n}$ . However, this proposition is not true when $X$ is abelian, which
is reformed as Theorem 2 (ii), and there is an example of (X, $\sigma$ ) with a dense
orbit which is not densely periodic (Theorem 1).

Throughout this paper, the term “ subgroup “ will be applied only to closed
subgroups. The restriction and the factor of $\sigma$ will be denoted by the same
symbol if there is no possibility of confusion.

It is obvious that an automorphism $\sigma$ preserves the normalized Haar measure
of $X$. Therefore we can consider ergodic theoretical properties of (X, $\sigma$ ) and
we shall use ergodic properties for the proof of our results. For results in the
ergodic theory and the theory of groups used here, the reader may refer to
[9], [5] and [6].

In this paper we shall prove the following two theorems.
THEOREM 1. There exist a totally disconnected compact metric abelian group

$Y$ and an automorphism $\sigma$ with a dense orbit of $Y$ such that $\sigma$ on $Y$ has no
periodic points except the identity of $Y$ .

REMARK. It is mentioned in [4] that zero-dimensional ergodic automorphisms
satisfy specification in many cases. And in [4] the following is conjectured:
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every zero-dimensional ergodic automorphism satisfies specification. By defini-
tion we get easily that every automorphism with specification is densely periodic.
From this fact and Theorem 1, we shall obtain that the conjecture is false.

THEOREM 2. Let $X$ be a totally disconnected compact metric group and a
be an automorphism of X. If $\sigma$ has a dense orbit, then $X$ contains a sequence
$ X=F_{0}\supset F_{1}\supset\cdots$ of $\sigma$ -invariant subgroups such that $\cap F_{n}=\{e\}$ and for every
$n\geqq 0,$ $F_{n+1}$ is normal in $F_{n}$ and

(i) when $F_{n}/F_{n+1}$ is non-abelian $F_{n}/F_{n+1}$ splits into a direct pr0duct $F_{n}/F_{n+1}$

$=\times_{-\infty}^{\infty}\sigma^{j}\dot{F}_{n}$ of simple subgroups*) $a^{j}\dot{F}_{n}$ ,
(ii) when $F_{n}/F_{n+1}$ is abelian there is in $F_{n}$ a decreasing sequence $\{Y_{n.i}\}$ of

$\sigma$ -invariant subgroups such that $\bigcap_{i}Y_{n,i}=F_{n+1}$ and for every $i,$ $F_{n}/Y_{n.i}$ splits into
a direct pr0duct $F_{n}/Y_{n.i}=\times_{-\infty}^{\infty}a^{j}\dot{H}_{n}$ of simple subgroups $\sigma^{j}\dot{H}_{n}$ .

\S 2. Proof of Theorem 1.

Let $G$ be a countable discrete abelian group and $\gamma$ be an automorphism of
$G$ such that

$ G=\bigoplus_{-\infty}^{\infty}\gamma^{n}\langle g\rangle$

where $\langle g\rangle$ is a cyclic group of order $P$ ( $p$ is a prime number). The group
operation of $G$ will be written by additive form. The :notation $\oplus_{-\infty}^{\infty}G_{n}$ used
here means the restricted direct sum for an infinite family of subgroups $G_{n}$ .
Let $I$ denote the identity map. It will be easily obtained that

$(\gamma^{j}-I)G\subsetneqq G$

for all $j>0$ . Let $P$ denote the restricted direct product

$P=\times G_{i}1$

where $G_{i}=G$ for $i\geqq 1$ . Define the maps $\tilde{\gamma}$ and $\tilde{\beta}$ by

$\tilde{\gamma}(x)=(\gamma x_{1}, \cdots , \gamma x_{n}, 0, )$ and

$\beta(x)=(O, (\gamma-I)x_{1},$ $\cdots$ , $(\gamma^{n}-I)x_{n},$ $0,$ )

for every $x=(x_{1}, \cdots , x_{n}, 0, )\in P$. Then it follows that $\tilde{\gamma}$ is an automorphism
of $P$ and $\tilde{\beta}$ is a 1-1 homomorphism from $P$ into itself. Obviously $\tilde{\gamma}$ has no
periodic points except the identity, and

$Q=\{x-\tilde{\beta}(x):x\in P\}$

$*)$ The term “simple subgroup” will be applied only to algebraic simple subgroups.
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is a $\tilde{\gamma}$ -invariant subgroup. Denote

$P_{n}=\{(0, \cdots , 0, x_{n}, 0, ) : x_{n}\in G_{n}\}$

for every $n\geqq 1$ , then we get easily that for every $n\geqq 1,$ $Q\cap P_{n}=\{0\}$ and

$P_{n}\oplus Q\subsetneqq P_{n+1}\oplus Q$ .
Hence,

$\bigcup_{1}^{\infty}(P_{n}\oplus Q)=P$ ,

from which we get

$U[(P_{n}\oplus Q)/Q]=P/Q\infty 1$

Since, for all $j\geqq 1,\tilde{\gamma}^{j}-I$ is 1-1 on $P$, we have that for every $j\geqq 1$

$P_{j}\oplus Q=[(\tilde{\gamma}^{j}-I)P_{j+1}]\oplus Q$ .
Since $((P_{j}\oplus Q)/Q,\tilde{\gamma})$ is isomorphic to $(G, \gamma)$ for all $j,\tilde{\gamma}_{P/Q}$ has no periodic points
except the identity. We claim that for all $j\geqq 1$

$(*)$ $(\tilde{\gamma}^{j}-I)(P/Q)=P/Q$ .
Indeed, we have

$P_{jn}\oplus Q=[(\tilde{\gamma}^{jn}-I)P_{jn+1}]\oplus Q$

$=[(\tilde{\gamma}^{f(n- 1)}+\tilde{\gamma}^{j(n-2)}+\cdots+I)(\tilde{\gamma}^{j}-I)P_{jn+1}]\oplus Q$

$\subset[(\tilde{\gamma}^{j}-I)P_{jn+1}]\oplus Q$ .
Hence,

$(P_{jn}\oplus Q)/Q\subset(\tilde{\gamma}^{j}-I)[(P_{jn+1}\oplus Q)/Q]$ .
Since $(P_{n}\oplus Q)/Q\nearrow P/Q$ , we have $(*)$ .

Now let $(Y,\tilde{\sigma})$ be the dual of $(P/Q,\tilde{\gamma})$ . Since $P/Q$ is a torsion group, $Y$ is
totally disconnected. Using $(*)$ , we see that $\tilde{\sigma}$ has no periodic points except the
identity of $Y$ . Since $\tilde{\gamma}$ has no periodic points except the identity, $(Y,\tilde{a})$ is
ergodic; $i$ . $e$ . some point of $Y$ has a dense orbit under $\tilde{a}$ . Therefore $(Y,\tilde{a})$

satisfies all the conditions of Theorem 1. The proof is completed.

\S 3. Proof of Theorem 2.

For the proof we need the following results proved in [3]. Let $X$ be as in
Theorem 2 and $\sigma$ be an automorphism of $X$.

(A) Let $A$ be an open normal subgroup of $X$ such that $\cap\sigma^{n}A=\{e\}$ . If $\sigma$

is ergodic and $X/A$ is simple, then $X$ splits into a direct product $X=\times_{-\infty}^{\infty}\sigma^{j}W$
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of simple subgroups $a^{j}W$ (Proposition 11.5).
(B) Let $H$ be a $\sigma$ -invariant normal subgroup of $X$. Then there exists in

$H$ a a-invariant normal subgroup $W$ of $X$ such that $(H/W, \sigma)$ has zero entropy
and $(W, \sigma)$ is a K-system (Proposition 11.1).

(C) Let $H$ be as in (B) and $\sigma_{H}$ be the restriction of $\sigma$ to $H$. If $h(\sigma_{H})=0$ ,

then $H$ contains a decreasing sequence $\{H_{n}\}$ of a-invariant normal subgroups
of $X$ such that for every $n,$ $H_{n}$ is open in $H$ and $\cap H_{n}=\{e\}$ (Proposition 11.2).

(D) Let $Z$ be the center of $X$. Assume that $Z$ is finite and $X/Z$ splits
into a direct product $X/Z=\times_{-\infty}^{\infty}a^{j}\dot{W}$ of simple subgroups $\sigma^{j}\dot{W}$ . If $\dot{W}$ is non-
abelian, then $X$ contains a $\sigma$ -invariant normal subgroup $H$ such that $X=Z\times H$

(Proposition 3.7).

(E) Let $H$ be a $\sigma$ -invariant finite central normal subgroup of $X$ such that
$X/H$ is abelian. If the factor automorphism $a_{X/H}$ of $\sigma$ in $X/H$ is densely
periodic and ergodic, then $X$ is abelian (Proposition 10.7).

(F) If $X$ splits into a direct product $X=X_{i\in I}L_{i}$ of simple non-abelian
groups $L_{i}$ , then this splitting is unique, and an arbitrary normal subgroup of $X$

is equal to the direct product of some set of groups $L_{i}$ (Proposition 3.4).

(G) If $H$ is a a-invariant finite normal subgroup of $X$ and $\sigma$ is ergodic,
then $H$ is central in $X$ (Proposition 3.5).

(H) If $W$ is a $\sigma$ -invariant normal subgroup of $X$, then $h(\sigma)=h(\sigma_{X/W})+h(\sigma_{W})$

(Proposition 7.5).

We shall now prove Theorem 2. Since $X$ is totally disconnected, $X$ contains
a sequence $ X\supset A_{1}\supset A_{2}\supset\ldots$ of open normal subgroups such that $\cap A_{n}=\{e\}$ .
Writing

$H_{n}^{\prime}=\bigcap_{k}\sigma^{k}A_{n}$
$(n\geqq 1)$ ,

there is in $H_{n}^{\prime}$ a normal subgroup $H_{n}$ of $X$ such that $(H_{n}^{\prime}/H_{n}, \sigma)$ has zero
entropy and $(H_{n}, \sigma)$ is a K-system (by $(B)$). It is easy to see that

$(**)$ $ X=H_{0}\supset H_{1}\supset$ $\supset\cap H_{n}=\{e\}$ .

For every $n\geqq 1$ , put
$\dot{X}=X/H_{n}^{\prime}$ and $\dot{A}=A_{n}/H_{n}^{\prime}$ .

Then $\dot{A}$ is open in $\dot{X}$ . Let $\rho$ be the finite partition of $\dot{X}$ consisting of the
cosets of $A$ , then we get that $\sigma^{k}\rho$ is the partition of $\dot{X}$ into single points.
Hence, $ h(\sigma_{\dot{X}})=h(a, \rho)<\infty$ and by (H)

$ h(\sigma_{H_{n-1}/H_{n}})\leqq h(\sigma_{X/H_{n}})=h(\sigma_{X/H_{n}^{\prime}})+h(\sigma_{H_{n}^{\prime}/H_{n}})<\infty$ $(n\geqq 1)$ .

PROPOSITION 1. (X, a) $(=(H_{0}, \sigma))$ is a K-system.
PROOF. Assume that (X, $\sigma$ ) is not a K-system. By (B) there is a $\sigma$ -invarl-

ant normal subgroup $W$ of $X$ such that $(X/W, a)$ has zero entropy and $(W, \sigma)$
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is a K-system. Using (C), we have an open normal proper subgroup $\dot{K}$ of $X/W$ .
Hence $(X/W)/\dot{K}$ is finite. But, since $((X/W)/\dot{K}, \sigma)$ is a factor of (X, $a$ ), it is
ergodic and so $X/W=\dot{K}$ . This is a contradiction.

For any fixed $n\geqq 0$ we write

$F=H_{n}$ and $H=H_{n+1}$ .

Notice that $F\supset H,$ $(F, a)$ and $(H, \sigma)$ are K-systems and

$(***)$ $ h(\sigma_{F/H})<\infty$ .

In the following Propositions 2, 3 and 4, we shall show that $F$ contains a finite
sequence

$F=F_{-1}\supset F_{0}\supset\ldots\supset F_{k}=H$

of a-invariant subgroups such that for every $i\geqq 0,$ $F_{i}$ is normal in $F_{t-1}$ and
when $F_{i- 1}/F_{\ell}$ is non-abelian, $F_{i-1}/F_{i}$ satisfies (i) of Theorem 2 and when
$F_{i-1}/F_{i}$ is abelian, $F_{i- 1}$ satisfies (ii) of Theorem 2.

We can find an open normal proper subgroup $B$ such that $F\supset B\supset H$ and
$F/B$ is simple. Put

$B_{0}=\cap\sigma^{k}B$ ,

by (A) we have
$F/B_{0^{=\times}-\infty}\infty\sigma^{j}(F^{\prime}/B_{0})$

where $F^{\prime}/B_{0}$ is a simple group. By $(B),$ $B_{0}$ contains a $\sigma$ -invariant normal sub-
group $F_{0}$ such that

$F\supset B_{0}\supset F_{0}\supset H$ ,

$(B_{0}/F_{0}, \sigma)$ has zero entropy and $(F_{0}, \sigma)$ is a K-system.
PROPOSITION 2. If $F/F_{0}$ is non-abelian, then $F/F_{0}$ splits into a direct product

$F/F_{0}=\times_{-\infty}^{\infty}\sigma^{j}\dot{F}$ of simple subgroups $\sigma^{j}\dot{F}$.
PROOF. It is enough to see that $F_{0}=B_{0}$ . Since $h(\sigma_{B_{0}/F_{0}})=0,$ $B_{0}$ contains a

decreasing sequence $\{H_{k}\}$ of $\sigma$ -invariant subgroups such that $\cap H_{k}=F_{0}$ and for
every $k$ the subgroup $H_{k}$ is normal in $F$ and $H_{k}$ is open in $B_{0}$ (by $(C)$). For
every $k,$ $B_{0}/H_{k}$ is a finite normal subgroup of $F/H_{k}$ , so that it is central in
$F/H_{k}$ (by $(G)$ ).

Assume that $(F/H_{k})(B_{0}/H_{k})$ is abelian. Since $F/B_{0}=\times_{-\infty}^{\infty}a^{j}(F^{\prime}/B_{0}),$
$a_{F/B_{0}}$ is

densely periodic and ergodic. For every $k,$ $(F/H_{k})/(B_{0}/H_{k})\cong F/B_{0}$ and $B_{0}/H_{k}$

is central in $F/H_{k}$ , hence $F/H_{k}$ is abelian by $(E)$ . Since $H_{k}\searrow F_{0},$ $F/F_{0}$ is also
abelian, which is a contradiction. Therefore $(F/H_{k})/(B_{0}/H_{k})$ is non-abelian and
by (F) the group $B_{0}/H_{k}$ is the center of $F/H_{k}$ for all $k$ . Hence by $(D),$ $F/H_{k}$

contains a $\sigma$ -invariant subgroup $\dot{C}_{k}$ such that $F/H_{k}=\dot{C}_{k}\times(B_{0}/H_{k})$ . Thus
$(B_{0}/H_{k}, \sigma)$ is a factor of the K-system $(F/H_{k}, \sigma)$ , but $B_{0}/H_{k}$ is finite. Hence we
have $B_{0}=H_{k}$ and so $B_{0}=F_{0}$ .
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PROPOSITION 3. If $F/F_{0}$ is abelian, then $h(\sigma_{F/F_{0}})=\log p$ where $p$ is a prjme
number, and $F$ contains a decreasing sequence $\{Y_{0.k}\}$ of $\sigma$ -invariant normal sub-
groups such that $\bigcap_{k}Y_{0.k}=F_{0}$ and for every $k,$ $F/Y_{0.k}$ spljts into a direct prOduct
$F/Y_{0.k}=\times_{-\infty}^{\infty}\sigma^{j}\dot{F}$ of cyclic groups $a^{j}\dot{F}$ of order $p$ .

PROOF. Let $(G, \gamma)$ be the dual of $(F/F_{0}, a)$ . Obviously $G$ is a torsion
group. Since $(F/F_{0}, \sigma)$ is a K-system, $\gamma$ has no periodic points except the
identity of $G$ . As before the group operation of $G$ is written by additive form.

Since $F/B_{0}=\times_{-\infty}^{\infty}\sigma^{j}(F^{\prime}/B_{0})$ where $F^{\prime}/B_{0}$ is simple, and since $F/B_{0}$ is
abelian, $F^{\prime}/B_{0}$ is a cyclic group of order prime $p$ . Hence $h(\sigma_{F/B_{0}})=\log p$ and
by (H)

$h(\sigma_{F/F_{0}})=h(\sigma_{F/B_{0}})+h(\sigma_{B_{0}/F_{0}})=\log p$ .

We get that $G$ is a $P$ -group. For, since $G$ is a torsion group, $G$ splits into a
direct sum

$G=\oplus_{a\geqq 1}G^{(a)}$

of $\gamma$-invariant prime groups $G^{(a)}$ (p. 137 of [5]). Hence we have

$F/F_{0}=\times a\geqq 1\dot{F}^{(a)}$

where $\dot{F}^{(a)}(a\geqq 1)$ is a $\sigma$ -invariant subgroup with character group $G^{(a)}$ . Let
$G_{B_{0}}$ be the annihilator of $B_{0}/F_{0}$ , then $G_{B_{0}}$ is the character group of $F/B_{0}$ .
Since $F/B_{0}=\times_{-\infty}^{\infty}a^{j}(F^{\prime}/B_{0})$ and $F^{\prime}/B_{0}$ is a cyclic group of order $p,$ $G_{B_{0}}$ is
annihilated by multiplication by $p$ , and hence $G_{B_{0}}\subset G^{(a)}$ for some $a$ . So we
have $h(\sigma_{\dot{F}}^{(a)})\geqq\log p$ . Since $h(\sigma_{F/F_{0}})=\log p$ , it follows that $G=G^{(a)}$ ; $i$ . $e$ . $G$ is
a p-group.

Let us Put
$G_{1}=\{g\in G : pg=0\}$ .

Then we have $G=G_{1}$ . Indeed, let $\dot{W}_{1}$ be the annihilator of $G_{1}$ in $F/F_{0}$ . Assume
$\dot{W}_{1}\neq\{e\}$ . By (A), $h(\sigma_{(F/F_{0})/\dot{W}_{1}})\geqq\log p$ and so $h(\sigma_{\dot{W}_{1}})=0$ (by $(H)$). But, since
$\gamma_{G/G_{1}}$ has no periodic points except the identity, $(\dot{W}_{1}, a)$ is ergodic and so is a
K-system (Proposition 1). This is a contradiction and hence $\dot{W}_{1}=\{e\}$ . So we
get $G=G_{1}$ .

Therefore we can consider $G$ to be a $Z/pZ[x, x^{-1}]$ -module. Since
$Z/pZ[x, x^{-1}]$ is a principal ideal domain, by (p. 85, Theorem 2 in Chapter 7 of
[2]) there is an increasing sequence $\{U_{j}\}$ of free $Z/pZ[x, x^{-1}]$ -modules of
finite type such that $UU_{j}=G$ and for every $j\geqq 1,$ $U_{j}$ is of the form

$U_{j}=Z/pZ[\gamma, \gamma^{-1}]g_{1}\oplus\cdots\oplus Z/pZ[\gamma, \gamma^{-1}]g_{k_{j}}$

$=(\bigoplus_{-\infty}^{\infty}\gamma^{n}\langle g_{1}\rangle)\oplus\cdots\oplus(\bigoplus_{-\infty}^{\infty}\gamma^{n}\langle g_{k_{j}}\rangle)$

for some $g_{1},$
$\cdots$ , $g_{k_{j}}\in U_{j}$ . However, since $h(\sigma_{F/F_{0}})=\log p$ , we have that $k_{j}=$
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1; $i.e$ .
$ U_{j}=Z/pZ[\gamma, \gamma^{-1}]g_{1}=\bigoplus_{-\infty}^{\infty}\gamma^{n}\langle g_{1}\rangle$ .

If $Y_{0.j}/F_{0}$ is the annihilator of $U_{j}$ in $F/F_{0}$ , then $Y_{0.j}\searrow F_{0}$ and for every $j\geqq 1$ ,
$F/Y_{0.j}$ has the $required\wedge \mathfrak{k}splitting$ .

PROPOSITION 4. There exist a positive integer $n_{0}$ and a finite sequence

$F=F_{-1}\supset F_{0}\supset\cdots\supset F_{n_{0}}=H$

of $\sigma$ -invariant subgroups such that for every $i\geqq 0,$ $F_{i}$ is normal in $F_{i- 1}$ and
$(i)^{\prime}$ when $F_{\ell-1}/F_{i}$ is non-abelian, $F_{i-1}/F_{i}$ has a direct product splitting satis-

fying Proposition2,
(ii)’ when $F_{i-1}/F_{i}$ is abelian, $F_{i- 1}$ contains a decreasing sequence $\{Y_{i- 1.n}\}$

satisfying all the conditions of Proposition3.
PROOF. Since $F\supset F_{0}\supset H$ and $(F_{0}, \sigma)$ is a K-system, we can apply the above

argument to the pair $(F_{0}, H)$ . Then it follows that $F_{0}$ contains a $\sigma$ -invariant
normal (in $F_{0}$) subgroup $F_{1}$ such that $F_{0}\supset F_{1}\supset H$ and $(F_{1}, \sigma)$ is a K-system.
And we have that when $F_{0}/F_{1}$ is non-abelian, by Proposition 2, $F_{0}/F_{1}=\times_{-\infty}^{\infty}\sigma^{j}\dot{F}_{0}$

where $\sigma^{j}\dot{F}_{0}(-\infty<j<\infty)$ is a simple subgroup, and when $F_{0}/F_{1}$ is abelian, by
Proposition 3 there is in $F_{0}$ a decreasing sequence $\{Y_{1.k}\}$ of $\sigma$ -invariant sub-
groups such that $\bigcap_{k}Y_{1.k}=F_{1}$ and for every $k,$ $F_{0}/Y_{1.k}=\times_{-\infty}^{\infty}\sigma^{j}\dot{F}_{0}$ where $\sigma^{j}\dot{F}_{0}$

$(-\infty<j<\infty)$ is a cyclic group of order $p$ .
Since $(F_{1}, a)$ is a K-system, we can repeate the same argument. Con-

sequently we get that $F$ contains a sequence $ F=F_{-1}\supset F_{0}\supset$ $\supset H$ of $\sigma$ -invariant
subgroups such that for every $j\geqq 0,$ $F_{j}$ is normal in $F_{j-1},$ $(F_{j}, \sigma)$ is a K-system
and $F_{j-1}/F_{j}$ satisfies either $(i)^{\prime}$ or (ii)’.

It only remains to show the existence of an integer $n_{0}$ such that $F_{n_{0}}=H$.
By $(***),$ $ h(\sigma_{F/H})<\infty$ . On the other hand, we have that $h(\sigma_{F_{j-1}/F_{j}})\geqq\log 2$ if
$F_{j}\subsetneqq F_{j-1}$ and by (H), $\sum_{j}h(\sigma_{F_{j-1}/F_{j}})\leqq h(\sigma_{F/H})<\infty$ , from which our requirement is
obtained.

Theorem 2 follows easily from $(**)$ and Propositions 1, 2, 3 and 4.
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